
Power ISA™
Version 3.1

May 1, 2020

Version 3.1
IBM®
© Copyright International Business Machines

Corporation 1994 - 2020. All rights reserved.

Printed in the United States of America May, 2020

By downloading the POWER® Instruction Set Architec-
ture (“ISA”) Specification, you agree to be bound by the
terms and conditions of this agreement.

IBM, the IBM logo, and ibm.com are trademarks or reg-
istered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark infor-
mation” at www.ibm.com/legal/copytrade.shtml.

Other company, product, and service names may be
trademarks or service marks of others.

All information contained in this document is subject to
change without notice. The products described in this
document are NOT intended for use in applications
such as implantation, life support, or other hazardous
uses where malfunction could result in death, bodily
injury, or catastrophic property damage. The informa-
tion contained in this document does not affect or
change IBM product specifications or warranties. Noth-
ing in this document shall operate as an express or
implied license or indemnity under the intellectual prop-
erty rights of IBM or third parties. All information con-
tained in this document was obtained in specific
environments, and is presented as an illustration. The
results obtained in other operating environments may
vary.

While the information contained herein is believed to be
accurate, such information is preliminary, and should
not be relied upon for accuracy or completeness, and
no representations or warranties of accuracy or com-
pleteness are made.

Note: This document contains information on products
in the design, sampling and/or initial production phases
of development. This information is subject to change
without notice. Verify with your IBM field applications
engineer that you have the latest version of this docu-
ment before finalizing a design.

You may use this documentation solely for developing
technology products compatible with Power Architec-
ture® in support of growing the POWER ecosystem.
You may not modify this documentation. You may dis-
tribute the documentation to suppliers and other con-
tractors hired by you solely to produce your technology
products compatible with Power Architecture® technol-
ogy and to your customers (either directly or indirectly
through your resellers) in conjunction with their use and
instruction of your technology products compatible with
Power Architecture® technology. This agreement
does not include rights to create a CPU design to run
the POWER ISA unless such rights have been granted

by IBM under a separate agreement. The POWER ISA
specification is protected by copyright and the practice
or implementation of the information herein may be pro-
tected by one or more patents or pending patent appli-
cations. No other license, express or implied, by
estoppel or otherwise to any intellectual property rights
is granted by this document.

THE INFORMATION CONTAINED IN THIS DOCU-
MENT IS PROVIDED ON AN “AS IS” BASIS. IBM
makes no representations or warranties, either express
or implied, including but not limited to, warranties of
merchantability, fitness for a particular purpose, or
non-infringement, or that any practice or implementa-
tion of the IBM documentation will not infringe any third
party patents, copyrights, trade secrets, or other rights.
In no event will IBM be liable for damages arising
directly or indirectly from any use of the information
contained in this document.

The IBM home page can be found at ibm.com®.
Power ISA™ ii

Version 3.1
The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, 11400 Burnett
Road, Austin, Texas 78758-3493. IBM may use or dis-
tribute whatever information you supply in any way it
believes appropriate without incurring any obligation to
you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM®
Power ISA
PowerPC®
Power Architecture®
PowerPC Architecture
RISC/System 6000
POWER®
POWER2
POWER4
POWER5
POWER7®
POWER8®
POWER9®
System/370

Notice to U.S. Government Users—Documentation
Related to Restricted Rights—Use, duplication or dis-
closure is subject to restrictions set fourth in GSA ADP
Schedule Contract with IBM Corporation.
 iii

Version 3.1
Power ISA™ Iiv

Version 3.1
Preface

The roots of the Power ISA (Instruction Set Architec-
ture) extend back 30 years, to IBM Research. The
POWER (Performance Optimization With Enhanced
RISC) Architecture was introduced with the RISC Sys-
tem/6000 product family in early 1990. In 1991, Apple,
IBM, and Motorola began the collaboration to evolve to
the PowerPC Architecture, expanding the architec-
ture’s applicability. In 1997, Motorola and IBM began
another collaboration, focused on optimizing PowerPC
for embedded systems, which produced Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining
Book E content with the more general purpose Pow-
erPC Version 2.02. The resulting architecture included
environment-specific privileged architecture optimiza-
tions (two Book IIIs) and optional application-specific
facilities (categories) as extensions to a pervasive base
architecture.

In support of the OpenPOWER Foundation’s standard-
ization of server architecture, Power ISA Version 3.0
streamlined this integration by choosing a single Book
III and a set of widely used categories to become part
of the base architecture for all forward-looking Power
implementations. All other optional architecture cate-
gories were eliminated to ensure increased application
portability between Power processors. Legacy embed-
ded applications that require the eliminated material will
continue to use V. 2.07B.

Power ISA Version 3.0C took the first step in re-intro-
ducing optionality into the architecture as the Power
ISA moves to an “open” model governed by the Open-
POWER Foundation. Material later in the preface iden-
tifies compliancy subsets of the architecture and the
optional features which they comprise.

The Power ISA Version 3.1 consists of three books and
a set of appendices.

Book I, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer.

Book II, Power ISA Virtual Environment Architecture,
defines the storage model and other instructions and
facilities that enable the application programmer to cre-
ate multithreaded programs and programs that interact
with certain physical realities of the computing environ-
ment.

Book III, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books I, II,
and III.

Change bars have been included in the body of this
document to indicate changes from the Power ISA Ver-
sion 3.0C.
 Preface v

Version 3.1
Summary of Changes in Power ISA Version 3.1
This document is Version 3.1 of the Power ISA. It is
intended to supersede and replace version 3.0C. Any
product descriptions that reference a version of the
architecture are understood to reference the latest ver-
sion. This version was created by making miscella-
neous corrections and by applying the following
requests for change (RFCs) to Power ISA Version
3.0C. Change bars in this summary of changes indi-
cate changes relative to v3.0C.

Byte-Reverse Instructions:
Added new GPR-based byte-reverse instructions.

Vector Integer Multiply/Divide/Modulo Instructions:
Added SIMD-equivalent forms of FXU multiply, divide,
and modulo instructions to increase synergy with FXU
instruction set for auto-vectorization.

Instruction Prefix Support:
Added a 32-bit instruction prefix to support PC-relative
addressing, up to 34-bit immediate operands, addi-
tional operand fields, and additional opcode space.

BHRB Filtering:
Added new BHRB Filtering fields and defined associ-
ated terminology.

VSX 32-byte Storage Access Operations:
Added new 32-byte VSR load and store instructions.

Multiple DEAW:
Added a second Data Address Watchpoint. [H]DAR is
set to the first byte of overlap. 512B boundary is
removed. Match detection is on DW granularity inde-
pendent of operand size. SIAR/SDAR are not altered
by the Trace interrupt when TE=0b00.

128-bit Binary Integer Operations:
Added new 128-bit integer instructions for comparison,
divide, modulo, rotate, shift, DFP and QFP format con-
version operations. Also added 128-bit integer multiply
assist operations.

SIMD Permute-Class Operations:
New permute-class instructions for element extraction
and insertion operations, 32-bit immediate splat opera-
tions, doublewide bit shift left/right operations, element
mask-based blend operations, and an arbitrary-wide
permute assist operation.

Reduced-Precision: Outer Product Operations:
Added new outer-product instructions to accelerate
matrix multiplication, supporting 4-bit, 8-bit, and 16-bit
integer and 16-bit, 32-bit, and 64-bit floating-point data-
types.

Bit-Manipulation Operations:
Added new bit-manipulation instructions.

Set Boolean Extension:
Added four new instructions that convert a condition
code bit (any CR bit) into a Boolean (0/1), the negation
of a Boolean (1/0), a field mask (all 0s/all 1s), and the
negation of a field mask (all 1s/all 0s) that is placed into
a GPR.

String Operations:
Added new string isolate instructions to support
null-terminated and explicit-length strings.

Test LSB by Byte Operation:
Added new instruction to set any CR field to reflect
predicate compare summary status, not just CR field 6
which Rc=1 is limited to.

VSX Load/Store Rightmost Element Operations:
Added new load and store instructions that transfer the
rightmost vector element between VSR and storage.

Prefixed addi Instruction and Prefixed Load/Store
Instructions and Addressing:
Using new instruction prefix, added support for
extended immediate displacements and PC-relative
addressing for a specific set of GPR and VSR load and
store operations.

VSX Scalar Minimum/Maximum/Compare Quad-Preci-
sion Operations:
Add new quad-precision minimum, maximum, and
predicate comparison instructions.

CMODX Extension for Prefix:
The quasi patch class of unsynchronized updates to
instruction storage is made architecture. Language is
changed and rules are added to account for the addi-
tion of prefixed instructions to the architecture.

Reduced-Precision - bfloat16 Outer Product & Format
Conversion Operations:
Added new instructions to accelerate matrix multiplica-
tion and format conversions for the bfloat16 datatype.

Processor Control Register Extensions:
The PCR is updated to accommodate new prob-
lem-state instructions added in v3.1.

Reduced-Precision: Missing Integer-based Outer Prod-
uct Operations:
Added additional new instructions to accelerate matrix
multiplication for 8-bit and 16-bit integer datatypes.

VSX Mask Manipulation Operations:
Added new vector instructions to manipulate vector
masks.

VSX PCV Generate Operations:
Added new permute control vector generate instruc-
tions to support efficient emulation of load expand and
store compress operations.
Power ISA™ vi

Version 3.1
New Performance Monitor SPRs:
Added three new performance monitor SPRs. SIER2
and SIER3 are added to provide additional information
about the sampled instruction. MMCR3 is added for fur-
ther sampling related configuration control.

Translation Management Extensions:
Added an L bit for slbiag, where L=1 indicates an inval-
idation by LPID. tlbiel with SET=0 and IS=1, 2, or 3
invalidate all congruence classes and tlbiel with SET
!=0 is a noop except when RIC=1, which becomes an
invalid form. Made ISL apply in hypervisor state.

Copy/Paste Extensions:
Added memory move functionality.

Persistent Storage / Store Sync:
Added pushes and synchronization for persistent stor-
age and variants of sync optimized for store ordering.

Pause / Wait-reserve:
Added two new variants of the wait instruction;
removed platform notify, TIDR, and CIR.

Performance Monitor Facility Sampling Security:
Changes the definition of MMCR0PMCC=0b00 case to
allow for a new secure mode of access with regards to
sampling registers which is available conditional on
new MMCRPMCCEXT bit. Introduces a new freeze mode
for ultravisor privilege state differentiating it from hyper-
visor privilege state freeze mode. Restricts BHRB to
only record in problem state. Also MMCR0PMAQ, bit 52
of MMCR0 is removed.

Hypervisor Interrupt Location Control:
Added HAIL for the hypervisor to specify its interrupt
behavior independent from guest state.

Changes and Clarifications to Data Cache Mangement
Instructions:
Specifies the that the number of software data prefetch
streams guaranteed to be available to a thread varies
by degree of multithreading in the processor. Clarifies
when a new software data prefetch stream will over-
write an existing one. Redefines when a thread’s soft-
ware data prefetch streams are cleared.

BHRB Disable Control:
Adds an additional control on BHRB recording via
MMCRA bit 26 namely MMCRABHRBRD.
 Preface vii

Version 3.1
OpenISA Compliancy Subset Methodology and Requirements
The PowerISA comprises the base architecture (that
which is never optional - not part of any optional or dep-
recated feature), four groups of optional features, and a
group of deprecated features. (See the next two
pages.) Authorized implementations of the Power ISA
must support one of the four Compliancy Subsets
defined below. Support of a subset means that a
design includes the base architecture and all features
that are not optional for that subset. A supporting
design may also include any features that are optional
for the supported subset (including deprecated fea-
tures), subject to stated pre-requisites, and Custom
Extensions created using the architecture sandbox
defined below. “Inclusion” of the base architecture, of
an optional feature, or of a custom extension can be
accomplished using a combination of hardware and
firmware, provided that the firmware is implemented
using other elements of the base architecture and of
the included features, and elements of the architecture

sandbox; invoked using the second and third pages of
real storage (see the second bullet of Section 6.7.5 of
Book III); and subject to the prohibitions against the use
of firmware given in Section 7.4.4 of Book III. Each
optional or deprecated feature must be implemented in
its entirety. Attempted execution of an instruction asso-
ciated with a feature that is not included must cause a
Hypervisor Emulation Assistance Interrupt (HEAI). The
result of an attempted access to an SPR associated
with a feature that is not included using mtspr or mfspr
must be that described for “an SPR number that is
undefined for the implementation” in the respective
instruction description. See Section 5.4.4 of Book III.
For Scalar Fixed-Point + Floating-Point and Scalar
Fixed-Point Compliancy Subset implementations that
do not include the logical partitioning feature, an Illegal
Instruction type Program Interrupt as described in the
penultimate Programming Note in Section 7.5.9 of
Book III may be substituted for the HEAI.

OpenPOWER Compliancy Subsets

1. AIX Compliancy Subset (ACS)

The following features are optional for this compliancy subset. The rest of PowerISA v3.1 must be included.

Always Optional Features listed below

Deprecated Features listed below

2. Linux Compliancy Subset (LCS)

The following features are optional for this compliancy subset. The rest of PowerISA v3.1 must be included.

Linux Optional Features listed below

Always Optional Features listed below

Deprecated Features listed below

3. Scalar Fixed-Point + Floating-Point Compliancy Subset (SFFS)

The following features are optional for this compliancy subset. The rest of PowerISA v3.1 must be included.

Scalar Float Optional Features listed below,

Linux Optional Features listed below

Always Optional Features listed below

Deprecated Features listed below

4. Scalar Fixed-Point Compliancy Subset (SFS)

The following features are optional for this compliancy subset. The rest of PowerISA v3.1 must be included.

Scalar Fixed Optional Features listed below

Scalar Float Optional Features listed below

Linux Optional Features listed below

Always Optional Features listed below

Deprecated Features listed below
Power ISA™ viii

Version 3.1
OpenPOWER Optional and Deprecated Features

Always Optional Features

The following features are optional for all compliancy subsets.

Feature Reference
Copy/Paste for accelerator invocation
and memory copy (CPA)

See Section 4.4 of Book II.

Secure Memory Facility (SMF)1 See Chapter 3 of Book III.
Hardware and software data stream
prefetching (STM)
(DSCR state not optional)

See Section 4.2 and Section 4.3.2 of Book II.

M=0 (M)
(non-coherent memory)

See Section 1.6.3 of Book II.

W=1 (W)
(write through-required memory)

See Section 1.6.1 of Book II.

Power management (PM)2 See Section 4.2.2, Section 4.3.2, and the description of the PECE field(s) of the
LPCR in Section 2.2 of Book III.

MMA3 See Section 7.2.1.3 and Section 7.6.1.12 of Book I.

Notes:

1. LPAR is a pre-requisite for SMF.
2. If Power management is implemented by an ACS- or LCS-compliant design, it must be implemented as the architecture

describes. If Power management is implemented by an SFFS- or SFS-compliant design, it need not be implemented as
the architecture describes, and may include different interfaces created from the architecture sandbox.

3. SIMD is a requirement for MMA.
 Preface ix

Version 3.1
Linux Optional Features

The following features are optional for the Linux Compliancy Subset, the Scalar Fixed-Point + Floating-Point
Compliancy Subset, and the Scalar Fixed-Point Compliancy Subset.

Feature Reference
AIL/HAIL programmability (AIL)
(AIL=3 and HAIL=1 required)

See the description of the AIL and HAIL fields of the LPCR in Section 2.2 of Book
III.

Atomic Memory Operations (AMO) See Section 4.5 of Book II.
Big Endian (BE)
(LE is required for LCS. Linux supporting
LCS is 64b LE Linux.)

See Section 1.10 of Book I and its first two subsections. Also see the description
of the ILE field of the LPCR in Section 2.2 of Book III and the description of the
LE bit of the MSR in Section 4.2.1 of Book III.

Branch History Rolling Buffer (BHRB) See Chapter 7 of Book II.
Decimal floating-point (DFP)1 See Chapter 5 of Book I.
Event-Based Branching (EBB) See Chapter 6 of Book II.
EVIRT programmability (EVIRT)2
(EVIRT=1 required)

See the description of the EVIRT field of the LPCR in Section 2.2 of Book III.

SLB / HPT translation (HPT)
(includes VPM, ISL, KBV)

See Section 6.7.7 through Section 6.7.9 of Book III. Also see the description of
the VPM, ISL, and KBV fields of the LPCR in Section 2.2 of Book III.

Load/Store Multiple instructions (LM) See Section 3.3.6 of Book I.
Load/Store String instructions (LS) See Section 3.3.7 of Book I.
Processor Compatibility Register (PCR)2 See Section 2.5 of Book III.
Quad-precision floating-point (QFP)3 See Chapter 7 of Book I.
Broadcast TLB shootdown (TLBIE)
(tlbiel not optional)

See Section 6.9.3.3 of Book III.

Control Register (CTRL) See Section 5.3.4 of Book III.
SMT (SMT)4
(includes PURR/SPURR, PSPB, RPR,
PPR, processor control) (PPR and hyper-
visor/ultravior messaging not optional)

See Chapter 3 of Book II. Also see Section 5.3.5 through Section 5.3.7, Section
8.6, Section 8.7, and Chapter 11 of Book III.

Notes:

1. FP is a pre-requisite for DFP.
2. LPAR is a pre-requisite for EVIRT and PCR.
3. SIMD is a pre-requisite for QFP.
4. If SMT is implemented by an LCS-compliant design, it must be implemented as the architecture describes. If SMT is

not implemented by an LCS-compliant design, the design must not except on PPR accesses and must implement
msgsnd[u], msgclr[u], and msgsync. If SMT is implemented by an SFFS- or SFS-compliant design, it need not be
implemented as the architecture describes, and may include different interfaces created from the architecture sandbox.
Power ISA™ Ix

Version 3.1
Scalar Float Optional Features

The following features are optional for the Scalar Fixed-Point + Floating-Point Compliancy Subset and the Scalar
Fixed-Point Compliancy Subset.

Scalar Fixed Optional Features

The following features are optional for the Scalar Fixed-Point Compliancy Subset

Deprecated Features

There are no deprecated features in Power ISA v3.1.

Feature Reference
SIMD (SIMD)1
(VMX and VSX)

See Chapter 6 and Chapter 7 of Book I.

SF=1 (64-bit)2 See Section 1.5 and Section 1.10.3 of Book I and the description of the SF field
of the MSR in Section 4.2.1 of Book III.

Little Endian (LE)
(BE is required for SFFS and SFS. Linux
supporting SFFS and SFS is 32b BE
Linux.)

See Section 1.10 of Book I and its first two subsections. Also see the description
of the ILE field of the LPCR in Section 2.2 of Book III and the description of the
LE bit of the MSR in Section 4.2.1 of Book III.

Logical partitioning (LPAR)3,4 See Chapter 2 of Book III.
Fixed-point instructions that modify OV to
indicate whether overflow occurred (OV)
(addex and instructions with OE=1 such as
addo, subfo, etc.)

See Section 3.3.9 of Book I.

Nested radix translation (ROR)5

(single-level radix translation not optional)
See Section 6.7.7 and Section 6.7.10 of Book III.

Notes:

1. FP is a pre-requisite for SIMD.
2. When 64-bit is not included, a single radix tree will be used to map both application and OS address spaces (no quad-

rant structure).
3. 64-bit is a pre-requisite for LPAR.
4. When LPAR is not included, MSRHV=1 always.
5. LPAR is a pre-requisite for ROR.

Feature Reference
Scalar binary floating-point (FP) See Chapter 4 of Book I.
 Preface xi

Version 3.1
OpenPOWER Architecture Sandbox
OpenPOWER compliancy subsets permit Custom
Extensions. Any architectural resources used for Cus-
tom Extensions must use only the resources described
below and any instructions and SPRs that the architec-
ture describes as implementation-dependent.

Development of Custom Extensions using the architec-
ture sandbox is appropriate for facilities that benefit a
small portion of the processor design space. For facili-
ties with broad applicability, developers are strongly
encouraged to submit a proposal for adoption into the
architecture. Adopted proposals will become optional
or required features of the architecture, and will be
assigned resources that are not in the architecture
sandbox to avoid fragmentation of the architecture.
Facilities described in proposals that are not adopted
into the architecture may be implemented as Custom
Extensions using the architecture sandbox.

System software and toolchain support of Custom
Extensions is not guaranteed. Developers are encour-
aged to provide a means to disable custom extensions
to present an architecture that is supported by standard
system software and toolchain.

The architecture sandbox consists of the following.
 The designated opcode sandbox is instructions

having a primary opcode of 22. Note that primary
opcode 22 is reserved by AIX. As a result, Custom
Extensions that use primary opcode 22 are not
compatible with ACS.

 The designated SPR sandbox consists of non-priv-
ileged SPRs 704-719 and privileged SPRs
720-735.

 The designated [H]FSCR sandbox consists of
[H]FSCR bits 8-9 and their corresponding IC val-
ues.

 The designated XER bit sandbox consists of XER
bits 54:55.

 The designated FPSCR bit sandbox consists of
FPSCR bits 14-15.

 The designated VSCR bit sandbox consists of
VSCR bits 96 & 112. VSCR bit 96 is provided for
Vector Facility control & VSCR bit 112 is provided
for Vector Facility status.

 The designated interrupt vector sandbox consists
of interrupt vector 0x0000_0000_0000_0FE0.
Power ISA™ Ixii

Version 3.1
Table of Contents

Preface. v
Summary of Changes in Power ISA Ver-

sion 3.1 . vi
OpenISA Compliancy Subset Methodol-

ogy and Requirements viii

Table of Contents xiii

Book I:

Power ISA User Instruction Set
Architecture. 1

Chapter 1. Introduction 3
1.1 Overview. 3
1.2 Instruction Mnemonics and Operands3
1.3 Document Conventions 3
1.3.1 Definitions 3
1.3.2 Notation . 4
1.3.3 Reserved Fields, Reserved Values,

and Reserved SPRs 5
1.3.4 Description of Instruction Operation 6
1.3.5 Phased-Out Facilities 8
1.4 Processor Overview 9
1.5 Computation modes 10
1.6 Instruction Formats 11
1.6.1 Word Instruction Formats 12
1.6.1.1 A-FORM 12
1.6.1.2 B-FORM 12
1.6.1.3 D-FORM 12
1.6.1.4 DQ-FORM 12
1.6.1.5 DS-FORM. 12
1.6.1.6 DX-FORM. 12
1.6.1.7 I-FORM. 12
1.6.1.8 M-FORM. 12
1.6.1.9 MD-FORM 12
1.6.1.10 MDS-FORM 12
1.6.1.11 SC-FORM 12
1.6.1.12 VA-FORM 12
1.6.1.13 VC-FORM. 12
1.6.1.14 VX-FORM 13
1.6.1.15 X-FORM 13

1.6.1.16 XFL-FORM 15
1.6.1.17 XFX-FORM 15
1.6.1.18 XL-FORM 15
1.6.1.19 XO-FORM 15
1.6.1.20 XS-FORM 15
1.6.1.21 XX2-FORM 15
1.6.1.22 XX3-FORM 15
1.6.1.23 XX4-FORM 15
1.6.1.24 Z22-FORM 15
1.6.1.25 Z23-FORM 16
1.6.2 Word Instruction Fields. 16
1.6.3 Instruction Prefix Formats 22
1.6.3.1 Type 00 Prefix – Eight-Byte Load/

Store Instructions. 22
1.6.3.2 Type 01 Prefix – Eight-Byte Regis-

ter-to-Register Instructions 23
1.6.3.3 Type 10 - Modified Load/Store

Instructions . 23
1.6.3.4 Type 11 - Modified Regis-

ter-to-Register Instructions 23
1.6.4 Instruction Prefix Fields 23
1.7 Classes of Instructions 24
1.7.1 Defined Instruction Class 24
1.7.2 Illegal Instruction Class 24
1.7.3 Reserved Instruction Class 24
1.8 Forms of Defined Instructions 24
1.8.1 Preferred Instruction Forms 24
1.8.2 Invalid Instruction Forms 24
1.8.3 Reserved-no-op Instructions 25
1.9 Exceptions. 25
1.10 Storage Addressing. 25
1.10.1 Storage Operands 26
1.10.2 Instruction Fetches. 28
1.10.3 Effective Address Calculation. . . 29

Chapter 2. Branch Facility 33
2.1 Branch Facility Overview. 33
2.2 Instruction Execution Order. 33
2.3 Branch Facility Registers 34
2.3.1 Condition Register 34
2.3.2 Link Register 35
2.3.3 Count Register 35
2.3.4 Target Address Register. 35
2.4 Branch Instructions 37
2.5 Condition Register Instructions 44
 Table of Contents xiii

Version 3.1
2.5.1 Condition Register Logical Instruc-
tions .44

2.5.2 Condition Register Field Instruction .
46

2.6 System Call Instructions47

Chapter 3. Fixed-Point Facility . . . 49
3.1 Fixed-Point Facility Overview.49
3.2 Fixed-Point Facility Registers.49
3.2.1 General Purpose Registers.49
3.2.2 Fixed-Point Exception

Register .49
3.2.3 VR Save Register50
3.3 Fixed-Point Facility Instructions51
3.3.1 Fixed-Point Storage Access Instruc-

tions .51
3.3.1.1 Storage Access Exceptions51
3.3.2 Fixed-Point Load Instructions51
3.3.2.1 64-bit Fixed-Point Load Instruc-

tions .56
3.3.3 Fixed-Point Store Instructions58
3.3.3.1 64-bit Fixed-Point Store Instruc-

tions .62
3.3.4 Fixed Point Load and Store Quad-

word Instructions 64
3.3.5 Fixed-Point Load and Store with Byte

Reversal Instructions 67
3.3.5.1 64-Bit Load and Store with Byte

Reversal Instructions 69
3.3.6 Fixed-Point Load and Store Multiple

Instructions .70
3.3.7 Fixed-Point Move Assist Instructions

[Phased Out]. .71
3.3.8 Other Fixed-Point Instructions. . . .74
3.3.9 Fixed-Point Arithmetic Instructions75
3.3.9.1 64-bit Fixed-Point Arithmetic

Instructions .87
3.3.10 Fixed-Point Compare Instructions. .

92
3.3.10.1 Character-Type Compare Instruc-

tions .94
3.3.11 Fixed-Point Trap Instructions. . . .96
3.3.11.1 64-bit Fixed-Point Trap Instruc-

tions .98
3.3.12 Fixed-Point Select98
3.3.13 Fixed-Point Logical Instructions .99
3.3.13.1 64-bit Fixed-Point Logical Instruc-

tions .104
3.3.14 Fixed-Point Rotate and Shift

Instructions .107
3.3.14.1 Fixed-Point Rotate Instructions . .

107
3.3.14.1.1 64-bit Fixed-Point Rotate

Instructions . 110
3.3.14.2 Fixed-Point Shift Instructions . 113

3.3.14.2.1 64-bit Fixed-Point Shift Instruc-
tions . 115

3.3.15 Binary Coded Decimal (BCD)
Assist Instructions 117

3.3.16 Byte-Reverse Instructions 119
3.3.17 Move To/From Vector-Scalar Regis-

ter Instructions 120
3.3.18 Move To/From System Register

Instructions . 124
3.3.19 Prefixed No-Operation Instruction .

130

Chapter 4. Floating-Point Facility 131
4.1 Floating-Point Facility Overview . . 131
4.2 Floating-Point Facility Registers . . 132
4.2.1 Floating-Point Registers 132
4.2.2 Floating-Point Status and Control

Register. 132
4.3 Floating-Point Data. 135
4.3.1 Data Format. 135
4.3.2 Value Representation 135
4.3.3 Sign of Result 137
4.3.4 Normalization and

Denormalization 137
4.3.5 Data Handling and Precision . . . 137
4.3.5.1 Single-Precision Operands. . . 137
4.3.5.2 Integer-Valued Operands 138
4.3.6 Rounding 139
4.4 Floating-Point Exceptions. 140
4.4.1 Invalid Operation Exception. . . . 142
4.4.1.1 Definition. 142
4.4.1.2 Action 142
4.4.2 Zero Divide Exception 142
4.4.2.1 Definition. 142
4.4.2.2 Action 143
4.4.3 Overflow Exception 143
4.4.3.1 Definition. 143
4.4.3.2 Action 143
4.4.4 Underflow Exception 144
4.4.4.1 Definition. 144
4.4.4.2 Action 144
4.4.5 Inexact Exception 144
4.4.5.1 Definition. 144
4.4.5.2 Action 144
4.5 Floating-Point Execution Models . 145
4.5.1 Execution Model for IEEE Opera-

tions . 145
4.5.2 Execution Model for

Multiply-Add Type Instructions 147
4.6 Floating-Point Facility Instructions 148
4.6.1 Floating-Point Storage Access

Instructions . 148
4.6.1.1 Storage Access Exceptions . . 148
4.6.2 Floating-Point Load Instructions 149
4.6.3 Floating-Point Store Instructions 154
Power ISA™ xiv

Version 3.1
4.6.4 Floating-Point Load and Store Dou-
ble Pair Instructions [Phased-Out] . . . 159

4.6.5 Floating-Point Move Instructions 161
4.6.6 Floating-Point Arithmetic Instructions

163
4.6.6.1 Floating-Point Elementary Arithme-

tic Instructions 163
4.6.6.2 Floating-Point Multiply-Add Instruc-

tions . 168
4.6.7 Floating-Point Rounding and Con-

version Instructions 170
4.6.7.1 Floating-Point Rounding Instruc-

tion . 170
4.6.7.2 Floating-Point Convert To/From

Integer Instructions 170
4.6.7.3 Floating Round to Integer Instruc-

tions . 177
4.6.8 Floating-Point Compare Instructions

179
4.6.9 Floating-Point Select Instruction 180
4.6.10 Floating-Point Status and Control

Register Instructions 182

Chapter 5. Decimal Floating-Point . .
187

5.1 Decimal Floating-Point (DFP) Facility
Overview . 187

5.2 DFP Register Handling 188
5.2.1 DFP Usage of Floating-Point Regis-

ters . 188
5.3 DFP Support for Non-DFP Data Types

190
5.4 DFP Number Representation 191
5.4.1 DFP Data Format. 191
5.4.1.1 Fields Within the Data Format 191
5.4.1.2 Summary of DFP Data Formats . .

192
5.4.1.3 Preferred DPD Encoding 193
5.4.2 Classes of DFP Data 193
5.5 DFP Execution Model 194
5.5.1 Rounding 194
5.5.2 Rounding Mode Specification . . 195
5.5.3 Formation of Final Result. 195
5.5.3.1 Use of Ideal Exponent 195
5.5.4 Arithmetic Operations 196
5.5.4.1 Sign of Arithmetic Result 196
5.5.5 Compare Operations 196
5.5.6 Test Operations 196
5.5.7 Quantum Adjustment Operations 196
5.5.8 Conversion Operations 197
5.5.8.1 Data-Format Conversion 197
5.5.8.2 Data-Type Conversion 197
5.5.9 Format Operations. 197
5.5.10 DFP Exceptions 197
5.5.10.1 Invalid Operation Exception . 199
5.5.10.2 Zero Divide Exception 200

5.5.10.3 Overflow Exception 201
5.5.10.4 Underflow Exception 201
5.5.10.5 Inexact Exception 202
5.5.11 Summary of Normal Rounding And

Range Actions 203
5.6 DFP Instruction Descriptions. 205
5.6.1 DFP Arithmetic Instructions 205
5.6.2 DFP Compare Instructions. 210
5.6.3 DFP Test Instructions 213
5.6.4 DFP Quantum Adjustment Instruc-

tions . 217
5.6.5 DFP Conversion Instructions . . . 228
5.6.5.1 DFP Data-Format Conversion

Instructions . 228
5.6.5.2 DFP Data-Type Conversion

Instructions . 231
5.6.6 DFP Format Instructions 235
5.6.7 DFP Instruction Summary 239

Chapter 6. Vector Facility 243
6.1 Vector Facility Overview 243
6.2 Chapter Conventions 243
6.2.1 Description of Instruction Operation.

243
6.3 Vector Facility Registers 258
6.3.1 Vector-Scalar Registers 258
6.3.2 Vector Status and Control Register .

258
6.3.3 VR Save Register. 259
6.4 Vector Storage Access Operations 260
6.4.1 Accessing Unaligned Storage Oper-

ands. 262
6.5 Vector Integer Operations 263
6.5.1 Integer Saturation. 264
6.6 Vector Floating-Point Operations . 265
6.6.1 Floating-Point Overview 265
6.6.2 Floating-Point Exceptions 265
6.6.2.1 NaN Operand Exception 265
6.6.2.2 Invalid Operation Exception . . 266
6.6.2.3 Zero Divide Exception 266
6.6.2.4 Log of Zero Exception 266
6.6.2.5 Overflow Exception 266
6.6.2.6 Underflow Exception 266
6.7 Vector Storage Access Instructions267
6.7.1 Storage Access Exceptions 267
6.7.2 Vector Load Instructions. 268
6.7.3 Vector Store Instructions 272
6.7.4 Vector Alignment Support Instruc-

tions . 276
6.8 Vector Permute and Formatting

Instructions . 278
6.8.1 Vector Pack Instructions. 278
6.8.2 Vector Unpack Instructions 285
6.8.3 Vector Merge Instructions 289
6.8.4 Vector Splat Instructions 293
6.8.5 Vector Permute Instruction. 296
 Table of Contents xv

Version 3.1
6.8.6 Vector Select Instruction297
6.8.7 Vector Shift Instructions 298
6.8.8 Vector Extract Element Instructions .

304
6.8.8.1 Vector Extract Element to VSR

using Immediate-specified Index Instruc-
tions .304

6.8.8.2 Vector Extract Element to GPR
using GPR-specified Index Instructions306

6.8.8.3 Vector Extract Double Element to
VSR Using GPR-specified Index Instruc-
tions .309

6.8.9 Vector Insert Element Instructions . .
313

6.8.9.1 Vector Insert Element from VSR
Using Immediate-specified Index Instruc-
tions .313

6.8.9.2 Vector Insert Element from GPR
Using GPR-specified Index Instructions . . .
315

6.8.9.3 Vector Insert Element from GPR
Using Immediate-specified Index Instruc-
tions .319

6.8.9.4 Vector Insert Element from VSR
Using GPR-specified Index Instructions . . .
320

6.9 Vector Integer Instructions323
6.9.1 Vector Integer Arithmetic Instructions

323
6.9.1.1 Vector Integer Add Instructions 323
6.9.1.2 Vector Integer Subtract Instructions

331
6.9.1.3 Vector Integer Multiply Instructions

339
6.9.1.4 Vector Integer Multiply-Add/Sum

Instructions .351
6.9.1.5 Vector Integer Divide Instructions .

358
6.9.1.6 Vector Integer Modulo Instructions.

364
6.9.1.7 Vector Integer Sum-Across Instruc-

tions .367
6.9.1.8 Vector Integer Negate Instructions.

371
6.9.1.9 Vector Extend Sign Instructions . . .

372
6.9.1.10 Vector Integer Average Instruc-

tions .375
6.9.1.11 Vector Integer Absolute Differ-

ence Instructions 378
6.9.2 Vector Integer Maximum/Minimum

Instructions .380
6.9.2.1 Vector Integer Maximum Instruc-

tions .380
6.9.2.2 Vector Integer Minimum Instruc-

tions .384

6.9.3 Vector Integer Compare Instructions
388

6.9.4 Vector Logical Instructions. 402
6.9.5 Vector Integer Rotate Instructions . .

404
6.9.5.1 Vector Integer Rotate Left Instruc-

tions . 404
6.9.5.2 Vector Integer Rotate Left then

AND with Mask Instructions 407
6.9.5.3 Vector Integer Rotate Left then

Mask Insert Instructions 410
6.9.6 Vector Integer Shift Instructions. 413
6.9.6.1 Vector Integer Shift Left Instruc-

tions . 413
6.9.6.2 Vector Integer Shift Right Instruc-

tions . 416
6.9.6.3 Vector Integer Shift Right Algebraic

Instructions . 419
6.10 Vector Floating-Point Instruction Set

422
6.10.1 Vector Floating-Point Arithmetic

Instructions . 422
6.10.2 Vector Floating-Point Maximum/

Minimum Instructions 424
6.10.3 Vector Floating-Point Rounding and

Conversion Instructions 425
6.10.3.1 Vector Floating-Point Conversion

Instructions . 425
6.10.3.2 Vector Floating-Point Round to

Integral Instructions. 427
6.10.4 Vector Floating-Point Compare

Instructions . 429
6.10.5 Vector Floating-Point Estimate

Instructions . 432
6.11 Vector Exclusive-OR-based Instruc-

tions . 435
6.11.1 Vector AES Instructions 435
6.11.2 Vector SHA-256 and SHA-512

Sigma Instructions 438
6.11.3 Vector Binary Polynomial Multiplica-

tion Instructions. 440
6.11.4 Vector Permute & Exclusive-OR

Instruction . 444
6.12 Vector Bit Manipulation Instructions .

445
6.12.1 Vector Gather Bits Instructions 445
6.12.2 Vector Count Leading Zeros

Instructions . 447
6.12.3 Vector Count Trailing Zeros Instruc-

tions . 450
6.12.4 Vector Count Leading/Trailing Zero

LSB Instructions 453
6.12.5 Vector Bit Insert/Extract Instructions

454
6.12.6 Vector Centrifuge Instruction . . 456
Power ISA™ xvi

Version 3.1
6.12.7 Vector Population Count Instruc-
tions . 457

6.12.8 Vector Parity Byte Instructions. 459
6.12.9 Vector Bit Permute Instructions 461
6.13 Vector Mask Manipulation Instruc-

tions . 463
6.13.1 Vector Mask Move Instructions 463
6.13.2 Vector Expand Mask Instructions .

466
6.13.3 Vector Count Mask Bits Instructions

469
6.13.4 Vector Extract Mask Instructions . .

471
6.14 Vector String Instructions 474
6.14.1 Vector String Isolate Instructions . .

474
6.14.2 Vector Clear Bytes Instructions 476
6.15 Decimal Integer Instructions 477
6.15.1 Decimal Integer Arithmetic Instruc-

tions . 477
6.15.2 Decimal Integer Format Conversion

Instructions . 480
6.15.3 Decimal Integer Sign Manipulation

Instructions . 489
6.15.4 Decimal Integer Shift and Round

Instructions . 491
6.15.5 Decimal Integer Truncate Instruc-

tions . 494
6.16 Vector Status and Control Register

Instructions . 496

Chapter 7. Vector-Scalar Extension
Facility . 497

7.1 Introduction. 497
7.1.1 Overview of the Vector-Scalar Exten-

sion . 497
7.1.1.1 Combining the Floating-Point Reg-

isters (FPR) defined in Chapter 4. . . . Float-
ing-Point Facility and the Vector Registers
(VR) defined in Chapter 6. . . Vector Facility
provides additional registers to support
more aggressive compiler optimizations for
both vector and scalar operations.Compat-
ibility with Floating-Point and Decimal
Floating-Point Operations 497

7.1.1.2 Compatibility with Vector Opera-
tions . 497

7.2 VSX Registers 498
7.2.1 Vector-Scalar Registers 498
7.2.1.1 Floating-Point Registers 498
7.2.1.2 Vector Registers 500
7.2.1.3 VSX Accumulators 501
7.2.2 Floating-Point Status and Control

Register. 503
7.3 VSX Operations 508

7.3.1 VSX Floating-Point Arithmetic Over-
view . 508

7.3.2 VSX Floating-Point Data 509
7.3.2.1 Data Format 509
7.3.2.2 Value Representation 511
7.3.2.3 Sign of Result 512
7.3.2.4 Normalization and Denormalization

513
7.3.2.5 Data Handling and Precision. . 513
7.3.2.6 Rounding. 518
7.3.3 VSX Floating-Point Execution Mod-

els . 521
7.3.3.1 VSX Execution Model for IEEE

Operations . 521
7.3.3.2 VSX Execution Model for Multi-

ply-Add Type Instructions 522
7.4 VSX Floating-Point Exceptions . . . 524
7.4.1 Floating-Point Invalid Operation

Exception. 527
7.4.1.1 Definition 527
7.4.1.2 Action for VE=1 527
7.4.1.3 Action for VE=0 530
7.4.2 Floating-Point Zero Divide Exception

539
7.4.2.1 Definition 539
7.4.2.2 Action for ZE=1 539
7.4.2.3 Action for ZE=0 540
7.4.3 Floating-Point Overflow Exception . .

542
7.4.3.1 Definition 542
7.4.3.2 Action for OE=1. 542
7.4.3.3 Action for OE=0. 545
7.4.4 Floating-Point Underflow Exception .

548
7.4.4.1 Definition 548
7.4.4.2 Action for UE=1 548
7.4.4.3 Action for UE=0 551
7.4.5 Floating-Point Inexact Exception 554
7.4.5.1 Definition 554
7.4.5.2 Action for XE=1 554
7.4.5.3 Action for XE=0 558
7.5 VSX Storage Access Operations . 561
7.5.1 Accessing Aligned Storage Oper-

ands. 561
7.5.2 Accessing Unaligned Storage Oper-

ands. 562
7.5.3 Storage Access Exceptions 563
7.6 VSX Instruction Set 564
7.6.1 VSX Instruction Set Summary . . 564
7.6.1.1 VSX Storage Access Instructions .

564
7.6.1.2 VSX Binary Floating-Point Sign

Manipulation Instructions. 567
7.6.1.3 VSX Binary Floating-Point Arithme-

tic Instructions 567
 Table of Contents xvii

Version 3.1
7.6.1.4 VSX Binary Floating-Point Com-
pare Instructions.570

7.6.1.5 VSX Binary Floating-Point Round
to Shorter Precision Instructions.571

7.6.1.6 VSX Binary Floating-Point Convert
to Shorter Precision Instructions.571

7.6.1.7 VSX Binary Floating-Point Convert
to Longer Precision Instructions571

7.6.1.8 VSX Binary Floating-Point Round
to Integral Instructions 572

7.6.1.9 VSX Binary Floating-Point Convert
To Integer Instructions 572

7.6.1.10 VSX Binary Floating-Point Con-
vert From Integer Instructions.573

7.6.1.11 VSX Binary Floating-Point Math
Support Instructions573

7.6.1.12 VSX Matrix-Multiply Assist (MMA)
Instructions .574

7.6.1.12.1 VSX Accumulator Move Instruc-
tions .574

7.6.1.12.2 VSX Binary Integer Outer-Prod-
uct Instructions574

7.6.1.12.3 VSX Binary Floating-Point
Outer-Product Instructions575

7.6.1.13 VSX Vector Logical Instructions . .
576

7.6.1.14 VSX Vector Permute-class
Instructions .577

7.6.1.15 VSX Vector Load Special Value
Instruction .578

7.6.1.16 VSX Vector Test Least-Signifi-
cant Bit by Byte Instruction.578

7.6.2 VSX Instruction Description Conven-
tions .579

7.6.2.1 VSX Instruction RTL Operators579
7.6.2.2 VSX Instruction RTL Function

Calls .580
7.6.3 VSX Instruction Descriptions. . . .610

Appendix A. Suggested
Floating-Point Models. 995

A.1 Floating-Point Round to Single-Preci-
sion Model .995

A.2 Floating-Point Convert to Integer
Model .999

A.3 Floating-Point Convert from Integer
Model .1002

A.4 Floating-Point Round to Integer Model
1004

Appendix B. Densely Packed
Decimal. 1007

B.1 BCD-to-DPD Translation1007
B.2 DPD-to-BCD Translation1007
B.3 Preferred DPD encoding1008

Appendix C. Assembler Extended
Mnemonics1011

C.1 Symbols 1011
C.2 Branch Mnemonics 1012
C.2.1 BO and BI Fields 1012
C.2.2 Simple Branch Mnemonics . . . 1012
C.2.3 Branch Mnemonics Incorporating

Conditions . 1013
C.2.4 Branch Prediction 1014
C.3 Condition Register Logical Mnemonics

1015
C.4 Subtract Mnemonics 1015
C.4.1 Subtract Immediate. 1015
C.4.2 Subtract. 1015
C.5 Compare Mnemonics. 1016
C.5.1 Doubleword Comparisons. . . . 1016
C.5.2 Word Comparisons 1016
C.6 Trap Mnemonics 1017
C.7 Integer Select Mnemonics 1018
C.8 Rotate and Shift Mnemonics . . . 1019
C.8.1 Operations on Doublewords . . 1019
C.8.2 Operations on Words 1020
C.9 Move To/From Special Purpose Regis-

ter Mnemonics 1021
C.10 Miscellaneous Mnemonics. . . . 1022

Book II:

Power ISA Virtual Environment
Architecture 1027

Chapter 1. Storage Model 1029
1.1 Definitions. 1029
1.2 Introduction. 1030
1.3 Virtual Storage 1031
1.4 Single-Copy Atomicity 1031
1.5 Cache Model 1032
1.6 Storage Control Attributes 1032
1.6.1 Write Through Required 1033
1.6.2 Caching Inhibited 1033
1.6.3 Memory Coherence Required 1033
1.6.4 Guarded 1034
1.7 Shared Storage 1034
1.7.1 Storage Access Ordering . . . 1034
1.7.1.1 Storage Ordering of Copy/

Paste-Initiated Data Transfers 1037
1.7.1.2 Storage Ordering of Stores to Per-

sistent Storage 1037
1.7.1.3 Storage Ordering of I/O Accesses

1038
1.7.2 Atomic Update 1038
1.7.2.1 Reservations 1039
1.7.2.2 Forward Progress 1040
1.8 Instruction Storage 1041
Power ISA™ xviii

Version 3.1
1.8.1 Concurrent Modification and Execu-
tion of Instructions. 1043

Chapter 2. Instruction Restart. . 1045

Chapter 3. Management of Shared
Resources 1047

3.1 Program Priority Registers 1047
3.2 “or” Instruction 1048

Chapter 4. Storage Control
Instructions 1049

4.1 Parameters Useful to Application Pro-
grams . 1049

4.2 Data Stream Control Register (DSCR)
1049

4.3 Cache Management Instructions 1051
4.3.1 Instruction Cache Instructions . 1052
4.3.2 Data Cache Instructions 1053
4.3.2.1 Obsolete Data Cache Instructions

1065
4.3.3 “or” Instruction 1066
4.4 Copy-Paste Facility. 1067
4.5 Atomic Memory Operations 1070
4.5.1 Load Atomic 1070
4.5.2 Store Atomic 1074
4.6 Synchronization Instructions. . . . 1076
4.6.1 Instruction Synchronize Instruction .

1076
4.6.2 Load And Reserve and Store Condi-

tional Instructions 1076
4.6.2.1 64-Bit Load And Reserve and

Store Conditional Instructions 1082
4.6.2.2 128-bit Load And Reserve and

Store Conditional Instructions 1084
4.6.3 Memory Barrier Instructions. . . 1086
4.6.4 Wait Instruction 1090

Chapter 5. Time Base 1093
5.1 Time Base Instructions 1094

Chapter 6. Event-Based Branch
Facility . 1097

6.1 Event-Based Branch Overview. . 1097
6.2 Event-Based Branch Registers. . 1097
6.2.1 Branch Event Status and Control

Register. 1097
6.2.2 Event-Based Branch Handler Regis-

ter . 1099
6.2.3 Event-Based Branch Return Register

1099
6.3 Event-Based Branch Instructions 1100

Chapter 7. Branch History Rolling
Buffer . 1101

7.1 Branch History Rolling Buffer Entry
Format . 1102

7.2 Branch History Rolling Buffer Instruc-
tions . 1103

Appendix A. Assembler Extended
Mnemonics 1105

A.1 Data Cache Block Touch [for Store]
Mnemonics . 1105

A.2 Data Cache Block Flush Mnemonics .
1105

A.3 Or Mnemonics 1105
A.4 Load And Reserve

Mnemonics . 1105
A.5 Synchronize Mnemonics. 1106
A.6 Wait Mnemonics 1106
A.7 Move To/From Time Base Mnemonics

1106
A.8 Return From Event-Based Branch

Mnemonic . 1106

Appendix B. Programming Examples
for Sharing Storage 1107

B.1 Atomic Update Primitives 1107
B.2 Lock Acquisition and Release, and

Related Techniques 1109
B.2.1 Lock Acquisition and Import Barriers

1109
B.2.1.1 Acquire Lock and Import Shared

Storage . 1109
B.2.1.2 Obtain Pointer and Import Shared

Storage . 1109
B.2.2 Lock Release and Export Barriers . .

1110
B.2.2.1 Export Shared Storage and

Release Lock. 1110
B.2.2.2 Export Shared Storage and

Release Lock using lwsync 1110
B.2.3 Safe Fetch 1110
B.3 List Insertion 1111
B.4 Notes . 1111

Book III:

Power ISA Operating Environment
Architecture 1113

Chapter 1. Introduction. 1115
1.1 Overview 1115
1.2 Document Conventions. 1115
1.2.1 Definitions and Notation 1115
 Table of Contents xix

Version 3.1
1.2.2 Reserved Fields 1116
1.2.3 Deviations from the Sequential Exe-

cution Model . 1117
1.2.4 Restricting Out-of-Order Execution . .

1117
1.3 General Systems Overview 1117
1.4 Exceptions 1117
1.5 Synchronization 1118
1.5.1 Context Synchronization 1118
1.5.2 Execution Synchronization 1119

Chapter 2. Logical Partitioning
(LPAR) and Thread Control 1121

2.1 Overview 1121
2.2 Logical Partitioning Control Register

(LPCR) . 1121
2.3 Hypervisor Real Mode Offset Register

(HRMOR) . 1126
2.4 Logical Partition

Identification Register (LPIDR) 1126
2.5 Processor Compatibility Register

(PCR) . 1126
2.6 Other Hypervisor Resources 1136
2.7 Sharing Hypervisor and Ultravisor

Resources . 1137
2.8 Sub-Processors 1137
2.9 Thread Identification Register (TIR) . . .

1137
2.10 Hypervisor Interrupt Little-Endian

(HILE) Bit . 1138

Chapter 3. Ultravisor and Secure
Memory Facility (SMF) 1139

3.1 Overview 1139
3.2 Ultravisor Real Mode Offset Register

(URMOR) . 1140
3.3 Ultravisor Interrupt Little-Endian (UILE)

Bit . 1140
3.4 Secure Memory Facility Control Regis-

ter (SMFCTRL) 1140
3.4.1 Enabling SMF and Secure Memory

Enforcement . 1141

Chapter 4. Branch Facility 1143
4.1 Branch Facility Overview 1143
4.2 Branch Facility Registers 1143
4.2.1 Machine State Register. 1143
4.2.2 Processor Stop Status and Control

Register (PSSCR) 1147
4.3 Branch Facility Instructions 1150
4.3.1 System Linkage Instructions . . . 1150
4.3.2 Power-Saving Mode 1154
4.3.2.1 Power-Saving Mode Instruction . . .

1155

4.3.2.2 Entering and Exiting Power-Sav-
ing Mode . 1155

4.4 Event-Based Branch Facility and
Instruction . 1157

Chapter 5. Fixed-Point Facility . .1159
5.1 Fixed-Point Facility Overview . . . 1159
5.2 Special Purpose Registers 1159
5.3 Fixed-Point Facility Registers . . . 1159
5.3.1 Processor Version Register . . . 1159
5.3.2 Processor Identification Register. . .

1159
5.3.3 Process Identification Register 1160
5.3.4 Control Register. 1160
5.3.5 Program Priority Register 1160
5.3.6 Problem State Priority Boost Regis-

ter . 1160
5.3.7 Relative Priority Register 1161
5.3.8 Software-use SPRs 1161
5.4 Fixed-Point Facility Instructions . 1163
5.4.1 Fixed-Point Load and Store Caching

Inhibited Instructions 1163
5.4.2 OR Instruction 1166
5.4.3 OR Immediate Instruction 1166
5.4.4 Move To/From System Register

Instructions . 1166

Chapter 6. Storage Control1177
6.1 Overview. 1177
6.2 Storage Exceptions 1177
6.3 Instruction Fetch 1177
6.3.1 Implicit Branch 1177
6.3.2 Address Wrapping Combined with

Changing MSR Bit SF. 1177
6.4 Data Access 1178
6.5 Performing Operations

Out-of-Order 1178
6.6 Invalid Real Address. 1178
6.7 Storage Addressing 1179
6.7.1 32-Bit Mode 1179
6.7.2 Virtualized Partition Memory (VPM)

Mode . 1180
6.7.3 Ultravisor Real, Hypervisor Real, and

Virtual Real Addressing Modes 1180
6.7.3.1 Ultravisor/Hypervisor Offset Real

Mode Address 1180
6.7.3.2 Storage Control Attributes for

Accesses in Ultravisor and Hypervisor
Real Addressing Modes 1181

6.7.3.2.1 Hypervisor Real Mode Storage
Control . 1181

6.7.3.3 Virtual Real Mode Addressing
Mechanism . 1182

6.7.3.4 Storage Control Attributes for
Implicit Storage Accesses 1183

6.7.4 Definitions 1183
Power ISA™ xx

Version 3.1
6.7.5 Address Ranges Having Defined
Uses . 1184

6.7.5.1 Effective Address Space Structure
for Radix-using Partitions 1184

6.7.6 In-Memory Tables 1185
6.7.6.1 Partition Table 1185
6.7.6.2 Process Table 1187
6.7.7 Address Translation Overview. 1188
6.7.8 Segment Translation 1190
6.7.8.1 Segment Lookaside Buffer (SLB)

1190
6.7.8.2 SLB Search 1192
6.7.8.3 Segment Table Description and

Search. 1192
6.7.8.3.1 Primary Hash for 256MB Seg-

ment . 1192
6.7.8.3.2 Primary Hash for 1TB Segment.

1192
6.7.8.3.3 Secondary Hash for 256MB Seg-

ment . 1192
6.7.8.3.4 Secondary Hash for 1TB Seg-

ment . 1193
6.7.9 Hashed Page Table Translation 1193
6.7.9.1 Hashed Page Table 1195
6.7.9.2 Page Table Search 1196
6.7.10 Radix Tree Translation. 1198
6.7.10.1 Radix Tree Page Directory Entry

1199
6.7.10.2 Radix Tree Page Table Entry1200
6.7.10.3 Nested Translation 1200
6.7.11 Translation Process 1202
6.7.11.1 Fully-Qualified Address 1202
6.7.11.2 Finding the Page Tables . . . 1202
6.7.11.3 Obtaining Host Real Address,

Radix on Radix 1203
6.7.11.4 Obtaining Host Real Address,

HPT. 1204
6.7.12 Reference and Change Recording

1204
6.7.13 Storage Protection 1208
6.7.13.1 Virtual Page Class Key Protection

1208
6.7.13.2 Basic Storage Protection,

Address Translation Enabled 1212
6.7.13.3 Basic Storage Protection,

Address Translation Disabled 1213
6.7.13.4 Radix Tree Translation Storage

Protection . 1213
6.7.13.5 Secure Memory Protection . 1214
6.8 Storage Control Attributes 1214
6.8.1 Guarded Storage 1215
6.8.1.1 Out-of-Order Accesses to Guarded

Storage . 1215
6.8.2 Storage Control Bits 1215
6.8.2.1 Storage Control Bit Restrictions . .

1216

6.8.2.2 Altering the Storage Control Bits. .
1216

6.9 Storage Control Instructions 1218
6.9.1 Cache Management Instructions . . .

1218
6.9.2 Synchronize Instruction 1218
6.9.3 Lookaside Buffer

Management 1219
6.9.3.1 Thread-Specific Segment Transla-

tions . 1220
6.9.3.2 SLB Management Instructions . . .

1220
6.9.3.3 TLB Management Instructions . . .

1231
6.10 Translation Table Update Synchroni-

zation Requirements 1241
6.10.1 Translation Table Updates . . . 1242
6.10.1.1 Adding a Page Table Entry . 1243
6.10.1.2 Modifying a Translation Table

Entry . 1243

Chapter 7. Interrupts. 1247
7.1 Overview 1247
7.2 Interrupt Registers. 1247
7.2.1 Machine Status Save/Restore Regis-

ters. 1247
7.2.2 Hypervisor Machine Status Save/

Restore Registers 1247
7.2.3 Ultravisor Machine Status Save/

Restore Registers 1247
7.2.4 Access Segment Descriptor Register

1248
7.2.5 Data Address Register 1248
7.2.6 Hypervisor Data Address Register . .

1248
7.2.7 Data Storage Interrupt

Status Register 1248
7.2.8 Hypervisor Data Storage Interrupt

Status Register 1249
7.2.9 Hypervisor Emulation Instruction

Register . 1249
7.2.10 Hypervisor Maintenance Exception

Register . 1249
7.2.11 Hypervisor Maintenance Exception

Enable Register 1249
7.2.12 Facility Status and Control Register

1250
7.2.13 Hypervisor Facility Status and Con-

trol Register . 1251
7.3 Interrupt Synchronization 1255
7.4 Interrupt Classes 1255
7.4.1 Precise Interrupt. 1255
7.4.2 Imprecise Interrupt 1255
7.4.3 Interrupt Processing 1256
7.4.4 Implicit alteration of HSRR0 and

HSRR1 . 1258
 Table of Contents xxi

Version 3.1
7.5 Interrupt Definitions 1260
7.5.1 System Reset Interrupt1262
7.5.2 Machine Check Interrupt1264
7.5.3 Data Storage Interrupt (DSI) . . .1266
7.5.4 Data Segment Interrupt1268
7.5.5 Instruction Storage Interrupt (ISI) . . .

1269
7.5.6 Instruction Segment

Interrupt .1270
7.5.7 External Interrupt.1270
7.5.7.1 Direct External Interrupt1270
7.5.7.2 Mediated External Interrupt . .1271
7.5.8 Alignment Interrupt1271
7.5.9 Program Interrupt 1272
7.5.10 Floating-Point Unavailable

Interrupt .1274
7.5.11 Decrementer Interrupt1275
7.5.12 Hypervisor Decrementer

Interrupt .1275
7.5.13 Directed Privileged Doorbell Inter-

rupt .1275
7.5.14 System Call Interrupt.1275
7.5.15 Trace Interrupt.1276
7.5.16 Hypervisor Data Storage Interrupt

(HDSI). .1277
7.5.17 Hypervisor Instruction Storage

Interrupt (HISI)1280
7.5.18 Hypervisor Emulation Assistance

Interrupt .1282
7.5.19 Hypervisor Maintenance Interrupt . .

1284
7.5.20 Directed Hypervisor Doorbell Inter-

rupt .1284
7.5.21 Hypervisor Virtualization Interrupt . .

1285
7.5.22 Performance Monitor

Interrupt .1285
7.5.23 Vector Unavailable Interrupt . .1285
7.5.24 VSX Unavailable Interrupt. . . .1285
7.5.25 Facility Unavailable Interrupt. .1286
7.5.26 Hypervisor Facility Unavailable

Interrupt .1286
7.5.27 System Call Vectored Interrupt1287
7.5.28 Directed Ultravisor Doorbell Inter-

rupt .1288
7.6 Partially Executed

Instructions .1288
7.7 Exception Ordering 1289
7.7.1 Unordered Exceptions.1289
7.7.2 Ordered Exceptions 1289
7.8 Event-Based Branch Exception Order-

ing. .1290
7.9 Interrupt Priorities.1290
7.10 Relationship of Event-Based

Branches to Interrupts 1293
7.10.1 EBB Exception Priority 1293

7.10.2 EBB Synchronization. 1293
7.10.3 EBB Classes 1293

Chapter 8. Timer Facilities 1295
8.1 Overview. 1295
8.2 Time Base (TB). 1295
8.2.1 Writing the Time Base 1296
8.3 Virtual Time Base 1296
8.4 Decrementer. 1297
8.4.1 Writing and Reading the Decre-

menter . 1298
8.5 Hypervisor Decrementer. 1298
8.6 Processor Utilization of Resources

Register (PURR) 1298
8.7 Scaled Processor Utilization of

Resources Register (SPURR) 1299
8.8 Instruction Counter 1300

Chapter 9. Debug Facilities. . . . 1301
9.1 Overview. 1301
9.2 Come-From Address Register . . 1301
9.3 Completed Instruction Address Break-

point . 1301
9.4 Data Address Watchpoint 1302

Chapter 10. Performance Monitor
Facility . 1305

10.1 Overview. 1305
10.2 Performance Monitor Operation 1305
10.3 No-op Instructions Reserved for the

Performance Monitor 1306
10.4 Performance Monitor Facility Regis-

ters . 1306
10.4.1 Performance Monitor SPR Num-

bers . 1307
10.4.2 Performance Monitor Counters . . .

1307
10.4.2.1 Event Counting and Sampling . .

1307
10.4.3 Threshold Event Counter. . . . 1308
10.4.4 Monitor Mode Control Register 0. .

1309
10.4.5 Monitor Mode Control Register 1. .

1313
10.4.6 Monitor Mode Control Register 2. .

1316
10.4.7 Monitor Mode Control Register A .

1317
10.4.8 Sampled Instruction Address Reg-

ister . 1320
10.4.9 Sampled Data Address Register . .

1320
10.4.10 Sampled Instruction Event Regis-

ter . 1320
Power ISA™ xxii

Version 3.1
10.4.11 Other Performance Monitor Regis-
ters . 1322

10.5 Branch History Rolling Buffer . . 1323
10.5.1 BHRB Filtering 1323

Chapter 11. Processor Control . 1325
11.1 Overview 1325
11.2 Programming Model 1325
11.3 Processor Control Registers . . . 1325
11.3.1 Directed Privileged Doorbell Excep-

tion State . 1325
11.4 Processor Control Instructions . 1327

Chapter 12. Synchronization
Requirements for Context Alterations
1333

Power ISA Book I-III Appendices. 1339

Appendix A. Notes on the Removal
of Transactional Memory from the
Architecture. 1341

A.1 Attempted Execution of TM Instruc-
tions . 1341

A.2 Attempted Access of a TM SPR. 1342
A.3 Occurrence of the Hypervisor Facility

Unavailable Interrupt with HFSCRIC=0x05
1342

A.4 Occurrence of the TM Bad Thing Type
Program Interrupt 1342

A.5 Failure of Performance Monitor Count-
ers to Count 1342

A.6 Behavior of SPR Bits Formerly
Related to TM 1342

Appendix B. Illegal Instructions 1345

Appendix C. Reserved Instructions .
1347

Appendix D. Opcode Maps.1349

Appendix E. Power ISA Instruction
Set Sorted by Opcode 1385

Appendix F. Power ISA Instruction
Set Sorted by Version1417

Appendix G. Power ISA Instruction
Set Sorted by OpenPOWER
Compliancy Subset 1449

Appendix H. Power ISA Instruction
Set Sorted by Mnemonic 1481

Last Page - End of Document. . . . 1514
 Table of Contents xxiii

Version 3.1
Power ISA™ Ixxiv

Version 3.1
Book I:

Power ISA User Instruction Set Architecture
 Book I: Power ISA User Instruction Set Architecture 1

Version 3.1
Power ISA™ I2

Version 3.1
Chapter 1. Introduction

1.1 Overview
This chapter describes computation modes,document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and
Operands
The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described either in Appendix C of Book I or
in the instruction description, if extended mnemonics
are provided for the instruction. Assemblers will support
extended mnemonics having a reduced number of
operands using the specified default values for any
operands omitted from the base form.

1.3 Document Conventions

1.3.1 Definitions
The following definitions are used throughout this docu-
ment.

 program
A sequence of related instructions.

 application program
A program that uses only the instructions and
resources described in Books I and II.

 processor
The hardware component that implements the
instruction set, storage model, and other facilities
defined in the Power ISA architecture, and exe-
cutes the instructions specified in a program.

 octword, quadword, doubleword, word, half-
word, byte, and nibble
256 bits, 128 bits, 64 bits, 32 bits, 16 bits, 8 bits,
and 4 bits, respectively.

 positive
Means greater than zero.

 negative
Means less than zero.

 floating-point single format (or simply single
format)
Refers to the representation of a single-precision
binary floating-point value in a register or storage.

 floating-point double format (or simply double
format)
Refers to the representation of a double-precision
binary floating-point value in a register or storage.

 system library program
A component of the system software that can be
called by an application program using a Branch
instruction.

 system service program
A component of the system software that can be
called by an application program using a System
Call or System Call Vectored instruction.

 system trap handler
A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

 system error handler
A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

 latency
Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.
Chapter 1. Introduction 3

Version 3.1
 unavailable
Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book III.

 undefined value
May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

 boundedly undefined
The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.8.1 of Book
II. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

 “must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 0”), the
results are boundedly undefined unless otherwise
stated.

 sequential execution model
The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 33.

1.3.2 Notation
The following notation is used throughout the Power
ISA documents.

 All numbers are decimal unless specified in some
special way.

- 0bnnnn means a number expressed in binary
format.

- 0xnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.

 RT, RA, R1, ... refer to General Purpose Registers.

 FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

 FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

 VRT, VRA, VR1, ... refer to Vector Registers.

 (x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)

means the contents of register RA, and (FRA)
means the contents of register FRA, where RA and
FRA are instruction fields. Names such as LR and
CTR denote registers, not fields, so parentheses
are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

 (RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value 0 if the RA
field is 0.

 Bytes in registers, instructions, fields, and bit
strings are numbered from left to right, starting with
byte 0 (most significant).

 Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of Xp etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit 0

- For all registers except the Vector registers,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector registers, bits in regis-
ters that are less than 128 bits start with bit
number 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- Xp means bit p of register/instruction/field/
bit_string X.

- Xp:q means bits p through q of register/instruc-
tion/field/bit_string X.

- Xp q ... means bits p, q, ... of register/instruc-
tion/field/bit_string X.

 ¬(RA) means the one’s complement of the con-
tents of register RA.

 A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

 The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

 xn means x raised to the nth power.

 nx means the replication of x, n times (i.e., x con-
catenated to itself n-1 times). n0 and n1 are spe-
cial cases:

- n0 means a field of n bits with each bit equal to
0. Thus 50 is equivalent to 0b00000.

- n1 means a field of n bits with each bit equal to
1. Thus 51 is equivalent to 0b11111.

 Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Power ISA™ I4

Version 3.1
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

 /, //, ///, ... denotes a reserved field, in a register,
instruction, field, or bit string.

 ?, ??, ???, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields, Reserved
Values, and Reserved SPRs
Reserved fields in instructions are ignored by the pro-
cessor.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 24. The only exception to the preceding rule is
that it does not apply to Reserved and Illegal classes of
instructions (see Section 1.6.3) or to portions of defined
fields that are specified, in the instruction description,
as being treated as reserved fields.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) depends on whether the processor is in
problem state. Unless otherwise stated, software is per-
mitted to write any value to such a bit. In problem state,
a subsequent reading of the bit returns 0 regardless of
the value written; in privileged states, a subsequent
reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) other-
wise.

In some cases, a defined field of a System Register
has certain values that are reserved. Software must not
set a defined field of a System Register to a reserved
value. References elsewhere in this document to a
defined field (in an instruction or System Register) that
has reserved values assume the field does not contain
a reserved value, unless otherwise stated or obvious
from context.

In some cases, a given bit of a System Register is
specified to be set to a constant value by a given
instruction or event. Unless otherwise stated or obvious
from context, software should not depend on this con-
stant value because the bit may be assigned a mean-
ing in a future version of the architecture.

The reserved SPRs include SPRs 808, 809, 810, and
811. mtspr and mfspr instructions specifying these
SPRs are treated as no-ops. Reserved SPRs are pro-
vided in the architecture to anticipate the eventual
adoption of performance hint functionality that must be
controlled by SPRs. Control of these capabilities using
reserved SPRs will allow software to use these new
capabilities on new implementations that support them
while remaining compatible with existing implementa-
tions that may not support the new functionality.
Chapter 1. Introduction 5

Version 3.1
Reserved SPRs are not assigned names. There are no
individual descriptions of reserved SPRs in this docu-
ment.

1.3.4 Description of Instruction
Operation
Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 7 of Book III).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-
isters, such as the Condition Register, is not shown.

(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning
 Assignment
iea Assignment of an instruction effective

address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

¬ NOT logical operator
+ Two’s complement addition
- Two’s complement subtraction, unary

minus
× Multiplication
×si Signed-integer multiplication
×ui Unsigned-integer multiplication
/ Division
÷ Division, with result truncated to integer
% Remainder of integer division
√ Square root
=, ≠ Equals, Not Equals relations
<, ≤, >, ≥ Signed comparison relations
<u, >u Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
⊕, ≡ Exclusive OR, Equivalence logical opera-

tors ((a≡b) = (a⊕¬b))
ABS(x) Absolute value of x
BCD_TO_DPD(x)

The low-order 24 bits of x contain six, 4-bit
BCD fields which are converted to two
declets; each set of two declets is placed
into the low-order 20 bits of the result. See
Section B.1, “BCD-to-DPD Translation”.

CEIL(x) Least integer ≥ x
DOUBLE(x) Result of converting x from floating-point

single format to floating-point double for-
mat, using the model shown on page 149

DPD_TO_BCD(x)
The low-order 20 bits of x contain two
declets which are converted to six, 4-bit
BCD fields; each set of six, 4-bit BCD
fields is placed into the low-order 24 bits of
the result. See Section B.2, “DPD-to-BCD
Translation”.

EXTS(x) Result of extending x on the left with sign
bits

FLOOR(x) Greatest integer ≤ x
GPR(x) General Purpose Register x
MASK(x, y) Mask having 1s in positions x through y

(wrapping if x > y) and 0s elsewhere

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

 Initialize each such register supplying zeros for
all reserved bits.

 Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

Assembler Note

Programming Note
Power ISA™ I6

Version 3.1
MEM(x, y) Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

MEMmetadata(x,y)
Metadata associated with MEM(x,y).

ROTL64(x, y)
Result of rotating the 64-bit value x left y
positions

ROTL32(x, y)
Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 154

SPR(x) Special Purpose Register x
TRAP Invoke the system trap handler
characterization

Reference to the setting of status bits, in a
standard way that is explained in the text

undefined An undefined value.
CIA Current Instruction Address, which is the

64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register. The CIA is sometimes referred to
as the Program Counter (PC).

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other instruc-
tions that cause non-sequential instruction
fetching (see Book III), the RTL is similar.
For instructions that do not branch, and do
not otherwise cause instruction fetching to
be non-sequential, the next instruction
address is CIA+4. Does not correspond to
any architected register.

if... then... else...
Conditional execution, indenting shows
range; else is optional.

do Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

leave Leave innermost do loop, or do loop
described in leave statement.

for For loop, indenting shows range. Clause
after “for” specifies the entities for which to
execute the body of the loop.

switch/case/default
switch/case/default statement, indenting
shows range. The clause after “switch”
specifies the expression to evaluate. The
clause after “case” specifies individual val-
ues for the expression, followed by a
colon, followed by the actions that are
taken if the evaluated expression has any
of the specified values. “default” is
optional. If present, it must follow all the
“case” clauses. The clause after “default”
starts with a colon, and specifies the
actions that are taken if the evaluated
expression does not have any of the val-
ues specified in the preceding case state-
ments.
Chapter 1. Introduction 7

Version 3.1
The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to right,
from right to left, or not at all, as shown. (For example,
- associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as
operands.

1.3.5 Phased-Out Facilities
Phased-Out Facilities

These are facilities and instructions that, in some
future version of the architecture, will be dropped
out of the architecture. System developers should
develop a migration plan to eliminate use of them
in new systems. These facilities are marked with a
[Phased-Out] marker.

Phased-Out facilities and instructions must be
implemented.

Table 1: Operator precedence
Operators Associativity
subscript, function evaluation left to right
pre-superscript (replication),

post-superscript (exponentiation)
right to left

unary -, ¬ right to left
×, ÷ left to right
+, -, left to right
|| left to right
=, ≠, <, ≤, >, ≥,<u, >u,? left to right
&, ⊕, ≡ left to right
| left to right
: (range) none
,iea none

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

Programming Note
Power ISA™ I8

Version 3.1
1.4 Processor Overview
The basic classes of instructions are as follows:

 branch instructions (Chapter 2)
 GPR-based scalar fixed-point instructions (Chap-

ter 3)
 FPR-based scalar floating-point instructions

(Chapter 4)
 FPR-based scalar decimal floating-point instruc-

tions (Chapter 5)
 VR-based vector fixed-point and floating-point

instructions (Chapter 6)
 VSR-based scalar and vector floating-point

instructions (Chapter 7)

Scalar fixed-point instructions operate on byte, half-
word, word, doubleword, and quadword operands,
where each operand is contained in a GPR (or a pair of
GPRs for quadword operands). Vector fixed-point
instructions operate on vectors of nibble, byte, half-
word, word, doubleword, and quadword operands,
where each vector is contained in a VR. Scalar binary
floating-point instructions operate on single-precision,
double-precision, and quad-precision floating-point
operands, where each operand is contained in an FPR
or VSR. Scalar decimal floating-point instructions oper-
ate on short, long, and extended decimal floating-point
operands, where each operand is contained in an FPR
(or a pair of FPRs for quadword operands).

Vector floating-point instructions operate on vectors of
single-precision and double-precision floating-point
operands, where each vector is contained in a VR or
VSR.

The Power ISA uses instructions that are four or eight
bytes long and are word-aligned. It provides for byte,
halfword, word, doubleword,and quadword operand
loads and stores between storage and a set of 32 Gen-
eral Purpose Registers (GPRs). It provides for byte,
halfword, word, doubleword, quadword, and octword
operand loads and stores between storage and a set of
64 Vector-Scalar Registers (VSRs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 1 is a logical representation of instruction pro-
cessing. Figure 2 shows the registers that are defined
in Book I. (A few additional registers that are available
to application programs are defined in other Books, and
are not shown in the figure.)

Figure 1. Logical processing model

GPR-based
instruction

instructions

data

instructions

processing

scalar
fixed-point

branch
instruction
processing

FPR-based
instruction
processing

scalar
binary FP

VR-based
instruction
processing

vector
fixed-point
binary FP
permute

VSR-based
instruction
processing

scalar
binary FP

vector
binary FP
permutescalar

integer (16B)
BCD

crypto

storage

decimal FP
Chapter 1. Introduction 9

Version 3.1
“Condition Register” on page 34

“Link Register” on page 35

“Count Register” on page 35

“General Purpose Registers” on page 49

“Fixed-Point Exception Register” on page 49

“VR Save Register” on page 259

“Floating-Point Registers” on page 132

“Floating-Point Status and Control Register” on
page 132

“Vector-Scalar Registers” on page 258

“Vector Status and Control Register” on page 258

“Vector-Scalar Registers” on page 498

Figure 2. Registers that are defined in Book I

1.5 Computation modes

Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how Condition Register bits and XER bits are
set, how the Link Register is set by Branch instructions

in which LK=1, and how the Count Register is tested by
Branch Conditional instructions. Nearly all instructions
are available in both modes (the only exceptions are a
few instructions that are defined in Book III). In both
modes, effective address computations use all 64 bits
of the relevant registers (General Purpose Registers,

CR
32 63

LR
0 63

CTR
0 63

GPR 0
GPR 1

. . .

. . .
GPR 30
GPR 31

0 63

XER
0 63

VRSAVE
32 63

FPR 0
FPR 1

. . .

. . .
FPR 30
FPR 31

0 63

FPSCR
32 63

VR 0
VR 1

...

...
VR 30
VR 31

0 127

VSCR
96 127

VSR 0
VSR 1

...

...
VSR 62
VSR 63

0 127
Power ISA™ I10

Version 3.1
Link Register, Count Register, etc.) and produce a
64-bit result. However, in 32-bit mode the high-order 32
bits of the computed effective address are ignored for
the purpose of addressing storage; see Section 1.10.3
for additional details.

1.6 Instruction Formats
Instructions are encoded in either four or eight bytes
and are word-aligned. When referring specifically to
only one of these two types of instructions, the term
“word instruction” is used to refer to instructions that
are encoded in four bytes, and the term “prefixed
instruction” is used to refer to instructions that are
encoded in eight bytes using a prefix.

Bits 0:5 always specify the primary opcode (PO,
below). Many instructions also have an extended
opcode (XO, below). Some instructions also have a
third, expanded opcode (EO, below). The remaining
bits of the instruction contain one or more fields as
shown below for the different instruction formats.

Since all instructions are word-aligned, whenever
instruction addresses are presented to the processor
(as in Branch instructions) the low-order two bits are
ignored. Similarly, whenever the processor develops an
instruction address the low-order two bits are zero.

Prefixed instructions consist of a four-byte prefix fol-
lowed by a four-byte suffix. As such, the address of a
prefixed instruction is the address of its prefix. For
some prefixed instructions, the four-byte suffix is a
defined word instruction, and the prefix modifies or
extends the word instruction’s behavior. For other pre-
fixed instructions, while the suffix may or may not corre-
spond to (i.e., have the same 32-bit binary value as) a
defined word instruction, the prefix causes the suffix to
be decoded using a different opcode space from that
used by defined word instructions.

Prefixed instructions do not cross 64-byte instruction
address boundaries. When a prefixed instruction
crosses a 64-byte boundary, the system alignment
error handler is invoked.

The format diagrams given below show horizontally all
valid combinations of instruction fields. See
Section 1.6.3, “Instruction Prefix Formats” for defini-
tions of instruction fields defined in the prefix.

Split Field Notation
In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

Although instructions that set a 64-bit register affect
all 64 bits in both 32-bit and 64-bit modes, operat-
ing systems often do not preserve the upper 32-bits
of all registers across context switches done in
32-bit mode. For this reason, application programs
operating in 32-bit mode should not assume that
the upper 32 bits of the GPRs are preserved from
instruction to instruction unless the operating sys-
tem is known to preserve these bits.

Programming Note

The instruction address boundary error can only
occur with prefixed instructions. Word instructions
are word-aligned (four-byte), and thus cannot cross
64-byte boundaries.

Programming Note
Chapter 1. Introduction 11

Version 3.1
1.6.1 Word Instruction Formats

1.6.1.1 A-FORM

1.6.1.2 B-FORM

1.6.1.3 D-FORM

1.6.1.4 DQ-FORM

1.6.1.5 DS-FORM

1.6.1.6 DX-FORM

1.6.1.7 I-FORM

1.6.1.8 M-FORM

1.6.1.9 MD-FORM

1.6.1.10 MDS-FORM

1.6.1.11 SC-FORM

1.6.1.12 VA-FORM

1.6.1.13 VC-FORM

0 6 11 16 21 26 31

PO FRT /// FRB /// XO Rc

PO FRT FRA /// FRC XO Rc

PO FRT FRA FRB /// XO Rc

PO FRT FRA FRB FRC XO Rc

PO RT RA RB BC XO /

Figure 3. A instruction format

0 6 11 16 3031

PO BO BI BD AA LK

Figure 4. B instruction format

0 6 11 16 31

PO BF / L RA SI

PO BF / L RA UI

PO FRS RA D

PO FRT RA D

PO RS RA D

PO RS RA UI

PO RT RA D

PO RT RA SI

PO TO RA SI

Figure 5. D instruction format

0 6 11 16 2829 31

PO RTp RA DQ PT

PO S RA DQ SX XO

PO T RA DQ TX XO

Figure 6. DQ instruction format

0 6 11 16 3031

PO FRSp RA DS XO

PO FRTp RA DS XO

PO RS RA DS XO

PO RSp RA DS XO

PO RT RA DS XO

PO VRS RA DS XO

PO VRT RA DS XO

Figure 7. DS instruction format

0 6 11 16 26 31

PO RT d1 d0 XO d2

Figure 8. DX instruction format

0 6 3031

PO LI AA LK

Figure 9. I instruction format

0 6 11 16 21 26 31

PO RS RA RB MB ME Rc

PO RS RA SH MB ME Rc

Figure 10. M instruction format

0 6 11 16 21 27 3031

PO RS RA sh mb XO sh Rc

PO RS RA sh me XO sh Rc

Figure 11. MD instruction format

0 6 11 16 21 25 27 31

PO RS RA RB mb XO Rc

PO RS RA RB me XO Rc

Figure 12. MDS instruction format

0 6 11 16 20 27 3031

PO /// /// /// LEV /// 0 1

PO /// /// /// LEV /// 1 /

Figure 13. SC instruction format

0 6 11 16 2122 26 31

PO RT RA RB RC XO

PO VRT VRA VRB / SHB XO

PO VRT VRA VRB VRC XO

Figure 14. VA instruction format

0 6 11 16 2122 31

PO VRT VRA VRB Rc XO

Figure 15. VC instruction format
Power ISA™ I12

Version 3.1
1.6.1.14 VX-FORM

1.6.1.15 X-FORM

0 6 11121314 16 212223 31

PO /// /// VRB XO

PO BF // VRA VRB XO

PO RT EO VRB XO

PO VRT /// /// XO

PO VRT /// VRB XO

PO VRT /// UIM VRB XO

PO VRT // UIM VRB XO

PO VRT / UIM VRB XO

PO VRT EO VRB 1 / XO

PO VRT EO VRB 1 PS XO

PO VRT EO VRB XO

PO VRT RA VRB XO

PO VRT SIM /// XO

PO VRT UIM VRB XO

PO VRT VRA /// XO

PO VRT VRA VRB 1 / XO

PO VRT VRA VRB 1 PS XO

PO VRT VRA VRB XO

Figure 16. VX instruction format

0 6 7 8 9 10111213141516171819202122232425262728293031

PO /// /// /// XO /

PO /// /// /// XO 1

PO /// /// RB XO /

PO /// RA /// XO /

PO /// RA /// XO 1

PO /// RA RB XO /

PO /// L /// /// XO /

PO /// L /// RB XO /

PO /// 1 RA RB XO /

PO /// L RA RB XO Rc

PO // L /// SC /// XO /

PO // L RA RB XO /

PO /// WC /// PL /// XO /

PO // IH /// /// XO /

PO / CT RA RB XO /

PO AS // EO /// XO /

PO AT // EO /// XO /

PO BF // /// /// XO /

PO BF // /// FRB XO /

PO BF // /// W U / XO Rc

PO BF // BFA // /// XO /

Figure 17. X instruction format

PO BF // FRA FRB XO /

PO BF // FRA FRBp XO /

PO BF // FRAp FRBp XO /

PO BF // RA RB XO /

PO BF // UIM FRB XO /

PO BF // UIM FRBp XO /

PO BF // VRA VRB XO /

PO BF / 1 RA RB XO /

PO BF / L RA RB XO /

PO BF DCMX VRB XO /

PO BT /// /// XO Rc

PO FRS RA RB XO /

PO FRSp RA RB XO /

PO FRT /// FRB XO Rc

PO FRT /// FRBp XO Rc

PO FRT EO /// XO Rc

PO FRT EO /// XO /

PO FRT EO /// RM XO /

PO FRT EO // DRM XO /

PO FRT EO FRB XO /

PO FRT FRA FRB XO /

PO FRT FRA FRB XO Rc

PO FRT RA RB XO /

PO FRT S /// FRB XO Rc

PO FRT SP /// FRB XO Rc

PO FRTp /// FRB XO Rc

PO FRTp /// FRBp XO Rc

PO FRTp FRA FRBp XO Rc

PO FRTp FRAp FRBp XO Rc

PO FRTp RA RB XO /

PO FRTp S /// FRBp XO Rc

PO FRTp SP /// FRBp XO Rc

PO RS /// RB XO /

PO RS /// L /// XO /

PO RS / RIC PR R RB XO /

PO RS BFA // /// XO /

PO RS RA /// XO /

PO RS RA /// XO 1

PO RS RA /// XO Rc

PO RS RA FC XO /

PO RS RA NB XO /

PO RS RA SH XO Rc

PO RS RA RB XO /

PO RS RA RB XO 1

0 6 7 8 9 10111213141516171819202122232425262728293031

Figure 17. X instruction format
Chapter 1. Introduction 13

Version 3.1
PO RS RA RB XO Rc

PO RSp RA RB XO 1

PO RT /// /// XO /

PO RT /// RB XO /

PO RT /// RB XO 1

PO RT /// L /// XO /

PO RT RA FC XO /

PO RT RA NB XO /

PO RT RA RB XO /

PO RT RA RB XO EH

PO RTp RA RB XO EH

PO S RA /// XO SX

PO S RA RB XO SX

PO T EO IMM8 XO TX

PO T RA /// XO TX

PO T RA RB XO TX

PO TH RA RB XO /

PO TO RA SI XO 1

PO TO RA RB XO /

PO TO RA RB XO 1

PO VRS RA RB XO /

PO VRT EO VRB XO /

PO VRT EO VRB XO RO

PO VRT RA RB XO /

PO VRT VRA VRB XO /

PO VRT VRA VRB XO RO

0 6 7 8 9 10111213141516171819202122232425262728293031

Figure 17. X instruction format
Power ISA™ I14

Version 3.1
1.6.1.16 XFL-FORM

1.6.1.17 XFX-FORM

1.6.1.18 XL-FORM

1.6.1.19 XO-FORM

1.6.1.20 XS-FORM

1.6.1.21 XX2-FORM

1.6.1.22 XX3-FORM

1.6.1.23 XX4-FORM

1.6.1.24 Z22-FORM

0 6 7 1516 21 31

PO L FLM W FRB XO Rc

Figure 18. XFL instruction format

0 6 1112 1516 2021 31

PO /// /// 1 /// XO /

PO RS 0 FXM / XO /

PO RS 1 FXM / XO /

PO RS spr XO /

PO RT 0 /// / XO /

PO RT 1 FXM / XO /

PO RT BHRBE XO /

PO RT spr XO /

PO RT tbr XO /

Figure 19. XFX instruction format

0 6 9 11 14 16 192021 31

PO /// /// /// XO /

PO /// /// /// S XO /

PO BF // BFA // /// XO /

PO BO BI /// BH XO LK

PO BT BA BB XO /

Figure 20. XL instruction format

0 6 9 10111213141516171819202122232425262728293031

PO RT RA /// OE XO Rc

PO RT RA RB / XO /

PO RT RA RB / XO Rc

PO RT RA RB OE XO Rc

Figure 21. XO instruction format

0 6 11 16 21 3031

PO RS RA sh XO sh Rc

Figure 22. XS instruction format

0 6 9 10111213141516 21 2526 293031

PO BF // /// B XO BX /

PO BF DCMX B XO BX /

PO RT EO B XO BX /

PO T /// B XO BX TX

PO T /// UIM B XO BX TX

PO T / UIM B XO BX TX

PO T dx B XO dc XO dm BX TX

PO T EO B XO BX TX

Figure 23. XX2 instruction format

0 6 9 11 16 2122 24 293031

PO AT // A B XO AX BX /

PO AT // Ap B XO AX BX /

PO BF // A B XO AX BX /

PO T A B 0 DM XO AX BX TX

PO T A B 0 SHW XO AX BX TX

PO T A B Rc XO AX BX TX

PO T A B XO AX BX TX

Figure 24. XX3 instruction format

0 6 11 16 21 262728293031

PO T A B C XO CX AX BX TX

Figure 25. XX4 instruction format

0 6 9 11 1516 22 31

PO BF // FRA DCM XO /

PO BF // FRA DGM XO /

PO BF // FRAp DCM XO /

PO BF // FRAp DGM XO /

PO FRT FRA SH XO Rc

PO FRTp FRAp SH XO Rc

Figure 26. Z22 instruction format
Chapter 1. Introduction 15

Version 3.1
1.6.1.25 Z23-FORM

1.6.2 Word Instruction Fields
AA (30)

Absolute Address.

0 The immediate field represents an address
relative to the current instruction address. For
I-form branches the effective address of the
branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruction.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form branches
the effective address of the branch target is
the BD field sign-extended to 64 bits.

Formats: B, I

AX,A (29,11:15)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX3, XX4

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.

Formats: A

BD (16:29)
Immediate field used to specify a 14-bit signed
two’s complement branch displacement which is
concatenated on the right with 0b00 and
sign-extended to 64 bits.

Formats: B

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

Formats: D, X, XL, XX2, XX3, Z22

BFA (11:13)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

Formats: X, XL

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, “Branch Instructions”.

Formats: XL

BHRBE (11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History
Rolling Buffer instruction.

Formats: X

BI (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

Formats: B, XL

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, “Branch Instructions”.

Formats: B, XL, X, XL

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

Formats: XL

BX,B (30,16:20)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX2, XX3, XX4

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book II).

Formats: X

0 6 11 1516 21 23 31

PO FRT /// R FRB RMC XO Rc

PO FRT FRA FRB RMC XO Rc

PO FRT TE FRB RMC XO Rc

PO FRTp /// R FRBp RMC XO Rc

PO FRTp FRA FRBp RMC XO Rc

PO FRTp FRAp FRBp RMC XO Rc

PO FRTp TE FRBp RMC XO Rc

PO VRT /// R VRB RMC XO /

PO VRT /// R VRB RMC XO EX

Figure 27. Z23 instruction format
Power ISA™ I16

Version 3.1
CX,C (28,21:25)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX4

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

Formats: D

d0,d1,d2 (16:25,11:15,31)
Immediate fields that are concatenated to specify a
16-bit signed two’s complement integer which is
sign-extended to 64 bits.

Formats: DX

dc,dm,dx (25,29,11:15)
Immediate fields that are concatenated to specify
Data Class Mask.

Formats: XX2

DCM (16:21)
Immediate field used to specify Data Class Mask.

Formats: Z22

DCMX (9:15)
Immediate field used to specify Data Class Mask.

Formats: X, XX2

DGM (16:21)
Immediate field used as the Data Group Mask.

Formats: Z22

DM (22:23)
Immediate field used by xxpermdi instruction as
doubleword permute control.

Formats: XX3

DRM (18:20)
Immediate operand field used to specify new deci-
mal floating-point rounding mode.

Formats: X

DQ (16:27)
Immediate field used to specify a 12-bit signed
two’s complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.

Formats: DQ

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64 bits.

Formats: DS

EH (31)
Field used to specify a hint in the Load And
Reserve instructions. The meaning is described in
Section 4.6.2, “Load And Reserve and Store Con-
ditional Instructions”, in Book II.

Formats: X

EO (11:12)
Expanded opcode field

Formats: X

EO (11:15)
Expanded opcode field

Formats: VX, X, XX2

EX (31)
Field used to specify Inexact form of round to
quad-precision integer.

Formats: X

FC (16:20)
Field used to specify the function code in Load/
Store Atomic instructions.

Formats: X

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

Formats: XFL

FRA (11:15)
Field used to specify a FPR to be used as a
source.

Formats: A, X, Z22, Z23

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z22, Z23

FRB (16:20)
Field used to specify an FPR to be used as a
source.

Formats: A, X, XFL, Z23

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z23

FRC (21:25)
Field used to specify an FPR to be used as a
source.

Formats: A
Chapter 1. Introduction 17

Version 3.1
FRS (6:10)
Field used to specify an FPR to be used as a
source.

Formats: D, X

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: DS, X

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

Formats: A, D, X, Z22, Z23

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

Formats: DS, X, Z22, Z23

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

Formats: XFX

IB (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

IH (8:10)
Field used to specify a hint in the SLB Invalidate
All instruction. The meaning is described in
Section 6.9.3.2, “SLB Management Instructions”,
in Book III.

Formats: X

IMM8 (13:20)
Immediate field used to specify an 8-bit integer.

Formats: X

IS (6:10)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.

Formats: XFL

L (8:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book II) and also by the
Synchronize instruction (see Section 4.6.3 of Book
II).

Formats: X

L (10)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Compare Range Byte instruction
to indicate whether to compare against 1 or 2
ranges of bytes.

Field used by the Paste instruction to indicate
whether to zero the metadata.

Formats: D, X

L (15)
Field used by the Move To Machine State Register
instruction (see Book III).

Field used by the SLB Invalidate All Global instruc-
tion to specify whether the invalidation is for a pro-
cess or for a partition (see Section 6.9.3.2 of Book
III).

Field used by the SLB Move From Entry VSID and
SLB Move From Entry ESID instructions for imple-
mentation-specific purposes.

Formats: X

L (14:15)
Field used by the Deliver A Random Number
instruction (see Section 3.3.9, “Fixed-Point Arith-
metic Instructions”) to choose the random number
format.

Formats: X

LEV (20:26)
Field used by the System Call instructions.

Formats: SC

LI (6:29)
Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

Formats: I

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. The address of the
instruction following the Branch instruction is
placed into the Link Register.

Formats: B, I, XL

MB (21:25)
Field used in M-form instructions to specify the first
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 107.

Formats: M
Power ISA™ I18

Version 3.1
mb (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 107.

Formats: MD, MDS

me (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 107.

Formats: MD, MDS

ME (26:30)
Field used in M-form instructions to specify the last
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 107.

Formats: M

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

Formats: X

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

Formats: XO

PL (14:15)
Field used by the wait instruction to specify pause
length.

Formats: X

PO (0:5)
Primary opcode.

Formats: all

PRS (14)
Field used to specify whether to invalidate pro-
cess- or partition-scoped entries for tlbie[l].

Formats: X

PS (22)
Field used to specify preferred sign for BCD opera-
tions.

Formats: VX

PT (28:31)
Immediate field used to specify a 4-bit unsigned
value.

Formats: DQ

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding

Field used to specify whether to invalidate Radix
Tree or HPT entries for tlbie[l].

Formats: X, Z23

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

Formats: A, D, DQ, DQE, DS, M, MD, MDS, TX,
VA, VX, X, XO, XS

RB (16:20)
Field used to specify a GPR to be used as a
source.

Formats: A, M, MDS, VA, X, XO

Rc (21)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 6 as described in
Section 2.3.1, “Condition Register” on
page 34.

Formats: VC, XX3

RC (21:25)
Field used to specify a GPR to be used as a
source.

Formats: VA

Rc (31)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 0 or Field 1 as
described in Section 2.3.1, “Condition Regis-
ter” on page 34.

Formats: A, M, MD, MDS, X, XFL, XO, XS, Z22,
Z23

RIC (12:13)
Field used to specify what types of entries to inval-
idate for tlbie[l].

Formats: X

RM (19:20)
Immediate operand field used to specify new
binary floating-point rounding mode.

Formats: X

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

Formats: Z23
Chapter 1. Introduction 19

Version 3.1
RO (31)
Round to Odd override

Formats: X

RS (6:10)
Field used to specify a GPR to be used as a
source.

Formats: D, DS, M, MD, MDS, X, XFX, XS

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

Formats: DS, X

RT (6:10)
Field used to specify a GPR to be used as a target.

Formats: A, D, DQE, DS, DX, VA, VX, X, XFX,
XO, XX2

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

Formats: DQ, X

S (11)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

S (20)
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.

Formats: XL

SC (14:15)
Field used by the Synchronize instruction to spec-
ify the kind(s) of stores that are ordered.

Formats: X

SH (16:20)
Field used to specify a shift amount.

Formats: M, X

SH (16:21)
Field used to specify a shift amount.

Formats: Z22

sh (30,16:20)
Fields that are concatenated to specify a shift
amount.

Formats: MD, XS

SHB (22:25)
Field used to specify a shift amount in bytes.

Formats: VA

SHW (22:23)
Field used to specify a shift amount in words.

Formats: XX3

SI (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: X

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.

Formats: D

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: VX

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

Formats: X

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III).

Formats: X

SX,S (28,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: DQ

SX,S (31,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: X

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 5.1 of Book II).

Formats: X

TE (11:15)

Immediate field that specifies a DFP exponent.

Formats: Z23

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book
II).

Formats: X
Power ISA™ I20

Version 3.1
TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in
Section 3.3.10.1, “Character-Type Compare
Instructions” on page 94.

Formats: TX, X

TX,T (28,6:10)
Fields that are concatenated to specify a VSR to
be used as either a target.

Formats: DQ

TX,T (31,6:10)

Fields that are concatenated to specify a VSR to
be used as either a target or a source.

Formats: X, XX2, XX3, XX4

U (16:19)

Immediate field used as the data to be placed into
a field in the FPSCR.

Formats: X

UI (16:20)

Immediate field used to specify a 5-bit unsigned
integer.

Formats: TX

UI (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

Formats: D

UIM (11:15)
Immediate field used to specify a 5-bit unsigned
integer.

Formats: VX, X

UIM (12:15)
Immediate field used to specify a 4-bit unsigned
integer.

Formats: VX, XX2

UIM (13:15)
Immediate field used to specify a 3-bit unsigned
integer.

Formats: VX

UIM (14:15)

Immediate field used to specify a 2-bit unsigned
integer.

Formats: VX, XX2

VRA (11:15)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRB (16:20)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRC (21:25)
Field used to specify a VR to be used as a source.

Formats: VA

VRS (6:10)
Field used to specify a VR to be used as a source.

Formats: DS, X

VRT (6:10)
Field used to specify a VR to be used as a target.

Formats: DS, VA, VC, VX, X

W (15)
Field used by the mtfsfi and mtfsf instructions to
specify the target word in the FPSCR.

Formats: X, XFL

WC (9:10)
Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait instruction (see Section 4.6.4 of
Book II).

Formats: X

XBI (21:24)
Field used to specify a bit in the XER.

Formats: MDS, MDS, TX

XO (21,23:31)
Extended opcode field.

Formats: VX

XO (21:24,26:28)
Extended opcode field.

Formats: XX2

XO (21:24:28)
Extended opcode field.

Formats: XX3

XO (21:28)
Extended opcode field.

Formats: XX3

XO (21:29)
Extended opcode field.

Formats: XS, XX2

XO (21:30)
Extended opcode field.

Formats: X, XFL, XFX, XL
Chapter 1. Introduction 21

Version 3.1
XO (21:31)
Extended opcode field.

Formats: VX

XO (22:30)
Extended opcode field.

Formats: XO, XX3, Z22

XO (22:31)
Extended opcode field.

Formats: VC

XO (23:30)
Extended opcode field.

Formats: X, Z23

XO (25:30)
Extended opcode field.

Formats: TX

XO (26:27)
Extended opcode field.

Formats: XX4

XO (26:30)
Extended opcode field.

Formats: A, DX

XO (26:31)
Extended opcode field.

Formats: VA

XO (27:29)
Extended opcode field.

Formats: MD

XO (27:30)
Extended opcode field.

Formats: MDS

XO (29:31)
Extended opcode field.

Formats: DQ

XO (30)
Extended opcode field.

Formats: SC

XO (30:31)
Extended opcode field.

Formats: DQE, DS, SC

1.6.3 Instruction Prefix Formats
Prefixed instructions consist of a 4-byte prefix followed
by a 4-byte suffix. The prefix formats are specified
below. The suffix formats share the same formats as
word instructions, as specified in Section 1.6.1 on
page 12.

Bits 0:5 of all prefixes are assigned the primary opcode
value 0b000001. 0b000001 is not available for use as a
primary opcode for either word instructions or suffixes
of prefixed instructions.

Prefix bits 6:7 are used to identify one of four prefix for-
mat types. When bit 6 is set to 0 (prefix types 00 and
01), the suffix is not a defined word instruction (i.e.,
requires the prefix to identify the alternate opcode
space the suffix is assigned to as well as additional or
extended operand and/or control fields); when bit 6 is
set to 1 (prefix types 10 and 11), the prefix is modifying
the behavior of a defined word instruction in the suffix.

1.6.3.1 Type 00 Prefix – Eight-Byte
Load/Store Instructions

The Type 00 prefix format provides a one-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0: Eight-Byte Load/Store Form (8LS)

ST=1: Reserved

1 0 ST // R // Sub-Type Specific
0 6 8 9 11 12 14 31

1 0 0 // R // IE
0 6 8 9 11 12 14 31
Power ISA™ I22

Version 3.1
1.6.3.2 Type 01 Prefix – Eight-Byte Reg-
ister-to-Register Instructions

The Type 01 prefix format provides a four-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0b0000: Eight-Byte Register-to-Register Form
(8RR)

ST=0b0001-0b1111: Reserved

1.6.3.3 Type 10 - Modified Load/Store
Instructions

The Type 10 prefix format provides a one-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0: Modified Load/Store Form (MLS)

ST=1: Reserved

1.6.3.4 Type 11 - Modified Regis-
ter-to-Register Instructions

The Type 11 prefix format provides a four-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0b0000: Modified Register to Register Form
(MRR)

- pnop (See Section 3.3.19, “Prefixed
No-Operation Instruction” on page 130)

ST=0b0001-0b1000: Reserved

ST=0b1001: Modified Masked Immediate Register
to Register Form (MMIRR)

ST=0b1010-0b1111: Reserved

1.6.4 Instruction Prefix Fields
IE (14:31)

18-bit immediate field that is concatenated
with the D field in the suffix to extend the
displacement value at the high-order end.
This field is reserved when this prefix
precedes instructions of other formats.

Alternate field names: d0, si0, imm18

Formats: 8LS, MLS

imm0 (16:31)
16-bit immediate field that is concatenated
with the 16-bit immediate field in the suffix to
create a 32-bit value.

Formats: 8RR

IMM (24:31)
8-bit immediate field used as control operand.

Formats: 8RR

PMSK (16:23)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR

PMSK (16:19)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR

PMSK (16:17)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR

1 1 ST Sub-type Specific
0 6 8 12 31

1 1 0 // ///
0 6 8 12 14 31

1 1 0 // /// UIM
0 6 8 12 14 29 31

1 1 0 // /// IMM
0 6 8 12 14 24 31

1 1 0 // // imm0
0 6 8 12 14 16 31

1 2 ST // R // Sub-Type Specific
0 6 8 9 11 12 14 31

1 2 0 // R // IE
0 6 8 9 11 12 14 31

1 3 ST Sub-type Specific
0 6 8 12 31

1 3 0 // 0
0 6 8 12 14 31

1 3 9 // / / PMSK XMSK YMSK
0 6 8 12 14 15 16 24 28 31

1 3 9 // / / PMSK // XMSK YMSK
0 6 8 12 14 15 16 20 24 28 31

1 3 9 // / / PMSK // XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31
Chapter 1. Introduction 23

Version 3.1
R (11)
Field used to specify whether the effective
address of the storage operand is computed
relative to the address of the instruction (CIA).

0b0 Effective address is not computed
relative to CIA

0b1 Effective address is computed rela-
tive to CIA

Formats: 8LS, MLS

UIM (29:31)
3-bit immediate field used as control operand.

Formats: 8RR

XMSK (24:27)
Field used to specify ACC row mask for VSX
Vector GER instructions.

Formats: MMIRR

YMSK (28:31)
Field used to specify ACC column mask for
VSX Vector GER instructions.

Formats: MMIRR

1.7 Classes of Instructions
An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class
This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.8.1, “Preferred
Instruction Forms” and Section 1.8.2, “Invalid Instruc-
tion Forms”.

1.7.2 Illegal Instruction Class
This class of instructions contains the set of instructions
described in Appendix B of Book Appendices. Illegal
instructions are available for future extensions of the
Power ISA ; that is, some future version of the Power

ISA may define any of these instructions to perform
new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.7.3 Reserved Instruction Class
This class of instructions contains the set of instructions
described in Appendix C of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

 perform the actions described by the implementa-
tion if the instruction is implemented; or

 cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms
Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

 the Condition Register Logical instructions
 the Load Quadword instruction
 the Move Assist instructions
 the Or Immediate instruction (preferred form of

no-op)
 the Move To Condition Register Fields instruction

1.8.2 Invalid Instruction Forms
Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.
Power ISA™ I24

Version 3.1
Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

1.8.3 Reserved-no-op Instructions
Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-
tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible
with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.9 Exceptions
There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

 an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book III) (system ille-
gal instruction error handler or system privileged
instruction error handler)

 the execution of a defined instruction using an
invalid form (system illegal instruction error han-
dler or system privileged instruction error handler)

 an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

 an attempt to execute a prefixed instruction that
crosses a 64-byte address boundary. (system
alignment error handler)

 an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

 an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

 the execution of a System Call or System Call Vec-
tored instruction (system service program)

 the execution of a Trap instruction that traps (sys-
tem trap handler)

 the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error
handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book III.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error han-
dler is in effect (see page 141), then the invocation of
the system floating-point enabled exception error han-
dler may also be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc-
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the sys-
tem error handler, has not yet occurred).

Additional information about exception handling can be
found in Book III.

1.10 Storage Addressing
A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book II and Book III), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte.

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.
This byte ordering is also referred to as the Endian
mode and it applies to both data accesses and instruc-
tion fetches. The Endian mode is specified by the LE
mode bit (see Section 4.2.1 of Book III), which applies
to all of storage.

Assemblers should report uses of invalid instruc-
tion forms as errors.

Assembler Note
Chapter 1. Introduction 25

Version 3.1
1.10.1 Storage Operands
A storage operand may be a byte, a halfword, a word, a
doubleword, a quadword, an octword, or, for the Load/
Store Multiple, Move Assist, and Load/Store VSX Vec-
tor with Length [Left-justified] instructions, a sequence
of bytes (Move Assist and Load/Store VSX Vector with
Length [Left-justified]) or words (Load/Store Multiple).
The address of a storage operand is the address of its
first byte (i.e., of its lowest-numbered byte). An instruc-
tion for which the storage operand is a byte is said to
cause a byte access, and similarly for halfword, word,
doubleword, quadword, and octword.

The length of the storage operand is the number of
bytes (of the storage operand) that the instruction
would access in the absence of invocations of the sys-
tem error handler. The length is generally implied by
the name of the instruction (equivalently, by the
opcode, and extended opcode if any). For example, the
length of the storage operand of a Load Word and
Zero, Load Floating-Point Single, and Load Vector Ele-
ment Word instruction is four bytes (one word), the
length of a Store Quadword, Store Floating-Point Dou-
ble Pair, and Store VSX Vector Word*4 instruction is 16
bytes (one quadword), and the length of a Load VSX
Vector Paired instruction is 32 bytes (one octword). The
only exceptions are the Load/Store Multiple and Move
Assist instructions, for which the length of the storage
operand is implied by the identity of the specified
source or target register (Load/Store Multiple), or by an
immediate field in the instruction or the contents of a
field in the XER (Move Assist), as well as by the name
of the instruction. For example, the length of the stor-
age operand of a Load Multiple Word instruction for
which the specified target register is GPR 20 is 48
bytes ((32-20)x4), and the length of the storage oper-
and of a Load String Word Immediate instruction for
which the immediate field contains the number 20 is 20
bytes.

The storage operand of a Load or Store instruction
other than a Load/Store Multiple or Move Assist instruc-
tion is said to be aligned if the address of the storage
operand is an integral multiple of the storage operand
length; otherwise it is said to be unaligned. See the fol-
lowing table. (The storage operand of a Load/Store
Multiple or Move Assist instruction is neither said to be
aligned nor said to be unaligned. Its alignment proper-

ties are described, when necessary, using terms such
as “word-aligned”, which are defined below.)

The concept of alignment is also applied more gener-
ally, to any datum in storage.
 A datum having length that is an integral power of

2 is said to be aligned if its address is an integral
multiple of its length.

 A datum of any length is said to be half-
word-aligned (or aligned at a halfword boundary) if
its address is an integral multiple of 2,
word-aligned (or aligned at a word boundary) if its
address is an integral multiple of 4, etc. (All data in
storage is byte-aligned.)

The concept of alignment can also be applied to data in
registers, with the "address" of the datum interpreted as
the byte number of the datum in the register. E.g., a
word element (4 bytes) in a Vector Register is said to
be aligned if its byte number is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. In general, the best performance is
obtained when storage operands are aligned.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 28, unless otherwise specified in the
instruction description.

Operand Length Addr58:63 if aligned
Byte 8 bits xxxxxx

Halfword 2 bytes xxxxx0

Word 4 bytes xxxx00

Doubleword 8 bytes xxx000

Quadword 16 bytes xx0000

Octword 32 bytes x00000

Note: An “x” in an address bit position indicates that
the bit can be 0 or 1 independent of the con-
tents of other bits in the address.

The technical literature sometimes uses the term
“naturally aligned” to mean “aligned.”

Versions of the architecture that precede Version
2.07 also used “naturally aligned” as defined
above. The term was dropped from the architecture
in Version 2.07 because it seemed to mean differ-
ent things to different readers and is not needed.

Programming Note
Power ISA™ I26

Version 3.1

Figure 28. Storage operands and byte ordering

Figure 29 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into

storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 30 and 31 show each scalar
as aligned. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and
two bytes between e and f. The same amount of pad-
ding is present for both Big-Endian and Little-Endian
mappings.

The Big-Endian mapping of structure s is shown in
Figure 30. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 29, are shown in hex (as characters for
the elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 31. Doublewords are shown laid out from right
to left, which is the common way of showing storage
maps for processors that implement only Little-Endian
byte ordering.

Big-Endian Byte Ordering
Load Store

do i = 0 to N-1:

 RT(R-N)+i  MEM(EA+i,1)

do i = 0 to N-1:

 MEM(EA+i,1)  (RS)(R-N)+i
 Little-Endian Byte Ordering
Load Store

do i = 0 to N-1:
 RT(R-1)-i  MEM(EA+i,1)

do i = 0 to N-1:
 MEM(EA+i,1)  (RS)(R-1)-i

Notes:
1. In this table, subscripts refer to bytes in a register.
2. This table does not apply to the lvebx, lvehx,

lvewx, stvebx, stvehx, and stvewx instructions.

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 doubleword */
char * c; /* 0x3132_3334 word */
char d[7]; /* ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’ array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

Figure 29. C structure ‘s’, showing values of elements

00 11 12 13 14

00 01 02 03 04 05 06 07

08 21 22 23 24 25 26 27 28

08 09 0A 0B 0C 0D 0E 0F

10 31 32 33 34 ‘A’ ‘B’ ‘C’ ‘D’

10 11 12 13 14 15 16 17

18 ‘E’ ‘F’ ‘G’ 51 52

18 19 1A 1B 1C 1D 1E 1F

20 61 62 63 64

20 21 22 23 24 25 26 27

Figure 30. Big-Endian mapping of structure ‘s’

11 12 13 14 00

07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28 08

0F 0E 0D 0C 0B 0A 09 08

‘D’ ‘C’ ‘B’ ‘A’ 31 32 33 34 10

17 16 15 14 13 12 11 10

51 52 ‘G’ ‘F’ ‘E’ 18

1F 1E 1D 1C 1B 1A 19 18

61 62 63 64 20

27 26 25 24 23 22 21 20

Figure 31. Little-Endian mapping of structure ‘s’
Chapter 1. Introduction 27

Version 3.1
1.10.2 Instruction Fetches
Instructions are encoded in either four or eight bytes
and are word-aligned. For purposes of byte ordering,
prefixed instructions are treated as if they are two inde-
pendent four-byte instructions, with the prefix preced-
ing the suffix in storage regardless of the Endian mode.

When an instruction starting at effective address EA is
fetched from storage, the relative order of the bytes
within each word of the instruction image depends on
the byte ordering for the storage access as shown in
Figure 32.

Figure 32. Instructions and byte ordering

Figure 33 shows an example of a small assembly lan-
guage program p. In the program, prefixed instruction 1
is doubleword-aligned and prefixed instruction 2 is
word-aligned.

loop: cmplwi r5,0
beq done
lwzux r4,r5,r6
add r7,r7,r4
<prefixed instruction 1>
subi r5,r5,4
<prefixed instruction 2>
b loop

done: stw r7,total

Figure 33. Assembly language program ‘p’

The Big-Endian mapping of program p is shown in
Figure 34 (assuming the program starts at address 0).

The Little-Endian mapping of program p is shown in
Figure 35.

Big-Endian Byte Ordering

for i=0 to 3:
 insti ← MEM(EA+i,1)

 Little-Endian Byte Ordering

for i=0 to 3:
 inst3-i ← MEM(EA+i,1)

Notes

1. In this table, subscripts refer to
bytes within the instruction.

00 loop: cmplwi r5,0 beq done

00 01 02 03 04 05 06 07

08 lwzux r4,r5,r6 add r7,r7,r7
08 09 0A 0B 0C 0D 0E 0F

10 <inst 1 prefix> <inst 1 suffix>

10 11 12 13 14 15 16 17

18 subi r5,r5,4 <inst 2 prefix>

18 19 1A 1B 1C 1D 1E 1F

20 <inst 2 suffix> b loop

20 21 22 23 24 25 26 27

28 done: stw r7, total

28 29 2A 2B 2C 2D 2E 2F

Figure 34. Big-Endian mapping of program ‘p’

beq done loop: cmplwi r5,0 00

00 01 02 03 04 05 06 07

add r7,r7,r4 lwzux r4,r5,r6 08
08 09 0A 0B 0C 0D 0E 0F

<inst 1 suffix> <inst 1 prefix> 10

10 11 12 13 14 15 16 17

<inst 2 prefix> subi r5,r5,r4 18

18 19 1A 1B 1C 1D 1E 1F

b loop <inst 2 suffix> 20

20 21 22 23 24 25 26 27

done: stw r7, total 28

28 29 2A 2B 2C 2D 2E 2F

Figure 35. Little-Endian mapping of program ‘p’
Power ISA™ I28

Version 3.1
Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift’s Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as I was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or
at least in the Power of the chief Magistrate to
determine. Now the Big-Endian Exiles have found
so much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success;
during which Time we have lost Forty Capital
Ships, and a much greater Number of smaller Ves-
sels, together with thirty thousand of our best Sea-
men and Soldiers; and the Damage received by
the Enemy is reckoned to be somewhat greater
than ours. However, they have now equipped a
numerous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion
An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book II and
Book III) when fetching the next sequential instruction,
or when invoking a system error handler. The following
provides an overview of this process. More detail is
provided in the individual instruction descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two’s complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arithme-
tic wraps around from the maximum address, 264 - 1,
to address 0, except that if the current instruction is a
word instruction at effective address 264-4 or a prefixed
instruction at effective address 264-8, the effective
address of the next sequential instruction is undefined,
and if the current instruction is a prefixed instruction at
effective address 264-4, the effective address of the
suffix is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage, except
that if the current instruction is a word instruction at
effective address 232-4 or a prefixed instruction at effec-
tive address 232-8, the 64-bit effective address of the
next sequential instruction is undefined, and if the cur-
rent instruction is a prefixed instruction at effective
address 232-4, the effective address of the suffix is
undefined. Thus, as used to address storage, the effec-
tive address arithmetic appears to wrap around from
Chapter 1. Introduction 29

Version 3.1
the maximum address 232-1, to address 0, except when
the resulting 64-bit effective address is undefined as
just described. When an effective address is placed
into a register by an instruction or event, the value
placed into the register is as follows.

 Register RA when set by Load with Update and
Store with Update instructions: the entire 64-bit
result.

 All other cases (e.g., the Link Register when set by
Branch instructions having LK=1, Special Purpose
Registers when set to an effective address by invo-
cation of a system error handler): the low-order 32
bits of the 64-bit result preceded by 32 0 bits,
except that if the intended effective address is that
of the NIA of either a word instruction at effective
address 232-4, or a prefixed instruction at effective
address 232-8, the value placed into the register is
undefined.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence of
the corresponding address component. A value of zero
is substituted for the absent component of the effective
address computation. This substitution is shown in the
instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

 With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for ldat,
, lswi, lwat, lxvl, lxvll, stdat, , stswi, stwat, stxvl,
and stxvll) are added to the contents of the GPR
designated by RA or to zero if RA=0 or RA is not
used in forming the EA.

With X-form instructions that are preceded by an
MLS-form or MMLS-form prefix with the R bit set to
1 (see xref to Section 1.6.2), in computing the
effective address of the data element, the contents
of the GPR designated by RB are added to the CIA
and RA is not used in forming the EA.

 With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a D-form suffix
and an MLS-form or 8LS-form prefix, the 16-bit D
field is concatenated on the left with the 18-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-

nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIA if the R bit in the prefix is set to 1.

With prefixed instructions having a D-form suffix
and an MMLS-form or 8MLS-form prefix, the 16-bit
D field is concatenated on the left with the 12-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIA if the R bit in the prefix is set to 1.

 With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a DS-form suffix
and an MLS-form or 8LS-form prefix, the 14-bit D
field is concatenated on the right with 0b00 and is
concatenated on the left with the 18-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

With prefixed instructions having a DS-form suffix
and an MMLS-form or 8MLS-form prefix, the 14-bit
D field is concatenated on the right with 0b00 and
is concatenated on the left with the 12-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

 With DQ-form instructions, the 12-bit DQ field is
concatenated on the right with 0b0000 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a DQ-form suffix
and an MLS-form or 8LS-form prefix, the 12-bit DQ
field is concatenated on the right with 0b0000 and
is concatenated on the left with the 18-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
Power ISA™ I30

Version 3.1
the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

With prefixed instructions having a DQ-form suffix
and an MMLS-form or 8MLS-form prefix, the 12-bit
DQ field is concatenated on the right with 0b0000
and is concatenated on the left with the 12-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIA if the R bit in the prefix is set to 1.

 With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

 With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

 With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with 0b00 to form the effective
address of the target instruction.

 With sequential instruction fetching, if the current
instruction is a word instruction, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
and if the current instruction is a prefixed instruc-
tion, the value 8 is added to the address of the cur-
rent instruction to form the effective address of the
next instruction, except that if the current instruc-
tion is at the maximum instruction effective
address for the mode (for a word instruction,
264 - 4 in 64-bit mode and 232 - 4 in 32-bit mode;
for a prefixed instruction, 264-8 in 64-bit mode and
232-8 in 32-bit mode) the effective address of the
next sequential instruction is undefined.

If the size of the operand of a Storage Access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.
Chapter 1. Introduction 31

Version 3.1
Power ISA™ I32

Version 3.1
Chapter 2. Branch Facility

2.1 Branch Facility Overview
This chapter describes the registers and instructions
that make up the Branch Facility.

2.2 Instruction Execution Order
In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

 Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

 Trap instructions for which the trap conditions are
satisfied, and System Call and System Call Vec-
tored instructions, cause the appropriate system
handler to be invoked.

 Event-based exceptions can cause the
event-based branch handler to be invoked, as
described in Chapter 6 of Book II.

 Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 25.

 Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the proces-
sor appears to execute one instruction at a time, com-
pleting each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

 A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction
that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

 A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-

tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

This software synchronization will generally be
provided by system library programs (see
Section 1.8 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Programming Note
Chapter 2. Branch Facility 33

Version 3.1
2.3 Branch Facility Registers

2.3.1 Condition Register
The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

Figure 36. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CR0), ..., CR Field
7 (CR7), which are set in one of the following ways.

 Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

 A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from OV, CA,
OV32, and CA32 (mcrxrx), or from the FPSCR
(mcrfs).

 CR Field 0 can be set as the implicit result of a
fixed-point instruction.

 CR Field 1 can be set as the implicit result of a
floating-point instruction.

 CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

 CR Field 6 can be set as the implicit result of a
vector instruction.

 A specified CR field can be set as the result of a
Compare instruction.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)
 then M  0
 else M  32
if (target_register)M:63 < 0 then c  0b100
else if (target_register)M:63 > 0 then c  0b010
else c  0b001
CR0  c || XERSO

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description
0 Negative (LT)

The result is negative.

1 Positive (GT)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERSO at the
completion of the instruction.

The paste. instruction (see Section 4.4, “Copy-Paste
Facility”, in Book II) and the stbcx., sthcx., stwcx.,
stdcx., and stqcx. instructions (see Section 4.6.2,
“Load And Reserve and Store Conditional Instructions”,
in Book II) also set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
32:35 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 140). These bits are interpreted
as follows.

Bit Description
32 Floating-Point Exception Summary (FX)

This is a copy of the contents of FPSCRFX at
the completion of the instruction.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRFEX at
the completion of the instruction.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This is a copy of the contents of FPSCRVX at
the completion of the instruction.

35 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCROX at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.10, “Fixed-Point
Compare Instructions” on page 92, and Section 4.6.8,
“Floating-Point Compare Instructions” on page 179.

Bit Description
0 Less Than, Floating-Point Less Than (LT,

FL)

CR
32 63
Power ISA™ I34

Version 3.1
For fixed-point Compare instructions, (RA) <
SI or (RB) (signed comparison) or (RA) <u UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) <
(FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
SI or (RB) (signed comparison) or (RA) >u UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) >
(FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, UI, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERSO at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

The Vector Integer Compare instructions (see
Section 6.9.3, “Vector Integer Compare Instructions”)
compare two Vector Registers element by element,
interpreting the elements as unsigned or signed inte-
gers depending on the instruction, and set the corre-
sponding element of the target Vector Register to all 1s
if the relation being tested is true and 0s if the relation
being tested is false.

If Rc=1, CR Field 6 is set to reflect the result of the
comparison, as follows

Bit Description
0 The relation is true for all element pairs (i.e.,

VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions.

Bit Description
0 The relation is true for all element pairs (i.e.,

VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Compare Bounds Floating-Point instruction
on page 429 sets CR Field 6 if Rc=1, to indicate
whether the elements in VRA are within the bounds
specified by the corresponding element in VRB, as
explained in the instruction description. A single-preci-
sion floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
value y if -y ≤ x ≤ y.

Bit Description
0 0

1 0

2 Set to indicate whether all four elements in
VRA are within the bounds specified by the
corresponding element in VRB, otherwise set
to 0.

3 0

2.3.2 Link Register
The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1 and after System Call Vectored instruc-
tions.

Figure 37. Link Register

2.3.3 Count Register
The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented
during execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction. The Count Register is mod-
ified by the System Call Vectored instruction.

Figure 38. Count Register

2.3.4 Target Address Register
The Target Address Register (TAR) is a 64-bit register.
It can be used to provide bits 0:61 of the branch target

LR
0 63

CTR
0 63
Chapter 2. Branch Facility 35

Version 3.1
address for the Branch Conditional to Branch Target
Address Register instruction. Bits 62:63 are ignored by
the hardware but can be set and reset by software.

Figure 39. Target Address Register

Efffective Address
0 62

The TAR is reserved for system software.
Programming Note
Power ISA™ I36

Version 3.1
2.4 Branch Instructions
The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following five ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 29.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

5. Using the address contained in the Target Address
Register (Branch Conditional to Target Address
Register).

In all five cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third through fifth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 40. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

Figure 40. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is
likely to be taken or is likely not to be taken, as shown
in Figure 41.

Figure 41. “at” bit encodings

For Branch Conditional to Link Register, Branch Condi-
tional to Count Register, and Branch Conditional to Tar-
get Address Register instructions, the BH field provides

BO Description
0000z Decrement the CTR, then branch if the dec-

remented CTRM:63≠0 and CRBI=0
0001z Decrement the CTR, then branch if the dec-

remented CTRM:63=0 and CRBI=0
001at Branch if CRBI=0
0100z Decrement the CTR, then branch if the dec-

remented CTRM:63≠0 and CRBI=1
0101z Decrement the CTR, then branch if the dec-

remented CTRM:63=0 and CRBI=1
011at Branch if CRBI=1
1a00t Decrement the CTR, then branch if the dec-

remented CTRM:63≠0
1a01t Decrement the CTR, then branch if the dec-

remented CTRM:63=0
1z1zz Branch always
Notes:
1. “z” denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

at Hint
00 No hint is given
01 Reserved
10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to 0b00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

Programming Note
Chapter 2. Branch Facility 37

Version 3.1
a hint about the use of the instruction, as shown in
Figure 42.

Figure 42. BH field encodings

Extended mnemonics for branches
Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and BI fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix C for additional extended mne-
monics.

BH Hint
00 bclr[l]: The instruction is a subroutine

return

bcctr[l] and bctar[l]:The instruction is not a
subroutine return; the target
address is likely to be the same as
the target address used the pre-
ceding time the branch was taken

01 bclr[l]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

bcctr[l] and bctar[l]:Reserved
10 Reserved
11 bclr[l], bcctr[l], and bctar[l]: The target

address is not predictable

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

Programming Note

Programming Note
Power ISA™ I38

Version 3.1
Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr[l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken, other than the special form shown in the first
example below) and recently used branch target
addresses. To obtain the best performance across the
widest range of implementations, the programmer
should obey the following rules.

 Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.), or in
the special form shown in the first example below.

 Pair each subroutine call (i.e., each Branch
instruction for which LK=1 and the branch is taken,
other than the special form shown in the first
example below) with a bclr instruction that returns
from the subroutine and has BH=0b00.

 Do not use bclrl as a subroutine call. (Some imple-
mentations access the return address cache at
most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

 For bclr[l] and bcctr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

 Obtaining the address of the next instruction:
Use the following form of Branch and Link.

bcl 20,31,$+4

 Loop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

 Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to

branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

 Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.
- A calls B: use a bl or bcl instruction (LK=1).
- B returns to A: use a bclr instruction (LK=0)

(the return address is in, or can be restored to,
the Link Register).

 Indirect subroutine linkage:
Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

 Function call:
Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.
Chapter 2. Branch Facility 39

Version 3.1

The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.
 The bit corresponding to the “t” bit was called

the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- In all other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bcctr[l]), the branch is not taken.

 The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.

 The “a” bit was a “z” bit.

Because these bits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.

Compatibility Note
Power ISA™ I40

Version 3.1
Branch I-form

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then NIA iea EXTS(LI || 0b00)

else NIA iea CIA + EXTS(LI || 0b00)

if LK then LR iea CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Branch Conditional B-form

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if (64-bit mode)

 then M  0

 else M  32

if ¬BO2 then CTR  CTR - 1

ctr_ok  BO2 | ((CTRM:63 ≠ 0) ⊕ BO3)

cond_ok  BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then

 if AA then NIA iea EXTS(BD || 0b00)

 else NIA iea CIA + EXTS(BD || 0b00)

if LK then LR iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

18 LI AA LK
0 6 30 31

16 BO BI BD AA LK
0 6 11 16 30 31

Extended mnemonic: Equivalent to:
blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target
Chapter 2. Branch Facility 41

Version 3.1
Branch Conditional to Link Register
XL-form

bclr BO,BI,BH (LK=0)
bclrl BO,BI,BH (LK=1)

if (64-bit mode)

 then M  0

 else M  32

if ¬BO2 then CTR  CTR - 1

ctr_ok  BO2 | ((CTRM:63 ≠ 0) ⊕ BO3
cond_ok  BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then NIA iea LR0:61 || 0b00

if LK then LR iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is LR0:61 || 0b00,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Branch Conditional to Count Register
XL-form

bcctr BO,BI,BH (LK=0)
bcctrl BO,BI,BH (LK=1)

cond_ok  BO0 | (CRBI+32 ≡ BO1)
if cond_ok then NIA iea CTR0:61 || 0b00

if LK then LR iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
CTR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO2=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

19 BO BI /// BH 16 LK
0 6 11 16 19 21 31

Extended mnemonic: Equivalent to:
bclr 4,6 bclr 4,6,0
bltlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzlr bclr 16,0,0

bclr, bclrl, bcctr, and bcctrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, bcctr, or bcctrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, bcctr, or bcctrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

Programming Note

19 BO BI /// BH 528 LK
0 6 11 16 19 21 31

Extended mnemonic: Equivalent to:
bcctr 4,6 bcctr 4,6,0
bltctr bcctr 12,0,0
bnectr cr2 bcctr 4,10,0
Power ISA™ I42

Version 3.1
Branch Conditional to Branch Target
Address Register XL-form

bctar BO,BI,BH (LK=0)
bctarl BO,BI,BH (LK=1)

if (64-bit mode)

 then M  0

 else M  32

if ¬BO2 then CTR  CTR - 1

ctr_ok  BO2 | ((CTRM:63 ≠ 0) ⊕ BO3
cond_ok  BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then NIA iea TAR0:61 || 0b00

if LK then LR iea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
TAR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

19 BO BI /// BH 560 LK
0 6 11 16 19 21 31

In some systems, the system software will restrict
usage of the bctar[l] instruction to only selected
programs. If an attempt is made to execute the
instruction when it is not available, the system error
handler will be invoked. See Book III for additional
information.

Programming Note
Chapter 2. Branch Facility 43

Version 3.1
2.5 Condition Register Instructions

2.5.1 Condition Register Logical Instructions
The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.
 The bit specified by BT is in the same Condition

Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations
A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix C for additional
extended mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

CRBT+32  CRBA+32 & CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register OR XL-form

cror BT,BA,BB

CRBT+32  CRBA+32 | CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Condition Register NAND XL-form

crnand BT,BA,BB

CRBT+32  ¬(CRBA+32 & CRBB+32)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Condition Register XOR XL-form

crxor BT,BA,BB

CRBT+32  CRBA+32 ⊕ CRBB+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

19 BT BA BB 257 /
0 6 11 16 21 31

19 BT BA BB 449 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
crmove Bx,By cror Bx,By,By

19 BT BA BB 225 /
0 6 11 16 21 31

19 BT BA BB 193 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
crclr Bx crxor Bx,Bx,Bx
Power ISA™ I44

Version 3.1
Condition Register NOR XL-form

crnor BT,BA,BB

CRBT+32  ¬(CRBA+32 | CRBB+32)

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Condition Register AND with Complement
XL-form

crandc BT,BA,BB

CRBT+32  CRBA+32 & ¬CRBB+32

The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

Condition Register Equivalent XL-form

creqv BT,BA,BB

CRBT+32  CRBA+32 ≡ CRBB+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRBT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

CRBT+32  CRBA+32 | ¬CRBB+32

The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRBT+32

19 BT BA BB 33 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
crnot Bx,By crnor Bx,By,By

19 BT BA BB 129 /
0 6 11 16 21 31

19 BT BA BB 289 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
crset Bx creqv Bx,Bx,Bx

19 BT BA BB 417 /
0 6 11 16 21 31
Chapter 2. Branch Facility 45

Version 3.1
2.5.2 Condition Register Field Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

CR4×BF+32:4×BF+35  CR4×BFA+32:4×BFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

19 BF // BFA // /// 0 /
0 6 9 11 14 16 21 31
Power ISA™ I46

Version 3.1
2.6 System Call Instructions

These instructions provide the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form

sc LEV

System Call Vectored SC-form

scv LEV

These instructions call the system to perform a service.
A complete description of these instructions can be
found in Section 4.3.1 of Book III.

The first form of the instruction (sc) provides a single
system call. The second form of the instruction (scv)
provides the capability for 128 unique system calls.

The use of the LEV field is described in Book III. In the
first form of the instruction the LEV values greater than
1 are reserved, and bits 0:5 of the LEV field (instruction
bits 20:25) are treated as a reserved field.

When control is returned to the program that executed
the System Call or System Call Vectored instruction,
the contents of the registers will depend on the register
conventions used by the program providing the system
service.

These instructions are context synchronizing (see Book
III).

Special Registers Altered:
Dependent on the system service

17 /// /// /// LEV /// 1 /
0 6 11 16 20 27 30 31

17 /// /// /// LEV /// 0 1
0 6 11 16 20 27 30 31

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Programming Note

Since the scv instruction modifies the Count Regis-
ter, programs should treat the contents of the Count
Register as undefined after executing this instruc-
tion. See Section 4.3 of Book III.

Programming Note
Chapter 2. Branch Facility 47

Version 3.1
Power ISA™ I48

Version 3.1
Chapter 3. Fixed-Point Facility

3.1 Fixed-Point Facility Over-
view

This chapter describes the registers and instructions
that make up the Fixed-Point Facility.

3.2 Fixed-Point Facility Regis-
ters

3.2.1 General Purpose Registers
All manipulation of information is done in registers
internal to the Fixed-Point Facility. The principal storage
internal to the Fixed-Point Facility is a set of 32 General
Purpose Registers (GPRs). See Figure 43.

Figure 43. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception
Register
The Fixed-Point Exception Register (XER) is a 64-bit
register.

Figure 44. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr and addex)
sets the Overflow bit. Once set, the SO bit
remains set until it is cleared by an mtspr
instruction (specifying the XER). It is not
altered by Compare instructions, by addex, or
by other instructions (except mtspr to the
XER) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values 0 for SO and 1 for OV, causes SO to
be set to 0 and OV to be set to 1.

33 Overflow (OV)
The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. The Overflow bit can also used as
an independent Carry bit by using the addex
with operand CY=0 instruction and avoiding
other instructions that modify the Overflow bit
(e.g., any XO-form instruction with OE=1).

XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to 0 otherwise.

XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divde,
divdu, divdeu) or in 32 bits (mullw, divw,
divwe, divwu, divweu), and set it to 0 other-
wise.

GPR 0
GPR 1

. . .

. . .
GPR 30
GPR 31

0 63

XER
0 63
Chapter 3. Fixed-Point Facility 49

Version 3.1
addex with operand CY=0 sets OV to 1 if there
is a carry out of bit M, and sets it to 0 other-
wise.

The OV bit is not altered by Compare instruc-
tions, or by other instructions (except mtspr to
the XER) that cannot overflow.

34 Carry (CA)
The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to 0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, or by other instructions
(except Shift Right Algebraic, mtspr to the
XER) that cannot carry.

35:43 Reserved

44 Overflow32 (OV32)

OV32 is set whenever OV is implicitly set, and
is set to the same value that OV is defined to
be set to in 32-bit mode.

45 Carry32 (CA32)

CA32 is set whenever CA is implicitly set, and
is set to the same value that CA is defined to
be set to in 32-bit mode.

46:56 Reserved
Bits 48:55 are implemented, and can be read
and written by software as if the bits contained
a defined field.

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

3.2.3 VR Save Register

The VR Save Register (VRSAVE) is a 32-bit register
that can be used as a software use SPR; see Section
6.3.3.

Bits 48:55 of the XER correspond to bits 16:23 of
the XER in the POWER Architecture. In the
POWER Architecture bits 16:23 of the XER contain
the comparison byte for the lscbx instruction.
Power ISA lacks the lscbx instruction, but some
application programs that run on processors that
implement Power ISA may still use lscbx, and
privileged software may emulate the instruction.
XER48:55 may be assigned a meaning in a future
version of the architecture, when POWER compati-
bility for lscbx is no longer needed, so these bits
should not be used for purposes other than the
lscbx comparison byte.

Programming Note

VRSAVE
32 63
Power ISA™ I50

Version 3.1
3.3 Fixed-Point Facility Instructions

3.3.1 Fixed-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 29.

3.3.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

3.3.2 Fixed-Point Load Instructions
The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA≠0 and RA≠RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions. More-
over, Load with Update instructions may take lon-
ger to execute in some implementations than the
corresponding pair of a non-update Load instruc-
tion and an Add instruction.

Programming Note
Chapter 3. Fixed-Point Facility 51

Version 3.1
Load Byte and Zero D-form

lbz RT,D(RA)

Prefixed Load Byte and Zero MLS:D-form

plbz RT,D(RA),R
Prefix:

Suffix::

if “lbz” then

 EA ← (RA|0) + EXTS64(D)

if “plbz” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plbz” & R=1 then7

 EA ← CIA + EXTS64(d0||d1)

RT ← EXTZ(MEM(EA, 1))

For lbz, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plbz with R=0, let EA be the sum of the contents of
register RA, or the value 0 if RA=0, and the value d0||d1,
sign-extended to 64 bits.

For plbz with R=1, let EA be the sum of the address of
the instruction and the value d0||d1, sign-extended to 64
bits.

The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

For plbz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Byte and Zero:

Load Byte and Zero Indexed X-form

lbzx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0) + (RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

lbzu RT,D(RA)

EA ← (RA) + EXTS(D)

RT ← 560 || MEM(EA, 1)

RA ← EA

Let the effective address (EA) be the sum (RA) + D. The
byte in storage addressed by EA is loaded into RT56:63.
RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed
X-form

lbzux RT,RA,RB

EA ← (RA) + (RB)

RT ← 560 || MEM(EA, 1)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

34 RT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

34 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plbz Rx,value(Ry) plbz Rx,value(Ry),0
plbz Rx,value plbz Rx,value(0),1

31 RT RA RA 87 /
0 6 11 16 21 31

35 RT RA D
0 6 11 16 31

31 RT RA RA 119 /
0 6 11 16 21 31
Power ISA™ I52

Version 3.1
Load Halfword and Zero D-form

lhz RT,D(RA)

Prefixed Load Halfword and Zero MLS:D-form

plhz RT,D(RA),R
Prefix:

Suffix::

if “lhz” then

 EA ← (RA|0) + EXTS64(D)

if “plhz” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plhz” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

RT ← EXTZ(MEM(EA, 2))

For lhz, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plhz with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plhz with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

For plhz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Halfword and
Zero:

Load Halfword and Zero Indexed X-form

lhzx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0) + (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update D-form

lhzu RT,D(RA)

EA ← (RA) + EXTS(D)

RT ← 480 || MEM(EA, 2)

RA ← EA

Let the effective address (EA) be the sum (RA) + D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero with Update Indexed
X-form

lhzux RT,RA,RB

EA ← (RA) + (RB)

RT ← 480 || MEM(EA, 2)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

40 RT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

40 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plhz Rx,value(Ry) plhz Rx,value(Ry),0
plhz Rx,value plhz Rx,value(0),1

31 RT RA RA 279 /
0 6 11 16 21 31

41 RT RA D
0 6 11 16 31

31 RT RA RA 311 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 53

Version 3.1
Load Halfword Algebraic D-form

lha RT,D(RA)

Prefixed Load Halfword Algebraic MLS:D-form

plha RT,D(RA),R
Prefix:

Suffix::

if “lha” then

 EA ← (RA|0) + EXTS64(D)

if “plha” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plha” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

RT ← EXTS(MEM(EA, 2))

For lha, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plha with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plha with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the loaded
halfword.

For plha, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Halfword Alge-
braic:

Load Halfword Algebraic Indexed X-form

lhax RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|0) + (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are filled with a copy of
bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update D-form

lhau RT,D(RA)

EA ← (RA) + EXTS(D)

RT ← EXTS(MEM(EA, 2))

RA ← EA

Let the effective address (EA) be the sum (RA) + D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the loaded
halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword Algebraic with Update Indexed
X-form

lhaux RT,RA,RB

EA ← (RA) + (RB)

RT ← EXTS(MEM(EA, 2))

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the loaded
halfword.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

42 RT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

42 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plha Rx,value(Ry) plha Rx,value(Ry),0
plha Rx,value plha Rx,value(0),1

31 RT RA RA 343 /
0 6 11 16 21 31

43 RT RA D
0 6 11 16 31

31 RT RA RA 375 /
0 6 11 16 21 31
Power ISA™ I54

Version 3.1
Load Word and Zero D-form

lwz RT,D(RA)

Prefixed Load Word and Zero MLS:D-form

plwz RT,D(RA),R
Prefix:

Suffix::

if “lwz” then

 EA ← (RA|0) + EXTS64(D)

if “plwz” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plwz” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

RT ← 320 || MEM(EA, 4)

For lwz, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plwz with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plwz with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

For plwz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Word and
Zero:

Load Word and Zero Indexed X-form

lwzx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0) + (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA)

EA ← (RA) + EXTS(D)

RT ← 320 || MEM(EA, 4)

RA ← EA

Let the effective address (EA) be the sum (RA) + D. The
word in storage addressed by EA is loaded into RT32:63.
RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero with Update Indexed
X-form

lwzux RT,RA,RB

EA ← (RA) + (RB)

RT ← 320 || MEM(EA, 4)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

32 RT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

32 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plwz Rx,value(Ry) plwz Rx,value(Ry),0
plwz Rx,value plwz Rx,value(0),1

31 RT RA RA 23 /
0 6 11 16 21 31

33 RT RA D
0 6 11 16 31

31 RT RA RA 55 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 55

Version 3.1
3.3.2.1 64-bit Fixed-Point Load Instructions

Load Word Algebraic DS-form

lwa RT,DS(RA)

Prefixed Load Word Algebraic 8LS:D-form

plwa RT,D(RA),R
Prefix:

Suffix::

if “lwa” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “plwa” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plwa” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

RT ← EXTS(MEM(EA, 4))

For lwa, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For plwa with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plwa with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are filled with a copy of bit 0 of the loaded
word.

For plwa, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Word Alge-
braic:

Load Word Algebraic Indexed X-form

lwax RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0) + (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed
X-form

lwaux RT,RA,RB

EA ← (RA) + (RB)

RT ← EXTS(MEM(EA, 4))

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are filled with a copy of bit 0 of the loaded
word.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 2
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

41 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plwa Rx,value(Ry) plwa Rx,value(Ry),0
plwa Rx,value plwa Rx,value(0),1

31 RT RA RA 341 /
0 6 11 16 21 31

31 RT RA RA 373 /
0 6 11 16 21 31
Power ISA™ I56

Version 3.1
Load Doubleword DS-form

ld RT,DS(RA)

Prefixed Load Doubleword 8LS:D-form

pld RT,D(RA),R
Prefix:

Suffix::

if “ld” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “pld” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pld” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

RT  MEM(EA, 8)

For ld, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pld with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pld with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The doubleword in storage addressed by EA is loaded
into RT.

For pld, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Doubleword:

Load Doubleword Indexed X-form

ldx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

RT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0) + (RB). The doubleword in storage addressed
by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update DS-form

ldu RT,DS(RA)

EA ← (RA) + EXTS(DS || 0b00)

RT ← MEM(EA, 8)

RA ← EA

Let the effective address (EA) be the sum
(RA) + (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Doubleword with Update Indexed X-form

ldux RT,RA,RB

EA ← (RA) + (RB)

RT ← MEM(EA, 8)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

58 RT RA DS 0
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

57 RT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pld Rx,value(Ry) pld Rx,value(Ry),0
pld Rx,value pld Rx,value(0),1

31 RT RA RA 21 /
0 6 11 16 21 31

58 RT RA DS 1
0 6 11 16 30 31

31 RT RA RA 53 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 57

Version 3.1
3.3.3 Fixed-Point Store Instructions
The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

• If RA≠0, the effective address is placed into regis-
ter RA.

• If RS=RA, the contents of register RS are copied to
the target storage element and then EA is placed
into RA (RS).
Power ISA™ I58

Version 3.1
Store Byte D-form

stb RS,D(RA)

Prefixed Store Byte MLS:D-form

pstb RS,D(RA),R
Prefix:

Suffix::

if “stb” then

 EA ← (RA|0) + EXTS64(D)

if “pstb” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstb” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 1)  (RS)56:63

For stb, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstb with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstb with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)56:63 are stored into the byte in storage addressed
by EA.

For pstb, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store Byte:

Store Byte Indexed X-form

stbx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 1) ← (RS)56:63

Let the effective address (EA) be the sum
(RA|0) + (RB). (RS)56:63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

EA ← (RA) + EXTS(D)

MEM(EA, 1) ← (RS)56:63
RA ← EA

Let the effective address (EA) be the sum (RA) + D.
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 1) ← (RS)56:63
RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

38 RS RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

38 RS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstb Rx,value(Ry) pstb Rx,value(Ry),0
pstb Rx,value pstb Rx,value(0),1

31 RS RA RA 215 /
0 6 11 16 21 31

39 RS RA D
0 6 11 16 31

31 RS RA RA 247 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 59

Version 3.1
Store Halfword D-form

sth RS,D(RA)

Prefixed Store Halfword MLS:D-form

psth RS,D(RA),R
Prefix:

Suffix::

if “sth” then

 EA ← (RA|0) + EXTS64(D)

if “psth” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “psth” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 2)  (RS)48:63

For sth, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For psth with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For psth with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)48:63 are stored into the halfword in storage
addressed by EA.

For psth, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store Halfword:

Store Halfword Indexed X-form

sthx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 2) ← (RS)48:63

Let the effective address (EA) be the sum
(RA|0) + (RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

EA ← (RA) + EXTS(D)

MEM(EA, 2) ← (RS)48:63
RA ← EA

Let the effective address (EA) be the sum (RA) + D.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword with Update Indexed X-form

sthux RS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 2) ← (RS)48:63
RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

44 RS RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

44 RS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
psth Rx,value(Ry) psth Rx,value(Ry),0
psth Rx,value psth Rx,value(0),1

31 RS RA RA 407 /
0 6 11 16 21 31

45 RS RA D
0 6 11 16 31

31 RS RA RA 439 /
0 6 11 16 21 31
Power ISA™ I60

Version 3.1
Store Word D-form

stw RS,D(RA)

Prefixed Store Word MLS:D-form

pstw RS,D(RA),R
Prefix:

Suffix::

if “stw” then

 EA ← (RA|0) + EXTS64(D)

if “pstw” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstw” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 4)  (RS)32:63

For stw, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstw with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstw with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)32:63 are stored into the word in storage addressed
by EA.

For pstw, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store Word:

Store Word Indexed X-form

stwx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 4) ← (RS)32:63

Let the effective address (EA) be the sum
(RA|0) + (RB). (RS)32:63 are stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form

stwu RS,D(RA)

EA ← (RA) + EXTS(D)

MEM(EA, 4) ← (RS)32:63
RA ← EA

Let the effective address (EA) be the sum (RA) + D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed X-form

stwux RS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 4) ← (RS)32:63
RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 RS RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

36 RS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstw Rx,value(Ry) pstw Rx,value(Ry),0
pstw Rx,value pstw Rx,value(0),1

31 RS RA RA 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16 31

31 RS RA RA 183 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 61

Version 3.1
3.3.3.1 64-bit Fixed-Point Store Instructions

Store Doubleword DS-form

std RS,DS(RA)

Prefixed Store Doubleword 8LS:D-form

pstd RS,D(RA),R
Prefix:

Suffix::

if “std” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “pstd” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstd” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 8)  (RS)

For std, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pstd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS) is stored into the doubleword in storage addressed
by EA.

For pstd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store Doubleword:

Store Doubleword Indexed X-form

stdx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 8) ← (RS)

Let the effective address (EA) be the sum
(RA|0) + (RB).

(RS) is stored into the doubleword in storage addressed
by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form

stdu RS,DS(RA)

EA ← (RA) + EXTS(DS || 0b00)

MEM(EA, 8) ← (RS)

RA ← EA

Let the effective address (EA) be the sum
(RA) + (DS||0b00).

(RS) is stored into the doubleword in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

62 RS RA DS 0
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

61 RS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstd Rx,value(Ry) pstd Rx,value(Ry),0
pstd Rx,value pstd Rx,value(0),1

31 RS RA RA 149 /
0 6 11 16 21 31

62 RS RA DS 1
0 6 11 16 30 31
Power ISA™ I62

Version 3.1
Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 8) ← (RS)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).

(RS) is stored into the doubleword in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

31 RS RA RA 181 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 63

Version 3.1
3.3.4 Fixed Point Load and Store Quadword Instructions
For lq, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA
and the odd-numbered GPR is loaded with the double-
word addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

On the other hand, for plq, the quadword in storage
addressed by EA is loaded into an even-odd pair of
GPRs as follows. Independent of endian mode, the
even-numbered GPR is loaded with the doubleword
from storage addressed by EA and the odd-numbered
GPR is loaded with the doubleword addressed by EA+8.

In the preferred form of the Load Quadword instruction
RA ≠ RTp+1.

For stq, the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Little-Endian
mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

On the other hand, for pstq, the contents of an
even-odd pair of GPRs is stored into the quadword in
storage addressed by EA as follows. Independent of
endian mode, the even-numbered GPR is stored into
the doubleword in storage addressed by EA and the
odd-numbered GPR is stored into the doubleword
addressed by EA+8.

The lq and stq instructions exist primarily to permit
software to access quadwords in storage "atomi-
cally"; see Section 1.4 of Book II. Because GPRs
are 64 bits long, the Fixed-Point Facility on many
designs is optimized for storage accesses of at
most eight bytes. On such designs, the quadword
atomicity required for lq and stq makes these
instructions complex to implement, with the result
that the instructions may perform less well on these
designs than the corresponding two Load Double-
word or Store Doubleword instructions.

The complexity of providing quadword atomicity
may be especially great for storage that is Write
Through Required or Caching Inhibited (see
Section 1.6 of Book II). This is why lq and stq are
permitted to cause the data storage error handler to
be invoked if the specified storage location is in
either of these kinds of storage (see Section
3.3.1.1).

Programming Note
Power ISA™ I64

Version 3.1
Load Quadword DQ-form

lq RTp,DQ(RA)

Prefixed Load Quadword 8LS:D-form

plq RTp,D(RA),R
Prefix:

Suffix::

if “lq” then

 EA ← (RA|0) + EXTS64(DQ||0b0000)
if “plq” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plq” & R=1 then

 EA ← CIA + EXTS64(d0||d1)
if Big-Endian byte ordering then

 RTp||RTp+1 ← MEM(EA,16)

if “lq” and Little-Endian byte ordering then

 RTp||RTp+1 ← MEM(EA,16)

if “plq” and Little-Endian byte ordering then

 RTp+1||RTp ← MEM(EA,16)

For lq, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DQ||0b0000, sign-extended to 64 bits.

For plq with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plq with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

For Big-Endian byte ordering, the quadword in storage
addressed by EA is loaded into RTp||RTp+1.

For lq and Little-Endian byte ordering, the quadword in
storage addressed by EA is byte-reversed and loaded
into RTp||RTp+1.

For plq and Little-Endian byte ordering, the quadword
in storage addressed by EA is byte-reversed and loaded
into RTp+1||RTp.

If RTp is odd or RTp=RA, the instruction form is invalid. If
RTp=RA, an attempt to execute this instruction will invoke

the system illegal instruction error handler. (The RTp=RA
case includes the case of RTp=RA=0.)

The quadword in storage addressed by EA is loaded
into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA and
the odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

For plq, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Quadword:

56 RTp RA DQ ///
0 6 11 16 28 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

56 RTp RA d1
0 6 11 16 31

In versions of the architecture prior to v2.07, this
instruction was privileged.

Extended mnemonic: Equivalent to:
plq Rx,value(Ry) plq Rx,value(Ry),0
plq Rx,value plq Rx,value(0),1

Programming Note
Chapter 3. Fixed-Point Facility 65

Version 3.1
Store Quadword DS-form

stq RSp,DS(RA)

Prefixed Store Quadword 8LS:D-form

pstq RSp,D(RA),R
Prefix:

Suffix::

if “stq” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “pstq” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstq” & R=1 then

 EA ← CIA + EXTS64(d0||d1)
if Big-Endian byte ordering then

 MEM(EA,16) ← (RSp)||(RSp+1)

if “stq” and Little-Endian byte ordering then

 MEM(EA,16) ← (RSp)||(RSp+1)

if “pstq” and Little-Endian byte ordering then

 MEM(EA,16) ← (RSp+1)||(RSp)

For stq, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pstq with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstq with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

For Big-Endian byte ordering, the content of register
pair RSp||RSp+1 is stored into the quadword in storage
addressed by EA.

For stq and Little-Endian byte ordering, the content of
register pair RSp||RSp+1 is byte-reversed and stored
into the quadword in storage addressed by EA.

For pstq and Little-Endian byte ordering, the content of
register pair RSp+1||RSp is byte-reversed and stored
into the quadword in storage addressed by EA.

If RSp is odd, the instruction form is invalid.

The contents of an even-odd pair of GPRs is stored into
the quadword in storage addressed by EA as follows. In
Big-Endian mode, the even-numbered GPR is stored
into the doubleword in storage addressed by EA and the
odd-numbered GPR is stored into the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is stored byte-reversed into the
doubleword in storage addressed by EA+8 and the
odd-numbered GPR is stored byte-reversed into the
doubleword addressed by EA.

For pstq, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store Quadword:

62 RSp RA DS 2
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

60 RSp RA d1
0 6 11 16 31

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Extended mnemonic: Equivalent to:
pstq Rx,value(Ry) pstq Rx,value(Ry),0
pstq Rx,value pstq Rx,value(0),1

Programming Note
Power ISA™ I66

Version 3.1
3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions

Load Halfword Byte-Reverse Indexed X-form

lhbrx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

load_data ← MEM(EA, 2)

RT ← 480 || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum (RA|0)+(RB).

Bits 0:7 of the halfword in storage addressed by EA are
loaded into RT56:63.

Bits 8:15 of the halfword in storage addressed by EA are
loaded into RT48:55.

RT0:47 are set to 0.

Special Registers Altered:
None

Store Halfword Byte-Reverse Indexed X-form

sthbrx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 2) ← (RS)56:63 || (RS)48:55

Let the effective address (EA) be the sum (RA|0)+ (RB).

(RS)56:63 are stored into bits 0:7 of the halfword in stor-
age addressed by EA.

(RS)48:55 are stored into bits 8:15 of the halfword in
storage addressed by EA.

Special Registers Altered:
None

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note
In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Programming Note

31 RT RA RA 790 /
0 6 11 16 21 31

31 RS RA RA 918 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 67

Version 3.1
Load Word Byte-Reverse Indexed X-form

lwbrx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

load_data ← MEM(EA, 4)

RT ← 320 || load_data24:31 || load_data16:23
 || load_data8:15 || load_data0:7

Let the effective address (EA) be the sum
(RA|0)+ (RB).

Bits 0:7 of the word in storage addressed by EA are
loaded into RT56:63.

Bits 8:15 of the word in storage addressed by EA are
loaded into RT48:55.

Bits 16:23 of the word in storage addressed by EA are
loaded into RT40:47.

Bits 24:31 of the word in storage addressed by EA are
loaded into RT32:39.

RT0:31 are set to 0.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 4) ← (RS)56:63 || (RS)48:55 || (RS)40:47
 ||(RS)32:39

Let the effective address (EA) be the sum (RA|0)+ (RB).

(RS)56:63 are stored into bits 0:7 of the word in storage
addressed by EA.

(RS)48:55 are stored into bits 8:15 of the word in storage
addressed by EA.

(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA.

(RS)32:39 are stored into bits 24:31 of the word in stor-
age addressed by EA.

Special Registers Altered:
None

31 RT RA RA 534 /
0 6 11 16 21 31

31 RS RA RA 662 /
0 6 11 16 21 31
Power ISA™ I68

Version 3.1
3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions

Load Doubleword Byte-Reverse Indexed
X-form

ldbrx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

load_data ← MEM(EA, 8)

RT ← load_data56:63 || load_data48:55
|| load_data40:47 || load_data32:39
|| load_data24:31 || load_data16:23
|| load_data8:15 || load_data0:7

Let the effective address (EA) be the sum (RA|0)+(RB).

Bits 0:7 of the doubleword in storage addressed by EA
are loaded into RT56:63.

Bits 8:15 of the doubleword in storage addressed by EA
are loaded into RT48:55.

Bits 16:23 of the doubleword in storage addressed by
EA are loaded into RT40:47.

Bits 24:31 of the doubleword in storage addressed by
EA are loaded into RT32:39.

Bits 32:39 of the doubleword in storage addressed by
EA are loaded into RT24:31.

Bits 40:47 of the doubleword in storage addressed by
EA are loaded into RT16:23.

Bits 48:55 of the doubleword in storage addressed by
EA are loaded into RT8:15.

Bits 56:63 of the doubleword in storage addressed by
EA are loaded into RT0:7.

Special Registers Altered:
None

Store Doubleword Byte-Reverse Indexed
X-form

stdbrx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 8) ← (RS)56:63 || (RS)48:55
|| (RS)40:47 || (RS)32:39
|| (RS)24:31 || (RS)16:23
|| (RS)8:15 || (RS)0:7

Let the effective address (EA) be the sum (RA|0)+ (RB).

(RS)56:63 are stored into bits 0:7 of the doubleword in
storage addressed by EA.

(RS)48:55 are stored into bits 8:15 of the doubleword in
storage addressed by EA.

(RS)40:47 are stored into bits 16:23 of the doubleword in
storage addressed by EA.

(RS)32:39 are stored into bits 23:31 of the doubleword in
storage addressed by EA.

(RS)24:31 are stored into bits 32:39 of the doubleword in
storage addressed by EA.

(RS)16:23 are stored into bits 40:47 of the doubleword in
storage addressed by EA.

(RS)8:15 are stored into bits 48:55 of the doubleword in
storage addressed by EA.

(RS)0:7 are stored into bits 56:63 of the doubleword in
storage addressed by EA.

Special Registers Altered:
None

31 RT RA RA 532 /
0 6 11 16 21 31

31 RS RA RA 660 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 69

Version 3.1
3.3.6 Fixed-Point Load and Store Multiple Instructions
Load Multiple Word D-form

lmw RT,D(RA)

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + EXTS(D)

r ← RT

do while r ≤ 31
 GPR(r) ← 320 || MEM(EA, 4)

 r ← r + 1

 EA ← EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0) + D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

Store Multiple Word D-form

stmw RS,D(RA)

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + EXTS(D)

r ← RS

do while r ≤ 31
 MEM(EA, 4) ← GPR(r)32:63
 r ← r + 1

 EA ← EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0) + D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

46 RT RA D
0 6 11 16

47 RS RA D
0 6 11 16
Power ISA™ I70

Version 3.1
3.3.7 Fixed-Point Move Assist Instructions [Phased Out]
The Move Assist instructions allow movement of an
arbitrary sequence of bytes from storage to registers or
from registers to storage without concern for alignment.
These instructions can be used for a short move
between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

The Move Assist instructions have preferred forms; see
Section 1.8.1, “Preferred Instruction Forms” on

page 24. In the preferred forms, register usage satisfies
the following rules.

• RS = 4 or 5
• RT = 4 or 5
• last register loaded/stored ≤ 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.

Chapter 3. Fixed-Point Facility 71

Version 3.1
Load String Word Immediate X-form

lswi RT,RA,NB

if RA = 0 then EA ← 0

else EA ← (RA)

if NB = 0 then n ← 32

else n ← NB

r ← RT - 1

i ← 32

do while n > 0

 if i = 32 then

 r ← r + 1 (mod 32)

 GPR(r) ← 0

 GPR(r)i:i+7 ← MEM(EA, 1)

 i ← i + 8

 if i = 64 then i ← 32

 EA ← EA + 1

 n ← n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to load. Let
nr=CEIL(n/4); nr is the number of registers to receive
data.

n consecutive bytes starting at EA are loaded into GPRs
RT through RT+nr-1. Data are loaded into the low-order
four bytes of each GPR; the high-order four bytes are
set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

Load String Word Indexed X-form

lswx RT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

n ← XER57:63
r ← RT - 1

i ← 32

RT ← undefined

do while n > 0

 if i = 32 then

 r ← r + 1 (mod 32)

 GPR(r) ← 0

 GPR(r)i:i+7 ← MEM(EA, 1)

 i ← i + 8

 if i = 64 then i ← 32

 EA ← EA + 1

 n ← n - 1

Let the effective address (EA) be the sum (RA|0)+ (RB).
Let n=XER57:63; n is the number of bytes to load. Let
nr=CEIL(n/4); nr is the number of registers to receive
data.

If n>0, n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA or
RT=RB, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None

31 RT RA NB 597 /
0 6 11 16 21 31

31 RT RA RB 533 /
0 6 11 16 21 31
Power ISA™ I72

Version 3.1
Store String Word Immediate X-form

stswi RS,RA,NB

if RA = 0 then EA ← 0

else EA ← (RA)

if NB = 0 then n ← 32

else n ← NB

r ← RS - 1

i ← 32

do while n > 0

 if i = 32 then r ← r + 1 (mod 32)

 MEM(EA, 1) ← GPR(r)i:i+7
 i ← i + 8

 if i = 64 then i ← 32

 EA ← EA + 1

 n ← n - 1

Let the effective address (EA) be (RA|0). Let n = NB if
NB≠0, n = 32 if NB=0; n is the number of bytes to store.
Let nr = CEIL(n/4); nr is the number of registers to
supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

Store String Word Indexed X-form

stswx RS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

n ← XER57:63
r ← RS - 1

i ← 32

do while n > 0

 if i = 32 then r ← r + 1 (mod 32)

 MEM(EA, 1) ← GPR(r)i:i+7
 i ← i + 8

 if i = 64 then i ← 32

 EA ← EA + 1

 n ← n - 1

Let the effective address (EA) be the sum
(RA|0) + (RB). Let n = XER57:63; n is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

If n=0, no bytes are stored.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None

31 RS RA NB 725 /
0 6 11 16 21 31

31 RS RA RB 661 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 73

Version 3.1
3.3.8 Other Fixed-Point Instructions
The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Instructions with the OE bit set or that set CA and
CA32 may execute slowly or may prevent the execu-
tion of subsequent instructions until the instruction
has completed.

Programming Note
Power ISA™ I74

Version 3.1
3.3.9 Fixed-Point Arithmetic Instructions
The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. These instructions also always set
CA32 to reflect the carry out of bit 32. The XO-form
Arithmetic instructions set SO, OV, and OV32 when
OE=1 to reflect overflow of the result. Except for the
Multiply Low and Divide instructions, the setting of SO
and OV is mode-dependent, and reflects overflow of
the 64-bit result in 64-bit mode and overflow of the
low-order 32-bit result in 32-bit mode, while OV32
reflects overflow of the low-order 32-bit result indepen-
dent of the mode. For XO-form Multiply Low and Divide
instructions, the setting of SO, OV, and OV32 is
mode-independent, and reflects overflow of the 64-bit
result for mulld, divd, divde, divdu and divdeu, and
overflow of the low-order 32-bit result for mullw, divw,
divwe, divwu, and divweu.

Extended mnemonics for addition and
subtraction
Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix C for additional extended mnemonics.

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Programming Note
Chapter 3. Fixed-Point Facility 75

Version 3.1
Add Immediate D-form

addi RT,RA,SI

Prefixed Add Immediate MLS:D-form
paddi RT,RA,SI,R
Prefix:

Suffix::

if “addi” then

 RT ← (RA|0) + EXTS64(SI)

if “paddi” & R=0 then

 RT ← (RA|0) + EXTS64(si0||si1)
if “paddi” & R=1 then

 RT ← CIA + EXTS64(si0||si1)

For addi, let the sum of the contents of register RA, or
the value 0 if RA=0, and the value SI, sign-extended to
64 bits, is placed into register RT.

For paddi with R=0, the sum of the contents of register
RA, or the value 0 if RA=0, and the value si0||si1,
sign-extended to 64 bits, is placed into register RT.

For paddi with R=1, the sum of the address of the
instruction and the value si0||si1, sign-extended to 64
bits, is placed into register RT.

For paddi, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Examples of extended mnemonics for Prefixed Add
Immediate:

Add Immediate Shifted D-form

addis RT,RA,SI

if RA = 0 then RT ← EXTS(SI || 160)

else RT ← (RA) + EXTS(SI || 160)

The sum (RA|0) + (SI || 0x0000) is placed into regis-
ter RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Add PC Immediate Shifted DX-form

addpcis RT,D

D ← d0||d1||d2

RT ← NIA + EXTS(D || 160)

The sum of NIA + (D || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add PC Immedi-
ate Shifted:

14 RT RA SI
0 6 11 16 31

1 2 0 // R // si0
0 6 8 9 11 12 14 31

14 RT RA si1
0 6 11 16 31

Extended mnemonic: Equivalent to:
li Rx,value addi Rx,0,value
la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,-value

Extended mnemonic: Equivalent to:
paddi Rx,Ry,value paddi Rx,Ry,value,0
pli Rx,value paddi Rx,0,value,0
pla Rx,value(Ry) paddi Rx,Ry,value,0
pla Rx,value paddi Rx,0,value,1
psubi Rx,Ry,value paddi Rx,Ry,-value,0

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

15 RT RA SI
0 6 11 16 31

Extended mnemonic: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,disp(Ry) addis Rx,Ry,-value

19 RT d1 d0 2 d2
0 6 11 16 26 31

Extended mnemonic: Equivalent to:
lnia Rx addpcis Rx,0
subpcis Rx,value addpcis Rx,-value

Programming Note
Power ISA™ I76

Version 3.1
Add XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1)

RT ← (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Add Immediate Carrying D-form

addic RT,RA,SI

RT ← (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA CA32

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Add Immediate Carrying and Record D-form

addic. RT,RA,SI

RT ← (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CR0 CA CA32

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Subtract From XO-form

subf RT,RA,RB (OE=0 Rc=0)
subf. RT,RA,RB (OE=0 Rc=1)
subfo RT,RA,RB (OE=1 Rc=0)
subfo. RT,RA,RB (OE=1 Rc=1)

RT ← ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Subtract From Immediate Carrying D-form

subfic RT,RA,SI

RT ← ¬(RA) + EXTS(SI) + 1

The sum ¬(RA) + SI + 1 is placed into register RT.

Special Registers Altered:
CA CA32

31 RT RA RB OE 266 Rc
0 6 11 16 21 22 31

12 RT RA SI
0 6 11 16 31

Extended mnemonic: Equivalent to:
subic Rx,Ry,value addic Rx,Ry,-value

13 RT RA SI
0 6 11 16 31

Extended mnemonic: Equivalent to:
subic. Rx,Ry,value addic. Rx,Ry,-value

31 RT RA RB OE 40 Rc
0 6 11 16 21 22 31

Extended mnemonic: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

8 RT RA SI
0 6 11 16 31
Chapter 3. Fixed-Point Facility 77

Version 3.1
Add Carrying XO-form

addc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1)

RT ← (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Subtract From Carrying XO-form

subfc RT,RA,RB (OE=0 Rc=0)
subfc. RT,RA,RB (OE=0 Rc=1)
subfco RT,RA,RB (OE=1 Rc=0)
subfco. RT,RA,RB (OE=1 Rc=1)

RT ← ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

Add Extended XO-form

adde RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1)

RT ← (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Subtract From Extended XO-form

subfe RT,RA,RB (OE=0 Rc=0)
subfe. RT,RA,RB (OE=0 Rc=1)
subfeo RT,RA,RB (OE=1 Rc=0)
subfeo. RT,RA,RB (OE=1 Rc=1)

RT ← ¬(RA) + (RB) + CA

The sum ¬(RA) + (RB) + CA is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB OE 10 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 8 Rc
0 6 11 16 21 22 31

Extended mnemonic: Equivalent to:
subc Rx,Ry,Rz subfc Rx,Rz,Ry

31 RT RA RB OE 138 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 136 Rc
0 6 11 16 21 22 31
Power ISA™ I78

Version 3.1
Add to Minus One Extended XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1)

RT ← (RA) + CA - 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Add to Zero Extended XO-form

addze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1)

RT ← (RA) + CA

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Subtract From Minus One Extended XO-form

subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

RT ← ¬(RA) + CA - 1

The sum ¬(RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Subtract From Zero Extended XO-form

subfze RT,RA (OE=0 Rc=0)
subfze. RT,RA (OE=0 Rc=1)
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

RT ← ¬(RA) + CA

The sum ¬(RA) + CA is placed into register RT.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA /// OE 234 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 202 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 232 Rc
0 6 11 16 21 22 31

31 RT RA /// OE 200 Rc
0 6 11 16 21 22 31

The setting of CA and CA32 by the Add and Subtract From instructions, including the Extended versions thereof, is
mode-dependent. If a sequence of these instructions is used to perform extended-precision addition or subtrac-
tion, the same mode should be used throughout the sequence.

Programming Note
Chapter 3. Fixed-Point Facility 79

Version 3.1
Add Extended using alternate carry bit
Z23-form

addex RT,RA,RB,CY

if CY=0 then RT ← (RA) + (RB) + OV

For CY=0, the sum (RA) + (RB) + OV is placed into regis-
ter RT.

For CY=0, OV is set to 1 if there is a carry out of bit 0 of
the sum in 64-bit mode or there is a carry out of bit 32
of the sum in 32-bit mode, and set to 0 otherwise. OV32
is set to 1 if there is a carry out of bit 32 bit of the sum.

CY=1, CY=2, and CY=3 are reserved.

Special Registers Altered:
OV OV32 (if CY=0)

Negate XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

RT ← ¬(RA) + 1

The sum ¬(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number
(0x8000_0000_0000_0000), the result is the most nega-
tive number and, if OE=1, OV is set to 1. If (RA)32:63 con-
tain the most negative 32-bit number (0x8000_0000) and
OE=1, OV32 is set to 1.

Similarly, if the processor is in 32-bit mode and
(RA)32:63 contain the most negative 32-bit number
(0x8000_0000), the low-order 32 bits of the result contain
the most negative 32-bit number and, if OE=1, OV and
OV32 are set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB CY 170 /
0 6 11 16 21 23 31

An addc-equivalent instruction using OV is not pro-
vided. An equivalent capability can be emulated by
first initializing OV to 0, then using addex. OV can
be initialized to 0 using subfo, subtracting any
operand from itself.

Programming Note

31 RT RA /// OE 104 Rc
0 6 11 16 21 22 31
Power ISA™ I80

Version 3.1
Multiply Low Immediate D-form

mulli RT,RA,SI

prod0:127 ← (RA) × EXTS(SI)
RT ← prod64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the SI field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word XO-form

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

RT ← (RA)32:63 × (RB)32:63

The 32-bit operands are the low-order 32 bits of RA and
of RB. The 64-bit product of the operands is placed into
register RT.

If OE=1 then OV and OV32 are set to 1 if the product can-
not be represented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Multiply High Word XO-form

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Rc=1)

prod0:63 ← (RA)32:63 × (RB)32:63
RT32:63 ← prod0:31
RT0:31 ← undefined

The 32-bit operands are the low-order 32 bits of RA and
of RB. The high-order 32 bits of the 64-bit product of the
operands are placed into RT32:63. The contents of RT0:31
are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned XO-form

mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Rc=1)

prod0:63 ← (RA)32:63 × (RB)32:63
RT32:63 ← prod0:31
RT0:31 ← undefined

The 32-bit operands are the low-order 32 bits of RA and
of RB. The high-order 32 bits of the 64-bit product of the
operands are placed into RT32:63. The contents of RT0:31
are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

7 RT RA SI
0 6 11 16 31

31 RT RA RB OE 235 Rc
0 6 11 16 21 22 31

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

Programming Note

31 RT RA RB / 75 Rc
0 6 11 16 21 22 31

31 RT RA RB / 11 Rc
0 6 11 16 21 22 31
Chapter 3. Fixed-Point Facility 81

Version 3.1
Divide Word XO-form

divw RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1)

dividend0:31 ← (RA)32:63
divisor0:31 ← (RB)32:63
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 32-bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit quotient is placed into RT32:63. The
contents of RT0:31 are undefined. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnega-
tive, and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

 0x8000_0000 ÷ -1
 <anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are set
to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

Divide Word Unsigned XO-form

divwu RT,RA,RB (OE=0 Rc=0)
divwu. RT,RA,RB (OE=0 Rc=1)
divwuo RT,RA,RB (OE=1 Rc=0)
divwuo. RT,RA,RB (OE=1 Rc=1)

dividend0:31 ← (RA)32:63
divisor0:31 ← (RB)32:63
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 32 bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit quotient is placed into RT32:63. The
contents of RT0:31 are undefined. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In this case, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB OE 491 Rc
0 6 11 16 21 22 31

The 32-bit signed remainder of dividing (RA)32:63 by
(RB)32:63 can be computed as follows, except in the
case that (RA)32:63 = -231 and (RB)32:63 = -1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 459 Rc
0 6 11 16 21 22 31

The 32-bit unsigned remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
Power ISA™ I82

Version 3.1
Divide Word Extended XO-form

divwe RT,RA,RB (OE=0 Rc=0)
divwe. RT,RA,RB (OE=0 Rc=1)
divweo RT,RA,RB (OE=1 Rc=0)
divweo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 ← (RA)32:63 ||
320

divisor0:31 ← (RB)32:63
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 64-bit dividend is (RA)32:63 || 320. The 32-bit divi-
sor is (RB)32:63. If the quotient can be represented in 32
bits, it is placed into RT32:63. The contents of RT0:31 are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnega-
tive, and -|divisor| < r ≤ 0 if the dividend is negative.

If the quotient cannot be represented in 32 bits, or if an
attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

Divide Word Extended Unsigned XO-form

divweu RT,RA,RB (OE=0 Rc=0)
divweu. RT,RA,RB (OE=0 Rc=1)
divweuo RT,RA,RB (OE=1 Rc=0)
divweuo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 ← (RA)32:63 ||
320

divisor0:31 ← (RB)32:63
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 64-bit dividend is (RA)32:63 || 320. The 32-bit divi-
sor is (RB)32:63. If the quotient can be represented in 32
bits, it is placed into RT32:63. The contents of RT0:31 are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If (RA) ≥ (RB), or if an attempt is made to perform the
division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB OE 427 Rc
0 6 11 16 21 22 31

31 RT RA RB OE 395 Rc
0 6 11 16 21 22 31
Chapter 3. Fixed-Point Facility 83

Version 3.1
Programming Note

Unsigned long division of a 64-bit dividend contained in
two 32-bit registers by a 32-bit divisor can be computed
as follows. The algorithm is shown first, followed by
Assembler code that implements the algorithm. The
dividend is Dh || Dl, the divisor is Dv, and the quotient
and remainder are Q and R respectively, where these
variables and all intermediate variables represent
unsigned 32-bit integers. It is assumed that Dv > Dh,
and that assigning a value to an intermediate variable
assigns the low-order 32 bits of the value and ignores
any higher-order bits of the value. (In both the algorithm
and the Assembler code, “r1” and “r2” refer to “remain-
der 1” and “remainder 2”, rather than to GPRs 1 and 2.)

Algorithm:

3. q1 ← divweu Dh, Dv
4. r1 ← -(q1 × Dv) # remainder of step 1

 divide operation
 (see Note 1)

5. q2 ← divwu Dl, Dv
6. r2 ← Dl - (q2 × Dv) # remainder of step 2

 divide operation
7. Q ← q1 + q2
8. R ← r1 + r2
9. if (R < r2) | (R ≥ Dv) then # (see Note 2)

 Q ← Q + 1 # increment quotient
 R ← R - Dv # decrement rem’der

Assembler Code:

Dh in r4, Dl in r5
Dv in r6
divweu r3,r4,r6 # q1
divwu r7,r5,r6 # q2
mullw r8,r3,r6 # -r1 = q1 * Dv
mullw r0,r7,r6 # q2 * Dv
subf r10,r0,r5 # r2 = Dl - (q2 * Dv)
add r3,r3,r7 # Q = q1 + q2
subf r4,r8,r10 # R = r1 + r2
cmplw r4,r10 # R < r2 ?
blt *+12 # must adjust Q and R if yes
cmplw r4,r6 # R ≥ Dv ?
blt *+12 # must adjust Q and R if yes
addi r3,r3,1 # Q = Q + 1
subf r4,r6,r4 # R = R - Dv
Quotient in r3
Remainder in r4

Notes:

1. The remainder is Dh || 320 - (q1 ´ Dv). Because
the remainder must be less than Dv and Dv < 232,
the remainder is representable in 32 bits. Because
the low-order 32 bits of Dh || 320 are 0s, the
remainder is therefore equal to the low-order 32
bits of -(q1 × Dv). Thus assigning -(q1 × Dv) to r1
yields the correct remainder.

2. R is less than r2 (and also less than r1) if and only
if the addition at step 6 carried out of 32 bits — i.e.,
if and only if the correct sum could not be repre-
sented in 32 bits — in which case the correct sum
is necessarily greater than Dv.

3. For additional information see the book Hacker's
Delight, by Henry S. Warren, Jr., as potentially
amended at the web site http://www.hackersde-
light.org.
Power ISA™ I84

Version 3.1
Modulo Signed Word X-form

modsw RT,RA,RB

dividend0:31 ← (RA)32:63
divisor0:31 ← (RB)32:63-

RT32:63 ← dividend % divisor

RT0:31 ← undefined

The 32-bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit remainder of the dividend divided
by the divisor is placed into RT32:63. The contents of
RT0:31 are undefined. The quotient is not supplied as a
result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder ≤ 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 % -1

<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

Modulo Unsigned Word X-form

moduw RT,RA,RB

dividend0:31 ← (RA)32:63
divisor0:31 ← (RB)32:63
RT32:63 ← dividend % divisor

RT0:31 ← undefined

The 32-bit dividend is (RA)32:63. The 32-bit divisor is
(RB)32:63. The 32-bit remainder of the dividend divided
by the divisor is placed into RT32:63. The contents of
RT0:31 are undefined. The quotient is not supplied as a
result.

Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < divisor.

If an attempt is made to perform any of the divisions

<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

31 RT RA RB 779 /
0 6 11 16 21 31

31 RT RA RB 267 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 85

Version 3.1
Deliver A Random Number X-form

darn RT,L

RT ← random(L)

A random number is placed into register RT in a format
selected by L as shown in the following table. The
value 0xFFFFFFFF_FFFFFFFF indicates an error condition.
For L=0, the random number range is 0:0xFFFFFFFF. For
L=1 and L=2, the random number range is
0:0xFFFFFFFF_FFFFFFFE.

Special Registers Altered:
none

31 RT /// L /// 755 /
0 6 11 14 16 21 31

L Format
0 320 || CRN0:31

1 CRN0:63

2 RRN0:63

3 reserved
Format above is for non-error conditions.
0xFFFFFFFF_FFFFFFFF for error conditions.
CRN = conditioned random number
RRN = raw random number

A raw random number is unconditioned noise source
output. A conditioned random number has been pro-
cessed by hardware to reduce bias.

32-bit software running in an environment that does
not preserve the high-order 32 bits of GPRs across
invocations of the system error handler, signal han-
dlers, event-based branch handlers, etc. may use
the L=0 variant of darn and interpret the value
0xFFFFFFFF to indicate an error condition. The fact
that the error condition includes the valid value
0x00000000_FFFFFFFF together with the true error
value 0xFFFFFFFF_FFFFFFFF is not a problem.

When the error value is obtained, software is
expected to repeat the operation. If a non-error
value has not been obtained after several attempts,
a software random number generation method
should be used. The recommended number of
attempts may be implementation specific. In the
absence of other guidance, ten attempts should be
adequate.

Programming Note

Programming Note

The random number generator provided by this
instruction is NIST SP800-90B and SP800-90C
compliant to the extent possible given the com-
pleteness of the standards at the time the hardware
is designed. The random number generator pro-
vides a minimum of 0.5 bits of entropy per bit.

Programming Note
Power ISA™ I86

Version 3.1
3.3.9.1 64-bit Fixed-Point Arithmetic Instructions

Multiply Low Doubleword XO-form

mulld RT,RA,RB (OE=0 Rc=0)
mulld. RT,RA,RB (OE=0 Rc=1)
mulldo RT,RA,RB (OE=1 Rc=0)
mulldo. RT,RA,RB (OE=1 Rc=1)

prod0:127 ← (RA) × (RB)
RT ← prod64:127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV and OV32 are set to 1 if the product can-
not be represented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Multiply High Doubleword XO-form

mulhd RT,RA,RB (Rc=0)
mulhd. RT,RA,RB (Rc=1)

prod0:127 ← (RA) × (RB)
RT ← prod0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 (if Rc=1)

Multiply High Doubleword Unsigned XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Rc=1)

prod0:127 ← (RA) × (RB)
RT ← prod0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero.

Special Registers Altered:
CR0 (if Rc=1)

31 RT RA RB OE 233 Rc
0 6 11 16 21 22 31

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

Programming Note

31 RT RA RB / 73 Rc
0 6 11 16 21 22 31

31 RT RA RB / 9 Rc
0 6 11 16 21 22 31
Chapter 3. Fixed-Point Facility 87

Version 3.1
Multiply-Add High Doubleword VA-form

maddhd RT,RA.RB,RC

prod0:127 ← (RA) × (RB)

sum0:127 ← prod + EXTS(RC)

RT ← sum0:63

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is added
to (RC). The high-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None

Multiply-Add High Doubleword Unsigned
VA-form

maddhdu RT,RA.RB,RC

prod0:127 ← (RA) × (RB)

sum0:127 ← prod + EXTZ(RC)

RT ← sum0:63

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is added
to (RC). The high-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
unsigned integers.

Special Registers Altered:
None

Multiply-Add Low Doubleword VA-form

maddld RT,RA.RB,RC

prod0:127 ← (RA) × (RB)

sum0:127 ← prod + EXTS(RC)

RT ← sum64:127

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is added
to (RC). The low-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None

4 RT RA RB RC 48
0 6 11 16 21 26 31 4 RT RA RB RC 49

0 6 11 16 21 26 31

4 RT RA RB RC 51
0 6 11 16 21 26 31
Power ISA™ I88

Version 3.1
Divide Doubleword XO-form

divd RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 ← (RA)

divisor0:63 ← (RB)

RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and -|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

 0x8000_0000_0000_0000 ÷ -1
 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Divide Doubleword Unsigned XO-form

divdu RT,RA,RB (OE=0 Rc=0)
divdu. RT,RA,RB (OE=0 Rc=1)
divduo RT,RA,RB (OE=1 Rc=0)
divduo. RT,RA,RB (OE=1 Rc=1)

dividend0:63 ← (RA)

divisor0:63 ← (RB)

RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In this case, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB OE 489 Rc
0 6 11 16 21 22 31

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -263 and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note

31 RT RA RB OE 457 Rc
0 6 11 16 21 22 31

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient×divisor
subf RT,RT,RA # RT = remainder

Programming Note
Chapter 3. Fixed-Point Facility 89

Version 3.1
Divide Doubleword Extended XO-form

divde RT,RA,RB (OE=0 Rc=0)
divde. RT,RA,RB (OE=0 Rc=1)
divdeo RT,RA,RB (OE=1 Rc=0)
divdeo. RT,RA,RB (OE=1 Rc=1)

dividend0:127 ← (RA) || 640

divisor0:63 ← (RB)

RT ← dividend ÷ divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied as
a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnega-
tive, and -|divisor| < r ≤ 0 if the dividend is negative.

If the quotient cannot be represented in 64 bits, or if an
attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

Divide Doubleword Extended Unsigned
XO-form

divdeu RT,RA,RB (OE=0 Rc=0)
divdeu. RT,RA,RB (OE=0 Rc=1)
divdeuo RT,RA,RB (OE=1 Rc=0)
divdeuo. RT,RA,RB (OE=1 Rc=1)

dividend0:127 ← (RA) || 640

divisor0:63 ← (RB)

RT ← dividend ÷ divisor

The 128-bit dividend is (RA) || 640. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied as
a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If (RA) ≥ (RB), or if an attempt is made to perform the
division

 <anything> ÷ 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then OV and OV32 are set to 1.

Special Registers Altered:
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

31 RT RA RB OE 425 Rc
0 6 11 16 21 22 31 31 RT RA RB OE 393 Rc

0 6 11 16 21 22 31

Unsigned long division of a 128-bit dividend con-
tained in two 64-bit registers by a 64-bit divisor can
be accomplished using the technique described in
the Programming Note with the divweu instruction
description: divd[e]u would be used instead of
divw[e]u (and cmpld instead of cmplw, etc.).

Programming Note
Power ISA™ I90

Version 3.1
Modulo Signed Doubleword X-form

modsd RT,RA,RB

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder of the dividend divided by the
divisor is placed into register RT. The quotient is not
supplied as a result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder ≤ 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

<anything> % 0

 0x8000_0000_0000_0000 % -1

then the contents of register RT are undefined.

Special Registers Altered:
None

Modulo Unsigned Doubleword X-form

modud RT,RA,RB

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder of the dividend divided by the
divisor is placed into register RT. The quotient is not
supplied as a result.

Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < divisor.

If an attempt is made to perform any of the divisions

<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

31 RT RA RB 777 /
0 6 11 16 21 31

dividend ← (RA)

divisor ← (RB)

RT ← dividend % divisor

31 RT RA RB 265 /
0 6 11 16 21 31

dividend ← (RA)

divisor ← (RB)

RT ← dividend % divisor
Chapter 3. Fixed-Point Facility 91

Version 3.1
3.3.10 Fixed-Point Compare Instructions
The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the SI field, (2) the zero-extended value of the UI field,
or (3) the contents of register RB. The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other
two to 0. XERSO is copied to bit 3 of the designated CR
field.

The CR field is set as follows

.

Extended mnemonics for compares
A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix C for additional extended
mnemonics.

L Operand length
0 32-bit operands
1 64-bit operands

Bit Name Description
0 LT (RA) < SI or (RB) (signed comparison)

(RA) <u UI or (RB) (unsigned comparison)
1 GT (RA) > SI or (RB) (signed comparison)

(RA) >u UI or (RB) (unsigned comparison)
2 EQ (RA) = SI, UI, or (RB)
3 SO Summary Overflow from the XER
Power ISA™ I92

Version 3.1
Compare Immediate D-form

cmpi BF,L,RA,SI

if L = 0 then a ← EXTS((RA)32:63)

 else a ← (RA)

if a < EXTS(SI) then c ← 0b100

else if a > EXTS(SI) then c ← 0b010

else c ← 0b001

CR4×BF+32:4×BF+35 ← c || XERSO

The contents of register RA ((RA)32:63 sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the SI field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Compare X-form

cmp BF,L,RA,RB

if L = 0 then a ← EXTS((RA)32:63)

 b ← EXTS((RB)32:63)

 else a ← (RA)

 b ← (RB)

if a < b then c ← 0b100

else if a > b then c ← 0b010

else c ← 0b001

CR4×BF+32:4×BF+35 ← c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if L=0),
treating the operands as signed integers. The result of
the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Compare Logical Immediate D-form

cmpli BF,L,RA,UI

if L = 0 then a ← 320 || (RA)32:63
 else a ← (RA)

if a <u (480 || UI) then c ← 0b100

else if a >u (480 || UI) then c ← 0b010

else c ← 0b001

CR4×BF+32:4×BF+35 ← c || XERSO

The contents of register RA ((RA)32:63 zero-extended to
64 bits if L=0) are compared with 480 || UI, treating the
operands as unsigned integers. The result of the com-
parison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Compare Logical X-form

cmpl BF,L,RA,RB

if L = 0 then a ← 320 || (RA)32:63
 b ← 320 || (RB)32:63
 else a ← (RA)

 b ← (RB)

if a <u b then c ← 0b100

else if a >u b then c ← 0b010

else c ← 0b001

CR4×BF+32:4×BF+35 ← c || XERSO

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if L=0),
treating the operands as unsigned integers. The result
of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

11 BF / L RA SI
0 6 9 10 11 16 31

Extended mnemonic: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

31 BF / L RA RB 0 /
0 6 9 10 11 16 21 31

Extended mnemonic: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpd cr3,Rx,Ry cmp 3,0,Rx,Ry

10 BF / L RA UI
0 6 9 10 11 16 31

Extended mnemonic: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

31 BF / L RA RB 32 /
0 6 9 10 11 16 21 31

Extended mnemonic: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry
Chapter 3. Fixed-Point Facility 93

Version 3.1
3.3.10.1 Character-Type Compare Instructions

Compare Ranged Byte X-form

cmprb BF,L,RA,RB

src1 ← EXTZ((RA)56:63)

src21hi ← EXTZ((RB)32:39)

src21lo ← EXTZ((RB)40:47)

src22hi ← EXTZ((RB)48:55)

src22lo ← EXTZ((RB)56:63)

if L=0 then

 in_range ← (src22lo ≤ src1) & (src1 ≤ src22hi)
else

 in_range ← ((src21lo ≤ src1) & (src1 ≤ src21hi)) |
 in_range ← ((src22lo ≤ src1) & (src1 ≤ src22hi))

CR4×BF+32:4×BF+35 ← 0b0 || in_range || 0b00

Let src1 be the unsigned integer value in bits 56:63 of
register RA.

Let src21hi be the unsigned integer value in bits 32:39
of register RB.

Let src21lo be the unsigned integer value in bits 40:47
of register RB.

Let src22hi be the unsigned integer value in bits 48:55
of register RB.

Let src22lo be the unsigned integer value in bits 56:63
of register RB.

Let x be considered “in range” of y:z if the value x is
greater than or equal to the value y and the value x is
less than or equal to the value z.

When L=0, the value in_range is set to 1 if src1 is in
range of src22lo:src22hi. Otherwise, the value
in_range is set to 0.

When L=1, the value in_range is set to 1 if either src1
is in range of src21lo:src21hi, or src1 is in range of
src22lo:src22hi. Otherwise, the value in_range is set
to 0.

CR field BF is set to the value 0b0 concatenated with
in_range concatenated with 0b00.

Special Registers Altered:
CR field BF

31 BF / L RA RB 192 /
0 6 9 10 11 16 21 31

cmprb is useful for implementing character typing
functions such as isalpha(), isdigit(), isupper(),
and islower() that are implemented using one or
two range compares of the character.

A single-range compare can be implemented with
an addi to load the upper and lower bounds in the
range, such as isdigit().

addi rRNG,0,0x3930 ; loads ASCII values for ‘9’

 ; and ‘0’ into rRNG

cmprb crTGT,0,rCHAR,rRNG ; perform range compare

 ; sets CR field TGT to

 ; indicate in range

A combination of addi-addis can be used to set up
2 ranges, such as for isalpha().

addi rRNG,0,0x7A61 ; loads ASCII values for ‘z’

 ; and ‘a’ into rRNG

addis rRNG,rRNG,0x5A41 ; appends ASCII values for ‘Z’

 ; and ‘A’ into rRNG

cmprb crTGT,1,rCHAR,rRNG ; perform range compare on

 ; character in rCHAR,

 : setting CR field TGT to

 ; indicate in range

Programming Note
Power ISA™ I94

Version 3.1
Compare Equal Byte X-form

cmpeqb BF,RA,RB

src1 ← GPR[RA].bit[56:63]

match ← (src1 = (RB)00:07) |

match ← (src1 = (RB)08:15) |

match ← (src1 = (RB)16:23) |

match ← (src1 = (RB)24:31) |

match ← (src1 = (RB)32:39) |

match ← (src1 = (RB)40:47) |

match ← (src1 = (RB)48:55) |

match ← (src1 = (RB)56:63)

CR4×BF+32:4×BF+35 ← 0b0 || match || 0b00

CR field BF is set to indicate if the contents of bits 56:63
of register RA are equal to the contents of any of the 8
bytes in register RB.

Results are undefined in 32-bit mode.

Special Registers Altered:
CR field BF

31 BF // RA RB 224 /
0 6 9 11 16 21 31

cmpeqb is useful for implementing character
typing functions such as isspace() that are
implemented by comparing the character to 1 or
more values.

A function such as isspace() can be implemented
by loading the 6 byte codes corresponding to
characters considered as whitespace (HT, LF, VT,
FF, CR, and SP) and using the cmpeb to compare
the subject character to those 6 values to
determine if any match occurs.

ldx rSPC,WS_CHARS ; rSPC = 0x0909_090A_0B0C_0D20

 ; load rSPC with all 6 ASCII

 ; values corresponding to

 ; white spaces

cmpeqb 2,cr1,rCHAR,rSPC ; perform match compare on

 ; character in rCHAR with

 : byte values in rSPC

In this case, the byte code for HT (0x09) was
replicated to fill the all 8 bytes to avoid a potential
miscompare.

Programming Note
Chapter 3. Fixed-Point Facility 95

Version 3.1
3.3.11 Fixed-Point Trap Instructions
The Trap instructions are provided to test for a speci-
fied set of conditions. If any of the conditions tested by
a Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the SI field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition
0 Less Than, using signed comparison
1 Greater Than, using signed comparison
2 Equal
3 Less Than, using unsigned comparison
4 Greater Than, using unsigned comparison

Extended mnemonics for traps
A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix C for additional extended mne-
monics.
Power ISA™ I96

Version 3.1
Trap Word Immediate D-form

twi TO,RA,SI

a ← EXTS((RA)32:63)

if (a < EXTS(SI)) & TO0 then TRAP

if (a > EXTS(SI)) & TO1 then TRAP

if (a = EXTS(SI)) & TO2 then TRAP

if (a <u EXTS(SI)) & TO3 then TRAP

if (a >u EXTS(SI)) & TO4 then TRAP

The contents of RA32:63 are compared with the
sign-extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).Special Registers
Altered:

None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Trap Word X-form

tw TO,RA,RB

a ← EXTS((RA)32:63)

b ← EXTS((RB)32:63)

if (a < b) & TO0 then TRAP

if (a > b) & TO1 then TRAP

if (a = b) & TO2 then TRAP

if (a <u b) & TO3 then TRAP

if (a >u b) & TO4 then TRAP

The contents of RA32:63 are compared with the contents
of RB32:63. If any bit in the TO field is set to 1 and its cor-
responding condition is met by the result of the compar-
ison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).Special Registers
Altered:

None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

3 TO RA SI
0 6 11 16 31

Extended mnemonic: Equivalent to:
twgti Rx,value tw 8,Rx,value
twllei Rx,value tw 6,Rx,value

31 TO RA RB 4 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twlge Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0
Chapter 3. Fixed-Point Facility 97

Version 3.1
3.3.11.1 64-bit Fixed-Point Trap Instructions

Trap Doubleword Immediate D-form

tdi TO,RA,SI

a ← (RA)

b ← EXTS(SI)

if (a < b) & TO0 then TRAP

if (a > b) & TO1 then TRAP

if (a = b) & TO2 then TRAP

if (a <u b) & TO3 then TRAP

if (a >u b) & TO4 then TRAP

The contents of register RA are compared with the
sign-extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word Immediate:

Trap Doubleword X-form

td TO,RA,RB

a ← (RA)

b ← (RB)

if (a < b) & TO0 then TRAP

if (a > b) & TO1 then TRAP

if (a = b) & TO2 then TRAP

if (a <u b) & TO3 then TRAP

if (a >u b) & TO4 then TRAP

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book III).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word:

3.3.12 Fixed-Point Select
Integer Select A-form

isel RT,RA,RB,BC

if RA=0 then a ← 0 else a ← (RA)

if CRBC+32=1 then

 RT ← a

else

 RT ← (RB)

If the contents of bit BC+32 of the Condition Register are
equal to 1, then the contents of register RA (or 0) are
placed into register RT. Otherwise, the contents of regis-
ter RB are placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Integer Select:

2 TO RA SI
0 6 11 16 31

Extended mnemonic: Equivalent to:
tdlti Rx,value tdi 16,Rx,value
tdnei Rx,value tdi 24,Rx,value

31 TO RA RB 68 /
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
tdge Rx,Ry td 12,Rx,Ry
tdlnl Rx,Ry td 5,Rx,Ry

31 RT RA RB BC 15 /
0 6 11 16 21 26 31

Extended mnemonic: Equivalent to:
isellt Rx,Ry,Rz isel Rx,Ry,Rz,0
iselgt Rx,Ry,Rz isel Rx,Ry,Rz,1
iseleq Rx,Ry,Rz isel Rx,Ry,Rz,2
Power ISA™ I98

Version 3.1
3.3.13 Fixed-Point Logical Instructions
The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.8, “Other Fixed-Point Instructions” on
page 74. The Logical instructions do not change the SO,
OV, OV32, CA, and CA32 bits in the XER.

Extended mnemonics for logical oper-
ations
Extended mnemonics are provided that generate two
different types of “no-ops” (instructions that do nothing).
The first type is the preferred form, which is optimized
to minimize its use of the processor's execution
resources. This form is based on the OR Immediate
instruction. The second type is the executed form,
which is intended to consume the same amount of the
processor's execution resources as if it were not a

no-op. This form is based on the XOR Immediate
instruction. (There are also no-ops that have other
uses, such as affecting program priority, for which
extended mnemonics have not been defined.)

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing. These
are shown as examples with the two instructions.

See Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

AND Immediate D-form

andi. RA,RS,UI

RA ← (RS) & (480 || UI)

The contents of register RS are ANDed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
CR0

AND Immediate Shifted D-form

andis. RA,RS,UI

RA ← (RS) & (320 || UI || 160)

The contents of register RS are ANDed with
320 || UI || 160 and the result is placed into register
RA.

Special Registers Altered:
CR0

OR Immediate D-form

ori RA,RS,UI

RA ← (RS) | (480 || UI)

The contents of register RS are ORed with 480 || UI
and the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:

ori 0,0,0

Some other forms of ori Rx,Rx,0 provide special func-
tions; see <xref to Book III Section 4.4.2+>.

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Warning: Some forms of no-op may have side
effects such as affecting program priority. Program-
mers should use the preferred no-op unless the
side effects of some other form of no-op are
intended.

Programming Note

28 RS RA UI
0 6 11 16 31

29 RS RA UI
0 6 11 16 31

24 RS RA UI
0 6 11 16 31

Extended mnemonic: Equivalent to:
nop ori 0,0,0
Chapter 3. Fixed-Point Facility 99

Version 3.1
OR Immediate Shifted D-form

oris RA,RS,UI

RA ← (RS) | (320 || UI || 160)

The contents of register RS are ORed with
320 || UI || 160 and the result is placed into register
RA.

Special Registers Altered:
None

XOR Immediate D-form

xori RA,RS,UI

RA ← (RS) XOR (480 || UI)

The contents of register RS are XORed with 480 || UI
and the result is placed into register RA.

The executed form of a “no-op” (an instruction that
does nothing, but consumes execution resources nev-
ertheless) is:

xori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for XOR Immediate:

XOR Immediate Shifted D-form

xoris RA,RS,UI

RA ← (RS) XOR (320 || UI || 160)

The contents of register RS are XORed with
320 || UI || 160 and the result is placed into register
RA.

Special Registers Altered:
None

AND X-form

and RA,RS,RB (Rc=0)
and. RA,RS,RB (Rc=1)

RA ← (RS) & (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

Some forms of and Rx, Rx, Rx provide special func-
tions; see Section 10.3 of Book III.

Special Registers Altered:
CR0 (if Rc=1)

XOR X-form

xor RA,RS,RB (Rc=0)
xor. RA,RS,RB (Rc=1)

RA ← (RS) ⊕ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:
CR0 (if Rc=1)

NAND X-form

nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Rc=1)

RA ← ¬((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

25 RS RA UI
0 6 11 16 31

26 RS RA UI
0 6 11 16 31

Extended mnemonic: Equivalent to:
xnop xori 0,0,0

The executed form of no-op should be used only
when the intent is to alter the timing of a program.

27 RS RA UI
0 6 11 16 31

Programming Note

31 RS RA RB 28 Rc
0 6 11 16 21 31

31 RS RA RB 316 Rc
0 6 11 16 21 31

31 RS RA RB 476 Rc
0 6 11 16 21 31

nand or nor with RS=RB can be used to obtain the
one’s complement.

Programming Note
Power ISA™ I100

Version 3.1
OR X-form

or RA,RS,RB (Rc=0)
or. RA,RS,RB (Rc=1)

RA ← (RS) | (RB)

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

Some forms of or Rx,Rx,Rx provide special functions;
see Section 3.2 and Section 4.3.3, both in Book II.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

OR with Complement X-form

orc RA,RS,RB (Rc=0)
orc. RA,RS,RB (Rc=1)

RA ← (RS) | ¬(RB)

The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

NOR X-form

nor RA,RS,RB (Rc=0)
nor. RA,RS,RB (Rc=1)

RA ← ¬((RS) | (RB))

The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

Equivalent X-form

eqv RA,RS,RB (Rc=0)
eqv. RA,RS,RB (Rc=1)

RA ← (RS) ≡ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

AND with Complement X-form

andc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Rc=1)

RA ← (RS) & ¬(RB)

The contents of register RS are ANDed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA RB 444 Rc
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mr Rx,Ry or Rx,Ry,Ry

31 RS RA RB 412 Rc
0 6 11 16 21 31

31 RS RA RB 124 Rc
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
not Rx,Ry nor Rx,Ry,Ry

31 RS RA RB 284 Rc
0 6 11 16 21 31

31 RS RA RB 60 Rc
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 101

Version 3.1
Extend Sign Byte X-form

extsb RA,RS (Rc=0)
extsb. RA,RS (Rc=1)

s ← (RS)56
RA56:63 ← (RS)56:63
RA0:55 ← 56s

(RS)56:63 are placed into RA56:63. RA0:55 are filled with a
copy of (RS)56.

Special Registers Altered:
CR0 (if Rc=1)

Extend Sign Halfword X-form

extsh RA,RS (Rc=0)
extsh. RA,RS (Rc=1)

s ← (RS)48
RA48:63 ← (RS)48:63
RA0:47 ← 48s

(RS)48:63 are placed into RA48:63. RA0:47 are filled with a
copy of (RS)48.

Special Registers Altered:
CR0 (if Rc=1)

Compare Bytes X-form

cmpb RA,RS,RB

do n = 0 to 7

 if RS8×n:8×n+7 = (RB)8×n:8×n+7 then
 RA8×n:8×n+7 ← 81

 else

 RA8×n:8×n+7 ← 80

Each byte of the contents of register RS is compared to
each corresponding byte of the contents in register RB.
If they are equal, the corresponding byte in RA is set to
0xFF. Otherwise the corresponding byte in RA is set to
0x00.

Special Registers Altered:
None

Count Leading Zeros Word X-form

cntlzw RA,RS (Rc=0)
cntlzw. RA,RS (Rc=1)

n ← 32

do while n < 64

 if (RS)n = 1 then leave

 n ← n + 1

RA ← n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA. This
number ranges from 0 to 32, inclusive.

If Rc is equal to 1, CR field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

Count Trailing Zeros Word X-form

cnttzw RA,RS (Rc=0)
cnttzw. RA,RS (Rc=1)

n ← 0

do while n < 32

 if (RS)63-n = 0b1 then leave

 n ← n + 1

RA ← EXTZ64(n)

A count of the number of consecutive zero bits starting
at bit 63 of the rightmost word of register RS is placed
into register RA. This number ranges from 0 to 32,
inclusive.

If Rc is equal to 1, CR field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA /// 954 Rc
0 6 11 16 21 31

31 RS RA /// 922 Rc
0 6 11 16 21 31

31 RS RA RB 508 Rc
0 6 11 16 21 31

31 RS RA /// 26 Rc
0 6 11 16 21 31

For both Count Leading Zeros instructions, if Rc=1
then LT is set to 0 in CR Field 0.

31 RS RA /// 538 Rc
0 6 11 16 21 31

Programming Note
Power ISA™ I102

Version 3.1
Population Count Bytes X-form

popcntb RA, RS

do i = 0 to 7

 n ← 0

 do j = 0 to 7

 if (RS)(i×8)+j = 1 then
 n ← n+1

 RA(i×8):(i×8)+7 ← n

A count of the number of one bits in each byte of regis-
ter RS is placed into the corresponding byte of register
RA. This number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Population Count Words X-form

popcntw RA, RS

do i = 0 to 1

 n ← 0

 do j = 0 to 31

 if (RS)(i×32)+j = 1 then
 n ← n+1

 RA(i×32):(i×32)+31 ← n

A count of the number of one bits in each word of regis-
ter RS is placed into the corresponding word of register
RA. This number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

Parity Word X-form

prtyw RA,RS

s ← 0

t ← 0

do i = 0 to 3

 s ← s ⊕ (RS)i%8+7

do i = 4 to 7

 t ← t ⊕ (RS)i%8+7

RA0:31 ← 310 || s

RA32:63 ← 310 || t

The least significant bit in each byte of (RS)0:31 is
examined. If there is an odd number of one bits the
value 1 is placed into RA0:31; otherwise the value 0 is
placed into RA0:31. The least significant bit in each byte
of (RS)32:63 is examined. If there is an odd number of
one bits the value 1 is placed into RA32:63; otherwise the
value 0 is placed into RA32:63.

Special Registers Altered:
None

31 RS RA /// 122 Rc
0 6 11 16 21 31

31 RS RA /// 378 /
0 6 11 16 21 31

31 RS RA /// 154 /
0 6 11 16 21 31

The Parity instructions are designed to be used in
conjunction with the Population Count instruction to
compute the parity of words or a doubleword. The
parity of the upper and lower words in (RS) can be
computed as follows.

 popcntb RA, RS

 prtyw RA, RA

The parity of (RS) can be computed as follows.

 popcntb RA, RS

 prtyd RA, RA

Programming Note
Chapter 3. Fixed-Point Facility 103

Version 3.1
3.3.13.1 64-bit Fixed-Point Logical Instructions

Extend Sign Word X-form

extsw RA,RS (Rc=0)
extsw. RA,RS (Rc=1)

s ← (RS)32
RA32:63 ← (RS)32:63
RA0:31 ← 32s

(RS)32:63 are placed into RA32:63. RA0:31 are filled with a
copy of (RS)32.

Special Registers Altered:
CR0 (if Rc=1)

Population Count Doubleword X-form

popcntd RA, RS

n ← 0

do i = 0 to 63

 if (RS)i = 1 then

 n ← n+1

RA ← n

A count of the number of one bits in register RS is
placed into register RA. This number ranges from 0 to
64, inclusive.

Special Registers Altered:
None

Parity Doubleword X-form

prtyd RA,RS

s ← 0

do i = 0 to 7

 s ← s ⊕ (RS)i%8+7

RA ← 630 || s

The least significant bit in each byte of the contents of
register RS is examined. If there is an odd number of
one bits the value 1 is placed into register RA; otherwise
the value 0 is placed into register RA.

Special Registers Altered:
None

Count Leading Zeros Doubleword X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Rc=1)

n ← 0

do while n < 64

 if (RS)n = 1 then leave

 n ← n + 1

RA ← n

A count of the number of consecutive zero bits starting
at bit 0 of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

Count Trailing Zeros Doubleword X-form

cnttzd RA,RS (Rc=0)
cnttzd. RA,RS (Rc=1)

n ← 0

do while n < 64

 if (RS)63-n = 0b1 then leave

 n ← n + 1

RA ← EXTZ64(n)

A count of the number of consecutive zero bits starting
at bit 63 of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Rc is equal to 1, CR field 0 is set to reflect the result.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA /// 986 Rc
0 6 11 16 21 31

31 RS RA /// 506 /
0 6 11 16 21 31

31 RS RA /// 186 /
0 6 11 16 21 31

31 RS RA /// 58 Rc
0 6 11 16 21 31

31 RS RA /// 570 Rc
0 6 11 16 21 31
Power ISA™ I104

Version 3.1
Count Leading Zeros Doubleword under bit
Mask X-form

cntlzdm RA,RS,RB

count = 0

do i = 0 to 63

 if((RB)i=1) then do

 if((RS)i=1) then break

 count ← count + 1

 end

end

RA ← EXTZ64(count)

Let n be the number of bits in register RB having the
value 1.

Extract and pack together the contents of the bits in
register RS corresponding to a mask specified in
register RB, creating an n-bit value.

Count the number of contiguous leftmost 0 bits in the
n-bit extracted value and place the result into register
RA.

Special Registers Altered:
None

Count Trailing Zeros Doubleword under bit
Mask X-form

cnttzdm RA,RS,RB

count ← 0

do i = 0 to 63

 if((RB)63-i=1) then do

 if((RS)63-i=1) then break

 count ← count + 1

 end

end

RA ← EXTZ64(count)

Let n be the number of bits in register RB having the
value 1.

Extract and pack together the contents of bits in
register RS corresponding to a mask specified in
register RB, creating an n-bit value.

Count the number of contiguous rightmost 0 bits in the
n-bit extracted value and place the result into register
RA.

Special Registers Altered:
None

Bit Permute Doubleword X-form

bpermd RA,RS,RB

do i = 0 to 7

 index ← (RS)8*i:8*i+7
 If index < 64

 then permi ← (RB)index
 else permi ← 0

RA ← 560 || perm0:7

Eight permuted bits are produced. For each permuted
bit i where i ranges from 0 to 7 and for each byte i of
RS, do the following.

If byte i of RS is less than 64, permuted bit i is set
to the bit of RB specified by byte i of RS; otherwise
permuted bit i is set to 0.

The permuted bits are placed in the least-significant
byte of RA, and the remaining bits are filled with 0s.

Special Registers Altered:
None

31 RS RA RB 59 /
0 6 11 16 21 31

31 RS RA RB 571 /
0 6 11 16 21 31

31 RS RA RB 252 /
0 6 11 16 21 31

The fact that the permuted bit is 0 if the corre-
sponding index value exceeds 63 permits the per-
muted bits to be selected from a 128-bit quantity,
using a single index register. For example, assume
that the 128-bit quantity Q, from which the permuted
bits are to be selected, is in registers r2 (high-order
64 bits of Q) and r3 (low-order 64 bits of Q), that the
index values are in register r1, with each byte of r1
containing a value in the range 0:127, and that
each byte of register r4 contains the value 64. The
following code sequence selects eight permuted
bits from Q and places them into the low-order byte
of r6.
bpermd r6,r1,r2 # select from high-

 order half of Q
xor r0,r1,r4 # adjust index values
bpermd r5,r0,r3 # select from low-

 order half of Q
or r6,r6,r5 # merge the two

 selections

Programming Note
Chapter 3. Fixed-Point Facility 105

Version 3.1
Centrifuge Doubleword X-form

cfuged RA,RS,RB

ptr0 ← 0

ptr1 ← 0

do i = 0 to 63

 if((RB)i=0) then do

 resultptr0 ← (RS)i
 ptr0 ← ptr0 + 1

 end

 if((RB)63-i==1) then do

 result63-ptr1 ← (RS)63-i
 ptr1 ← ptr1 + 1

 end

end

RA ← result

The bits in GPR[RS] whose corresponding bits in the
mask in GPR[RB] equal 1 are placed in the rightmost
bits in GPR[RA] maintaining their relative original order.
The other bits in GPR[RS] are placed in the leftmost bits
in GPR[RA] maintaining their relative original order.

Special Registers Altered:
None

Parallel Bits Extract Doubleword X-form

pextd RA,RS,RB

result ← 0

mask ← (RB)

m ← 0

k ← 0

do while(m < 64)

 if((RB)63-m == 1) then do

 result63-k ← (RS)63-m
 k ← k + 1

 end

 m ← m + 1

end

RA ← result

Let mask be the contents of register RB.

The contents of the bits in register RS corresponding to
bits in mask containing a 1 are packed into an n-bit
value. The extracted value is placed into register RA.

Special Registers Altered:
None

Parallel Bits Deposit Doubleword X-form

pdepd RA,RS,RB

result ← 0

mask ← (RB)

m ← 0

k ← 0

do while(m < 64)

 if(mask63-m == 1) then do

 result63-m ← (RS)63-k
 k ← k + 1

 end

 m ← m + 1

end

RA ← result

Let mask be the contents of register RB.

Let n be the number of bits in mask having the value 1.

The contents of the rightmost n bits of register RS are
placed into register RA under control of mask as follows.

– The contents of bit 63 of register RS are placed into
the bit in register RA corresponding to the
rightmost bit in mask that contains a 1,

– the contents of bit 62 of register RS are placed into
the bit in register RA corresponding to the second
rightmost bit in mask that contains a 1, and so forth
until

– the contents of bit 64-n of register RS are placed
into the bit in register RA corresponding to the
leftmost bit in mask that contains a 1.

The contents of bits in register RA corresponding to bits
in mask that contain a 0 are set to 0.

Special Registers Altered:
None

31 RS RA RB 220 /
0 6 11 16 21 31

31 RS RA RB 188 /
0 6 11 16 21 31

31 RS RA RB 156 /
0 6 11 16 21 31
Power ISA™ I106

Version 3.1
3.3.14 Fixed-Point Rotate and Shift Instructions
The Fixed-Point Facility performs rotation operations
on data from a GPR and returns the result, or a portion
of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTL64, the
value rotated is the given 64-bit value. The rotate64
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other
in bits 32:63. The rotate32 operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and 0-bits elsewhere. The values of mstart and
mstop range from 0 to 63. If mstart > mstop, the 1-bits
wrap around from position 63 to position 0. Thus the
mask is formed as follows:

 if mstart ≤ mstop then
 maskmstart:mstop = ones

 maskall other bits = zeros

 else

 maskmstart:63 = ones

 mask0:mstop = ones

 maskall other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.8,
“Other Fixed-Point Instructions” on page 74. Rotate
and Shift instructions do not change the OV, OV32, and SO
bits. Rotate and Shift instructions, except algebraic
right shifts, do not change the CA and CA32 bits.

Extended mnemonics for rotates and
shifts
The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

3.3.14.1 Fixed-Point Rotate Instructions
These instructions rotate the contents of a register. The
result of the rotation is
• inserted into the target register under control of a

mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

• ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64-n, where n is the number of bits by
which to rotate right. They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.

Rotate Left Word Immediate then AND with
Mask M-form

rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Rc=1)

n ← SH

r ← ROTL32((RS)32:63, n)

m ← MASK(MB+32, ME+32)

RA ← r & m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32 through
bit ME+32 and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

21 RS RA SH MB ME Rc
0 6 11 16 21 26 31
Chapter 3. Fixed-Point Facility 107

Version 3.1
Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Word
Immediate then AND with Mask:

Rotate Left Word then AND with Mask M-form

rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Rc=1)

n ← (RB)59:63
r ← ROTL32((RS)32:63, n)

m ← MASK(MB+32, ME+32)

RA ← r & m

The contents of register RS are rotated32 left the num-
ber of bits specified by (RB)59:63. A mask is generated
having 1-bits from bit MB+32 through bit ME+32 and 0-bits
elsewhere. The rotated data are ANDed with the gener-
ated mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Rotate Left Word Immediate then Mask Insert
M-form

rlwimi RA,RS,SH,MB,ME (Rc=0)
rlwimi. RA,RS,SH,MB,ME (Rc=1)

n ← SH

r ← ROTL32((RS)32:63, n)

m ← MASK(MB+32, ME+32)

RA ← r&m | (RA) & ¬m

The contents of register RS are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB+32 through
bit ME+32 and 0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended mnemonic: Equivalent to:
extlwi Rx,Ry,n,b rlwinm Rx,Ry,b,0,n-1
srwi Rx,Ry,n rlwinm Rx,Ry,32-n,n,31
clrrwi Rx,Ry,n rlwinm Rx,Ry,0,0,31-n

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into the
low-order 32 bits of register RA (clearing the remain-
ing 32-n bits of the low-order 32 bits of RA), by set-
ting SH=b+n, MB=32-n, and ME=31. It can be used to
extract an n-bit field that starts at bit position b in
RSL, left-justified into the low-order 32 bits of regis-
ter RA (clearing the remaining 32-n bits of the
low-order 32 bits of RA), by setting SH=b, MB = 0, and
ME=n-1. It can be used to rotate the contents of the
low-order 32 bits of a register left (right) by n bits,
by setting SH=n (32-n), MB=0, and ME=31. It can be
used to shift the contents of the low-order 32 bits of
a register right by n bits, by setting SH=32-n, MB=n,
and ME=31. It can be used to clear the high-order b
bits of the low-order 32 bits of the contents of a reg-
ister and then shift the result left by n bits, by setting
SH=n, MB=b-n, and ME=31-n. It can be used to clear
the low-order n bits of the low-order 32 bits of a
register, by setting SH=0, MB=0, and ME=31-n.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for all of these
uses; see Appendix C, “Assembler Extended Mne-
monics” on page 1011.

23 RS RA RB MB ME Rc
0 6 11 16 21 26 31

Programming Note

Extended mnemonic: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-justified
into the low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of RA),
by setting RB59:63=b+n, MB=32-n, and ME=31. It can be
used to extract an n-bit field that starts at variable
bit position b in RSL, left-justified into the low-order
32 bits of register RA (clearing the remaining 32-n
bits of the low-order 32 bits of RA), by setting
RB59:63=b, MB = 0, and ME=n-1. It can be used to
rotate the contents of the low-order 32 bits of a reg-
ister left (right) by variable n bits, by setting
RB59:63=n (32-n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.

20 RS RA SH MB ME Rc
0 6 11 16 21 26 31

Extended mnemonic: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-b,b,b+n-1

Programming Note
Power ISA™ I108

Version 3.1

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from 0 through 31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting SH=32-b,
MB=b, and ME=(b+n)-1. It can be used to insert an
n-bit field that is right-justified in the low-order 32
bits of register RS, into RAL starting at bit position b,
by setting SH=32-(b+n), MB=b, and ME=(b+n)-1.

Extended mnemonics are provided for both of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.

Programming Note
Chapter 3. Fixed-Point Facility 109

Version 3.1
3.3.14.1.1 64-bit Fixed-Point Rotate Instructions

Rotate Left Doubleword Immediate then Clear
Left MD-form

rldicl RA,RS,SH,MB (Rc=0)
rldicl. RA,RS,SH,MB (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64((RS), n)

b ← mb5 || mb0:4
m ← MASK(b, 63)

RA ← r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63 and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left:

Rotate Left Doubleword Immediate then Clear
Right MD-form

rldicr RA,RS,SH,ME (Rc=0)
rldicr. RA,RS,SH,ME (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64((RS), n)

e ← me5 || me0:4
m ← MASK(0, e)

RA ← r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit 0 through bit
ME and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right:

30 RS RA sh mb 0 sh Rc
0 6 11 16 21 27 30 31

Extended mnemonic: Equivalent to:
extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n rldicl Rx,Ry,64-n,n
clrldi Rx,Ry,n rldicl Rx,Ry,0,n

rldicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into reg-
ister RA (clearing the remaining 64-n bits of RA), by
setting SH=b+n and MB=64-n. It can be used to rotate
the contents of a register left (right) by n bits, by
setting SH=n (64-n) and MB=0. It can be used to shift
the contents of a register right by n bits, by setting
SH=64-n and MB=n. It can be used to clear the
high-order n bits of a register, by setting SH=0 and
MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix C, “Assembler Extended Mne-
monics” on page 1011.

Programming Note

30 RS RA sh me 1 sh Rc
0 6 11 16 21 27 30 31

Extended mnemonic: Equivalent to:
extldi Rx,Ry,n,b rldicr Rx,Ry,b,n-1
sldi Rx,Ry,n rldicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63-n

rldicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified into
register RA (clearing the remaining 64-n bits of RA),
by setting SH=b and ME=n-1. It can be used to rotate
the contents of a register left (right) by n bits, by
setting SH=n (64-n) and ME=63. It can be used to shift
the contents of a register left by n bits, by setting
SH=n and ME=63-n. It can be used to clear the
low-order n bits of a register, by setting SH=0 and
ME=63-n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix C,
“Assembler Extended Mnemonics” on page 1011.

Programming Note
Power ISA™ I110

Version 3.1
Rotate Left Doubleword Immediate then Clear
MD-form

rldic RA,RS,SH,MB (Rc=0)
rldic. RA,RS,SH,MB (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64((RS), n)

b ← mb5 || mb0:4
m ← MASK(b, ¬n)

RA ← r & m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

Rotate Left Doubleword then Clear Left
MDS-form

rldcl RA,RS,RB,MB (Rc=0)
rldcl. RA,RS,RB,MB (Rc=1)

n ← (RB)58:63
r ← ROTL64((RS), n)

b ← mb5 || mb0:4
m ← MASK(b, 63)

RA ← r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63. A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Left:

30 RS RA sh mb 2 sh Rc
0 6 11 16 21 27 30 31

Extended mnemonic: Equivalent to:
clrlsldi Rx,Ry,b,n rldic Rx,Ry,n,b-n

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b-n. It can be
used to clear the high-order n bits of a register, by
setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl); see
Appendix C, “Assembler Extended Mnemonics” on
page 1011.

Programming Note

30 RS RA RB mb 8 Rc
0 6 11 16 21 27 31

Extended mnemonic: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

rldcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justified
into register RA (clearing the remaining 64-n bits of
RA), by setting RB58:63=b+n and MB=64-n. It can be
used to rotate the contents of a register left (right)
by variable n bits, by setting RB58:63=n (64-n) and
MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.

Programming Note
Chapter 3. Fixed-Point Facility 111

Version 3.1
Rotate Left Doubleword then Clear Right
MDS-form

rldcr RA,RS,RB,ME (Rc=0)
rldcr. RA,RS,RB,ME (Rc=1)

n ← (RB)58:63
r ← ROTL64((RS), n)

e ← me5 || me0:4
m ← MASK(0, e)

RA ← r & m

The contents of register RS are rotated64 left the num-
ber of bits specified by (RB)58:63. A mask is generated
having 1-bits from bit 0 through bit ME and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CR0 (if Rc=1)

Rotate Left Doubleword Immediate then Mask
Insert MD-form

rldimi RA,RS,SH,MB (Rc=0)
rldimi. RA,RS,SH,MB (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64((RS), n)

b ← mb5 || mb0:4
m ← MASK(b, ¬n)

RA ← r&m | (RA) & ¬m

The contents of register RS are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and 0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CR0 (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert:

30 RS RA RB me 9 Rc
0 6 11 16 21 27 31

rldcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits of
RA), by setting RB58:63=b and ME=n-1. It can be used
to rotate the contents of a register left (right) by
variable n bits, by setting RB58:63=n (64-n) and
ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl); see
Appendix C, “Assembler Extended Mnemonics” on
page 1011.

Programming Note

30 RS RA sh mb 3 sh Rc
0 6 11 16 21 27 30 31

Extended mnemonic: Equivalent to:
insrdi Rx,Ry,n,b rldimi Rx,Ry,64-(b+n),b

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA starting
at bit position b, by setting SH=64-(b+n) and MB=b.

An extended mnemonic is provided for this use;
see Appendix C, “Assembler Extended Mnemon-
ics” on page 1011.

Programming Note
Power ISA™ I112

Version 3.1
3.3.14.2 Fixed-Point Shift Instructions
The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts
Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are

shown as examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

Shift Left Word X-form

slw RA,RS,RB (Rc=0)
slw. RA,RS,RB (Rc=1)

n ← (RB)59:63
r ← ROTL32((RS)32:63, n)

if (RB)58 = 0 then

 m ← MASK(32, 63-n)

else m ← 640

RA ← r & m

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)58:63.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RA32:63. RA0:31 are set to zero. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Word X-form

srw RA,RS,RB (Rc=0)
srw. RA,RS,RB (Rc=1)

n ← (RB)59:63
r ← ROTL32((RS)32:63, 64-n)

if (RB)58 = 0 then

 m ← MASK(n+32, 63)

else m ← 640

RA ← r & m

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RA32:63. RA0:31 are set to zero. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2n. The
setting of the CA and CA32 bits by the Shift Right
Algebraic instructions is independent of mode.

Programming Note

31 RS RA RB 24 Rc
0 6 11 16 21 31

31 RS RA RB 536 Rc
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 113

Version 3.1
Shift Right Algebraic Word Immediate X-form

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1)

n ← SH

r ← ROTL32((RS)32:63, 64-n)

m ← MASK(n+32, 63)

s ← (RS)32
RA ← r&m | (64s) & ¬m

carry ← s & ((r & ¬m)32:63 ≠ 0)
CA ← carry

CA32 ← carry

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Bit 32 of RS is replicated to fill the vacated positions
on the left. The 32-bit result is placed into RA32:63. Bit 32
of RS is replicated to fill RA0:31. CA and CA32 are set to 1 if
the low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA and CA32 are set to 0. A shift amount of zero causes
RA to receive EXTS((RS)32:63), and CA and CA32 to be set
to 0.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)

Shift Right Algebraic Word X-form

sraw RA,RS,RB (Rc=0)
sraw. RA,RS,RB (Rc=1)

n ← (RB)59:63
r ← ROTL32((RS)32:63, 64-n)

if (RB)58 = 0 then

 m ← MASK(n+32, 63)

else m ← 640

s ← (RS)32
RA ← r&m | (64s) & ¬m

carry ← s & ((r & ¬m)32:63 ≠ 0)
CA ← carry

CA32 ← carry

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)58:63.
Bits shifted out of position 63 are lost. Bit 32 of RS is
replicated to fill the vacated positions on the left. The
32-bit result is placed into RA32:63. Bit 32 of RS is repli-
cated to fill RA0:31. CA and CA32 are set to 1 if the
low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA and CA32 are set to 0. A shift amount of zero causes
RA to receive EXTS((RS)32:63), and CA and CA32 to be set
to 0. Shift amounts from 32 to 63 give a result of 64
sign bits, and cause CA and CA32 to receive the sign bit
of (RS)32:63.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)

31 RS RA SH 824 Rc
0 6 11 16 21 31

31 RS RA RB 792 Rc
0 6 11 16 21 31
Power ISA™ I114

Version 3.1
3.3.14.2.1 64-bit Fixed-Point Shift Instructions

Shift Left Doubleword X-form

sld RA,RS,RB (Rc=0)
sld. RA,RS,RB (Rc=1)

n ← (RB)58:63
r ← ROTL64((RS), n)

if (RB)57 = 0 then

 m ← MASK(0, 63-n)

else m ← 640

RA ← r & m

The contents of register RS are shifted left the number
of bits specified by (RB)57:63. Bits shifted out of position
0 are lost. Zeros are supplied to the vacated positions
on the right. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Algebraic Doubleword Immediate
XS-form

sradi RA,RS,SH (Rc=0)
sradi. RA,RS,SH (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64((RS), 64-n)

m ← MASK(n, 63)

s ← (RS)0
RA ← r&m | (64s) & ¬m

carry ← s & ((r & ¬m) ≠ 0)
CA ← carry

CA32 ← carry

The contents of register RS are shifted right SH bits. Bits
shifted out of position 63 are lost. Bit 0 of RS is repli-
cated to fill the vacated positions on the left. The result
is placed into register RA. CA and CA32 are set to 1 if (RS)
is negative and any 1-bits are shifted out of position 63;
otherwise CA and CA32 are set to 0. A shift amount of
zero causes RA to be set equal to (RS), and CA and CA32
to be set to 0.

Special Registers Altered:
CA CA32
CR0 (if Rc=1)

Shift Right Doubleword X-form

srd RA,RS,RB (Rc=0)
srd. RA,RS,RB (Rc=1)

n ← (RB)58:63
r ← ROTL64((RS), 64-n)

if (RB)57 = 0 then

 m ← MASK(n, 63)

else m ← 640

RA ← r & m

The contents of register RS are shifted right the number
of bits specified by (RB)57:63. Bits shifted out of position
63 are lost. Zeros are supplied to the vacated positions
on the left. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CR0 (if Rc=1)

Shift Right Algebraic Doubleword X-form

srad RA,RS,RB (Rc=0)
srad. RA,RS,RB (Rc=1)

n ← (RB)58:63
r ← ROTL64((RS), 64-n)

if (RB)57 = 0 then

 m ← MASK(n, 63)

else m ← 640

s ← (RS)0
RA ← r&m | (64s) & ¬m

carry ← s & ((r & ¬m) ≠ 0)
CA ← carry

CA32 ← carry

The contents of register RS are shifted right the number
of bits specified by (RB)57:63. Bits shifted out of position
63 are lost. Bit 0 of RS is replicated to fill the vacated
positions on the left. The result is placed into register
RA. CA and CA32 are set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA and
CA32 are set to 0. A shift amount of zero causes RA to be
set equal to (RS), and CA and CA32 to be set to 0. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA and CA32 to receive the sign bit of
(RS).

Special Registers Altered:
CA CA32
CR0 (if Rc=1)

31 RS RA RB 27 Rc
0 6 11 16 21 31

31 RS RA sh 413 sh Rc
0 6 11 16 21 30 31

31 RS RA RB 539 Rc
0 6 11 16 21 31

31 RS RA RB 794 Rc
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 115

Version 3.1
Extend Sign Word and Shift Left Immediate
XS-form

extswsli RA,RS,SH (Rc=0)
extswsli. RA,RS,SH (Rc=1)

n ← sh5 || sh0:4
r ← ROTL64(EXTS64(RS32:63), n)

m ← MASK(0, 63-n)

RA ← r & m

The contents of the low order 32 bits of RS are
sign-extended to 64 bits and then shifted left SH bits.
Bits shifted out of bit 0 are lost. Zeros are supplied to
vacated bits on the right. The result is placed in
register RA.

Special Registers Altered:
CR0 (if Rc=1)

31 RS RA sh 445 sh Rc
0 6 11 16 21 30 31
Power ISA™ I116

Version 3.1
3.3.15 Binary Coded Decimal (BCD) Assist Instructions
The Binary Coded Decimal Assist instructions operate
on Binary Coded Decimal operands (cbcdtd and

addg6s) and Decimal Floating-Point operands (cdt-
bcd) See Chapter 5. for additional information.

Convert Declets To Binary Coded Decimal
X-form

cdtbcd RA, RS

do i = 0 to 1

 n ← i x 32

RAn+0:n+7 ← 0

RAn+8:n+19 ← DPD_TO_BCD((RS)n+12:n+21)

RAn+20:n+31 ← DPD_TO_BCD((RS)n+22:n+31)

The low-order 20 bits of each word of register RS con-
tain two declets which are converted to six, 4-bit BCD
fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in RA. The
high-order 8 bits in each word of RA are set to 0.

Special Registers Altered:
None

Convert Binary Coded Decimal To Declets
X-form

cbcdtd RA, RS

do i = 0 to 1

 n ← i x 32

RAn+0:n+11 ← 0

RAn+12:n+21 ← BCD_TO_DPD((RS)n+8:n+19)

RAn+22:n+31 ← BCD_TO_DPD((RS)n+20:n+31)

The low-order 24 bits of each word of register RS con-
tain six, 4-bit BCD fields which are converted to two
declets; each set of two declets is placed into the
low-order 20 bits of the corresponding word in RA. The
high-order 12 bits in each word of RA are set to 0.

If a 4-bit BCD field has a value greater than 9 the
results are undefined.

Special Registers Altered:
None

31 RS RA /// 282 /
0 6 11 16 21 31

31 RS RA /// 314 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 117

Version 3.1
Add and Generate Sixes XO-form

addg6s RT,RA,RB

do i = 0 to 15

 dci ← carry_out(RA4xi:63 + RB4xi:63)

c ← 4(dc0) ||
4(dc1) || ... ||

4(dc15)

RT ← (¬c) & 0x6666_6666_6666_6666

The contents of register RA are added to the contents of
register RB. Sixteen carry bits are produced, one for
each carry out of decimal position n (bit position 4xn).

A doubleword is composed from the 16 carry bits, and
placed into RT. The doubleword consists of a decimal
six (0b0110) in every decimal digit position for which the
corresponding carry bit is 0, and a zero (0b0000) in
every position for which the corresponding carry bit is
1.

Special Registers Altered:
None

31 RT RA RB / 74 /
0 6 11 16 21 22 31

addg6s can be used to add or subtract two BCD
operands. In these examples it is assumed that r0
contains 0x666...666. (BCD data formats are
described in Section 5.3.)

Addition of the unsigned BCD operand in register
RA to the unsigned BCD operand in register RB can
be accomplished as follows.

add r1,RA,r0

add r2,r1,RB

addg6s RT,r1,RB

subf RT,RT,r2 # RT = RA +BCD RB

Subtraction of the unsigned BCD operand in regis-
ter RA from the unsigned BCD operand in register
RB can be accomplished as follows. (In this exam-
ple it is assumed that RB is not register 0.)

addi r1,RB,1

nor r2,RA,RA # one's complement of RA

add r3,r1,r2

addg6s RT,r1,r2

subf RT,RT,r3 # RT = RB -BCD RA

Additional instructions are needed to handle signed
BCD operands, and BCD operands that occupy
more than one register (e.g., unsigned BCD oper-
ands that have more than 16 decimal digits).

Programming Note
Power ISA™ I118

Version 3.1
3.3.16 Byte-Reverse Instructions
Byte-Reverse Halfword X-form

brh RA,RS

RA  (RS)8:15 || (RS)0:7 ||
RA  (RS)24:31 || (RS)16:23 ||
RA  (RS)40:47 || (RS)32:39 ||
RA  (RS)56:63 || (RS)48:55

The contents of bits 0:15 of register RS are placed into
bits 0:15 of register RA in byte-reversed order.

The contents of bits 16:31 of register RS are placed into
bits 16:31 of register RA in byte-reversed order.

The contents of bits 32:47 of register RS are placed into
bits 32:47 of register RA in byte-reversed order.

The contents of bits 48:63 of register RS are placed into
bits 48:63 of register RA in byte-reversed order.

Special Registers Altered:
None

Byte-Reverse Word X-form

brw RA,RS

RA  (RS)24:31 || (RS)16:23 ||
RA  (RS)8:15 || (RS)0:7 ||
RA  (RS)56:63 || (RS)48:55 ||
RA  (RS)40:47 || (RS)32:39

The contents of bits 0:31 of register RS are placed into
bits 0:31 of register RA in byte-reversed order.

The contents of bits 32:63 of register RS are placed into
bits 32:63 of register RA in byte-reversed order.

Special Registers Altered:
None

Byte-Reverse Doubleword X-form

brd RA,RS

RA  (RS)56:63 || (RS)48:55 ||
RA  (RS)40:47 || (RS)32:39 ||
RA  (RS)24:31 || (RS)16:23 ||
RA  (RS)8:15 || (RS)0:7

The contents of register RS are placed into register RA in
byte-reversed order.

Special Registers Altered:
None

31 RS RA /// 219 /
0 6 11 16 21 31

31 RS RA /// 155 /
0 6 11 16 21 31

31 RS RA /// 187 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 119

Version 3.1
3.3.17 Move To/From Vector-Scalar Register Instructions
Move From VSR Doubleword X-form

mfvsrd RA,XS

if SX=0 & MSR.FP=0 then FP_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] ← VSR[32×SX+S].dword[0]

Let XS be the value 32×SX + S.

The contents of doubleword element 0 of VSR[XS] are
placed into GPR[RA].

For SX=0, mfvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrd is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move From VSR Double-
word:

Special Registers Altered
None

Move From VSR Lower Doubleword X-form

mfvsrld RA,XS

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] ← VSR[32×SX+S].dword[1]

Let XS be the value 32×SX + S.

The contents of doubleword 1 of VSR[XS] are placed
into GPR[RA].

For SX=0, mfvsrld is treated as a VSX instruction in
terms of resource availability.

For SX=1, mfvsrld is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

31 S RA /// 51 SX
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mffprd RA,FRS mfvsrd RA,FRS
mfvrd RA,VRS mfvsrd RA,VRS+32

Data Layout for mfvsrd
src

VSR[XS].dword[0] unused

tgt

GPR[RA]

0 64 127

31 S RA /// 307 SX
0 6 11 16 21 31

Data Layout for mfvsrld
src

unused VSR[XS].dword[1]

tgt

GPR[RA]

0 64 127
Power ISA™ I120

Version 3.1
Move From VSR Word and Zero X-form

mfvsrwz RA,XS

if SX=0 & MSR.FP=0 then FP_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] ← EXTZ64(VSR[32×SX+S].word[1])

Let XS be the value 32×SX + S.

The contents of word element 1 of VSR[XS] are placed
into bits 32:63 of GPR[RA]. The contents of bits 0:31 of
GPR[RA] are set to 0.

For SX=0, mfvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrwz is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move To VSR Word and
Zero:

Special Registers Altered
None

Move To VSR Doubleword X-form

mtvsrd XT,RA

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32×TX+T].dword[0] ← GPR[RA]

VSR[32×TX+T].dword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value 32×TX + T.

The contents of GPR[RA] are placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrd is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move To VSR Doubleword:

Special Registers Altered
None

31 S RA /// 115 SX
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mffprwz RA,FRS mfvsrwz RA,FRS
mfvrwz RA,VRS mfvsrwz RA,VRS+32

Data Layout for mfvsrwz
src

unused VSR[XS].word[0] unused

tgt

GPR[RA]

0 32 64 127

31 T RA /// 179 TX
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mtfprd FRT,RA mtvsrd FRT,RA
mtvrd VRT,RA mtvsrd VRT+32,RA

Data Layout for mtvsrd
src

GPR[RA]

tgt

VSR[XT].dword[0] undefined
0 64 127
Chapter 3. Fixed-Point Facility 121

Version 3.1
Move To VSR Word Algebraic X-form

mtvsrwa XT,RA

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32×TX+T].dword[0] ← EXTS64(GPR[RA].bit[32:63])

VSR[32×TX+T].dword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value 32×TX + T.

The two’s-complement integer in bits 32:63 of GPR[RA]
is sign-extended to 64 bits and placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwa is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwa is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move To VSR Word Alge-
braic:

Special Registers Altered
None

Move To VSR Word and Zero X-form

mtvsrwz XT,RA

if TX=0 & MSR.FP=0 then FP_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32×TX+T].dword[0] ← EXTZ64(GPR[RA].word[1])

VSR[32×TX+T].dword[1] ← 0xUUUU_UUUU_UUUU_UUUU

Let XT be the value 32×TX + T.

The contents of bits 32:63 of GPR[RA] are placed into
word element 1 of VSR[XT]. The contents of word
element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwz is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move To VSR Word and
Zero:

Special Registers Altered
None

31 T RA /// 211 TX
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mtfprwa FRT,RA mtvsrwa FRT,RA
mtvrwa VRT,RA mtvsrwa VRT+32,RA

Data Layout for mtvsrwa
src

undefined GPR[RA]32:63

tgt

VSR[XT].dword[0] undefined
0 32 64 127

31 T RA /// 243 TX
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
mtfprwz FRT,RA mtvsrwz FRT,RA
mtvrwz VRT,RA mtvsrwz VRT+32,RA

Data Layout for mtvsrwz
src

unused GPR[RA]32:63

tgt

0x0000_0000 VSR[XT].word[1] undefined
0 32 64 127
Power ISA™ I122

Version 3.1
Move To VSR Double Doubleword X-form

mtvsrdd XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

if RA=0 then

 VSR[32×TX+T].dword[0] ← 0x0000_0000_0000_0000

else

 VSR[32×TX+T].dword[0] ← GPR[RA]

VSR[32×TX+T].dword[1] ← GPR[RB]

Let XT be the value 32×TX + T.

The contents of GPR[RA], or the value 0 if RA=0, are
placed into doubleword 0 of VSR[XT].

The contents of GPR[RB] are placed into doubleword 1
of VSR[XT].

For TX=0, mtvsrdd is treated as a VSX instruction in
terms of resource availability.

For TX=1, mtvsrdd is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

Move To VSR Word & Splat X-form

mtvsrws XT,RA

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32×TX+T].word[0] ← GPR[RA].bit[32:63]

VSR[32×TX+T].word[1] ← GPR[RA].bit[32:63]

VSR[32×TX+T].word[2] ← GPR[RA].bit[32:63]

VSR[32×TX+T].word[3] ← GPR[RA].bit[32:63]

Let XT be the value 32×TX + T.

The contents of bits 32:63 of GPR[RA] are placed into
each word element of VSR[XT].

For TX=0, mtvsrws is treated as a VSX instruction in
terms of resource availability.

For TX=1, mtvsrws is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

31 T RA RB 435 TX
0 6 11 16 21 31

Data Layout for mtvsrdd
src.dword[0]

GPR[RA]

src.dword[1]

GPR[RB]

tgt

VSR[XT].dword[0] VSR[XT].dword[1]

0 32 64 127

31 T RA /// 403 TX
0 6 11 16 21 31

Data Layout for mtvsrws
src

unused GPR[RA]32:63

tgt

VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 3. Fixed-Point Facility 123

Version 3.1
3.3.18 Move To/From System Register Instructions
The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 24. In the preferred form, the FXM
field satisfies the following rule.
• Exactly one bit of the FXM field is set to 1.

Extended mnemonics
Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mtcrf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See Appendix C, “Assembler Extended
Mnemonics” on page 1011 for additional extended
mnemonics.

Move To Special Purpose Register XFX-form

mtspr SPR,RS

n ← spr5:9 || spr0:4
switch (n)

 case(13): see Book III

 case(808, 809, 810, 811):

 default:

 if length(SPR(n)) = 64 then

 SPR(n) ← (RS)

 else

 SPR(n) ← (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, unless the SPR field
contains 13 (denoting the AMR), the contents of register
RS are placed into the designated Special Purpose Reg-
ister. For Special Purpose Registers that are 32 bits
long, the low-order 32 bits of RS are placed into the
SPR.

The AMR (Authority Mask Register) is used for “stor-
age protection.” This use, and operation of mtspr for
the AMR, are described in Book III. If execution of this instruction is attempted specifying

an SPR number that is not shown above, one of the fol-
lowing occurs.
• If spr0 = 0, the illegal instruction error handler is

invoked.
• If spr0 = 1, the system privileged instruction error

handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above

31 RS spr 467 /
0 6 11 21 31

decimal SPR1 Register
Namespr5:9 spr0:4

1 00000 00001 XER
3 00000 00011 DSCR
8 00000 01000 LR
9 00000 01001 CTR

13 00000 01101 AMR
256 01000 00000 VRSAVE
769 11000 00001 MMCR2

770 11000 00010 MMCRA

1. Note that the order of the two 5-bit
halves of the SPR number is reversed.

2. Accesses to these registers are no-ops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”

771 11000 00011 PMC1
772 11000 00100 PMC2

773 11000 00101 PMC3

774 11000 00110 PMC4

775 11000 00111 PMC5

776 11000 01000 PMC6

779 11000 01011 MMCR0

800 11001 00000 BESCRS

801 11001 00001 BESCRSU

802 11001 00010 BESCRR

803 11001 00011 BESCRRU

804 11001 00100 EBBHR

805 11001 00101 EBBRR

806 11001 00110 BESCR

808 11001 01000 reserved2

809 11001 01001 reserved2

810 11001 01010 reserved2

811 11001 01011 reserved2

815 11001 01111 TAR2

896 11100 00000 PPR
898 11100 00010 PPR32

decimal SPR1 Register
Namespr5:9 spr0:4

1. Note that the order of the two 5-bit
halves of the SPR number is reversed.

2. Accesses to these registers are no-ops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”
Power ISA™ I124

Version 3.1
Extended Mnemonics:

Examples of extended mnemonics for Move To Special
Purpose Register:

Extended mnemonic: Equivalent to:
mtxer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx
mtppr Rx mtspr 896,Rx
mtppr32 Rx mtspr 898,Rx

The AMR is part of the “context” of the program
(see Book III). Therefore modification of the AMR
requires “synchronization” by software. For this
reason, most operating systems provide a system
library program that application programs can use
to modify the AMR.

For the mtspr and mfspr instructions, the SPR
number coded in Assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.

Programming Note

Compiler and Assembler Note
Chapter 3. Fixed-Point Facility 125

Version 3.1
Move From Special Purpose Register
XFX-form

mfspr RT,SPR

n ← spr5:9 || spr0:4
switch (n)

 case(808, 809, 810, 811):

 default:

 if length(SPR(n)) = 64 then

 RT ← SPR(n)

 else

 RT ← 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, the contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RT receive the con-
tents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

If execution of this instruction is attempted specifying
an SPR number that is not shown above, one of the fol-
lowing occurs.
• If spr0 = 0, the illegal instruction error handler is

invoked.
• If spr0 = 1, the system privileged instruction error

handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

31 RT spr 339 /
0 6 11 21 31

decimal SPR1

spr5:9 spr0:4
Register
Name

1 00000 00001 XER
3 00000 00011 DSCR
8 00000 01000 LR
9 00000 01001 CTR

13 00000 01101 AMR
136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
268 01000 01100 TB2

269 01000 01101 TBU2

768 11000 00000 SIER
769 11000 00001 MMCR2
770 11000 00010 MMCRA
771 11000 00011 PMC1
772 11000 00100 PMC2
773 11000 00101 PMC3
774 11000 00110 PMC4
775 11000 00111 PMC5
776 11000 01000 PMC6
779 11000 01011 MMCR0
780 11000 01100 SIAR
781 11000 01101 SDAR
782 11000 01110 MMCR1
800 11001 00000 BESCRS

1. Note that the order of the two 5-bit halves
of the SPR number is reversed.

2. See Chapter 5 of Book II
3. Accesses to these SPRs are no-ops; see

Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”.

801 11001 00001 BESCRSU
802 11001 00010 BESCRR
803 11001 00011 BESCRRU
804 11001 00100 EBBHR
805 11001 00101 EBBRR
806 11001 00110 BESCR
808 11001 01000 reserved3

809 11001 01001 reserved3

810 11001 01010 reserved3

811 11001 01011 reserved3

815 11001 01111 TAR
896 11100 00000 PPR
898 11100 00010 PPR32

Extended mnemonic: Equivalent to:
mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

See the Notes that appear with mtspr.

decimal SPR1

spr5:9 spr0:4
Register
Name

1. Note that the order of the two 5-bit halves
of the SPR number is reversed.

2. See Chapter 5 of Book II
3. Accesses to these SPRs are no-ops; see

Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”.

Note
Power ISA™ I126

Version 3.1
Move to CR from XER Extended X-form

mcrxrx BF

CR4×BF+32:4×BF+35 ← XEROV OV32 CA CA32

The contents of the OV, OV32, CA, and CA32 are copied to
Condition Register field BF.

Special Registers Altered:
CR field BF

Move To One Condition Register Field
XFX-form

mtocrf FXM,RS

count ← 0

do i = 0 to 7

 if FXMi = 1 then

 n ← i

 count ← count + 1

if count = 1 then

 CR4×n+32:4×n+35 ← (RS)4×n+32:4×n+35
else

 CR ← undefined

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of bits 4×n+32:4×n+35 of register RS are placed into CR
field n (CR bits 4×n+32:4×n+35). Otherwise, the contents
of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

Move To Condition Register Fields XFX-form

mtcrf FXM,RS

mask ← 4(FXM0) ||
4(FXM1) || ...

4(FXM7)

CR ← ((RS)32:63 & mask) | (CR & ¬mask)

The contents of bits 32:63 of register RS are placed into
the Condition Register under control of the field mask
specified by FXM. The field mask identifies the 4-bit
fields affected. Let i be an integer in the range 0-7. If
FXMi=1 then CR field i (CR bits 4×i+32:4×i+35) is set to
the contents of the corresponding field of the low-order
32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

31 BF // /// /// 576 /
0 6 9 11 16 21 31

31 RS 1 FXM / 144 /
0 6 11 12 20 21 31

31 RS 0 FXM / 144 /
0 6 11 12 20 21 31

Extended mnemonic: Equivalent to:
mtcr Rx mtcrf 0xFF,Rx
Chapter 3. Fixed-Point Facility 127

Version 3.1
Move From One Condition Register Field
XFX-form

mfocrf RT,FXM

RT ← undefined

count ← 0

do i = 0 to 7

 if FXMi = 1 then

 n ← i

 count ← count + 1

if count = 1 then

 RT ← 640

 RT4×n+32:4×n+35 ← CR4×n+32:4×n+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 ≤ n ≤ 7). The contents
of CR field n (CR bits 4*n+32:4*n+35) are placed into
bits 4×n+32:4×n+35 of register RT, and the contents of
the remaining bits of register RT are undefined.
Otherwise, the contents of register RT are undefined.

If exactly one bit of the FXM field is set to 1, the
contents of the remaining bits of register RT are set to
0's instead of being undefined as specified above.

Special Registers Altered:
None

Move From Condition Register XFX-form

mfcr RT

 RT ← 320 || CR

The contents of the Condition Register are placed into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

31 RT 1 FXM / 19 /
0 6 11 12 20 21 31

Warning: mfocrf is not backward compatible with
processors that comply with versions of the
architecture that precede Version 2.08. Such
processors may not set to 0 the bits of register RT
that do not correspond to the specified CR field. If
programs that depend on this clearing behavior
are run on such processors, the programs may get
incorrect results.

The POWER4, POWER5, POWER7 and
POWER8 processors set to 0's all bytes of register
RT other than the byte that contains the specified
CR field. In the byte that contains the CR field, bits
other than those containing the CR field may or
may not be set to 0s.

Programming Note

31 RT 0 /// / 19 /
0 6 11 12 20 21 31
Power ISA™ I128

Version 3.1
Set Boolean X-form

setb RT,BFA

if CR4×BFA+32=1 then

 RT ← 0xFFFF_FFFF_FFFF_FFFF

else if CR4×BFA+33=1 then

 RT ← 0x0000_0000_0000_0001

else

 RT ← 0x0000_0000_0000_0000

If the contents of bit 0 of CR field BFA are equal to 0b1,
the contents of register RT are set to
0xFFFF_FFFF_FFFF_FFFF.

Otherwise, if the contents of bit 1 of CR field BFA are
equal to 0b1, the contents of register RT are set to
0x0000_0000_0000_0001.

Otherwise, the contents of register RT are set to
0x0000_0000_0000_0000.

Special Registers Altered:
None

Set Boolean Condition X-form

setbc RT,BI

RT = (CRBI=1) ? 1 : 0

If bit BI of the CR contains a 1, register RT is set to 1.
Otherwise, register RT is set to 0.

Special Registers Altered:
None

Set Boolean Condition Reverse X-form

setbcr RT,BI

RT = (CRBI=1) ? 0 : 1

If bit BI of the CR contains a 1, register RT is set to 0.
Otherwise, register RT is set to 1.

Special Registers Altered:
None

Set Negative Boolean Condition X-form

setnbc RT,BI

RT = (CRBI=1) ? -1 : 0

If bit BI of the CR contains a 1, register RT is set to -1.
Otherwise, register RT is set to 0.

Special Registers Altered:
None

Set Negative Boolean Condition Reverse
X-form

setnbcr RT,BI

RT = (CRBI=1) ? 0 : -1

If bit BI of the CR contains a 1, register RT is set to 0.
Otherwise, register RT is set to -1.

Special Registers Altered:
None

31 RT BFA // /// 128 /
0 6 11 14 16 21 31

31 RT BI /// 384 /
0 6 11 16 21 31

31 RT BI /// 416 /
0 6 11 16 21 31

31 RT BI /// 448 /
0 6 11 16 21 31

31 RT BI /// 480 /
0 6 11 16 21 31
Chapter 3. Fixed-Point Facility 129

Version 3.1
3.3.19 Prefixed No-Operation Instruction
Prefixed Nop MRR:*-form

pnop
Prefix:

Suffix::

No operation is performed.

Special Registers Altered:
None

1 3 0 /// 0
0 6 8 12 14 31

any value1

1. Value must not correspond to a Branch instruction, an rfebb
instruction, a context synchronizing instruction other than isync, or
a "Service Processor Attention" instruction

0 31

The pnop instruction behaves as a b $+8 instruc-
tion regardless of its suffix. However, it does not
cause any side effects such as modification of the
Come From Address Register. (see Section 9.2 of
Book III).

If the value in the suffix of a pnop instruction corre-
sponds to a Branch instruction, an rfebb instruc-
tion, a context synchronizing instruction other than
isync, or a "Service Processor Attention" instruc-
tion, the instruction form is invalid. The behavior
associated with invalid form instructions is
described in Section 1.8.2 on page 24. rfebb and
isync are defined in Book II: Power ISA Virtual
Environment Architecture. Context synchroniza-
tion and other context synchronizing instructions
are defined in Book III: Power ISA Operating Envi-
ronment Architecture. Service Processor Attention
is a reserved instruction; see Appendix C,
“Reserved Instructions” on page 1347.)

This restriction eases hardware implementation
complexity.

Because the list of word instructions that must not
be used as the suffix of pnop may change in the
future, hardware should treat these invalid instruc-
tion forms of pnop either as a no-op or as an illegal
instruction. This treatment enhances software com-
patibility. The choice may vary according to which
of the word instructions is used as the suffix.

Programming Note

Programming Note

Engineering Note
Power ISA™ I130

Version 3.1
Chapter 4. Floating-Point Facility

4.1 Floating-Point Facility Over-
view
This chapter describes the registers and instructions
that make up the Floating-Point Facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, “IEEE Standard for Binary Floating-Point
Arithmetic” (hereafter referred to as “the IEEE stan-
dard”). That standard defines certain required “opera-
tions” (addition, subtraction, etc.). Herein, the term
“floating-point operation” is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency.

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.

• computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.6
through 4.6.8.

• non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-

itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.5, and 4.6.10.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to the Float-
ing-Point Facility: the Floating-Point Exception. Float-
ing-point exceptions are signaled with bits set in the
Floating-Point Status and Control Register (FPSCR).
They can cause the system floating-point enabled
exception error handler to be invoked, precisely or
imprecisely, if the proper control bits are set.

Floating-Point Exceptions
The following floating-point exceptions are detected by
the processor:

• Invalid Operation Exception (VX)
SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
Chapter 4. Floating-Point Facility 131

Version 3.1
Invalid Integer Convert (VXCVI)
• Zero Divide Exception (ZX)
• Overflow Exception (OX)
• Underflow Exception (UX)
• Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 132 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 140 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Facility Reg-
isters

4.2.1 Floating-Point Registers
Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 45 on page 132.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-
ister.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double
format from the FPRs to the same value in float-
ing-point single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condition
Register explicitly. Some of these instructions copy
data from an FPR to the Floating-Point Status and Con-
trol Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values
must be representable in single format; if they are not,

the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

Figure 45. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register
The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

Figure 46. Floating-Point Status and Control
 Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:31 Reserved

29:31 Decimal Rounding Mode (DRN)
See Section 5.2.1, “DFP Usage of Float-
ing-Point Registers” on page 188.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that instruc-
tion causes any of the floating-point exception
bits in the FPSCR to change from 0 to 1.
mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
can alter FX explicitly.

FPR 0
FPR 1

. . .

. . .
FPR 30
FPR 31

0 63

FPSCR
0 63
Power ISA™ I132

Version 3.1

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FEX explicitly.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter VX explicitly.

35 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 143.

36 Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 144.

37 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 142.

38 Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 144.

XX is a sticky version of FI (see below). Thus
the following rules completely describe how XX
is set by a given instruction.

• If the instruction affects FI, the new
value of XX is obtained by ORing the
old value of XX with the new value of
FI.

• If the instruction does not affect FI, the
value of XX is unchanged.

39 Floating-Point Invalid Operation Excep-
tion (SNaN) (VXSNAN)
See Section 4.4.1, “Invalid Operation Excep-
tion” on page 142.

40 Floating-Point Invalid Operation Excep-
tion (∞ - ∞) (VXISI)
See Section 4.4.1.

41 Floating-Point Invalid Operation Excep-
tion (∞ ÷ ∞) (VXIDI)
See Section 4.4.1.

42 Floating-Point Invalid Operation Excep-
tion (0 ÷0) (VXZDZ)
See Section 4.4.1.

43 Floating-Point Invalid Operation Excep-
tion (∞ ×0) (VXIMZ)
See Section 4.4.1.

44 Floating-Point Invalid Operation Excep-
tion (Invalid Compare) (VXVC)
See Section 4.4.1.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction
during rounding. See Section 4.3.6, “Round-
ing” on page 139. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.

47:51 Floating-Point Result Flags (FPRF)
Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the
value placed into FPRF is undefined. Additional
details are given below.

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
ger instructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 47 on page 135.

FX is defined not to be altered implicitly by
mtfsfi and mtfsf because permitting
these instructions to alter FX implicitly
could cause a paradox. An example is an
mtfsfi or mtfsf instruction that supplies 0
for FX and 1 for OX, and is executed when
OX=0. See also the Programming Notes
with the definition of these two instruc-
tions.

Programming Note

A single-precision operation that produces
a denormalized result sets FPRF to indicate
a denormalized number. When possible,
single-precision denormalized numbers
are represented in normalized double for-
mat in the target register.

Programming Note
Chapter 4. Floating-Point Facility 133

Version 3.1
48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC bits
to 0. Arithmetic, rounding, and Convert From
Integer instructions may set the FPCC bits with
the C bit, to indicate the class of the result as
shown in Figure 47 on page 135. Note that in
this case the high-order three bits of the FPCC
retain their relational significance indicating
that the value is less than, greater than, or
equal to zero.

48 Floating-Point Less Than or Negative (FL or
<)

49 Floating-Point Greater Than or Positive (FG
or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Excep-
tion (Software-Defined Condition)
(VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See Section 4.4.1.

54 Floating-Point Invalid Operation Excep-
tion (Invalid Square Root) (VXSQRT)
See Section 4.4.1.

 55 Floating-Point Invalid Operation Excep-
tion (Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

56 Floating-Point Invalid Operation Excep-
tion Enable (VE)
See Section 4.4.1.

57 Floating-Point Overflow Exception Enable
(OE)
See Section 4.4.3, “Overflow Exception” on
page 143.

58 Floating-Point Underflow Exception
Enable (UE)
See Section 4.4.4, “Underflow Exception” on
page 144.

59 Floating-Point Zero Divide Exception
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 142.

60 Floating-Point Inexact Exception Enable
(XE)
See Section 4.4.5, “Inexact Exception” on
page 144.

61 Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not
apply.

If floating-point non-IEEE mode is imple-
mented, this bit has the following meaning.
0 The processor is not in floating-point

non-IEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRNI=1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

62:63 Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 139.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

FPSCRVXSOFT can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Programming Note

When the processor is in floating-point
non-IEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode. For example, in
non-IEEE mode an implementation may
return 0 instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

Programming Note
Power ISA™ I134

Version 3.1
Figure 47. Floating-Point Result Flags

4.3 Floating-Point Data

4.3.1 Data Format
This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields dif-
fer between these two formats. The structure of the sin-
gle and double formats is shown below.

Figure 48. Floating-point single format

Figure 49. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the signifi-
cand. The significand consists of a leading implied bit
concatenated on the right with the FRACTION. This lead-
ing implied bit is 1 for normalized numbers and 0 for
denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-

mats can be specified by the parameters listed in
Figure 50.

Figure 50. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Facility support the floating-point double for-
mat only.

4.3.2 Value Representation
This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-
ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 51.

Figure 51. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to con-
vey diagnostic information such as the representation
of uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.

Result
Flags Result Value Class

C < > = ?
 1 0 0 0 1 Quiet NaN
 0 1 0 0 1 - Infinity
 0 1 0 0 0 - Normalized Number
 1 1 0 0 0 - Denormalized Number
 1 0 0 1 0 - Zero
 0 0 0 1 0 + Zero
 1 0 1 0 0 + Denormalized Number
 0 0 1 0 0 + Normalized Number
 0 0 1 0 1 + Infinity

S EXP FRACTION
0 1 9 31

S EXP FRACTION
0 1 12 63

Format
Single Double

Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent -126 -1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

+0-DEN -0-NOR +NOR+DEN-INF +INF
Chapter 4. Floating-Point Facility 135

Version 3.1
Normalized numbers (± NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:

1.2x10-38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10-308 ≤ M ≤ 1.8x10308

Zero values (± 0)
These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to -0).

Denormalized numbers (± DEN)
These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double-pre-
cision).

Infinities (± ∞)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- ∞ < every finite number < + ∞

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception occurs

due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 142.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)
These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is 0 then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (VE=0). Quiet NaNs propagate through
all floating-point operations except ordered compari-
son, Floating Round to Single-Precision, and conver-
sion to integer. Quiet NaNs do not signal exceptions,
except for ordered comparison and conversion to inte-
ger operations. Specific encodings in QNaNs can thus
be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
 then FRT ← (FRA)
 else if (FRB) is a NaN
 then if instruction is frsp
 then FRT ← (FRB)0:34 ||

290
 else FRT ← (FRB)
 else if (FRC) is a NaN
 then FRT ← (FRC)
 else if generated QNaN
 then FRT ← generated QNaN

If the operand specified by FRA is a NaN, then that NaN
is stored as the result. Otherwise, if the operand speci-
fied by FRB is a NaN (if the instruction specifies an FRB
operand), then that NaN is stored as the result, with the
low-order 29 bits of the result set to 0 if the instruction is
frsp. Otherwise, if the operand specified by FRC is a
NaN (if the instruction specifies an FRC operand), then
that NaN is stored as the result. Otherwise, if a QNaN
was generated due to a disabled Invalid Operation
Exception, then that QNaN is stored as the result. If a
QNaN is to be generated as a result, then the QNaN
generated has a sign bit of 0, an exponent field of all
1s, and a high-order fraction bit of 1 with all other frac-
tion bits 0. Any instruction that generates a QNaN as
Power ISA™ I136

Version 3.1
the result of a disabled Invalid Operation Exception
generates this QNaN (i.e., 0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN’s fraction are zero.

4.3.3 Sign of Result
The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

• The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
-Infinity, in which mode the sign is negative.

• The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

• The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of -0 is -Infinity.

• The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

4.3.4 Normalization and
Denormalization
The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces an
intermediate result which carries out of the significand,
or in which the significand is nonzero but has a leading
zero bit, it is not a normalized number and must be nor-
malized before it is stored. For the carry-out case, the
significand is shifted right one bit, with a one shifted into
the leading significand bit, and the exponent is incre-

mented by one. For the leading-zero case, the signifi-
cand is shifted left while decrementing its exponent by
one for each bit shifted, until the leading significand bit
becomes one. The Guard bit and the Round bit (see
Section 4.5.1, “Execution Model for IEEE Operations”
on page 145) participate in the shift with zeros shifted
into the Round bit. The exponent is regarded as if its
range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 144) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision
Most of the Floating-Point Facility Architecture, includ-
ing all computational, Move, and Select instructions,
use the floating-point double format to represent data in
the FPRs. Single-precision and integer-valued oper-
ands may be manipulated using double-precision oper-
ations. Instructions are provided to coerce these values
from a double format operand. Instructions are also
provided for manipulations which do not require dou-
ble-precision. In addition, instructions are provided to
access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands
For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts it
to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.
Chapter 4. Floating-Point Facility 137

Version 3.1
2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

If any input value is not representable in single for-
mat and either OE=1 or UE=1, the result placed into
the target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1),
are undefined.

For fres[.] or frsqrtes[.], if the input value is finite
and has an unbiased exponent greater than +127,
the input value is interpreted as an Infinity.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)

When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29
FRACTION bits are zero.

4.3.5.2 Integer-Valued Operands
Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-Point facilities, instructions are provided to con-
vert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued
operands are described below.

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) exceptions.
See Sections 4.3.6 and 4.5.1 for more information
about rounding.

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding. This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

Programming Note

Programming Note
Power ISA™ I138

Version 3.1
the value of FPSCRRN and to round toward zero.
These instructions may cause Invalid Operation
(VXSNAN, VXCVI) and Inexact exceptions. The Float-
ing Convert From Integer instruction converts a
64-bit signed fixed-point integer to a double-preci-
sion floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding
The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and FI generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then FI is set
to 1, otherwise FI is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
FI to 0. The Estimate instructions set FR and FI to unde-
fined values. The remaining floating-point instructions
do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the
FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 52 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

Figure 52. Selection of Z1 and Z2

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 145 for a detailed explanation of round-
ing.

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

0

Positive valuesNegative values

By Incrementing LSB of Z
Infinitely Precise Value
By Truncating after LSB

Z2
Z
Z1 Z2

Z
Z1
Chapter 4. Floating-Point Facility 139

Version 3.1
4.4 Floating-Point Exceptions
This architecture defines the following floating-point
exceptions:

• Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur
during execution of computational instructions. An
Invalid Operation Exception due to Software-Defined
Condition occurs when a Move To FPSCR instruction
sets VXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FE0 and FE1 bits (see page 141),
whether and how the system floating-point enabled
exception error handler is invoked. (In general, the
enabling specified by the enable bit is of invoking the
system error handler, not of permitting the exception to
occur. The occurrence of an exception depends only on
the instruction and its inputs, not on the setting of any
control bits. The only deviation from this general rule is
that the occurrence of an Underflow Exception may
depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:
• Inexact Exception may be set with Overflow

Exception.
• Inexact Exception may be set with Underflow

Exception.
• Invalid Operation Exception (SNaN) is set with

Invalid Operation Exception (∞×0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

• Enabled Invalid Operation
• Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

• Disabled Invalid Operation
• Disabled Zero Divide
• Disabled Overflow
• Disabled Underflow
• Disabled Inexact
• Enabled Overflow
• Enabled Underflow
• Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of 0 causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-
Power ISA™ I140

Version 3.1
ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FE0 and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book III. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of these
bits are as follows.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book
III).

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

• If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

• If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

• Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

• Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

FE0 FE1 Description
0 0 Ignore Exceptions Mode

Floating-point exceptions do not cause
the system floating-point enabled excep-
tion error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. (It
always applies in the latter case.)

Programming Note
Chapter 4. Floating-Point Facility 141

Version 3.1
4.4.1 Invalid Operation Exception

4.4.1.1 Definition
An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:
• Any floating-point operation on a Signaling NaN

(SNaN)
• For add or subtract operations, magnitude subtrac-

tion of infinities (∞ - ∞)
• Division of infinity by infinity (∞ ÷ ∞)
• Division of zero by zero (0 ÷ 0)
• Multiplication of infinity by zero (∞ × 0)
• Ordered comparison involving a NaN (Invalid

Compare)
• Square root or reciprocal square root of a negative

(and nonzero) number (Invalid Square Root)
• Integer convert involving a number too large in

magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsb1 instruction is executed that
sets VXSOFT to 1 (Software-Defined Condition).

4.4.1.2 Action
The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled (VE=1)
and an Invalid Operation Exception occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set
VXSNAN (if SNaN)
VXISI (if ∞ - ∞)
VXIDI (if ∞ ÷ ∞)
VXZDZ (if 0 ÷ 0)
VXIMZ (if ∞ × 0)
VXVC (if invalid compare)
VXSOFT (if software-defined condition)
VXSQRT (if invalid square root)
VXCVI (if invalid integer convert)

2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,

the target FPR is unchanged
FR FI are set to zero
FPRF is unchanged

3. If the operation is a compare,
FR FI C are unchanged
FPCC is set to reflect unordered

4. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets VXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

When Invalid Operation Exception is disabled (VE=0)
and an Invalid Operation Exception occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set
VXSNAN (if SNaN)
VXISI (if ∞ - ∞)
VXIDI (if ∞ ÷ ∞)
VXZDZ (if 0 ÷ 0)
VXIMZ (if ∞ × 0)
VXVC (if invalid compare)
VXSOFT (if software-defined condition)
VXSQRT (if invalid square root)
VXCVI (if invalid integer convert)

2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,

the target FPR is set to a Quiet NaN
FR FI are set to zero
FPRF is set to indicate the class of the result

(Quiet NaN)
3. If the operation is a convert to 64-bit integer opera-

tion,
the target FPR is set as follows:

FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number
or + ∞, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - ∞, or NaN

FR FI are set to zero
FPRF is undefined

4. If the operation is a convert to 32-bit integer opera-
tion,

the target FPR is set as follows:
FRT0:31 ← undefined
FRT32:63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-bit integer if the operand in FRB is a
negative number, -infinity, or NaN

FR FI are set to zero
FPRF is undefined

5. If the operation is a compare,
FR FI C are unchanged
FPCC is set to reflect unordered

6. If an mtfsfi, mtfsf, or mtfsb1 instruction is exe-
cuted that sets VXSOFT to 1,

The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1 Definition
A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqrte[s]) is exe-
cuted with an operand value of zero.
Power ISA™ I142

Version 3.1
4.4.2.2 Action
The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (ZE=1) and a
Zero Divide Exception occurs, the following actions are
taken:

1. Zero Divide Exception is set
ZX ← 1

2. The target FPR is unchanged
3. FR FI are set to zero
4. FPRF is unchanged

When Zero Divide Exception is disabled (ZE=0) and a
Zero Divide Exception occurs, the following actions are
taken:

1. Zero Divide Exception is set
ZX ← 1

2. The target FPR is set to ± Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FR FI are set to zero
4. FPRF is set to indicate the class and sign of the

result (± Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition
An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

4.4.3.2 Action
The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (OE=1) and an
Overflow Exception occurs, the following actions are
taken:

1. Overflow Exception is set
OX ← 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPRF is set to indicate the class and sign of the
result (± Normal Number)

When Overflow Exception is disabled (OE=0) and an
Overflow Exception occurs, the following actions are
taken:

1. Overflow Exception is set
OX ← 1

2. Inexact Exception is set
XX ← 1

3. The result is determined by the rounding mode (RN)
and the sign of the intermediate result as follows:

- Round to Nearest
Store ± Infinity, where the sign is the sign
of the intermediate result

- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result

- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity

- Round toward -Infinity
For negative overflow, store -Infinity; for
positive overflow, store the format’s larg-
est finite number

4. The result is placed into the target FPR
5. FR is undefined
6. FI is set to 1
7. FPRF is set to indicate the class and sign of the

result (± Infinity or ± Normal Number)
Chapter 4. Floating-Point Facility 143

Version 3.1
4.4.4 Underflow Exception

4.4.4.1 Definition
Underflow Exception is defined separately for the
enabled and disabled states:

• Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

• Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A “Tiny” result is detected before rounding, when a non-
zero intermediate result computed as though both the
precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (UE=0) then the intermediate
result is denormalized (see Section 4.3.4, “Normaliza-
tion and Denormalization” on page 137) and rounded
(see Section 4.3.6, “Rounding” on page 139) before
being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action
The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (UE=1) and an
Underflow Exception occurs, the following actions are
taken:

1. Underflow Exception is set
UX ← 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPRF is set to indicate the class and sign of the
result (± Normalized Number)

When Underflow Exception is disabled (UE=0) and an
Underflow Exception occurs, the following actions are
taken:

1. Underflow Exception is set
UX ← 1

2. The rounded result is placed into the target FPR
3. FPRF is set to indicate the class and sign of the

result (± Normalized Number, ± Denormalized
Number, or ± Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition
An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Excep-
tion, an Inexact Exception also occurs only if the
significands of the rounded result and the interme-
diate result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4.4.5.2 Action
The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set
XX ← 1

2. The rounded or overflowed result is placed into the
target FPR

3. FPRF is set to indicate the class and sign of the
result

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Programming Note

Programming Note
Power ISA™ I144

Version 3.1
4.5 Floating-Point Execution
Models
All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

• Underflow during multiplication using a denormal-
ized operand.

• Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arithme-
tic. The standard requires that single-precision arithme-
tic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations
The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Figure 53. IEEE 64-bit execution model

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out of
the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the fraction of
the operand.

The Guard (G), Round (R), and Sticky (X) bits are exten-
sions to the low-order bits of the accumulator. The G
and R bits are required for postnormalization of the
result. The G, R, and X bits are required during rounding
to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves
as an extension to the G and R bits by representing the
logical OR of all bits that may appear to the low-order
side of the R bit, due either to shifting the accumulator
right or to other generation of low-order result bits. The
G and R bits participate in the left shifts with zeros being
shifted into the R bit. Figure 54 shows the significance
of the G, R, and X bits with respect to the intermediate
result (IR), the representable number next lower in
magnitude (NL), and the representable number next
higher in magnitude (NH).

Figure 54. Interpretation of G, R, and X bits

Figure 55 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 53.

Figure 55. Location of the Guard, Round, and
Sticky bits in the IEEE execution model

S C L FRACTION G R X
0 1 53 54 55

G R X Interpretation
0 0 0 IR is exact
0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL and NH
1 0 1

IR closer to NH1 1 0

1 1 1

Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 OR of 26:52, G, R, X
Chapter 4. Floating-Point Facility 145

Version 3.1
The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through RN as
described in Section 4.3.6, “Rounding” on page 139.
Using Z1 and Z2 as defined on page 139, the rules for
rounding in each mode are as follows.

• Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX=000) or
closest to next lower value in magnitude (GRX=001,
010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to
next higher value in magnitude (GRX=101,
110, or 111))

Case b
If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

• Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is
inexact.

• Round toward + Infinity
Choose Z1.

• Round toward - Infinity
Choose Z2.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.
Power ISA™ I146

Version 3.1
4.5.2 Execution Model for
Multiply-Add Type Instructions
The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION field
is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

Figure 56. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the FRAC-
TION and shifting the C bit (carry out) into the L bit. All
106 bits (L bit, the FRACTION) of the product take part in
the add operation. If the exponents of the two inputs to
the adder are not equal, the significand of the operand
with the smaller exponent is aligned (shifted) to the
right by an amount that is added to that exponent to
make it equal to the other input’s exponent. Zeros are
shifted into the left of the significand as it is aligned and
bits shifted out of bit 105 of the significand are ORed
into the X’ bit. The add operation also produces a result
conforming to the above model with the X’ bit taking
part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 57
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Figure 57. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

S C L FRACTION X’
0 1 2 3 106

Format Guard Round Sticky
Double 53 54 OR of 55:105, X’
Single 24 25 OR of 26:105, X’
Chapter 4. Floating-Point Facility 147

Version 3.1
4.6 Floating-Point Facility Instructions

4.6.1 Floating-Point Storage Access Instructions
The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 29.

4.6.1.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section C.10, “Miscellaneous Mne-
monics” on page 1022.

Programming Note
Power ISA™ I148

Version 3.1
4.6.2 Floating-Point Load Instructions
There are three basic forms of load instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Load Floating-Point as
Integer Word Algebraic instruction, described on
page 153. Because the FPRs support only float-
ing-point double format, single-precision Load Float-
ing-Point instructions convert single-precision data to
double format prior to loading the operand into the tar-
get FPR. The conversion and loading steps are as fol-
lows.

Let WORD0:31 be the floating-point single-precision oper-
and accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then

 FRT0:1 ← WORD0:1
 FRT2 ← ¬WORD1
 FRT3 ← ¬WORD1
 FRT4 ← ¬WORD1
 FRT5:63 ← WORD2:31 ||

290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then
sign ← WORD0
exp ← -126
frac0:52 ← 0b0 || WORD9:31 ||

290

normalize the operand

 do while frac0 = 0

 frac0:52 ← frac1:52 || 0b0

 exp ← exp - 1
FRT0 ← sign

FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

 FRT0:1 ← WORD0:1
 FRT2 ← WORD1
 FRT3 ← WORD1
 FRT4 ← WORD1
 FRT5:63 ← WORD2:31 ||

290

For double-precision Load Floating-Point instructions
and for the Load Floating-Point as Integer Word Alge-
braic instruction no conversion is required, as the data
from storage are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Regis-
ter.
Chapter 4. Floating-Point Facility 149

Version 3.1
Load Floating-Point Single D-form

lfs FRT,D(RA)

Prefixed Load Floating-Point Single
MLS:D-form

plfs FRT,D(RA),R
Prefix:

Suffix::

if “lfs” then

 EA ← (RA|0) + EXTS64(D)

if “plfs” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plfs” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

FRT  DOUBLE(MEM(EA, 4))

For lfs, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plfs with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plfs with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

For plfs, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Load Floating-Point
Single:

Load Floating-Point Single Indexed X-form

lfsx FRT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

FRT ← DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0) + (RB).

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

lfsu FRT,D(RA)

EA ← (RA) + EXTS(D)

FRT ← DOUBLE(MEM(EA, 4))

RA ← EA

Let the effective address (EA) be the sum (RA) + D.

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

48 FRT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

48 FRT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plfs Fx,value(Ry) plfs Fx,value(Ry),0
plfs Fx,value plfs Fx,value(0),1

31 FRT RA RB 535 /
0 6 11 16 21 31

49 FRT RA D
0 6 11 16 31
Power ISA™ I150

Version 3.1
Load Floating-Point Single with Update
Indexed X-form

lfsux FRT,RA,RB

EA ← (RA) + (RB)

FRT ← DOUBLE(MEM(EA, 4))

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

31 FRT RA RB 567 /
0 6 11 16 21 31
Chapter 4. Floating-Point Facility 151

Version 3.1
Load Floating-Point Double D-form

lfd FRT,D(RA)

Prefixed Load Floating-Point Double
MLS:D-form

plfd FRT,D(RA),R
Prefix:

Suffix::

if “lfd” then

 EA ← (RA|0) + EXTS64(D)

if “plfd” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plfd” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

FRT  MEM(EA, 8)

For lfd, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plfd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plfd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The doubleword in storage addressed by EA is loaded
into register FRT.

For plfd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Load Floating-Point
Double:

Load Floating-Point Double Indexed X-form

lfdx FRT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

FRT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0) + (RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

lfdu FRT,D(RA)

EA ← (RA) + EXTS(D)

FRT ← MEM(EA, 8)

RA ← EA

Let the effective address (EA) be the sum (RA) + D.

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

lfdux FRT,RA,RB

EA ← (RA) + (RB)

FRT ← MEM(EA, 8)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

50 FRT RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

50 FRT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plfd Fx,value(Ry) plfd Fx,value(Ry),0
plfd Fx,value plfd Fx,value(0),1

31 FRT RA RB 599 /
0 6 11 16 21 31

51 FRT RA D
0 6 11 16 31

31 FRT RA RB 631 /
0 6 11 16 21 31
Power ISA™ I152

Version 3.1
Load Floating-Point as Integer Word Algebraic
Indexed X-form

lfiwax FRT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

FRT ← EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0) + (RB).

The word in storage addressed by EA is loaded into
FRT32:63. FRT0:31 are filled with a copy of bit 0 of the
loaded word.

Special Registers Altered:
None

Load Floating-Point as Integer Word & Zero
Indexed X-form

lfiwzx FRT,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

FRT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0) + (RB).

The word in storage addressed by EA is loaded into
FRT32:63. FRT0:31 are set to 0.

Special Registers Altered:
None

31 FRT RA RB 855 /
0 6 11 16 21 31

31 FRT RA RB 887 /
0 6 11 16 21 31
Chapter 4. Floating-Point Facility 153

Version 3.1
4.6.3 Floating-Point Store Instructions
There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 158.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORD0:31 be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRS1:11 > 896 or FRS1:63 = 0 then

 WORD0:1 ← FRS0:1
 WORD2:31 ← FRS5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then
 sign ← FRS0
 exp ← FRS1:11 - 1023
 frac0:52 ← 0b1 || FRS12:63
 denormalize operand

 do while exp < -126
 frac0:52 ← 0b0 || frac0:51
 exp ← exp + 1
 WORD0 ← sign

 WORD1:8 ← 0x00

 WORD9:31 ← frac1:23
else WORD ← undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-
gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA≠0, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Register.
Power ISA™ I154

Version 3.1
Store Floating-Point Single D-form

stfs FRS,D(RA)

Prefixed Store Floating-Point Single
MLS:D-form

pstfs FRS,D(RA),R
Prefix:

Suffix::

if “stfs” then

 EA ← (RA|0) + EXTS64(D)

if “pstfs” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstfs” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 4) ← SINGLE((FRS))

For stfs, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstfs with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstfs with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

For pstfs, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Store Floating-Point
Single:

Store Floating-Point Single Indexed X-form

stfsx FRS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 4) ← SINGLE((FRS))

Let the effective address (EA) be the sum
(RA|0) + (RB).

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

EA ← (RA) + EXTS(D)

MEM(EA, 4) ← SINGLE((FRS))

RA ← EA

Let the effective address (EA) be the sum (RA) +D.

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

52 FRS RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

52 FRS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstfs Fx,value(Ry) pstfs Fx,value(Ry),0
pstfs Fx,value pstfs Fx,value(0),1

31 FRS RA RB 663 /
0 6 11 16 21 31

53 FRS RA D
0 6 11 16 31
Chapter 4. Floating-Point Facility 155

Version 3.1
Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 4) ← SINGLE((FRS))

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

31 FRS RA RB 695 /
0 6 11 16 21 31
Power ISA™ I156

Version 3.1
Store Floating-Point Double D-form

stfd FRS,D(RA)

Prefixed Store Floating-Point Double
MLS:D-form

pstfd FRS,D(RA),R
Prefix:

Suffix::

if “stfd” then

 EA ← (RA|0) + EXTS64(D)

if “pstfd” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstfd” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA, 8) ← (FRS)

For stfd, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstfd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstfd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The contents of register FRS are stored into the double-
word in storage addressed by EA.

For pstfd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Store Floating-Point
Double:

Store Floating-Point Double Indexed X-form

stfdx FRS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 8) ← (FRS)

Let the effective address (EA) be the sum
(RA|0) + (RB).

The contents of register FRS are stored into the double-
word in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

EA ← (RA) + EXTS(D)

MEM(EA, 8) ← (FRS)

RA ← EA

Let the effective address (EA) be the sum (RA) + D.

The contents of register FRS are stored into the double-
word in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 FRS RA D
0 6 11 16 31

1 2 0 // R // d0
0 6 8 9 11 12 14 31

54 FRS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstfd Fx,value(Ry) pstfd Fx,value(Ry),0
pstfd Fx,value pstfd Fx,value(0),1

31 FRS RA RB 727 /
0 6 11 16 21 31

55 FRS RA D
0 6 11 16 31
Chapter 4. Floating-Point Facility 157

Version 3.1
Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

EA ← (RA) + (RB)

MEM(EA, 8) ← (FRS)

RA ← EA

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS are stored into the double-
word in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point as Integer Word Indexed
X-form

stfiwx FRS,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 4) ← (FRS)32:63

Let the effective address (EA) be the sum (RA|0)+(RB).

(FRS)32:63 are stored, without conversion, into the word
in storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register FRS are produced directly by such an instruc-
tion if FRS is the target register for the instruction. The
contents of register FRS are produced indirectly by such
an instruction if FRS is the final target register of a
sequence of one or more Floating-Point Move instruc-
tions, with the input to the sequence having been pro-
duced directly by such an instruction.)

Special Registers Altered:
None

31 FRS RA RB 759 /
0 6 11 16 21 31

31 FRS RA RB 983 /
0 6 11 16 21 31
Power ISA™ I158

Version 3.1
4.6.4 Floating-Point Load and Store Double Pair Instructions [Phased-Out]
For lfdp[x], the doubleword-pair in storage addressed
by EA is loaded into an even-odd pair of FPRs with the
even-numbered FPR being loaded with the leftmost
doubleword from storage and the odd-numbered FPR
being loaded with the rightmost doubleword.

For stfdp[x], the content of an even-odd pair of FPRs
is stored into the doubleword-pair in storage
addressed by EA, with the even-numbered FPR being
stored into the leftmost doubleword in storage and the

odd-numbered FPR being stored into the rightmost
doubleword.

Load Floating-Point Double Pair DS-form

lfdp FRTp,DS(RA)

if RA = 0 then b ← 0

else b ←(RA)

EA ← b + EXTS(DS||0b00)

FRTpeven ← MEM(EA,8)

FRTpodd ← MEM(EA+8, 8)

Let the effective address (EA) be the sum
(RA|0) + (DS||0b00).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is placed
into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double Pair Indexed
X-form

lfdpx FRTp,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

FRTpeven ← MEM(EA,8)

FRTpodd ← MEM(EA+8, 8)

Let the effective address (EA) be the sum
(RA|0) + (RB).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is placed
into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

The instructions described in this section should
not be used to access an operand in DFP
Extended format when the processor is in Lit-
tle-Endian mode.

Programming Note

57 FRTp RA DS 0
0 6 11 16 30 31 31 FRTp RA RB 791 /

0 6 11 16 21 31
Chapter 4. Floating-Point Facility 159

Version 3.1
Store Floating-Point Double Pair DS-form

stfdp FRSp,DS(RA)

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + EXTS(DS||0b00)

MEM(EA, 8) ← FRSpeven
MEM(EA+8, 8) ← FRSpodd

Let the effective address (EA) be the sum
(RA|0) + (DS||0b00).

The contents of the even-numbered register of FRSp are
stored into the doubleword in storage addressed by EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double Pair Indexed
X-form

stfdpx FRSp,RA,RB

if RA = 0 then b ← 0

else b ← (RA)

EA ← b + (RB)

MEM(EA, 8) ← FRSpeven
MEM(EA+8, 8) ← FRSpodd

Let the effective address (EA) be the sum
(RA|0) + (DS||0b00).

The contents of the even-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

61 FRSp RA DS 0
0 6 11 16 30 31 31 FRSp RA RB 919 /

0 6 11 16 21 31
Power ISA™ I160

Version 3.1
4.6.5 Floating-Point Move Instructions
These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs, fnabs, and fcpsgn). These instructions do
not alter the FPSCR.

Floating Move Register X-form

fmr FRT,FRB (Rc=0)
fmr. FRT,FRB (Rc=1)

The contents of register FRB are placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negate X-form

fneg FRT,FRB (Rc=0)
fneg. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Absolute Value X-form

fabs FRT,FRB (Rc=0)
fabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negative Absolute Value X-form

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

The contents of register FRB with bit 0 set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Copy Sign X-form

fcpsgn FRT, FRA, FRB (Rc=0)
fcpsgn. FRT, FRA, FRB (Rc=1)

The contents of register FRB with bit 0 set to the value of
bit 0 of register FRA are placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

63 FRT /// FRB 72 Rc
0 6 11 16 21 31

63 FRT /// FRB 40 Rc
0 6 11 16 21 31

63 FRT /// FRB 264 Rc
0 6 11 16 21 31

63 FRT /// FRB 136 Rc
0 6 11 16 21 31

63 FRT FRA FRB 8 Rc
0 6 11 16 21 31
Chapter 4. Floating-Point Facility 161

Version 3.1
Floating Merge Even Word X-form

fmrgew FRT,FRA,FRB

if MSR.FP=0 then FP_Unavailable()

FPR[FRT].word[0] ← FPR[FRA].word[0]

FPR[FRT].word[1] ← FPR[FRB].word[0]

The contents of word element 0 of FPR[FRA] are placed
into word element 0 of FPR[FRT].

The contents of word element 0 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgew is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

Floating Merge Odd Word X-form

fmrgow FRT,FRA,FRB

if MSR.FP=0 then FP_Unavailable()

FPR[FRT].word[0] ← FPR[FRA].word[1]

FPR[FRT].word[1] ← FPR[FRB].word[1]

The contents of word element 1 of FPR[FRA] are placed
into word element 0 of FPR[FRT].

The contents of word element 1 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgow is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

63 FRT FRA FRB 966 /
0 6 11 16 21 31

63 FRT FRA FRB 838 /
0 6 11 16 21 31
Power ISA™ I162

Version 3.1
4.6.6 Floating-Point Arithmetic Instructions

4.6.6.1 Floating-Point Elementary Arithmetic Instructions

Floating Add A-form

fadd FRT,FRA,FRB (Rc=0)
fadd. FRT,FRA,FRB (Rc=1)

Floating Add Single A-form

fadds FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

Floating Subtract A-form

fsub FRT,FRA,FRB (Rc=0)
fsub. FRT,FRA,FRB (Rc=1)

Floating Subtract Single A-form

fsubs FRT,FRA,FRB (Rc=0)
fsubs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign bit
(bit 0) inverted.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

63 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 21 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 20 Rc
0 6 11 16 21 26 31
Chapter 4. Floating-Point Facility 163

Version 3.1
Floating Multiply A-form

fmul FRT,FRA,FRC (Rc=0)
fmul. FRT,FRA,FRC (Rc=1)

Floating Multiply Single A-form

fmuls FRT,FRA,FRC (Rc=0)
fmuls. FRT,FRA,FRC (Rc=1)

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Rc=1)

Floating Divide A-form

fdiv FRT,FRA,FRB (Rc=0)
fdiv. FRT,FRA,FRB (Rc=1)

Floating Divide Single A-form

fdivs FRT,FRA,FRB (Rc=0)
fdivs. FRT,FRA,FRB (Rc=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB. The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ
CR1 (if Rc=1)

63 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

59 FRT FRA /// FRC 25 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB /// 18 Rc
0 6 11 16 21 26 31
Power ISA™ I164

Version 3.1
Floating Square Root A-form

fsqrt FRT,FRB (Rc=0)
fsqrt. FRT,FRB (Rc=1)

Floating Square Root Single A-form

fsqrts FRT,FRB (Rc=0)
fsqrts. FRT,FRB (Rc=1)

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Operation with various special values of the operand is
summarized below.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE=1.

Special Registers Altered:
FPRF FR FI FX OX UX XX
VXSNAN VXSQRT
CR1 (if Rc=1)

Floating Reciprocal Estimate A-form

fre FRT,FRB (Rc=0)
fre. FRT,FRB (Rc=1)

Floating Reciprocal Estimate Single A-form

fres FRT,FRB (Rc=0)
fres. FRT,FRB (Rc=1)

An estimate of the reciprocal of the floating-point
operand in register FRB is placed into register FRT.
Unless the reciprocal would be a zero, an infinity, the
result of a trap-disabled Overflow exception, or a
QNaN, the estimate is correct to a precision of one
part in 256 of the reciprocal of (FRB), i.e.,

where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX XX (undefined)
VXSNAN
CR1 (if Rc=1)

63 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 22 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN1 VXSQRT
< 0 QNaN1 VXSQRT
-0 -0 None
+∞ +∞ None
SNaN QNaN1 VXSNAN
QNaN QNaN None
1 No result if VE=1

63 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

Operand Result Exception
-½ -0 None
-0 -½1 ZX
+0 +½1 ZX
+½ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if ZE=1.
2 No result if VE=1.

ABS
estimate 1 x⁄–

1 x⁄---------------------------------------()
1

256
----------≤

For the Floating-Point Estimate instructions, some implementations might implement a precision higher than the
minimum architected precision. Thus, a program may take advantage of the higher precision instructions to
increase performance by decreasing the iterations needed for software emulation of floating-point instructions.
However, there is no guarantee given about the precision which may vary (up or down) between implementa-
tions. Only programs targeted at a specific implementation (i.e., the program will not be migrated to another
implementation) should take advantage of the higher precision of the instructions. All other programs should rely
on the minimum architected precision, which will guarantee the program to run properly across different imple-
mentations.

Programming Note
Chapter 4. Floating-Point Facility 165

Version 3.1
Floating Reciprocal Square Root Estimate
A-form

frsqrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Rc=1)

Floating Reciprocal Square Root Estimate
Single A-form

frsqrtes FRT,FRB (Rc=0)
frsqrtes. FRT,FRB (Rc=1)

A estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into reg-
ister FRT. The estimate placed into register FRT is correct
to a precision of one part in 32 of the reciprocal of the
square root of (FRB), i.e.,

where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX XX (undefined)
VXSNAN VXSQRT
CR1 (if Rc=1)

Floating Test for software Divide X-form

ftdiv BF,FRA,FRB

Let e_a be the unbiased exponent of the double-preci-
sion floating-point operand in register FRA.

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if any of the following conditions
occurs.

• The double-precision floating-point operand in reg-
ister FRA is a NaN or an Infinity.

• The double-precision floating-point operand in reg-
ister FRB is a Zero, a NaN, or an Infinity.

• e_b is less than or equal to -1022.

• e_b is greater than or equal to 1021.

• The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is greater than or equal to 1023.

• The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is less than or equal to -1021.

• The double-precision floating-point operand in reg-
ister FRA is not a zero and e_a is less than or equal
to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 if either of the following conditions
occurs.

• The double-precision floating-point operand in reg-
ister FRA is an Infinity.

• The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
fre[s][.] of less than or equal to 2-14, then fl_flag is set
to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || 0b0.

Special Registers Altered:
CR field BF

63 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

59 FRT /// FRB /// 26 Rc
0 6 11 16 21 26 31

Operand Result Exception
-∞ QNaN2 VXSQRT
< 0 QNaN2 VXSQRT
-0 -∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1 No result if ZE=1.
2 No result if VE=1.

See the Notes that appear with fre[s].

ABS
estimate 1 x()⁄–

1 x()⁄
--()

1
32
------≤

Note

63 BF // FRA FRB 128 /
0 6 9 11 16 21 31
Power ISA™ I166

Version 3.1
Floating Test for software Square Root
X-form

ftsqrt BF,FRB

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if either of the following conditions
occurs.

• The double-precision floating-point operand in reg-
ister FRB is a zero, a NaN, or an infinity, or a nega-
tive value.

• e_b is less than or equal to -970.

Otherwise fe_flag is set to 0.

fg_flag is set to 1 if the following condition occurs.

• The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
frsqrte[s][.] of less than or equal to 2-14, then fl_flag is
set to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || 0b0.

Special Registers Altered:
CR field BF

63 BF // /// FRB 160 /
0 6 9 11 16 21 31

ftdiv and ftsqrt are provided to accelerate software
emulation of divide and square root operations, by
performing the requisite special case checking.
Software needs only a single branch, on FE=1 (in
CR[BF]), to a special case handler. FG and FL may
provide further acceleration opportunities.

Programming Note
Chapter 4. Floating-Point Facility 167

Version 3.1
4.6.6.2 Floating-Point Multiply-Add Instructions
These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

• Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

• Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsub[s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add A-form

fmadd FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Rc=1)

Floating Multiply-Add Single A-form

fmadds FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT ← [(FRA)´(FRC)] + (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Floating Multiply-Subtract A-form

fmsub FRT,FRA,FRC,FRB (Rc=0)
fmsub. FRT,FRA,FRC,FRB (Rc=1)

Floating Multiply-Subtract Single A-form

fmsubs FRT,FRA,FRC,FRB (Rc=0)
fmsubs. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT ← [(FRA)´(FRC)] - (FRB)

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 29 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 28 Rc
0 6 11 16 21 26 31
Power ISA™ I168

Version 3.1
Floating Negative Multiply-Add A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Rc=1)

Floating Negative Multiply-Add Single A-form

fnmadds FRT,FRA,FRC,FRB (Rc=0)
fnmadds. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT ← - ([(FRA)´(FRC)] + (FRB))

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

• QNaNs propagate with no effect on their “sign” bit.
• QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

• SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Floating Negative Multiply-Subtract A-form

fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmsub. FRT,FRA,FRC,FRB (Rc=1)

Floating Negative Multiply-Subtract
Single A-form

fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnmsubs. FRT,FRA,FRC,FRB (Rc=1)

The operation
FRT ← - ([(FRA)´(FRC)] - (FRB))

is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

• QNaNs propagate with no effect on their “sign” bit.
• QNaNs that are generated as the result of a dis-

abled Invalid Operation Exception have a “sign” bit
of 0.

• SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

63 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 31 Rc
0 6 11 16 21 26 31

63 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31

59 FRT FRA FRB FRC 30 Rc
0 6 11 16 21 26 31
Chapter 4. Floating-Point Facility 169

Version 3.1
4.6.7 Floating-Point Rounding and Conversion Instructions

4.6.7.1 Floating-Point Rounding
Instruction

Floating Round to Single-Precision X-form

frsp FRT,FRB (Rc=0)
frsp. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
single-precision, using the rounding mode specified by
RN, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point Round to Single-Precision Model” on
page 995.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX VXSNAN
CR1 (if Rc=1)

4.6.7.2 Floating-Point Convert To/From
Integer Instructions

Floating Convert with round Double-Precision
To Signed Doubleword format X-form

fctid FRT,FRB (Rc=0)
fctid. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 263-1, then the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 12 Rc
0 6 11 16 21 31 63 FRT /// FRB 814 Rc

0 6 11 16 21 31
Power ISA™ I170

Version 3.1
Floating Convert with truncate
Double-Precision To Signed Doubleword
format X-form

fctidz FRT,FRB (Rc=0)
fctidz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 263-1, then the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert with round Double-Precision
To Unsigned Doubleword format X-form

fctidu FRT,FRB (Rc=0)
fctidu. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 264-1, then the
result is 0xFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 815 Rc
0 6 11 16 21 31

63 FRT /// FRB 942 Rc
0 6 11 16 21 31
Chapter 4. Floating-Point Facility 171

Version 3.1
Floating Convert with truncate
Double-Precision To Unsigned Doubleword
format X-form

fctiduz FRT,FRB (Rc=0)
fctiduz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 264-1, then the
result is 0xFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert with round Double-Precision
To Signed Word format X-form

fctiw FRT,FRB (Rc=0)
fctiw. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 231-1, then the
result is 0x7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 943 Rc
0 6 11 16 21 31

63 FRT /// FRB 14 Rc
0 6 11 16 21 31
Power ISA™ I172

Version 3.1
Floating Convert with truncate
Double-Precision To Signed Word fomat
X-form

fctiwz FRT,FRB (Rc=0)
fctiwz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 231-1, then the
result is 0x7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert with round Double-Precision
To Unsigned Word format X-form

fctiwu FRT,FRB (Rc=0)
fctiwu. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 232-1, then the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

63 FRT /// FRB 15 Rc
0 6 11 16 21 31

63 FRT /// FRB 142 Rc
0 6 11 16 21 31
Chapter 4. Floating-Point Facility 173

Version 3.1
Floating Convert with truncate
Double-Precision To Unsigned Word format
X-form

fctiwuz FRT,FRB (Rc=0)
fctiwuz. FRT,FRB (Rc=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 232-1, then the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0.0, then
the result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT32:63 and FRT0:31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert with round Signed
Doubleword to Double-Precision format
X-form

fcfid FRT,FRB (Rc=0)
fcfid. FRT,FRB (Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. FI is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI FX XX
CR1 (if Rc=1)

63 FRT /// FRB 143 Rc
0 6 11 16 21 31

63 FRT /// FRB 846 Rc
0 6 11 16 21 31

Converting a signed integer word to double-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfid.

Programming Note
Power ISA™ I174

Version 3.1
Floating Convert with round Unsigned
Doubleword to Double-Precision format
X-form

fcfidu FRT,FRB (Rc=0)
fcfidu. FRT,FRB (Rc=1)

The 64-bit unsigned fixed-point operand in register FRB
is converted to an infinitely precise floating-point inte-
ger. The result of the conversion is rounded to dou-
ble-precision, using the rounding mode specified by RN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. FI is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

Floating Convert with round Signed
Doubleword to Single-Precision format X-form

fcfids FRT,FRB (Rc=0)
fcfids. FRT,FRB (Rc=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to single-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. FI is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

63 FRT /// FRB 974 Rc
0 6 11 16 21 31

Converting an unsigned integer word to dou-
ble-precision floating-point can be accomplished by
loading the word from storage using Load Float
Word and Zero Indexed and then using fcfidu.

Programming Note

63 FRT /// FRB 846 Rc
0 6 11 16 21 31

Converting a signed integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfids.

Programming Note
Chapter 4. Floating-Point Facility 175

Version 3.1
Floating Convert with round Unsigned
Doubleword to Single-Precision format X-form

fcfidus FRT,FRB (Rc=0)
fcfidus. FRT,FRB (Rc=1)

The 64-bit unsigned fixed-point operand in register FRB
is converted to an infinitely precise floating-point inte-
ger. The result of the conversion is rounded to sin-
gle-precision, using the rounding mode specified by RN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. FI is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

59 FRT /// FRB 974 Rc
0 6 11 16 21 31

Converting a unsigned integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word and
Zero Indexed and then using fcfidus.

Programming Note
Power ISA™ I176

Version 3.1
4.6.7.3 Floating Round to Integer Instructions
The Floating Round to Integer instructions provide
direct support for rounding functions found in high level
languages. For example, frin, friz, frip, and frim imple-
ment C++ round(), trunc(), ceil(), and floor(), respec-
tively. Note that frin does not implement the IEEE

Round to Nearest function, which is often further
described as “ties to even.” The rounding performed by
these instructions is described fully in Section A.4,
“Floating-Point Round to Integer Model” on page 1004.

These instructions set FR and FI to 0b00 regardless of whether the result is inexact or rounded because there is a
desire to preserve the value of XX. Furthermore, it is believed that most programs do not need to know whether
these rounding operations produce inexact or rounded results. If it is necessary to determine whether the result is
inexact or rounded, software must compare the result with the original source operand.

Programming Note
Chapter 4. Floating-Point Facility 177

Version 3.1
Floating Round to Integer Nearest X-form

frin FRT,FRB (Rc=0)
frin. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
an integral value as follows, with the result placed into
register FRT. If the sign of the operand is positive,
(FRB) + 0.5 is truncated to an integral value, otherwise
(FRB) - 0.5 is truncated to an integral value.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Toward Zero X-form

friz FRT,FRB (Rc=0)
friz. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward zero, and the result is placed into register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Plus X-form

frip FRT,FRB (Rc=0)
frip. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Minus X-form

frim FRT,FRB (Rc=0)
frim. FRT,FRB (Rc=1)

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward -infinity, and the result is placed into register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

63 FRT /// FRB 392 Rc
0 6 11 16 21 31

63 FRT /// FRB 424 Rc
0 6 11 16 21 31

63 FRT /// FRB 456 Rc
0 6 11 16 21 31

63 FRT /// FRB 488 Rc
0 6 11 16 21 31
Power ISA™ I178

Version 3.1
4.6.8 Floating-Point Compare Instructions
The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

if (FRA) is a NaN or

 (FRB) is a NaN then c ← 0b0001

else if (FRA) < (FRB) then c ← 0b1000

else if (FRA) > (FRB) then c ← 0b0100

else c ← 0b0010

FPCC ← c

CR4×BF:4×BF+3 ← c

if (FRA) is an SNaN or

 (FRB) is an SNaN then

 VXSNAN ← 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

Floating Compare Ordered X-form

fcmpo BF,FRA,FRB

if (FRA) is a NaN or

 (FRB) is a NaN then c ← 0b0001

else if (FRA) < (FRB) then c ← 0b1000

else if (FRA) > (FRB) then c ← 0b0100

else c ← 0b0010

FPCC ← c

CR4×BF:4×BF+3 ← c

if (FRA) is an SNaN or

 (FRB) is an SNaN then

 VXSNAN ← 1

 if VE = 0 then VXVC ← 1

else if (FRA) is a QNaN or

 (FRB) is a QNaN then VXVC ← 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is disabled
(VE=0), VXVC is set. If neither operand is a Signaling NaN
but at least one operand is a Quiet NaN, then VXVC is
set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
2 FE (FRA) = (FRB)
3 FU (FRA) ? (FRB) (unordered)

63 BF // FRA FRB 0 /
0 6 9 11 16 21 31

63 BF // FRA FRB 32 /
0 6 9 11 16 21 31
Chapter 4. Floating-Point Facility 179

Version 3.1
4.6.9 Floating-Point Select Instruction
Floating Select A-form

fsel FRT,FRA,FRC,FRB (Rc=0)
fsel. FRT,FRA,FRC,FRB (Rc=1)

if (FRA) ≥ 0.0 then FRT ← (FRC)

else FRT ← (FRB)

The floating-point operand in register FRA is compared
to the value zero. If the operand is greater than or equal
to zero, register FRT is set to the contents of register
FRC. If the operand is less than zero or is a NaN, regis-
ter FRT is set to the contents of register FRB. The com-
parison ignores the sign of zero (i.e., regards +0 as
equal to -0).

Special Registers Altered:
CR1 (if Rc=1)

63 FRT FRA FRB FRC 23 Rc
0 6 11 16 21 26 31

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities.

Programming Note
Power ISA™ I180

Version 3.1
fsel Usage Notes

This section gives examples of how the Floating Select instruction can be used to implement certain simple forms of
if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming language, and the corre-
sponding program fragment using fsel and other Power ISA instructions. In the examples, a, b, x, y, and z are float-
ing-point variables, which are assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be available for
scratch space.

Warning: Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be NaNs
or infinities; see Section .

Comparison to Zero Simple if-then-else Constructions

Notes:

The following Notes apply to the preceding examples
and to the corresponding cases using the other three
arithmetic relations (<, ≤, and ≠). They should also be
considered when any other use of fsel is contemplated.

In these Notes, the “optimized program” is the Power
ISA program shown, and the “unoptimized program”
(not shown) is the corresponding Power ISA program
that uses fcmpu and Branch Conditional instructions
instead of fsel.

1. The unoptimized program affects the VXSNAN bit of
the FPSCR, and therefore may cause the system
error handler to be invoked if the corresponding
exception is enabled, while the optimized program
does not affect this bit. This property of the opti-
mized program is incompatible with the IEEE stan-
dard.

2. The optimized program gives the incorrect result if
a is a NaN.

3. The optimized program gives the incorrect result if
a and/or b is a NaN (except that it may give the cor-
rect result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if
a and b are infinities of the same sign. (Here it is
assumed that Invalid Operation Exceptions are
disabled, in which case the result of the subtrac-
tion is a NaN. The analysis is more complicated if
Invalid Operation Exceptions are enabled,
because in that case the target register of the sub-
traction is unchanged.)

5. The optimized program affects the OX, UX, XX, and
VXISI bits of the FPSCR, and therefore may cause
the system error handler to be invoked if the corre-
sponding exceptions are enabled, while the unopti-
mized program does not affect these bits. This
property of the optimized program is incompatible
with the IEEE standard.

High-level language: Power ISA: Notes
if a ≥ 0.0 then
 x ← y
else
 x ← z

fsel fx,fa,fy,fz (1)

if a > 0.0 then
 x ← y
else
 x ← z

fneg fs,fa
fsel fx,fs,fz,fy

(1,2)

if a = 0.0 then
 x ← y
else
 x ← z

fsel fx,fa,fy,fz
fneg fs,fa
fsel fx,fs,fx,fz

(1)

High-level language: Power ISA: Notes
if a ≥ b then x ← y
else x ← z

fsub fs,fa,fb
fsel fx,fs,fy,fz

(4,5)

if a > b then x ← y
else x ← z

fsub fs,fb,fa
fsel fx,fs,fz,fy

(3,4,5)

if a = b then x ← y
else x ← z

fsub fs,fa,fb
fsel fx,fs,fy,fz
fneg fs,fs
fsel fx,fs,fx,fz

(4,5)
Chapter 4. Floating-Point Facility 181

Version 3.1
4.6.10 Floating-Point Status and Control Register Instructions
Except as described below for mffsce, mffscdrn[i],
mffscrn[i], and mffsl, Floating-Point Status and Con-
trol Register instructions synchronize the effects of all
floating-point instructions executed by a given proces-
sor. Executing a Floating-Point Status and Control Reg-
ister instruction ensures that all floating-point
instructions previously initiated by the given processor
have completed before the Floating-Point Status and
Control Register instruction is initiated, and that no sub-
sequent floating-point instructions are initiated by the
given processor until the Floating-Point Status and
Control Register instruction has completed. In particu-
lar:

• All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

• All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

• No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

While not satisfying all of the conditions described
above, mffsce, mffscdrn[i], mffscrn[i], and mffsl still
obey the sequential execution model. Any FPSCR sta-
tus bits read by mffsce or mffsl will reflect updates due
to all preceding floating-point instructions. That is, all
floating-point instructions following an mffsce, mffsc-
drn[i], or mffscrn[i] will execute based on any updates
applied to any control bits in the FPSCR by the mffsce,
mffscdrn[i], or mffscrn[i].

(Floating-point Storage Access instructions are not
affected.)

The instruction descriptions in this section refer to
“FPSCR fields,” where FPSCR field k is FPSCR bits
4*k:4*k+3.

Move From FPSCR X-form

mffs FRT (Rc=0)
mffs. FRT (Rc=1)

The contents of the FPSCR are placed into register
FRT.

If Rc=1, CR field 1 is set to the value FX||FEX||VX||OX.

Special Registers Altered:
CR1 (if Rc=1)

Move From FPSCR & Clear Enables X-form

mffsce FRT

The contents of the FPSCR are placed into register FRT.

The contents of bits 56:60 (VE, OE, UE, ZE, XE) of the
FPSCR are set to 0.

Special Registers Altered:
VE (set to 0) OE (set to 0) UE (set to 0)
ZE (set to 0) XE (set to 0)

Move From FPSCR Control & Set DRN X-form

mffscdrn FRT,FRB

Let new_DRN be the contents of bits 29:31 of register
FRB.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

new_DRN is placed into bits 62:64 of the FPSCR (DRN).

Special Registers Altered:
DRN

63 FRT 0 /// 583 Rc
0 6 11 16 21 31

63 FRT 1 /// 583 /
0 6 11 16 21 31

63 FRT 20 FRB 583 /
0 6 11 16 21 31

mffscdrn permits software to simultaneously read
control bits in the FPSCR and set the DRN field
without the higher latency typically associated with
accessing the status bits.

Programming Note
Power ISA™ I182

Version 3.1
Move From FPSCR Control & Set DRN
Immediate X-form

mffscdrni FRT,DRM

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

The contents of bits 29:31 of the FPSCR (DRN) are set
to the value of DRM.

Special Registers Altered:
DRN

Move From FPSCR Control & Set RN X-form

mffscrn FRT,FRB

Let new_RN be the contents of bits 62:63 of register
FRB.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI,
RN), are placed into the corresponding bits in register
FRT. All other bits in register FRT are set to 0.

new_RN is placed into bits 62:63 of the FPSCR (RN).

Special Registers Altered:
RN

Move From FPSCR Control & Set RN
Immediate X-form

mffscrni FRT,RM

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

The contents of bits 62:63 of the FPSCR (RN) are set to
the value of RM.

Special Registers Altered:
RN

Move From FPSCR Lightweight X-form

mffsl FRT

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
and the non-sticky status bits in the FPSCR, that is, bits
45:51 (FR, FI, C, FL, FG, FE, FU), are placed into the cor-
responding bits in register FRT. All other bits in register
FRT are set to 0.

Special Registers Altered:
None

63 FRT 21 // DRM 583 /
0 6 11 16 18 21 31

mffscdrni permits software to simultaneously read
control bits in the FPSCR and set the DRN field
without the higher latency typically associated with
accessing the status bits.

63 FRT 22 FRB 583 /
0 6 11 16 21 31

mffscrn permits software to simultaneously read
control bits in the FPSCR and set the RN field
without the higher latency typically associated with
accessing the status bits.

Programming Note

Programming Note

63 FRT 23 /// RM 583 /
0 6 11 16 19 21 31

mffscrni permits software to simultaneously read
control bits in the FPSCR and set the RN field
without the higher latency typically associated with
accessing the status bits.

63 FRT 24 /// 583 /
0 6 11 16 21 31

mffsl permits software to read the control and
non-sticky status bits in the FPSCR without the
higher latency typically associated with accessing
the sticky status bits.

Programming Note

Programming Note
Chapter 4. Floating-Point Facility 183

Version 3.1
Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA

The contents of FPSCR32:63 field BFA are copied to Condi-
tion Register field BF. All exception bits copied are set to
0 in the FPSCR. If the FX bit is copied, it is set to 0 in
the FPSCR.

Special Registers Altered:
CR field BF
FX OX (if BFA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

Move To FPSCR Field Immediate X-form

mtfsfi BF,U,W (Rc=0)
mtfsfi. BF,U,W (Rc=1)

The value of the U field is placed into FPSCR field
BF+8*(1-W).

FX is altered only if BF=0 and W=0.

Special Registers Altered:
FPSCR field BF + 8*(1-W)
CR1 (if Rc=1)

Move To FPSCR Fields XFL-form

mtfsf FLM,FRB,L,W (Rc=0)
mtfsf. FLM,FRB,L,W (Rc=1)

The FPSCR is modified as specified by the FLM, L, and
W fields.

L=0

The contents of register FRB are placed into the
FPSCR under control of the W field and the field
mask specified by FLM. W and the field mask identify
the 4-bit fields affected. Let i be an integer in the
range 0-7. If FLMi=1 then FPSCR field k is set to the
contents of the corresponding field of register FRB,
where k=i+8*(1-W).

L=1

The contents of register FRB are placed into the
FPSCR.

FX is not altered implicitly by this instruction.

Special Registers Altered:
FPSCR fields selected by mask, L, and W
CR1 (if Rc=1)

63 BF // BFA // /// 64 /
0 6 9 11 14 16 21 31

63 BF // /// W U / 134 Rc
0 6 9 11 15 16 20 21 31

mtfsfi serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsfi
mnemonic with three operands as the basic form,
and a mtfsfi mnemonic with two operands as the
extended form. In the extended form the W oper-
and is omitted and assumed to be 0.

When FPSCR32:35 is specified, bits 32 (FX) and 35
(OX) are set to the values of U0 and U3 (i.e., even if
this instruction causes OX to change from 0 to 1, FX
is set from U0 and not by the usual rule that FX is set
to 1 when an exception bit changes from 0 to 1).
Bits 33 and 34 (FEX and VX) are set according to the
usual rule, given on page 133, and not from U1:2.

Programming Note

Programming Note

63 L FLM W FRB 711 Rc
0 6 7 15 16 21 31

mtfsf serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsf
mnemonic with four operands as the basic form,
and a mtfsf mnemonic with two operands as the
extended form. In the extended form the W and L
operands are omitted and both are assumed to be
0.

If L=1 or if L=0 and FPSCR32:35 is specified, bits 32
(FX) and 35 (OX) are set to the values of (FRB)32 and
(FRB)35 (i.e., even if this instruction causes OX to
change from 0 to 1, FX is set from (FRB)32 and not
by the usual rule that FX is set to 1 when an excep-
tion bit changes from 0 to 1). Bits 33 and 34 (FEX
and VX) are set according to the usual rule, given
on page 133, and not from (FRB)33:34.

Programming Note

Programming Note
Power ISA™ I184

Version 3.1
Move To FPSCR Bit 0 X-form

mtfsb0 BT (Rc=0)
mtfsb0. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 0.

Special Registers Altered:
FPSCR bit BT+32
CR1 (if Rc=1)

Move To FPSCR Bit 1 X-form

mtfsb1 BT (Rc=0)
mtfsb1. BT (Rc=1)

Bit BT+32 of the FPSCR is set to 1.

Special Registers Altered:
FPSCR bits BT+32 and FX
CR1 (if Rc=1)

63 BT /// /// 70 Rc
0 6 11 16 21 31

Bits 33 and 34 (FEX and VX) cannot be explicitly
reset.

Programming Note

63 BT /// /// 38 Rc
0 6 11 16 21 31

Bits 33 and 34 (FEX and VX) cannot be explicitly set.
Programming Note
Chapter 4. Floating-Point Facility 185

Version 3.1
Power ISA™ I186

Version 3.1
Chapter 5. Decimal Floating-Point

5.1 Decimal Floating-Point
(DFP) Facility Overview
This chapter describes the behavior of the decimal
floating-point facility, the supported data types, formats,
and classes, and the usage of registers. Also included
are the execution model, exceptions, and instructions
supported by the decimal floating-point facility.

The decimal floating-point (DFP) facility shares the 32
floating-point registers (FPRs) and the Floating-Point
Status and Control Register (FPSCR) with the float-
ing-point (BFP) facility. However, the interpretation of
data formats in the FPRs, and the meaning of some
control and status bits in the FPSCR are different
between the BFP and DFP facilities.

The DFP facility also shares the Condition Register
(CR) with the fixed-Point facility, the BFP faciltiy, and
the vector facility.

The DFP facility supports three DFP data formats: DFP
Short (single precision), DFP Long (double precision),
and DFP Extended (quad precision). Most operations
are performed on DFP Long or DFP Extended format
directly. Support for DFP Short is limited to conversion
to and from DFP Long. Some DFP instructions operate
on other data types, including signed or unsigned
binary fixed-point data, and signed or unsigned decimal
data.

DFP instructions are provided to perform arithmetic,
compare, test, quantum-adjustment, conversion, and
format operations on operands held in FPRs or FPR
pairs.

 Arithmetic instructions

These instructions perform addition, subtraction,
multiplication, and division operations.

 Compare instructions

These instructions perform a comparison opera-
tion on the numerical value of two DFP operands.

 Test instructions

These instructions test the data class, the data
group, the exponent, or the number of significant
digits of a DFP operand.

 Quantum-adjustment instructions

These instructions convert a DFP number to a
result in the form that has the designated expo-
nent, which may be explicitly or implicitly specified.

 Conversion instructions

These instructions perform conversion between
different data formats or data types.

 Format instructions

These instructions facilitate composing or decom-
posing a DFP operand.

These instructions are described in Section 5.6 “DFP
Instruction Descriptions” on page 205.

The three DFP data formats allow finite numbers to be
represented with different precision and ranges. Spe-
cial codes are also provided to represent +Infinity, -Infin-
ity, Quiet NaN (Not-a-Number), and Signaling NaN.
Operations involving infinities produce results obeying
traditional mathematical conventions. NaNs have no
mathematical interpretation. The encoding of NaNs
provides a diagnostic information field. This diagnostic
field may be used to indicate such things as the source
of an uninitialized variable or the reason an invalid
result was produced.

The DFP processor recognizes a set of DFP excep-
tions which are indicated via bits set in the FPSCR.
Additionally, the DFP exception actions depend on the
setting of the various exception enable bits in the
FPSCR.
Chapter 5. Decimal Floating-Point 187

Version 3.1
The following DFP exceptions are detected by the DFP
processor. The exception status bits in the FPSCR are
indicated in parentheses.

 Invalid Operation Exception (VX)
SNaN (VXSNAN)
∞ - ∞ (VXISI)
∞ ÷ ∞ (VXIDI)
0 ÷ 0 (VXZDZ)
∞ × 0 (VXIMZ)
Invalid Compare (VXVC)
Invalid conversion (VXCVI)

 Zero Divide Exception (ZX)
 Overflow Exception (OX)
 Underflow Exception (UX)
 Inexact Exception (XX)

Each DFP exception and each category of Invalid
Operation Exception has an exception status bit in the
FPSCR. In addition, each of the five DFP exceptions
has a corresponding enable bit in the FPSCR. These
enable bits enable or disable the invocation of the sys-
tem floating-point enabled exception error handler, and
may affect the setting of some exception status bits in
the FPSCR.

The usage of these bits by the DFP facility differs from
the usage by the BFP facility. Section 5.5.10 “DFP
Exceptions” on page 197 provides a detailed discus-
sion of DFP exceptions, including the effects of the
enable bits.

5.2 DFP Register Handling
The following sections describe first how the float-
ing-point registers are utilized by the DFP facility. The
subsequent section covers the DFP usage of CR and
FPSCR.

5.2.1 DFP Usage of Float-
ing-Point Registers
The DFP facility shares the same 32 64-bit FPRs with
the BFP facility. Like the FP instructions, DFP instruc-
tions also use 5-bit fields for designating the FPRs to
hold the source or target operands.

When data in DFP Short format is held in a FPR, it
occupies the rightmost 32 bits of the FPR. The Load
Floating-Point as Integer Word Algebraic instruction is
provided to load the rightmost 32 bits of a FPR with a
single-word data from storage. The Store Float-
ing-Point as Integer Word instruction is available to
store the rightmost 32 bits of a FPR to a storage loca-
tion.

Data in DFP Long format, 64-bit binary fixed-point val-
ues, or 64-bit BCD values is held in a FPR using all 64
bits. Data of 64 bits may be loaded from storage via any
of the Load Floating-Point Double instructions and

stored via any of the Store Floating-Point Double
instructions.

Data in DFP Extended format or 128-bit BCD values is
held in an even-odd FPR pair using all 128 bits. Data of
128 bits must be loaded into the desired even-odd pair
of floating-point registers using an appropriate
sequence of the Load Floating-Point Double instruc-
tions and stored using an appropriate sequence of the
Store Floating-Point Double instructions.

Data used as a source operand by any Decimal Float-
ing-Point instruction that was produced, either directly
or indirectly, by a Load Floating-Point Single instruc-
tion, a Floating Round to Single-Precision instruction,
or a binary floating-point single-precision arithmetic
instruction is boundedly undefined.

When an even-odd FPR pair is used to hold a 128-bit
operand, the even-numbered FPR is used to hold the
leftmost doubleword of the operand and the next
higher-numbered FPR is used to hold the rightmost
doubleword. A DFP instruction designating an
odd-numbered FPR for a 128-bit operand is an invalid
instruction form.

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:28 Reserved

29:31 DFP Rounding Control (DRN)
See Section 5.5.2, “Rounding Mode Specifica-
tion” on page 195.

000 Round to Nearest, Ties to Even
001 Round toward Zero
010 Round toward +Infinity
011 Round toward -Infinity
100 Round to Nearest, Ties away from 0
101 Round to Nearest, Ties toward 0
110 Round to away from Zero
111 Round to Prepare for Shorter Preci-

sion

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that instruc-
tion causes any of the floating-point exception
bits in the FPSCR to change from 0 to 1.

The Floating-Point Move instructions can be used
to move operands between FPRs.

FPSCR28 is reserved for extension of the
DRN field, therefore DRN may be set using
the mtfsfi instruction to set the rounding
mode.

Programming Note

Programming Note
Power ISA™ I188

Version 3.1
mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1
can alter FX explicitly.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FEX explicitly.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter VX explicitly.

35 Floating-Point Overflow Exception (OX)See
Section 5.5.10.3, “Overflow Exception” on
page 201.

36 Floating-Point Underflow Exception (UX)
See Section 5.5.10.4, “Underflow Exception”
on page 201.

37 Floating-Point Zero Divide Exception (ZX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 200.

38 Floating-Point Inexact Exception (XX)
See Section 5.5.10.5, “Inexact Exception” on
page 202.

XX is a sticky version of FI (see below). Thus
the following rules completely describe how XX
is set by a given instruction.

 If the instruction affects FI, the new
value of XX is obtained by ORing the
old value of XX with the new value of
FI.

 If the instruction does not affect FI, the
value of XX is unchanged.

39 Floating-Point Invalid Operation Excep-
tion (SNaN) (VXSNAN)
See Section 5.5.10.1, “Invalid Operation
Exception” on page 199.

40 Floating-Point Invalid Operation Excep-
tion (Infinity - Infinity) (VXISI)
See Section 5.5.10.1.

41 Floating-Point Invalid Operation Excep-
tion (Infinity ÷ Infinity) (VXIDI)
See Section 5.5.10.1.

142 Floating-Point Invalid Operation Excep-
tion (Zero ÷ Zero) (VXZDZ)
See Section 5.5.10.1.

43 Floating-Point Invalid Operation Excep-
tion (Infinity × Zero) (VXIMZ)
See Section 5.5.10.1.

44 Floating-Point Invalid Operation Excep-
tion (Invalid Compare) (VXVC)
See Section 5.5.10.1.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction
during rounding. See Section 5.5.1, “Round-
ing” on page 194. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 5.5.1. This
bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.

47:51 Floating-Point Result Flags (FPRF)
This field is set as described below. For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instruc-
tions may set this bit with the FPCC bits, to
indicate the class of the result as shown in
Figure 58 on page 190.

48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare and DFP Test instruc-
tions set one of the FPCC bits to 1 and the other
three FPCC bits to 0. Arithmetic, rounding, and
conversion instructions may set the FPCC bits
with the C bit, to indicate the class of the result
as shown in Figure 58 on page 190. Note that
in this case the high-order three bits of the
FPCC retain their relational significance indicat-
ing that the value is less than, greater than, or
equal to zero.

48 Floating-Point Less Than or Negative (FL or
<)

49 Floating-Point Greater Than or Positive (FG
or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Excep-
tion (Software Request) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See
Section 5.5.10.1, “Invalid Operation Excep-
tion” on page 199.

54 Neither used nor changed by DFP.
Chapter 5. Decimal Floating-Point 189

Version 3.1

55 Floating-Point Invalid Operation Excep-
tion (Invalid Conversion) (YC)
See Section 5.5.10.1.

56 Floating-Point Invalid Operation Excep-
tion Enable (FEX)
See Section 5.5.10.1.

57 Floating-Point Overflow Exception Enable
(FEX)
See Section 5.5.10.3, “Overflow Exception”
on page 201.

58 Floating-Point Underflow Exception
Enable (FEX)
See Section 5.5.10.4, “Underflow Exception”
on page 201.

59 Floating-Point Zero Divide Exception
Enable (FEX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 200.

60 Floating-Point Inexact Exception Enable
(FEX)
See Section 5.5.10.5, “Inexact Exception” on
page 202

61 Reserved (not used by FEX)

62:63 Binary Floating-Point Rounding Control
(FEX)
See Section 5.5.1, “Rounding” on page 194.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Figure 58. Floating-Point Result Flags

5.3 DFP Support for Non-DFP
Data Types
In addition to the DFP data types, the DFP processor
provides limited support for the following non-DFP data
types: signed or unsigned binary fixed-point data, and
signed or unsigned decimal data.

In unsigned binary fixed-point data, all bits are used to
express the absolute value of the number. For signed
binary fixed-point data, the leftmost bit represents the
sign, which is followed by the numeric field. Positive
numbers are represented in true binary notation with
the sign bit set to zero. When the value is zero, all bits
are zeros, including the sign bit. Negative numbers are
represented in two’s complement binary notation with a
one in the sign-bit position.

For decimal data, each byte contains a pair of four-bit
nibbles; each four-bit nibble contains a
binary-coded-decimal (BCD) code. There are two kinds
of BCD codes: digit code and sign code. For unsigned
decimal data, all nibbles contain a digit code (D) as
shown in Figure 59

Figure 59. Format for Unsigned Decimal Data

For signed decimal data, the rightmost nibble contains
a sign code (S) and all other nibbles contain a digit code
as shown in Figure 60.

Figure 60. Format for Signed Decimal Data

The decimal digits 0-9 have the binary encoding
0000-1001. The preferred plus-sign codes are 1100 and
1111. The preferred minus sign code is 1101. These are
the sign codes generated for the results of the Decode
DPD To BCD instruction. A selection is provided by this
instruction to specify which of the two preferred plus
sign codes is to be generated. Alternate sign codes are
also recognized as valid in the sign position: 1010 and
1110 are alternate sign codes for plus, and 1011 is an
alternate sign code for minus. Alternate sign codes are
accepted for any source operand, but are not gener-
ated as a result by the instruction. When an invalid digit
or sign code is detected by the Encode BCD To DPD
instruction, an invalid-operation exception occurs. A

Although the architecture does not pro-
vide a DFP square root instruction, if soft-
ware simulates such an instruction, it
should set bit 54 whenever the source
operand of the square root function is
invalid.

Result
Flags Result Value Class

C < > = ?
 0 0 0 0 1 Signaling NaN (DFP only)
 1 0 0 0 1 Quiet NaN
 0 1 0 0 1 - Infinity
 0 1 0 0 0 - Normal Number
 1 1 0 0 0 - Subnormal Number
 1 0 0 1 0 - Zero
 0 0 0 1 0 + Zero
 1 0 1 0 0 + Subnormal Number
 0 0 1 0 0 + Normal Number
 0 0 1 0 1 + Infinity

Programming Note

D D D D . . . D D D D

D D D D . . . D D D S
Power ISA™ I190

Version 3.1
summary of digit and sign codes are provided in
Figure 61.

Figure 61. Summary of BCD Digit and Sign Codes

5.4 DFP Number Representation
A DFP finite number consists of three components: a
sign bit, a signed exponent, and a significand. The
signed exponent is a signed binary integer. The signifi-
cand consists of a number of decimal digits, which are
to the left of the implied decimal point. The rightmost
digit of the significand is called the units digit. The
numerical value of a DFP finite number is represented
as (-1)sign × significand × 10exponent and the unit
value of this number is (1 × 10exponent), which is called
the quantum.

DFP finite numbers are not normalized. This allows
leading zeros and trailing zeros to exist in the signifi-
cand. This unnormalized DFP number representation
allows some values to have redundant forms; each
form represents the DFP number with a different com-
bination of the significand value and the exponent
value. For example, 1000000 × 105 and 10 × 1010 are
two different forms of the same numerical value. A form
of this number representation carries information about
both the numerical value and the quantum of a DFP
finite number.

The significant digits of a DFP finite number are the dig-
its in the significand beginning with the leftmost non-
zero digit and ending with the units digit.

5.4.1 DFP Data Format
DFP numbers and NaNs may be represented in FPRs
in any of the three data formats: DFP Short, DFP Long,
or DFP Extended. The contents of each data format
represent encoded information. Special codes are
assigned to NaNs and infinities. Different formats sup-
port different sizes in both significand and exponent.
Arithmetic, compare, test, quantum-adjustment, and
format instructions are provided for DFP Long and DFP
Extended formats only.

The sign is encoded as a one bit binary value. Signifi-
cand is encoded as an unsigned decimal integer in two
distinct parts. The leftmost digit (LMD) of the significand
is encoded as part of the combination field; the remain-
ing digits of the significand are encoded in the trailing
significand field. The exponent is contained in the com-
bination field in two parts. However, prior to encoding,
the exponent is converted to an unsigned binary value
called the biased exponent by adding a bias value
which is a constant for each format. The two leftmost
bits of the biased exponent are encoded with the left-
most digit of the significand in the leftmost bits of the
combination field. The rest of the biased exponent
occupies the remaining portion of the combination field.

5.4.1.1 Fields Within the Data Format
The DFP data representation comprises three fields, as
diagrammed below for each of the three formats:

The fields are defined as follows:

Sign bit (S)
The sign bit is in bit 0 of each format, and is zero for
plus and one for minus.

Combination field (G)
As the name implies, this field provides a combination
of the exponent and the left-most digit (LMD) of the sig-
nificand, for finite numbers, or provides a special code

Binary
Code

Recognized As
Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 Invalid Plus (preferred; option 1)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (preferred; option 2)

S G T
0 1 12 31
Figure 62. DFP Short format

S G T
0 1 14 63
Figure 63. DFP Long format

S G T
0 1 18 63

T (continued)
64 127
Figure 64. DFP Extended format
Chapter 5. Decimal Floating-Point 191

Version 3.1
for denoting the value as either a Not-a-Number or an
Infinity.

The first 5 bits of the combination field contain the
encoding of NaN or infinity, or the two leftmost bits of
the biased exponent and the leftmost digit (LMD) of the
significand. The following tables show the encoding:

Figure 65. Encoding of the G field for Special
Symbols

Figure 66. Encoding of bits 0:4 of the G field for
Finite Numbers

For DFP finite numbers, the rightmost N-5 bits of the
N-bit combination field contain the remaining bits of the
biased exponent. For NaNs, bit 5 of the combination
field is used to distinguish a Quiet NaN from a Signal-
ing NaN; the remaining bits in a source operand are
ignored and they are set to zeros in a target operand by
most operations. For infinities, the rightmost N-5 bits of
the N-bit combination field of a source operand are
ignored and they are set to zeros in a target operand by
most operations.

Trailing Significand field (T)
For DFP finite numbers, this field contains the remain-
ing significand digits. For NaNs, this field may be used
to contain diagnostic information. For infinities, con-
tents in this field of a source operand are ignored and
they are set to zeros in a target operand by most opera-
tions. The trailing significand field is a multiple of 10-bit
blocks. The multiple depends on the format. Each
10-bit block is called a declet and represents three dec-
imal digits, using the Densely Packed Decimal (DPD)
encoding defined in Appendix B.

5.4.1.2 Summary of DFP Data Formats
The properties of the three DFP formats are summa-
rized in the following table:.

Figure 67. Summary of DFP Formats

G0:4 Description
11111 NaN
11110 Infinity

All others Finite Number (see Figure 66)

LMD
Leftmost 2-bits of biased exponent

00 01 10
0 00000 01000 10000

1 00001 01001 10001

2 00010 01010 10010

3 00011 01011 10011

4 00100 01100 10100

5 00101 01101 10101

6 00110 01110 10110

7 00111 01111 10111

8 11000 11010 11100

9 11001 11011 11101

Format
DFP Short DFP Long DFP Extended

Widths (bits):
Format 32 64 128

Sign (S) 1 1 1

Combination (G) 11 13 17

Trailing Significand (T) 20 50 110

Exponent:
Maximum biased 191 767 12,287

Maximum (Xmax) 90 369 6111

Minimum (Xmin) -101 -398 -6176

Bias 101 398 6176

Precision (p) (digits) 7 16 34

Magnitude:
Maximum normal number (Nmax) (107 - 1) × 1090 (1016 - 1) × 10369 (1034 - 1) × 106111

Minimum normal number (Nmin) 1 × 10-95 1 × 10-383 1 × 10-6143

Minimum subnormal number (Dmin) 1 × 10-101 1 × 10-398 1 × 10-6176
Power ISA™ I192

Version 3.1
5.4.1.3 Preferred DPD Encoding
Execution of DFP instructions decodes source oper-
ands from DFP data formats to an internal format for
processing, and encodes the operation result before
the final result is returned as the target operand.

As part of the decoding process, declets in the trailing
significand field of source operands are decoded to
their corresponding BCD digit codes using the
DPD-to-BCD decoding algorithm. As part of the encod-
ing process, BCD digit codes to be stored into the
trailing significand field of the target operand are
encoded into declets using the BCD-to-DPD encoding
algorithm. Both the decoding and encoding algorithms
are defined in Appendix B.

As explained in Appendix B, there are eight 3-digit dec-
imal values that have redundant DPD codes and one
preferred DPD code. All redundant DPD codes are rec-
ognized in source operands for the associated 3-digit
decimal number. DFP operations will always generate
the preferred DPD codes for the trailing significand field
of the target operand.

5.4.2 Classes of DFP Data
There are six classes of DFP data, which include
numerical and nonnumeric entities. The numerical enti-
ties include zero, subnormal number, normal number,
and infinity data classes. The nonnumeric entities
include quiet and signaling NaNs data classes. The
value of a DFP finite number, including zero, subnormal
number, and normal number, is a quantization of the
real number based on the data format. The Test Data
Class instruction may be used to determine the class of
a DFP operand. In general, an operation that returns a
DFP result sets the FPRF field to indicate the data class
of the result.

The following tables show the value ranges for
finite-number data classes, and the codes for NaNs
and infinities.

Figure 68. Value Ranges for Finite Number Data
Classes

Figure 69. Encoding of NaN and Infinity Data
Classes

Zeros
Zeros have a zero significand and any representable
value in the exponent. A +0 is distinct from -0, and
zeros with different exponents are distinct, except that
comparison treats them as equal.

Subnormal Numbers
Subnormal numbers have values that are smaller than
Nmin and greater than zero in magnitude.

Normal Numbers
Normal numbers are nonzero finite numbers whose
magnitude is between Nmin and Nmax inclusively.

Infinities
Infinities are represented by 0b11110 in the leftmost 5
bits of the combination field. When an operation is
defined to generate an infinity as the result, a default
infinity is sometimes supplied. A default infinity has all
remaining bits in the combination field and trailing sig-
nificand field set to zeros.

When infinities are used as source operands, only the
leftmost 5 bits of the combination field are interpreted
(i.e., 0b11110 indicates the value is an infinity). The trail-
ing significand field of infinities is usually ignored. For
generated infinities, the leftmost 5 bits of the combina-
tion field are set to 0b11110 and all remaining combina-
tion bits are set to zero.

Infinities can participate in most arithmetic operations
and give a consistent result. In comparisons, any
+Infinity compares greater than any finite number, and
any -Infinity compares less than any finite number. All
+Infinity are compared equal and all -Infinity are com-
pared equal.

Signaling and Quiet NaNs
There are two types of Not-a-Numbers (NaNs), Signal-
ing (SNaN) and Quiet (QNaN).

0b111110 in the leftmost 6 bits of the combination field
indicates a Quiet NaN, whereas 0b111111 indicates a
Signaling NaN.

A special QNaN is sometimes supplied as the default
QNaN for a disabled invalid-operation exception; it has
a plus sign, the leftmost 6 bits of the combination field
set to 0b111110 and remaining bits in the combination
field and the trailing significand field set to zero.

Normally, source QNaNs are propagated during opera-
tions so that they will remain visible at the end. When a

Data Class Sign Magnitude
Zero ± 0*
Subnormal ± Dmin ≤ |X| < Nmin
Normal ± Nmin ≤ |Y| ≤ Nmax
* The significand is zero and the exponent is any rep-

resentable value

 Data Class S G T
+Infinity 0 11110xxx . . . xxx xxx . . . xxx
–Infinity 1 11110xxx . . . xxx xxx . . . xxx
Quiet NaN x 111110xx . . . xxx xxx . . . xxx
Signaling NaN x 111111xx . . . xxx xxx . . . xxx
x Don’t care
Chapter 5. Decimal Floating-Point 193

Version 3.1
QNaN is propagated, the sign is preserved, the decimal
value of the trailing significand field is preserved but
reencoded using the preferred DPD codes, and the
contents in the rightmost N-6 bits of the combination
field set to zero, where N is the width of the combination
field for the format.

A source SNaN generally causes an invalid-operation
exception. If the exception is disabled, the SNaN is
converted to the corresponding QNaN and propagated.
The primary encoding difference between an SNaN
and a QNaN is that bit 5 of an SNaN is 1 and bit 5 of a
QNaN is 0. When an SNaN is propagated as a QNaN,
bit 5 is set to 0, and, just as with QNaN proagation, the
sign is preserved, the decimal value of the trailing sig-
nificand field is preserved but reencoded using the pre-
ferred DPD codes, and the contents in the rightmost
N-6 bits of the combination field set to zero, where N is
the width of the combination field for the format. For
some format-conversion instructions, a source SNaN
does not cause an invalid-operation exception, and an
SNaN is returned as the target operand.

For instructions with two source NaNs and a NaN is to
be propagated as the result, do the following.
 If there is a QNaN in FRA and an SNaN in FRB, the

SNaN in FRB is propagated.
 Otherwise, propagate the NaN is FRA.

5.5 DFP Execution Model
DFP operations are performed as if they first produce
an intermediate result correct to infinite precision and
with unbounded range. The intermediate result is then
rounded to the destination’s precision according to one
of the eight DFP rounding modes. If the rounded result
has only one form, it is delivered as the final result; if
the rounded result has redundant forms, then an ideal
exponent is used to select the form of the final result.
The ideal exponent determines the form, not the value,
of the final result. (See Section 5.5.3 “Formation of
Final Result” on page 195.)

5.5.1 Rounding
Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit the destination’s pre-
cision. The destination’s precision of an operation
defines the set of permissible resultant values. For
most operations, the destination’s precision is the tar-
get-format precision and the permissible resultant val-
ues are those values representable in the target format.
For some special operations, the destination precision
is constrained by both the target format and some addi-
tional restrictions, and the permissible resultant values
are a subset of the values representable in the target
format.

Rounding sets FPSCR bits FR and FI. When an inexact
exception occurs, FI is set to one; otherwise, FI is set to

zero. When an inexact exception occurs and if the
rounded result is greater in magnitude than the inter-
mediate result, then FR is set to one; otherwise, FR is set
to zero. The exception is the Round to FP Integer
Without Inexact instruction, which always sets FR and
FI to zero. Rounding may cause an overflow exception
or underflow exception; it may also cause an inexact
exception.

Refer to Figure 70 below for rounding. Let Z be the
intermediate result of a DFP operation. Z may or may
not fit in the destination’s precision. If Z is exactly one of
the permissible representable resultant values, then the
final result in all rounding modes is Z. Otherwise, either
Z1 or Z2 is chosen to approximate the result, where Z1
and Z2 are the next larger and smaller permissible
resultant values, respectively.

Figure 70. Rounding

Round to Nearest, Ties to Even
Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the one whose units digit would have
been even in the form with the largest common quan-
tum of the two permissible resultant values. However,
an infinitely precise result with magnitude at least
(Nmax + 0.5Q(Nmax))

 is rounded to infinity with no change
in sign; where Q(Nmax) is the quantum of Nmax.

Round toward 0
Choose the smaller in magnitude (Z1 or Z2).

Round toward +∞
Choose Z1.

Round toward -∞
Choose Z2.

Round to Nearest, Ties away from 0
Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the larger in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude at
least (Nmax + 0.5Q(Nmax)) is rounded to infinity with no
change in sign; where Q(Nmax) is the quantum of Nmax.

Round to Nearest, Ties toward 0
Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the smaller in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude
greater than (Nmax + 0.5Q(Nmax)) is rounded to infinity

Negative values Positive Values

0

 By increasing |Z|
Infinitely precise value

 By decreasing |Z|

Z2
Z

Z1 Z2 Z1
Z

Power ISA™ I194

Version 3.1
with no change in sign; where Q(Nmax) is the quantum of
Nmax.

Round away from 0
Choose the larger in magnitude (Z1 or Z2).

Round to prepare for shorter precision
Choose the smaller in magnitude (Z1 or Z2). If the
selected value is inexact and the units digit of the
selected value is either 0 or 5, then the digit is incre-
mented by one and the incremented result is delivered.
In all other cases, the selected value is delivered.
When a value has redundant forms, the units digit is
determined by using the form that has the smallest
exponent.

5.5.2 Rounding Mode Specifica-
tion
Unless otherwise specified in the instruction definition,
the rounding mode used by an operation is specified in
the DFP rounding control (DRN) field of the FPSCR. The
eight DFP rounding modes are encoded in the DRN field
as specified in the table below.

Figure 71. Encoding of DFP Rounding-Mode
Control (DRN)

For the quantum-adjustment, a 2-bit immediate field,
called RMC (Rounding Mode Control), in the instruction
specifies the rounding mode used. The RMC field may
contain a primary encoding or a secondary encoding.
For Quantize, Quantize Immediate, and Reround, the
RMC field contains the primary encoding. For Round
to FP Integer the field contains either encoding,
depending on the setting of a RMC-encoding-selection
bit. The following tables define the primary encoding
and the secondary encoding.

Figure 72. Primary Encoding of Rounding-Mode
Control

Figure 73. Secondary Encoding of Rounding-Mode
Control

5.5.3 Formation of Final Result
An ideal exponent is defined for each DFP instruction
that returns a DFP data operand.

5.5.3.1 Use of Ideal Exponent
For all DFP operations,
 if the rounded intermediate result has only one

form, then that form is delivered as the final result.
 if the rounded intermediate result has redundant.

forms and is exact, then the form with the expo-
nent closest to the ideal exponent is delivered.

 if the rounded intermediate result has redundant
forms and is inexact, then the form with the small-
est exponent is delivered.

The following table specifies the ideal exponent for
each instruction.

Figure 74. Summary of Ideal Exponents

DRN Rounding Mode
000 Round to Nearest, Ties to Even
001 Round toward 0
010 Round toward +Infinity
011 Round toward -Infinity
100 Round to Nearest, Ties away from 0
101 Round to Nearest, Ties toward 0
110 Round away from 0
111 Round to Prepare for Shorter Precision

Primary
RMC Rounding Mode

00 Round to nearest, ties to even
01 Round toward 0
10 Round to nearest, ties away from 0
11 Round according to DRN

Secondary
RMC Rounding Mode

00 Round to + ∞
01 Round to - ∞
10 Round away from 0
11 Round to nearest, ties toward 0

Operations Ideal Exponent
Add min(E(FRA), E(FRB))

Subtract min(E(FRA), E(FRB))

Multiply E(FRA) + E(FRB)

Divide E(FRA) - E(FRB)

Quantize-Immediate See Instruction Description
Quantize E(FRA)

Reround See Instruction Description
Round to FP Integer max(0, E(FRA))

Convert to DFP Long E(FRA)

Convert to DFP
Extended

E(FRA)

Round to DFP Short E(FRA)

Round to DFP Long E(FRA)

Convert from Fixed 0

Encode BCD to DPD 0

Insert Biased Expo-
nent

E(FRA)

Notes:
 E(x) - exponent of the DFP operand in register x.
Chapter 5. Decimal Floating-Point 195

Version 3.1
5.5.4 Arithmetic Operations
Four arithmetic operations are provided: Add, Subtract,
Multiply, and Divide.

5.5.4.1 Sign of Arithmetic Result
The following rules govern the sign of an arithmetic
operation when the operation does not yield an excep-
tion. They apply even when the operands or results are
zeros or infinities.

 The sign of the result of an add operation is the
sign of the source operand having the larger abso-
lute value. If both source operands have the same
sign, the sign of the result of an add operation is
the same as the sign of the source operands.
When the sum of two operands with opposite signs
is exactly zero, the sign of the result is positive in
all rounding modes except Round toward -∞, in
which case the sign is negative.

 The sign of the result of the subtract operation x - y
is the same as the sign of the result of the add
operation x + (-y).

 The sign of the result of a multiply or divide opera-
tion is the exclusive-OR of the signs of the source
operands.

5.5.5 Compare Operations
Two sets of instructions are provided for comparing
numerical values: Compare Ordered and Compare
Unordered. In the absence of NaNs, these instructions
work the same. These instructions work differently
when either of the followings is true:

1. At least one source operand of the instruction is an
SNaN and the invalid-operation exception is dis-
abled.

2. When there is no SNaN in any source operand, at
least one source operand of the instruction is a
QNaN

In case 1, Compare Unordered recognizes an
invalid-operation exception and sets the VXSNAN flag,
but Compare Ordered recognizes the exception and
sets both the VXSNAN and VXVC flags. In case 2, Com-
pare Unordered does not recognize an exception, but
Compare Ordered recognizes an invalid-operation
exception and sets the VXVC flag.

For finite numbers, comparisons are performed on val-
ues, that is, all redundant forms of a DFP number are
treated equal.

Comparisons are always exact and cannot cause an
inexact exception.

Comparison ignores the sign of zero, that is, +0 equals
-0.

Infinities with like sign compare equal, that is, +∞
equals +∞, and -∞ equals -∞.

A NaN compares as unordered with any other operand,
whether a finite number, an infinity, or another NaN,
including itself.

Execution of a compare instruction always completes,
regardless of whether any DFP exception occurs or
not, and whether the exception is enabled or not.

5.5.6 Test Operations
Four kinds of test operations are provided: Test Data
Class, Test Data Group, Test Exponent, and Test Sig-
nificance.

The Test Data Class instruction examines the contents
of a source operand and determines if the operand is
one of the specified data classes. The test result and
the sign of the source operand are indicated in the FPCC
field and CR field BF.

The Test Data Group instruction examines the contents
of a source operand and determines if the operand is
one of the specified data groups. The test result and
the sign of the source operand are indicated in the FPCC
field and CR field BF.

The Test Exponent instruction compares the exponent
of the two source operands. The test operation ignores
the sign and significand of operands. Infinities compare
equal, and NaNs compare equal. The test result is indi-
cated in the FPCC field and CR field BF.

The Test Significance instruction compares the number
of significant digits of one source operand with the ref-
erenced number of significant digits in another source
operand. The test result is indicated in the FPCC field
and CR field BF.

Execution of a test instruction does not cause any DFP
exception.

5.5.7 Quantum Adjustment Opera-
tions
Four kinds of quantum-adjustment operations are pro-
vided: Quantize, Quantize Immediate, Reround, and
Round To FP Integer. Each of them has an immediate
field which specifies whether the rounding mode in
FPSCR or a different one is to be used.

The Quantize instruction is used to adjust a DFP num-
ber to the form that has the specified target exponent.
The Quantize Immediate instruction is similar to the
Quantize instruction, except that the target exponent is
specified in a 5-bit immediate field as a signed binary
integer and has a limited range.

The Reround instruction is used to simulate a DFP
operation of a precision other than that of DFP Long or
DFP Extended. For the Reround instruction to produce
Power ISA™ I196

Version 3.1
a result which accurately reflects that which would have
resulted from a DFP operation of the desired precision
d in the range {1: 33} inclusively, the following condi-
tions must be met:

 The precision of the preceding DFP operation
must be at least one digit larger than d.

 The rounding mode used by the preceding DFP
operation must be round-to-pre-
pare-for-shorter-precision.

The Round To FP Integer instruction is used to round a
DFP number to an integer value of the same format.
The target exponent is implicitly specified, and is
greater than or equal to zero.

5.5.8 Conversion Operations
There are two kinds of conversion operations: data-for-
mat conversion and data-type conversion.

5.5.8.1 Data-Format Conversion
The instructions Convert To DFP Long and Convert To
DFP Extended convert DFP operands to wider formats;
the instructions Round To DFP Short and Round To
DFP Long convert DFP operands to narrower formats.

When converting a finite number to a wider format, the
result is exact. When converting a finite number to a
narrower format, the source operand is rounded to the
target-format precision, which is specified by the
instruction, not by the target register size.

When converting a finite number, the ideal exponent of
the result is the source exponent.

Conversion of an infinity or NaN to a different format
does not preserve the source combination field. Let N
be the width of the target format’s combination field.

 When the result is an infinity or a QNaN, the con-
tents of the rightmost N-5 bits of the N-bit target
combination field are set to zero.

 When the result is an SNaN, bit 5 of the target for-
mat’s combination field is set to one and the right-
most N-6 bits of the N-bit target combination field
are set to zero.

When converting a NaN to a wider format or when con-
verting an infinity from DFP Short to DFP Long, digits in
the source trailing significand field are reencoded using
the preferred DPD codes with sufficient zeros
appended on the left to form the target trailing signifi-
cand field. When converting a NaN to a narrower for-
mat or when converting an infinity from DFP Long to
DFP Short, the appropriate number of leftmost digits of
the source trailing significand field are removed and the
remaining digits of the field are reencoded using the
preferred DPD codes to form the target trailing signifi-
cand field.

When converting an infinity between DFP Long and
DFP Extended, a default infinity with the same sign is
produced.

When converting an SNaN between DFP Short and
DFP Long, it is converted to an SNaN without causing
an invalid-operation exception. When converting an
SNaN between DFP Long and DFP Extended, the
invalid-operation exception occurs; if the invalid-opera-
tion exception is disabled, the result is converted to the
corresponding QNaN.

5.5.8.2 Data-Type Conversion
The instructions Convert From Fixed and Convert To
Fixed are provided to convert a number between the
DFP data type and the signed 64-bit binary-integer data
type.

Conversion of a signed 64-bit binary integer to a DFP
Extended number is always exact.

Conversion of a DFP number to a signed 64-bit binary
integer results in an invalid-operation exception when
the converted value does not fit into the target format,
or when the source operand is an infinity or NaN. When
the exception is disabled, the most positive integer is
returned if the source operand is a positive number or
+∞, and the most negative integer is returned if the
source operand is a negative number, -∞, or NaN.

5.5.9 Format Operations
The format instructions are provided to facilitate com-
posing or decomposing a DFP number, and consist of
Encode BCD To DPD, Decode DPD To BCD, Extract
Biased Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right Imme-
diate. A source operand of SNaN does not cause an
invalid-operation exception, and an SNaN may be pro-
duced as the target operand.

5.5.10 DFP Exceptions
This architecture defines the following DFP exceptions:

 Invalid Operation Exception
SNaN
∞ - ∞
∞ ÷ ∞
0 ÷ 0
∞ × 0
Invalid Compare
Invalid Conversion

 Zero Divide Exception
 Overflow Exception
 Underflow Exception
 Inexact Exception

These exceptions may occur during execution of a DFP
instruction.
Chapter 5. Decimal Floating-Point 197

Version 3.1
Each DFP exception, and each category of the Invalid
Operation Exception, has an exception status bit in the
FPSCR. In addition, each DFP exception has a corre-
sponding enable bit in the FPSCR. The exception sta-
tus bit indicates occurrence of the corresponding
exception. If an exception occurs, the corresponding
enable bit governs the result produced by the instruc-
tion and, in conjunction with the FE0 and FE1 bits (see
the discussion of FE0 and FE1 below), whether and how
the system floating-point enabled exception error han-
dler is invoked. (In general, the enabling specified by
the enable bit is of invoking the system error handler,
not of permitting the exception to occur. The occur-
rence of an exception depends only on the instruction
and its source operands, not on the setting of any con-
trol bits. The only deviation from this general rule is that
the occurrence of an Underflow Exception may depend
on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:

 Inexact Exception may be set with Overflow
Exception.

 Inexact Exception may be set with Underflow
Exception.

 Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions

 Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Conver-
sion) for Convert To Fixed instructions.

When an exception occurs the instruction execution
may be completed or partially completed, depending on
the exception and the operation.

For all instructions, except for the Compare and Test
instructions, the following exceptions cause the instruc-
tion execution to be partially completed. That is, setting
of CR field 1(when Rc=1) and exception status flags is
performed, but no result is stored into the target FPR or
FPR pair. For Compare and Test instructions, instruc-
tion execution is always completed, regardless of
whether any DFP exception occurs or not, and whether
the exception is enabled or not.

 Enabled Invalid Operation
 Enabled Zero Divide

For the remaining kinds of exceptions, instruction exe-
cution is completed, a result, if specified by the instruc-
tion, is generated and stored into the target FPR or
FPR pair, and appropriate status flags are set. The
result may be a different value for the enabled and dis-
abled conditions for some of these exceptions. The
kinds of exceptions that deliver a result in target FPR
are the following:

 Disabled Invalid Operation
 Disabled Zero Divide
 Disabled Overflow
 Disabled Underflow

 Disabled Inexact
 Enabled Overflow
 Enabled Underflow
 Enabled Inexact

Subsequent sections define each of the DFP excep-
tions and specify the action that is taken when they are
detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, a FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case: the expecta-
tion is that the exception will be detected by software,
which will revise the result. A FPSCR exception enable
bit of 0 causes generation of the “default result” value
specified for the “trap disabled” (or “no trap occurs” or
“trap is not implemented”) case: the expectation is that
the exception will not be detected by software, which
will simply use the default result. The result to be deliv-
ered in each case for each exception is described in
the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software.
In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to zero and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if DFP exceptions
occur: software can inspect the FPSCR exception bits if
necessary, to determine whether exceptions have
occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to one and
a mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled DFP
exception occurs. The system floating-point enabled
exception error handler is also invoked if a Move To
FPSCR instruction causes an exception bit and the cor-
responding enable bit both to be 1; the Move To
FPSCR instruction is considered to cause the enabled
exception.

The FE0 and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled DFP exception occurs. The loca-
tion of these bits and the requirements for altering them
are described in Book III, Power ISA Operating Envi-
ronment Architecture. (The system floating-point
enabled exception error handler is never invoked
Power ISA™ I198

Version 3.1
because of a disabled DFP exception.) The effects of
the four possible settings of these bits are as follows.

In all cases, the question of whether a DFP result is
stored, and what value is stored, is governed by the
FPSCR exception enable bits, as described in subse-
quent sections, and is not affected by the value of the
FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. (Recall that, for
the two Imprecise modes, the instruction at which the
system floating-point enabled exception error handler
is invoked need not be the instruction that caused the
exception.) The instruction at which the system float-
ing-point enabled exception error handler is invoked
has not been executed unless it is the excepting
instruction, in which case it has been executed if the

exception is not among those listed on page 197 as
suppressed.

 In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

 If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
zero.

 If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to one for those exceptions for
which the system floating-point enabled exception
error handler is to be invoked.

 Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to one.

 Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

5.5.10.1 Invalid Operation Exception

Definition
An Invalid Operation Exception occurs when an oper-
and is invalid for the specified DFP operation. The
invalid DFP operations are:

 Any DFP operation on a signaling NaN (SNaN),
except for Test, Round To DFP Short, Convert To
DFP Long, Decode DPD To BCD, Extract Biased
Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right
Immediate

FE0 FE1 Description
0 0 Ignore Exceptions Mode

DFP exceptions do not cause the system
floating-point enabled exception error
handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In the ignore and both imprecise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

Programming Note
Chapter 5. Decimal Floating-Point 199

Version 3.1
 For add or subtract operations, magnitude subtrac-
tion of infinities (+∞) + (-∞)

 Division of infinity by infinity (∞ ÷ ∞)
 Division of zero by zero (0 ÷ 0)
 Multiplication of infinity by zero (∞ × 0)
 Ordered comparison involving a NaN (Invalid

Compare)
 The Quantize operation detects that the significand

associated with the specified target exponent
would have more significant digits than the tar-
get-format precision

 For the Quantize operation, when one source
operand specifies an infinity and the other speci-
fies a finite number

 The Reround operation detects that the target
exponent associated with the specified target sig-
nificance would be greater than Xmax

 The Encode BCD To DPD operation detects an
invalid BCD digit or sign code

 The Convert To Fixed operation involving a num-
ber too large in magnitude to be represented in the
target format, or involving a NaN.

Action
The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled (VE=1)
and Invalid Operation occurs, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set:
VXSNAN (if SNaN)
VXISI (if ∞ - ∞)
VXIDI (if ∞ ÷ ∞)
VXZDZ (if 0 ÷ 0)
VXIMZ (if ∞ × 0)
VXVC (if invalid comp)
VXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, conversion, or format,

the target FPR is unchanged,
FR and FI are set to zero, and
FPRF is unchanged.

3. If the operation is a compare,
FR, FI, and C are unchanged, and
FPCC is set to reflect unordered.

When Invalid Operation Exception is disabled (VE=0)
and Invalid Operation occurs, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set:
VXSNAN (if SNaN)
VXISI (if ∞ - ∞)
VXIDI (if ∞ ÷ ∞)
VXZDZ (if 0 ÷ 0)
VXIMZ (if ∞ × 0)
VXVC (if invalid comp)
VXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, Round to DFP Long, Convert to DFP
Extended, or format

the target FPR is set to a Quiet NaN
FR and FI are set to zero
FPRF is set to indicate the class of the result

(Quiet NaN)
3. If the operation is a Convert To Fixed

the target FPR is set as follows:
FRT is set to the most positive 64-bit binary
integer if the operand in FRB is a positive or
+∞, and to the most negative 64-bit binary
integer if the operand in FRB is a negative
number, -∞ , or NaN.

FR and FI are set to zero
FPRF is unchanged

4. If the operation is a compare,
FR, FI, and C are unchanged
FPCC is set to reflect unordered

5.5.10.2 Zero Divide Exception

Definition
A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value.

Action
The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (ZE=1) and
Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
ZX  1

2. The target FPR is unchanged
3. FR and FI are set to zero
4. FPRF is unchanged

When Zero Divide Exception is disabled (ZE=0) and
Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
ZE  1

2. The target FPR is set to ±∞, where the sign is
determined by the XOR of the signs of the oper-
ands

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mtfsf, or mtfsb1 instruction that sets
VXSOFT to 1 (Software Request). The purpose of
VXSOFT is to allow software to cause an Invalid
Operation Exception for a condition that is not nec-
essarily associated with the execution of a DFP
instruction. For example, it might be set by a pro-
gram that computes a square root, if the source
operand is negative.

Programming Note
Power ISA™ I200

Version 3.1
3. FR and FI are set to zero
4. FPRF is set to indicate the class and sign of the

result (±∞)

5.5.10.3 Overflow Exception

Definition
An overflow exception occurs whenever the target for-
mat’s largest finite number is exceeded in magnitude
by what would have been the rounded result if the
exponent range were unbounded.

Action
Except for Reround, the following describes the han-
dling of the IEEE overflow exception condition. The
Reround operation does not recognize an overflow
exception condition.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (OE=1) and over-
flow occurs, the following actions are taken:

1. Overflow Exception is set
OX  1

2. The infinitely precise result is divided by 10α. That
is, the exponent adjustment α is subtracted from
the exponent. This is called the wrapped result.
The exponent adjustment for all operations, except
for Round To DFP Short and Round To DFP Long,
is 576 for DFP Long and 9216 for DFP Extended.
For Round To DFP Short and Round To DFP Long,
the exponent adjustment is 192 for the source for-
mat of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of subtracting the exponent adjustment
from the ideal exponent.

5. FPRF is set to indicate the class and sign of the
result (± Normal Number)

When Overflow Exception is disabled (OE=0) and over-
flow occurs, the following actions are taken:

1. Overflow Exception is set
OX  1

2. Inexact Exception is set
XX  1

3. The result is determined by the rounding mode
and the sign of the intermediate result as follows.

Figure 75. Overflow Results When Exception Is
Disabled

4. The result is placed into the target FPR
5. FR is set to one if the returned result is ± ∞, and is

set to zero if the returned result is ±Nmax
6. FI is set to one
7. FPRF is set to indicate the class and sign of the

result (± ∞ or ± Normal number)

5.5.10.4 Underflow Exception

Definition
Except for Reround, the following describes the han-
dling of the IEEE underflow exception condition. The
Reround operation does not recognize an underflow
exception condition.

The Underflow Exception is defined differently for the
enabled and disabled states. However, a tininess con-
dition is recognized in both states when a result com-
puted as though both the precision and exponent range
were unbounded would be nonzero and less than the
target format’s smallest normal number, Nmin, in magni-
tude.

Unless otherwise defined in the instruction description,
an underflow exception occurs as follows:

 Enabled:
When the tininess condition is recognized.

 Disabled:
When the tininess condition is recognized and
when the delivered result value differs from what
would have been computed were both the preci-
sion and the exponent range unbounded.

Rounding Mode

Sign of inter-
mediate result

Plus Minus

Round to Nearest, Ties to Even +∞ -∞
Round toward 0 +Nmax -Nmax

Round toward +∞ + ∞ -Nmax

Round toward - ∞ +Nmax -∞
Round to Nearest, Ties away

from 0
+∞ -∞

Round to Nearest, Ties toward 0 +∞ -∞
Round away from 0 +∞ -∞
Round to prepare for shorter pre-

cision
+Nmax -Nmax
Chapter 5. Decimal Floating-Point 201

Version 3.1
Action
The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (UE=1) and
underflow occurs, the following actions are taken:

1. Underflow Exception is set
UX  1

2. The infinitely precise result is multiplied by 10α.
That is, the exponent adjustment α is added to the
exponent. This is called the wrapped result. The
exponent adjustment for all operations, except for
Round To DFP Short and Round To DFP Long, is
576 for DFP Long and 9216 for DFP Extended. For
Round To DFP Short and Round To DFP Long, the
exponent adjustment is 192 for the source format
of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of adding the exponent adjustment to the
ideal exponent.

5. FPRF is set to indicate the class and sign of the
result (± Normal number)

When Underflow Exception is disabled (UE=0) and
underflow occurs, the following actions are taken:

1. Underflow Exception is set
UX  1

2. The infinitely precise result is rounded to the tar-
get-format precision.

3. The rounded result is returned. If this result has
redundant forms, the result of the form that is clos-
est to the ideal exponent is returned.

4. FPRF is set to indicate the class and sign of the
result (± Normal number, ± Subnormal Number, or
± Zero)

5.5.10.5 Inexact Exception

Definition
Except for Round to FP Integer Without Inexact, the fol-
lowing describes the handling of the IEEE inexact
exception condition. The Round to FP Integer Without
Inexact does not recognize an inexact exception condi-
tion.

An Inexact Exception occurs when either of two condi-
tions occur during rounding:

1. The delivered result differs from what would have
been computed were both the precision and expo-
nent range unbounded.

2. The rounded result overflows and Overflow Excep-
tion is disabled.

Action
The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
XX  1

2. The rounded or overflowed result is placed into the
target FPR

3. FPRF is set to indicate the class and sign of the
result

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Programming Note
Power ISA™ I202

Version 3.1
5.5.11 Summary of Normal Rounding And Range Actions
Figure 76 and Figure 77 summarize rounding and
range actions, with the following exceptions:
 The Reround operation recognizes neither an

underflow nor an overflow exception.
 The Round to FP Integer Without Inexact opera-

tion does not recognize the inexact operation
exception.

Range of v Case

Result (r)
when Rounding Mode Is

RNE RNTZ RNAZ RAFZ RTMI RFSP RTPI RTZ
v < -Nmax, q < -Nmax Overflow -∞1 -∞1 -∞1 -∞1 -∞1 -Nmax -Nmax -Nmax

v < -Nmax, q = -Nmax Normal -Nmax -Nmax -Nmax — — -Nmax -Nmax -Nmax

-Nmax ≤ v ≤ -Nmin Normal b b b b b b b b

-Nmin < v ≤ -Dmin Tiny b* b* b* b* b* b* b b

-Dmin < v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0

v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0

-Dmin/2 < v < 0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0

v = 0 EZD +0 +0 +0 +0 -0 +0 +0 +0

0 < v < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin +Dmin +0

v = +Dmin/2 Tiny +0 +0 +Dmin +Dmin +0 +Dmin +Dmin +0

+Dmin/2 < v < +Dmin Tiny +Dmin +Dmin +Dmin +Dmin +0 +Dmin +Dmin +0

+Dmin ≤ v < +Nmin Tiny b* b* b* b* b b* b* b

+Nmin ≤ v ≤ +Nmax Normal b b b b b b b b

+Nmax < v, q = +Nmax Normal +Nmax +Nmax +Nmax — +Nmax +Nmax — +Nmax

+Nmax < v, q > +Nmax Overflow +∞1 +∞1 +∞1 +∞1 +Nmax +Nmax +∞1 +Nmax

Explanation:
— This situation cannot occur.
1 The normal result r is considered to have been incremented.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception conditions are underflow,

inexact, and incremented.
b The value derived when the precise result v is rounded to the destination’s precision, including both bounded

precision and bounded exponent range.
q The value derived when the precise result v is rounded to the destination’s precision, but assuming an

unbounded exponent range.
r This is the returned value when neither overflow nor underflow is enabled.
v Precise result before rounding, assuming unbounded precision and an unbounded exponent range. For

data-format conversion operations, v is the source value.
Dmin Smallest (in magnitude) representable subnormal number in the target format.
EZD The result r of the exact-zero-difference case applies only to ADD and SUBTRACT with both source operands

having opposite signs. (For ADD and SUBTRACT, when both source operands have the same sign, the sign of
the zero result is the same sign as the sign of the source operands.)

Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normalized number in the target format.
RAFZ Round away from 0.
RFSP Round to Prepare for Shorter Precision.
RNAZ Round to Nearest, Ties away from 0.
RNE Round to Nearest, Ties to even.

RNTZ Round to Nearest, Ties toward 0.
RTPI Round toward +∞.
RTMI Round toward -∞.
RTZ Round toward 0.

Figure 76. Rounding and Range Actions (Part 1)
Chapter 5. Decimal Floating-Point 203

Version 3.1
Case

Is r
inexact

(r≠v) OE=1 UE=1 XE=1

Is r Incre-
mented
(|r|>|v|)

Is q
inexact
(q≠v)

Is q Incre-
mented
(|q|>|v|) Returned Results and Status Setting*

Overflow Yes1 No — No No — — T(r), OX←1, FI←1, FR←0, XX←1

Overflow Yes1 No — No Yes — — T(r), OX←1, FI←1, FR←1, XX←1

Overflow Yes1 No — Yes No — — T(r), OX←1, FI←1, FR←0, XX←1, TX

Overflow Yes1 No — Yes Yes — — T(r), OX←1, FI←1, FR←1, XX←1, TX

Overflow Yes1 Yes — — — No No1 Tw(q÷b), OX←1, FI←0, FR←0, TO

Overflow Yes1 Yes — — — Yes No Tw(q÷b), OX←1, FI←1, FR←0, XX←1, TO

Overflow Yes1 Yes — — — Yes Yes Tw(q÷b), OX←1, FI←1, FR←1, XX←1, TO

Normal No — — — — — — T(r), FI←0, FR←0

Normal Yes — — No No — — T(r), FI←1, FR←0, XX←1

Normal Yes — — No Yes — — T(r), FI←1, FR←1, XX←1

Normal Yes — — Yes No — — T(r), FI←1, FR←0, XX←1, TX

Normal Yes — — Yes Yes — — T(r), FI←1, FR←1, XX←1, TX

Tiny No — No — — — — T(r), FI←0, FR←0

Tiny No — Yes — — No1 No1 Tw(q×b), UX←1, FI←0, FR← 0, TU

Tiny Yes — No No No — — T(r), UX←1, FI←1, FR←0, XX←1

Tiny Yes — No No Yes — — T(r), UX←1, FI←1, FR←1, XX←1

Tiny Yes — No Yes No — — T(r), UX←1, FI←1, FR←0, XX←1, TX

Tiny Yes — No Yes Yes — — T(r), UX←1, FI←1, FR←1, XX←1, TX

Tiny Yes — Yes — — No No1 Tw(q×b), UX←1, FI←0, FR←0, TU

Tiny Yes — Yes — — Yes No Tw(q×b), UX←1, FI←1, FR←0, XX←1, TU

Tiny Yes — Yes — — Yes Yes Tw(q×b), UX←1, FI←1, FR←1, XX←1, TU

Explanation:
— The results do not depend on this condition.
1 This condition is true by virtue of the state of some condition to the left of this column.
* Rounding sets only FI and FR. Setting of OX, XX, or UX is part of the exception actions. They are listed here for reference.
β Wrap adjust, which depends on the type of operation and operand format. For all operations except Round to DFP

Short and Round to DFP Long, the wrap adjust depends on the target format: β = 10α, where α is 576 for DFP Long,
and 9216 for DFP Extended. For Round to DFP Short and Round to DFP Long, the wrap adjust depends on the source
format: β = 10κ where κ is 192 for DFP Long and 3072 for DFP Extended.

q The value derived when the precise result v is rounded to destination’s precision, but assuming an unbounded
exponent range.

r The result as defined in Part 1 of this figure.
v Precise result before rounding, assuming unbounded precision and unbounded exponent range.
FI Floating-Point-Fraction-Inexact status flag, FI. This status flag is non-sticky.
FR Floating-Point-Fraction-Rounded status flag, FR.
OX Floating-Point Overflow Exception status flag, OX.
TO The system floating-point enabled exception error handler is invoked for the overflow exception if FE0 and FE1 are set to

any mode other than the ignore-exception mode.
TU The system floating-point enabled exception error handler is invoked for the underflow exception if FE0 and FE1 are set

to any mode other than the ignore-exception mode.
TX The system floating-point enabled exception error handler is invoked for the inexact exception if FE0 and FE1 are set to

any mode other than the ignore-exception mode.
T(x) The value x is placed at the target operand location.
Tw(x) The wrapped rounded result x is placed at the target operand location. For all operations except data format

conversions, the wrapped rounded result is in the same format and length as normal results at the target location. For
data format conversions, the wrapped rounded result is in the same format and length as the source, but rounded to the
target-format precision.

UX Floating-Point-Underflow-Exception status bit.
XX Float-Point Inexact exception status bit. The flag is a sticky version of FI. When FI is set to a new value, the new value

of XX is set to the result of ORing the old value of XX with the new value of FI.

Figure 77. Rounding and Range Actions (Part 2)
Power ISA™ I204

Version 3.1
5.6 DFP Instruction Descriptions

The following sections describe the DFP instructions.
When a 128-bit operand is used, it is held in a FPR pair
and the instruction mnemonic uses a letter “q” to mean
the quad-precision operation. Note that in the following
descriptions, FRXp denotes a FPR pair and must
address an even-odd pair. If the FRXp field specifies an
odd-numbered register, then the instruction form is
invalid. The notation FRX[p] means either a FPR, FRX,
or a FPR pair, FRXp.

For DFP instructions, if a DFP operand is returned, the
trailing significand field of the target operand is
encoded using preferred DPD codes.

5.6.1 DFP Arithmetic Instructions
All DFP arithmetic instructions are X-form instructions.
They all set the FI and FR status flags, and also set the
FPRF field. Furthermore, they all have an ideal expo-
nent assigned and employ the record bit (Rc).

The arithmetic instructions consist of Add, Divide, Multi-
ply, and Subtract.
Chapter 5. Decimal Floating-Point 205

Version 3.1
DFP Add X-form

dadd FRT,FRA,FRB (Rc=0)
dadd. FRT,FRA,FRB (Rc=1)

DFP Add Quad X-form

daddq FRTp,FRAp,FRBp (Rc=0)
daddq. FRTp,FRAp,FRBp (Rc=1)

The DFP operand in FRA[p] is added to the DFP oper-
and in FRB[p].

The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

Figure 78 summarizes the actions for Add. Figure 78
does not include the setting of FPRF. FPRF is always set
to the class and sign of the result, except for an
enabled invalid-operation exception, in which case the
field remains unchanged.

dadd[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

DFP Subtract X-form

dsub FRT,FRA,FRB (Rc=0)
dsub. FRT,FRA,FRB (Rc=1)

DFP Subtract Quad X-form

dsubq FRTp,FRAp,FRBp (Rc=0)
dsubq. FRTp,FRAp,FRBp (Rc=1)

The DFP operand in FRB[p] is subtracted from the DFP
operand in FRA[p].

The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

The execution of Subtract is identical to that of Add,
except that the operand in FRB participates in the opera-
tion with its sign bit inverted. See Figure 78. The table
does not include the setting of FPRF. FPRF is always set
to the class and sign of the result, except for an
enabled invalid-operation exception, in which case the
field remains unchanged.

dsub[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

59 FRT FRA FRB 2 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 2 Rc
0 6 11 16 21 31

59 FRT FRA FRB 514 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 514 Rc
0 6 11 16 21 31
Power ISA™ I206

Version 3.1
Operand a
in FRA[p] is

Actions for Add (a + b) when operand b in FRB[p] is
-∞ F +∞ QNaN SNaN

-∞ T(-dINF) T(-dINF) VXISI: T(dNaN) P(b) VXSNAN: U(b)

F T(-dINF) S(a+b) T(+dINF) P(b) VXSNAN: U(b)

+∞ VXISI: T(dNaN) T(+dINF) T(+dINF) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
a+b The value a added to b, rounded to the target-format precision and returned in the appropriate

form. (See Section 5.5.11 on page 203)
+dINF Default plus infinity.
- dINF Default minus infinity.
dNaN Default quiet NaN.
F All finite numbers, including zeros.

P(x) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set by the rules of algebra. When the source oper-

ands have the same sign, the sign of the result is the same as the sign of the operands, includ-
ing the case when the result is zero. When the operands have opposite signs, the sign of a zero
result is positive in all rounding modes, except round toward -∞, in which case, the sign is
minus.

T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXISI: Floating-Point Invalid Operation (Infinity - Infinity) exception occurs. The result is produced only

when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on
page 199.)

VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Figure 78. Actions: Add
Chapter 5. Decimal Floating-Point 207

Version 3.1
DFP Multiply X-form

dmul FRT,FRA,FRB (Rc=0)
dmul. FRT,FRA,FRB (Rc=1)

DFP Multiply Quad X-form

dmulq FRTp,FRAp,FRBp (Rc=0)
dmulq. FRTp,FRAp,FRBp (Rc=1)

The DFP operand in FRA[p] is multiplied by the DFP
operand in FRB[p].

The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the sum of the two exponents of
the source operands.

Figure 79 summarizes the actions for Multiply.
Figure 79 does not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except for
an enabled invalid-operation exception, in which case
the field remains unchanged.

dmul[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX XX VXSNAN VXIMZ
CR1 (if Rc=1)

Figure 79. Actions: Multiply

59 FRT FRA FRB 34 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 34 Rc
0 6 11 16 21 31

Operand a
in FRA[p] is

Actions for Multiply (a*b) when operand b in FRB[p] is
0 Fn ∞ QNaN SNaN

0 S(a × b) S(a × b) VXIMZ: T(dNaN) P(b) VXSNAN: U(b)

Fn S(a × b) S(a × b) S(dINF) P(b) VXSNAN: U(b)

∞ VXIMZ: T(dNaN) S(dINF) S(dINF) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

 Explanation:
 a × b The value a multiplied by b, rounded to the target-format precision and returned in the appropriate

form. (See Section 5.5.11 on page 203)
dINF Default infinity.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both normal and subnormal numbers).
P(x) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXIMZ: Floating-Point Invalid Operation (Infinity × Zero) exception occurs. The result is produced only when

the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)
VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)
Power ISA™ I208

Version 3.1
DFP Divide X-form

ddiv FRT,FRA,FRB (Rc=0)
ddiv. FRT,FRA,FRB (Rc=1)

DFP Divide Quad X-form

ddivq FRTp,FRAp,FRBp (Rc=0)
ddivq. FRTp,FRAp,FRBp (Rc=1)

The DFP operand in FRA[p] is divided by the DFP
operand in FRB[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the difference of subtracting the
exponent of the divisor from the exponent of the
dividend.

Figure 80 summarizes the actions for Divide.
Figure 80 does not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except
for an enabled invalid-operation and enabled
zero-divide exceptions, in which cases the field
remains unchanged.

ddiv[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ
CR1 (if Rc=1)

Figure 80. Actions: Divide

59 FRT FRA FRB 546 Rc
0 6 11 16 21 31

63 FRTp FRAp FRBp 546 Rc
0 6 11 16 21 31

Operand a
in FRA[p] is

Actions for Divide (a ÷ b) when operand b in FRB[p] is
0 Fn ∞ QNaN SNaN

0 VXZDZ: T(dNaN) S(a÷b) S(zt) P(b) VXSNAN: U(b)

Fn Zx: S(dINF) S(a÷b) S(zt) P(b) VXSNAN: U(b)

∞ S(dINF) S(dINF) VXIDI: T(dNaN) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
a÷b The value a divided by b, rounded to the target-format precision and returned in the appropriate

form. (See Section 5.5.11 on page 203.)
dINF Default infinity.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both normal and subnormal numbers).
P(x) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXIDI: Floating-Point Invalid Operation (Infinity ÷ Infinity) exception occurs. The result is produced only

when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on
page 199 for the exception actions.)

VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

VXZDZ: Floating-Point Invalid Operation (Zero ÷ Zero) exception occurs. The result is produced only when
the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

zt True zero (zero significand and most negative exponent).
Zx The Zero-Divide Exception occurs. The result is produced only when the exception is disabled (See

Section 5.5.10.2 “Zero Divide Exception” on page 200.)
Chapter 5. Decimal Floating-Point 209

Version 3.1
5.6.2 DFP Compare Instructions
The DFP compare instructions consist of the Compare
Ordered and Compare Unordered instructions. The
compare instructions do not provide the record bit.

The comparison sets the designated CR field to indi-
cate the result. FPCC is set in the same way.

The codes in the CR field BF and FPCC are defined for
the DFP compare operations as follows.

Bit Name Description
0 FL (FRA[p]) < (FRB[p])
1 FG (FRA[p]) > (FRB[p])
2 FE (FRA[p]) = (FRB[p])
3 FU (FRA[p]) ? (FRB[p])
Power ISA™ I210

Version 3.1
DFP Compare Unordered X-form

dcmpu BF,FRA,FRB

DFP Compare Unordered Quad X-form

dcmpuq BF,FRAp,FRBp

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPCC.

dcmpu[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN

Figure 81. Actions: Compare Unordered

59 BF // FRA FRB 642 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 642 /
0 6 9 11 16 21 31

Operand a in
FRA[p] is

Actions for Compare Unordered (a:b) when operand b in FRB[p] is
-∞ F +∞ QNaN SNaN

-∞ AeqB AltB AltB AuoB Fu, VXSNAN

F AgtB C(a:b) AltB AuoB Fu, VXSNAN

+∞ AgtB AgtB AeqB AuoB Fu, VXSNAN

QNaN AuoB AuoB AuoB AuoB Fu, VXSNAN

SNaN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN

Explanation:
C(a:b) Algebraic comparison. See the table below.

F All finite numbers, including zeros.
AeqB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.
VXSNAN Floating-Point Invalid Operation (SNaN) exception occurs. (See Section 5.5.10.1 “Invalid

Operation Exception” on page 199.)

Relation of Value a to Value b Action for C(a:b)
a = b AeqB

a < b AltB

a > b AgtB
Chapter 5. Decimal Floating-Point 211

Version 3.1
DFP Compare Ordered X-form

dcmpo BF,FRA,FRB

DFP Compare Ordered Quad X-form

dcmpoq BF,FRAp,FRBp

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPCC.

dcmpo[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN VXVC

Figure 82. Actions: Compare Ordered

59 BF // FRA FRB 130 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 130 /
0 6 9 11 16 21 31

Operand a in
FRA[p] is

Actions for Compare ordered (a:b) when operand b in FRB[p] is
-∞ F +∞ QNaN SNaN

-∞ AeqB AltB AltB AuoB, VXVC AuoB, VXSV

F AgtB C(a:b) AltB AuoB, VXVC AuoB, VXSV

+∞ AgtB AgtB AeqB AuoB, VXVC AuoB, VXSV

QNaN AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXSV

SNaN AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV

Explanation:
C(a:b) Algebraic comparison. See the table below

F All finite numbers, including zeros
AeqB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.
VXSV Floating-Point Invalid Operation (SNaN) exception occurs. Additionally, if the exception is dis-

abled (VE=0), then VXVC is also set to one. (See Section 5.5.10.1 “Invalid Operation Excep-
tion” on page 199.)

VXVC Floating-Point Invalid Operation (Invalid Compare) exception occurs. (See Section 5.5.10.1
“Invalid Operation Exception” on page 199.)

Relation of Value a to Value b Action for C(a:b)
a = b AeqB

a < b AltB

a > b AgtB
Power ISA™ I212

Version 3.1
5.6.3 DFP Test Instructions
The DFP test instructions consist of the Test Data
Class, Test Data Group, Test Exponent, and Test
Significance instructions, and they do not provide the
record bit.

The test instructions set the designated CR field to
indicate the result. The FPSCRFPCC is set in the same
way.

DFP Test Data Class Z22-form

dtstdc BF,FRA,DCM

DFP Test Data Class Quad Z22-form

dtstdcq BF,FRAp,DCM

Let the DCM (Data Class Mask) field specify one or
more of the 6 possible data classes, where each bit
corresponds to a specific data class.

CR field BF and FPCC are set to indicate the sign of the
DFP operand in FRA[p] and whether the data class of
the DFP operand in FRA[p] matches any of the data
classes specified by DCM.

dtstdc[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

DFP Test Data Group Z22-form

dtstdg BF,FRA,DGM

DFP Test Data Group Quad Z22-form

dtstdgq BF,FRAp,DGM

Let the DGM (Data Group Mask) field specify one or
more of the 6 possible data groups, where each bit
corresponds to a specific data group.

The term extreme exponent means either the
maximum exponent, Xmax, or the minimum exponent,
Xmin.

CR field BF and FPCC are set to indicate the sign of the
DFP operand in FRA[p] and whether the data group of
the DFP operand in FRA[p] matches any of the data
groups specified by DGM.

dtstdg[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

59 BF // FRA DCM 194 /
0 6 9 11 16 21 31

63 BF // FRAp DCM 194 /
0 6 9 11 16 21 31

DCM Bit Data Class
0 Zero
1 Subnormal
2 Normal
3 Infinity
4 Quiet NaN
5 Signaling NaN

Field Meaning
0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

59 BF // FRA DGM 226 /
0 6 9 11 16 21 31

63 BF // FRAp DGM 226 /
0 6 9 11 16 21 31

DGM Bit Data Group
0 Zero with non-extreme exponent
1 Zero with extreme exponent
2 Subnormal or (Normal with extreme expo-

nent)
3 Normal with non-extreme exponent and

leftmost zero digit in significand
4 Normal with non-extreme exponent and

leftmost nonzero digit in significand
5 Special symbol (Infinity, QNaN, or SNaN)

Field Meaning
0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match
Chapter 5. Decimal Floating-Point 213

Version 3.1
DFP Test Exponent X-form

dtstex BF,FRA,FRB

DFP Test Exponent Quad X-form

dtstexq BF,FRAp,FRBp

The exponent value (Ea) of the DFP operand in FRA[p]
is compared to the exponent value (Eb) of the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPCC.

The codes in the CR field BF and FPCC are defined for
the DFP Test Exponent operations as follows.

Special Registers Altered:
CR field BF
FPCC

Figure 83. Actions: Test Exponent

59 BF // FRA FRB 162 /
0 6 9 11 16 21 31

63 BF // FRAp FRBp 162 /
0 6 9 11 16 21 31

Bit Description
0 Ea < Eb
1 Ea > Eb
2 Ea = Eb
3 Ea ? Eb

Operand a in
FRA[p] is

Actions for Test Exponent (Ea:Eb) when operand b in FRB[p] is
F ∞ QNaN SNaN

F C(Ea:Eb) AuoB AuoB AuoB

∞ AuoB AeqB AuoB AuoB

QNaN AuoB AuoB AeqB AeqB

SNaN AuoB AuoB AeqB AeqB

Explanation:
 C(Ea:Eb) Algebraic comparison. See the table below.

F All finite numbers, including zeros
AeqB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.

Relation of Value Ea to Value Eb Action for C(Ea:Eb)
Ea = Eb AeqB

Ea < Eb AltB

Ea > Eb AgtB
Power ISA™ I214

Version 3.1
DFP Test Significance X-form

dtstsf BF,FRA,FRB

DFP Test Significance Quad X-form

dtstsfq BF,FRA,FRBp

Let k be the contents of bits 58:63 of FPR[FRA] that
specifies the reference significance.

For dtstsf, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRB].

For dtstsfq, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRBp:FRBp+1].

For this instruction, the number of significant digits of
the value 0 is considered to be zero.

NSDb is compared to k. The result of the compare is
placed into CR field BF and the FPCC as follows.

dtstsf[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

Figure 84. Actions: Test Significance

59 BF // FRA FRB 674 /
0 6 9 11 16 21 31

63 BF // FRA FRBp 674 /
0 6 9 11 16 21 31

Bit Description
0 k ≠ 0 and k < NSDb
1 k ≠ 0 and k > NSDb, or k = 0
2 k ≠ 0 and k = NSDb
3 k ? NSDb

Actions for Test Significance
when the operand in VSR[FRB] or VSR[FRBp:FRBp+1] is

F ∞ QNaN SNaN
C(UIM:NSDb) AuoB AuoB AuoB

Explanation:

C(k:NSDb)
Algebraic comparison. See the table

below.
F All finite numbers, including zeros.

AeqB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.

Relation of Value NSDb to Value k Action for C(k:NSDb)

k ≠ 0 and k = NSDb AeqB

k ≠ 0 and k < NSDb AltB

k ≠ 0 and k > NSDb, or k = 0 AgtB

The reference significance can be loaded into a
FPR using a Load Float as Integer Word Algebraic
instruction

Programming Note
Chapter 5. Decimal Floating-Point 215

Version 3.1
DFP Test Significance Immediate X-form

dtstsfi BF,UIM,FRB

DFP Test Significance Immediate Quad X-form

dtstsfiq BF,UIM,FRBp

Let the value UIM specify the reference significance.

For dtstsfi, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRB].

For dtstsfiq, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRBp:FRBp+1].

For this instruction, the number of significant digits of
the value 0 is considered to be zero.

NSDb is compared to UIM. The result of the compare is
placed into CR field BF and the FPCC as follows.

dtstsfi[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

Figure 85. Actions: Test Significance

59 BF / UIM FRB 675 /
0 6 9 10 16 21 31

63 BF / UIM FRBp 675 /
0 6 9 10 16 21 31

Bit Description
0 UIM ≠ 0 and UIM < NSDb
1 UIM ≠ 0 and UIM > NSDb, or UIM = 0
2 UIM ≠ 0 and UIM = NSDb
3 UIM ? NSDb

Actions for Test Significance
when the operand in VSR[FRB] or VSR[FRBp:FRBp+1] is

F ∞ QNaN SNaN
C(UIM:NSDb) AuoB AuoB AuoB

Explanation:

C(UIM:NSDb)
Algebraic comparison. See the table

below.
F All finite numbers, including zeros.

AeqB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.

Relation of Value NSDb to Value UIM Action for C(UIM:NSDb)

UIM≠0 and UIM = NSDb AeqB

UIM≠0 and UIM < NSDb AltB

UIM≠0 and UIM > NSDb, or UIM = 0 AgtB
Power ISA™ I216

Version 3.1
5.6.4 DFP Quantum Adjustment Instructions
The Quantum Adjustment operations consist of the
Quantize, Quantize Immediate, Reround, and Round
To FP Integer operations.

The Quantum Adjustment instructions are Z23-form
instructions and have an immediate RMC
(Rounding-Mode-Control) field, which specifies the
rounding mode used. For Quantize, Quantize
Immediate, and Reround, the RMC field contains the
primary encoding. For Round to FP Integer, the field
contains either primary or secondary encoding,
depending on the setting of a RMC-encoding-selection
bit. See Section 5.5.2 “Rounding Mode
Specification” on page 195 for the definition of RMC
encoding.

All Quantum Adjustment instructions set the FI and FR
status flags, and also set the FPRF field. The record
bit is provided to each of these instructions. They
return the target operand in a form with the ideal
exponent.

DFP Quantize Immediate Z23-form

dquai TE,FRT,FRB,RMC (Rc=0)
dquai. TE,FRT,FRB,RMC (Rc=1)

DFP Quantize Immediate Quad Z23-form

dquaiq TE,FRTp,FRBp,RMC (Rc=0)
dquaiq. TE,FRTp,FRBp,RMC (Rc=1)

The DFP operand in FRB[p] is converted and rounded
to the form with the exponent specified by TE based on
the rounding mode specified in the RMC field. TE is a
5-bit signed binary integer. The result of that form is
placed in FRT[p]. The sign of the result is the same as
the sign of the operand in FRB[p]. The ideal exponent
is the exponent specified by TE.

When the value of the operand in FRB[p] is greater
than (10p-1) % 10TE, where p is the format precision,
an invalid operation exception is recognized.

When the delivered result differs in value from the
operand in FRB[p], an inexact exception is recognized.
No underflow exception is recognized by this
operation, regardless of the value of the operand in
FRB[p].

FPRF is always set to the class and sign of the result,
except for an enabled invalid-operation exception, in
which case the field remains unchanged.

dquai[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

59 FRT TE FRB RMC 67 Rc
0 6 11 16 21 23 31

63 FRTp TE FRBp RMC 67 Rc
0 6 11 16 21 23 31
Chapter 5. Decimal Floating-Point 217

Version 3.1

DFP Quantize Immediate can be used to adjust
values to a form having the specified exponent in
the range -16 to 15. If the adjustment requires the
significand to be shifted left, then:

 if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

 otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field.

DFP Quantize Immediate can round a value to a
specific number of fractional digits. Consider the
computation of sales tax. Values expressed in U.S.
dollars have 2 fractional digits, and sales tax rates
typically have 3 fractional digits. The product of
value and rate will yield 5 fractional digits. For
example:

39.95 * 0.075 = 2.99625

This result needs to be rounded to the penny to
compute the correct tax of $3.00.

The following sequence computes the sales tax
assuming the pre-tax total is in FRA and the tax rate
is in FRB. The DFP Quantize Immediate instruction
rounds the product (FRA * FRB) to 2 fractional digits
(TE = -2) using Round to nearest, ties away from 0
(RMC = 2). The quantized and rounded result is
placed in FRT.

dmul f0,FRA,FRB
dquai -2,FRT,f0,2

Programming Note
Power ISA™ I218

Version 3.1
DFP Quantize Z23-form

dqua FRT,FRA,FRB,RMC (Rc=0)
dqua. FRT,FRA,FRB,RMC (Rc=1)

DFP Quantize Quad Z23-form

dquaq FRTp,FRAp,FRBp,RMC (Rc=0)
dquaq. FRTp,FRAp,FRBp,RMC (Rc=1)

The DFP operand in register FRB[p] is converted and
rounded to the form with the same exponent as that of
the DFP operand in FRA[p] based on the rounding
mode specified by RMC. The result of that form is placed
in FRT[p]. The sign of the result is the same as the
sign of the operand in FRB[p]. The ideal exponent is
the exponent specified in FRA[p].

When the value of the operand in FRB[p] is greater
than (10p-1) x 10Ea, where p is the format precision
and Ea is the exponent of the operand in FRA[p], an
invalid operation exception is recognized.

When the delivered result differs in value from the
operand in FRB[p], an inexact exception is recognized.
No underflow exception is recognized by this
operation, regardless of the value of the operand in
FRB[p].

Figure 87 and Figure 88 summarize the actions. The
tables do not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except
for an enabled invalid-operation exception, in which
case the field remains unchanged.

dqua[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Register Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

59 FRT FRA FRB RMC 3 Rc
0 6 11 16 21 23 31

63 FRTp FRAp FRBp RMC 3 Rc
0 6 11 16 21 23 31

DFP Quantize can be used to adjust one DFP
value (FRB[p]) to a form having the same exponent
as a second DFP value (FRA[p]). If the adjustment
requires the significand to be shifted left, then:

 if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

 otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of RMC. Figure 86 shows examples of these
adjustments.

Programming Note

FRA FRB FRT when RMC=1 FRT when RMC=2

1 (1 x 100) 9. (9 x 100) 9 (9 x 100) 9 (9 x 100)

1.00 (100 x 10-2) 9. (9 x 100) 9.00 (900 x 10-2) 9.00 (900 x 10-2)

1 (1 x 100) 49.1234 (491234 x 10-4) 49 (49 x 100) 49 (49 x 100)

1.00 (100 x 10-2) 49.1234 (491234 x 10-4) 49.12 (4912 x 10-2) 49.12 (4912 x 10-2)

1 (1 x 100) 49.9876 (499876 x 10-4) 49 (49 x 100) 50 (50 x 100)

1.00 (100 x 10-2) 49.9876 (499876 x 10-4) 49.98 (4998 x 10-2) 49.99 (4999 x 10-2)

0.01 (1 x 10-2) 49.9876 (499876 x 10-4) 49.98 (4998 x 10-2) 49.99 (4999 x 10-2)

1 (1 x 100)
9999999999999999

(9999999999999999 x 100)
9999999999999999

(9999999999999999 x 100)
9999999999999999

(9999999999999999 x 100)

1.0 (10 x 10-1)
9999999999999999

(9999999999999999 x 100)
QNaN QNaN

Figure 86. DFP Quantize examples
Chapter 5. Decimal Floating-Point 219

Version 3.1
Figure 87. Actions (part 1) Quantize

Figure 88. Actions (part2) Quantize

Operand a
in FRA[p] is

Actions for Quantize when operand b in FRB[p] is
0 Fn ∞ QNaN SNaN

0 * * VXCVI: T(dNaN) P(b) VXSNAN: U(b)

Fn * * VXCVI: T(dNaN) P(b) VXSNAN: U(b)

• VXCVI: T(dNaN) VXCVI: T(dNaN) T(dINF) P(b) VXSNAN: U(b)

QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)

SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
* See next table.

dINF Default infinity
dNaN Default quiet NaN
Fn Finite nonzero numbers (includes both subnormal and normal numbers)
P(x) The QNaN of operand x is propagated and placed in FRT[p]
T(x) The value x is placed in FRT[p]
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXCVI: Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced only

when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on
page 199.)

VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Actions for Quantize when operand b in FRB[p] is
0 Fn

Te < Se Vb > (10p - 1) × 10Te E(0) VXCVI: T(dNaN)

Vb ≤ (10p - 1) × 10Te E(0) L(b)

Te = Se E(0) W(b)

Te > Se E(0) QR(b)

Explanation:
dNaN Default quiet NaN
E(0) The value of zero with the exponent value Te is placed in FRT[p].
L(x) The operand x is converted to the form with the exponent value Te.
p The precision of the format.

QR(x) The operand x is rounded to the result of the form with the exponent value Te based on the specified
rounding mode. The result of that form is placed in FRT[p].

Se The exponent of the operand in FRB[p].
Te The target exponent; FRA[p] for dqua[q], or TE, a 5-bit signed binary integer for dquai[q].
T(x) The value x is placed in FRT[p].
Vb The value of the operand in FRB[p].
W(x) The value and the form of operand x is placed in FRT[p].
VXCVI: Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced only

when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on
page 199.)
Power ISA™ I220

Version 3.1
DFP Reround Z23-form

drrnd FRT,FRA,FRB,RMC (Rc=0)
drrnd. FRT,FRA,FRB,RMC (Rc=1)

DFP Reround Quad Z23-form

drrndq FRTp,FRA,FRBp,RMC (Rc=0)
drrndq. FRTp,FRA,FRBp,RMC (Rc=1)

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

When the DFP operand in FRB[p] is a finite number,
and if the reference significance is zero, or if the
reference significance is nonzero and the number of
significant digits of the source operand is less than or
equal to the reference significance, then the value and
the form of the source operand is placed in FRT[p]. If
the reference significance is nonzero and the number
of significant digits of the source operand is greater
than the reference significance, then the source
operand is converted and rounded to the number of
significant digits specified in the reference significance
based on the rounding mode specified in the RMC
field. The result of the form with the specified number
of significant digits is placed in FRT[p]. The sign of the
result is the same as the sign of the operand in FRB[p].

For this instruction, the number of significant digits of
the value 0 is considered to be zero. The ideal
exponent is the greater value of the exponent of the
operand in FRB[p] and the referenced exponent. The
referenced exponent is the resultant exponent if the
operand in FRB[p] would have been converted and
rounded to the number of significant digits specified in
the reference significance based on the rounding
mode specified by RMC.

If the exponent of the rounded result of the form that
has the specified number of significant digits would be
greater than Xmax, an invalid operation exception (VXCVI)
occurs. When the invalid-operation exception occurs,
and if the exception is disabled, a default QNaN is
returned. When an invalid-operation exception occurs,
no inexact exception is recognized.

In the absence of an invalid-operation exception, if the
result differs in value from the operand in FRB[p], an
inexact exception is recognized.

This operation causes neither an overflow nor an
underflow exception.

Figure 90 summarizes the actions for Reround. The
table does not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except
for an enabled invalid-operation exception, in which
case the field remains unchanged.

drrnd[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

59 FRT FRA FRB RMC 35 Rc
0 6 11 16 21 23 31

63 FRTp FRA FRBp RMC 35 Rc
0 6 11 16 21 23 31

DFP Reround can be used to adjust a DFP value
(FRB[p]) to have no more than a specified number
(FRA[p]58:63) of significant digits. The result
(FRT[p]) is right-justified leaving the specified num-
ber of digits and rounded as specified by RMC. If
rounding increases the number of significant digits,
the result is adjusted again (the significand is
shifted right 1 digit and the exponent is incremented
by 1). Figure 89 has example results from DFP
Reround for 1, 2, and 10 significant digits.

Programming Note
Chapter 5. Decimal Floating-Point 221

Version 3.1

DFP Reround is primarily used to round a DFP value to a specific number of digits before conversion to string for-
mat for printing or display. Another use for DFP Reround is to obtain the effective exponent of the most significant
digit by specifying a reference significance of 1. The exponent can be extracted and used to compute the number
of significant digits or to left-justify a value.

For example, the following sequence computes the number of significant digits and returns it as an integer. FRB is
the DFP value for which we want the number of significant digits; f13 contains the reference significance value
0x0000000000000001; and r1 is the stack pointer, with free space for doublewords at offsets -8 and -16. These dou-
blewords are used to transfer the biased exponents from the FPRs to GPRs for integer computation. R3 contains
the result of E(reround(1,FRA)) - E(FRA) + 1, where E(x) represents the biased exponent of x.

dxex f0,FRB
stfd f0,-16(r1)
drrnd f1,f13,FRB,1 # reround 1 digit toward 0
dxex f1,f1
stfd f1,-8(r1)
lfd r11,-16(r1)
lfd r3,-8(r1)
subf r3,r11,r3
addi r3,r3,1

Given the value 412.34 the result is E(4 x 102) - E(41234 x 10-2) + 1 = (398+2) - (398-2) + 1 = 400 - 396
+ 1 = 5. Additional code is required to detect and handle special values like Subnormal, Infinity, and NAN.

FRA58:63 (binary) FRB FRT when RMC=1 FRT when RMC=2

1 0.41234 (41234 × 10-5) 0.4 (4 × 10-1) 0.4 (4 × 10-1)

1 4.1234 (41234 × 10-4) 4 (4 × 100) 4 (4 × 100)

1 41.234 (41234 × 10-3) 4 (4 × 101) 4 (4 × 101)

1 412.34 (41234 × 10-2) 4 (4 × 102) 4 (4 × 102)

2 0.491234 (491234 × 10-6) 0.49 (49 × 10-2) 0.49 (49 × 10-2)

2 0.499876 (499876 × 10-6) 0.49 (49 × 10-2) 0.50 (50 × 10-2)

2 0.999876 (999876 × 10-6) 0.99 (99 × 10-2) 1.0 (10 × 10-1)

10 0.491234 (491234 × 10-6) 0.491234 (491234 × 10-6) 0.491234 (491234 × 10-6)

10 999.999 (999999 × 10-3) 999.999 (999999 × 10-3) 999.999 (999999 × 10-3)

10 9999999999999999
(9999999999999999 × 100)

9.999999999E+14
(9999999999 × 105)

1.000000000E+15
(1000000000 × 106)

Figure 89. DFP Reround examples

Programming Note
Power ISA™ I222

Version 3.1

DFP Reround combined with DFP Quantize can be used to left justify a value (as needed by the frexp function).
FRB is the DFP value for which we want to left justify; f13 contains the reference significance value
0x0000000000000001; and r1 is the stack pointer, with free space for a doubleword at offset -8. This doubleword is
used to transfer the biased exponents from the FPR to a GPR, for integer computation. The adjusted biased
exponent (+ format precision - 1) is transferred back into an FPR so it can be inserted into the rerounded value.
The adjusted rerounded value becomes the quantize reference value. The quantize instruction returns the left
justified result in FRT.

drrnd f1,f13,FRB,1 # reround 1 digit toward 0
dxex f0,f1
stfd f0,-8(r1)
lfd r11,-8(r1)
addi r11,r11,15 # biased exp + precision - 1
lfd r11,-8(r1)
stfd f0,-8(r1)
diex f1,f0,f1 # adjust exponent
dqua FRT,f1,f0,1 # quantize to adjusted
 exponent

Actions for Reround when operand b in FRB[p] is
0* Fn ∞ QNaN SNaN

k ≠ 0, k < m - RR(b) or
VXCVI: T(dNaN)

T(dINF) P(b) VXSNAN: U(b)

k ≠ 0, k = m - W(b) T(dINF) P(b) VXSNAN: U(b)

k ≠ 0 and k > m,
or k = 0

W(b) W(b) T(dINF) P(b) VXSNAN: U(b)

Explanation:
* The number of significant digits of the value 0 is considered to be zero for this instruction.
- Not applicable.

dINF Default infinity.
Fn Finite nonzero numbers (includes both subnormal and normal numbers).
k Reference significance, which specifies the number of significant digits in the target operand.
m Number of significant digits in the operand in FRB[p].

P(x) The QNaN of operand x is propagated and placed in FRT[p].
RR(x) The value x is rounded to the form that has the specified number of significant digits.

If RR(x) ≤ (10k-1) x 10Xmax, then RR(x) is returned; otherwise an invalid-operation exception
is recognized.

T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXCVI Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced

only when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception”
on page 199.)

VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

W(x) The value and the form of x is placed in FRT[p].

Figure 90. Actions: Reround

Programming Note
Chapter 5. Decimal Floating-Point 223

Version 3.1
DFP Round To FP Integer With Inexact
Z23-form

drintx R,FRT,FRB,RMC (Rc=0)
drintx. R,FRT,FRB,RMC (Rc=1)

DFP Round To FP Integer With Inexact Quad
Z23-form

drintxq R,FRTp,FRBp,RMC (Rc=0)
drintxq. R,FRTp,FRBp,RMC (Rc=1)

The DFP operand in FRB[p] is rounded to a
floating-point integer and placed into FRT[p]. The sign
of the result is the same as the sign of the operand in
FRB[p]. The ideal exponent is the larger value of zero
and the exponent of the operand in FRB[p].

The rounding mode used is specified by RMC. When
the RMC-encoding-selection (R) bit is zero, RMC field
contains the primary encoding; when the bit is one, the
field contains the secondary encoding.

In addition to coercion of the converted value to fit the
target format, the special rounding used by Round To
FP Integer also coerces the target exponent to the
ideal exponent.

When the operand in FRB[p] is a finite number and the
exponent is less than zero, the operand is rounded to
the result with an exponent of zero. When the
exponent is greater than or equal to zero, the result is
set to the numerical value and the form of the operand
in FRB[p].

When the result differs in value from the operand in
FRB[p], an inexact exception is recognized. No
underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

Figure 91 summarizes the actions for Round To FP
Integer With Inexact. The table does not include the
setting of FPRF. FPRF is always set to the class and sign
of the result, except for an enabled invalid-operation, in
which case the field remains unchanged.

drintx[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN
CR1 (if Rc=1)

59 FRT /// R FRB RMC 99 Rc
0 6 11 15 16 21 23 31

63 FRTp /// R FRBp RMC 99 Rc
0 6 11 15 16 21 23 31

The DFP Round To FP Integer With Inexact and
DFP Round To FP Integer With Inexact Quad
instructions can be used to implement the decimal
equivalent of the C99 rint function by specifying the
primary RMC encoding for round according to DRN
(R=0, RMC=11). The specification for rint requires the
inexact exception be raised if detected.

Programming Note
Power ISA™ I224

Version 3.1
 Operand b
in FRB is

Is n not pre-
cise (n ≠ b)

Inv.-Op.
Exception
Enabled

Inexact
Exception
Enabled

Is n Incre-
mented

(|n| > |b|) Actions*
-∞ No1 - - - T(-dINF), FI←0, FR←0

F No - - - W(n), FI←0, FR←0

F Yes - No No W(n), FI←1, FR←0, XX←1

F Yes - No Yes W(n), FI←1, FR←1, XX←1

F Yes - Yes No W(n), FI←1, FR←0, XX←1, TX

F Yes - Yes Yes W(n), FI←1, FR←1, XX←1, TX

+∞ No1 - - - T(+dINF), FI←0, FR←0

QNaN No1 - - - P(b), FI←0, FR←0

SNaN No1 No - - U(b), FI←0, FR←0, VXSNAN←1

SNaN No1 Yes - - VXSNAN←1, TV

 Explanation:
* Setting of XX and VXSNAN is part of the corresponding exception actions. Also, when an invalid-opera-

tion exception occurs, setting of FI and FR is part of the exception actions.(See the sections, “Inex-
act Exception” and “Invalid Operation Exception” for more details.)

- The actions do not depend on this condition.
1 This condition is true by virtue of the state of some condition to the left of this column.

dINF Default infinity.
F All finite numbers, including zeros.
FI Floating-Point Fraction Inexact status bit.
FR Floating-Point Fraction Rounded status bit.
n The value derived when the source operand, b, is rounded to an integer using the special rounding

for Round To FP Integer.
P(x) The QNaN of operand x is propagated and placed in FRT[p].
T(x) The value x is placed in FRT[p].
TV The system floating-point enabled exception error handler is invoked for the invalid operation excep-

tion if FE0 and FE1 are set to any mode other than the ignore-exception mode.
TX The system floating-point enabled exception error handler is invoked for the inexact exception if FE0

and FE1 are set to any mode other than the ignore-exception mode.
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
W(x) The value x in the form of zero exponent or the source exponent is placed in FRT[p].
XX Floating-Point Inexact exception status bit.

Figure 91. Actions: Round to FP Integer With Inexact
Chapter 5. Decimal Floating-Point 225

Version 3.1
DFP Round To FP Integer Without Inexact
Z23-form

drintn R,FRT,FRB,RMC (Rc=0)
drintn. R,FRT,FRB,RMC (Rc=1)

DFP Round To FP Integer Without Inexact
Quad Z23-form

drintnq R,FRTp,FRBp,RMC (Rc=0)
drintnq. R,FRTp,FRBp,RMC (Rc=1)

This operation is the same as the Round To FP Integer
With Inexact operation, except that this operation does
not recognize an inexact exception.

Figure 92 summarizes the actions for Round To FP
Integer Without Inexact. The table does not include
the setting of FPRF. FPRF is always set to the class and
sign of the result, except for an enabled
invalid-operation, in which case the field remains
unchanged.

drintn[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

59 FRT /// R FRB RMC 227 Rc
0 6 11 15 16 21 23 31

63 FRTp /// R FRBp RMC 227 Rc
0 6 11 15 16 21 23 31

The DFP Round To FP Integer Without Inexact and
DFP Round To FP Integer Without Inexact Quad
instructions can be used to implement decimal
equivalents of several C99 rounding functions by
specifying the appropriate R and RMC field values.

Function R RMC
Ceil 1 0b00
Floor 1 0b01
Nearbyint 0 0b11
Round 0 0b10
Trunc 0 0b01

Note that nearbyint is similar to the rint function but
without raising the inexact exception. Similarly ceil,
floor, round, and trunc do not require the inexact
exception.

Programming Note
Power ISA™ I226

Version 3.1

Figure 92. Actions: Round to FP Integer Without Inexact

Operand b in
FRB is

Inv.-Op. Exception
Enabled Actions*

-∞ - T(-dINF), FI←0, FR←0

F - W(n), FI←0, FR←0

+∞ - T(+dINF), FI←0, FR←0

QNaN - P(b), FI←0, FR←0

SNaN No U(b), FI←0, FR←0, VXSNAN←1

SNaN Yes VXSNAN←1, TV

 Explanation:
* Setting of VXSNAN is part of the corresponding exception actions. Also, when an invalid-operation excep-

tion occurs, setting of FI and FR bits is part of the exception actions. (See the sections, “Invalid Oper-
ation Exception” for more details.)

- The actions do not depend on this condition.
dINF Default infinity.
F All finite numbers, including zeros.
FI Floating-Point Fraction Inexact status bit.
FR Floating-Point Fraction Rounded status bit.
n The value derived when the source operand, b, is rounded to an integer using the special rounding for

Round To FP Integer.
P(x) The QNaN of operand x is propagated and placed in FRT[p].
T(x) The value x is placed in FRT[p].
TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception

if FE0 and FE1 are set to any mode other than the ignore-exception mode.
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
W(x) The value x in the form of zero exponent or the source exponent is placed in FRT[p].
Chapter 5. Decimal Floating-Point 227

Version 3.1
5.6.5 DFP Conversion Instructions
The DFP conversion instructions consist of data-format
conversion instructions and data-type conversion
instructions. They are all X-form instructions and
employ the record bit (Rc).

5.6.5.1 DFP Data-Format Conversion
Instructions
The data-format conversion instructions consist of
Convert To DFP Long, Convert To DFP Extended,
Round To DFP Short, and Round To DFP Long.
Figure 93 summarizes the actions for these
instructions.

Figure 93. Actions: Data-Format Conversion Instructions

DFP does not provide operations on short
operands, so they must be converted to long
format, and then converted back to be stored.
Preserving correct signaling NaN semantics
requires that signaling NaNs be propagated from
the source to the result without recognizing an
exception during widening from short to long or
narrowing from long to short. Because DFP does
not provide equivalents to the FP Load
Floating-Point Single and Store Floating-Point
Single functions, the widening is performed by
loading the DFP short value with a Load Floating
as Integer Word Indexed followed by a DFP
Convert to DFP Long, and narrowing is performed
by a DFP Round to DFP Short followed by a Store
Floating-Point as Integer Word Indexed. If the
SNaN or infinity in DFP short format uses the
preferred DPD encoding, then converting this
operand to DFP long format and back to DFP short
will result in the original bit pattern.

Programming Note

Instruction
Actions when operand b in FRB[p] is

F ∞ QNaN SNaN
Convert To DFP Long T(b)1 P(b)2,4 P(b)2,4 P(b)3,4

Convert To DFP Extended T(b)1 T(dINF) P(b)2,4 VXSNAN: U(b)2,4

Round To DFP Short R(b)1 P(b)2,5 P(b)2,5 P(b)3,5

Round To DFP Long R(b)1 T(dINF) P(b)2,5 VXSNAN: U(b)2,5

Explanation:
1 The ideal exponent is the exponent of the source operand.
2 Bits 5:N-1 of the N-bit combination field are set to zero.
3 Bit 5 of the N-bit combination field is set to one. Bits 6:N-1 of the combination field are set to zero.
4 The trailing significand field is padded on the left with zeros.
5 Leftmost digits in the trailing significand field are removed.
dINF Default infinity.
F All finite numbers, including zeros.
P(x) The special symbol in operand x is propagated into FRT[p].
R(x) The value x is rounded to the target-format precision; see Section 5.5.11
T(x) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN.
VXSNAN Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)
Power ISA™ I228

Version 3.1
DFP Convert To DFP Long X-form

dctdp FRT,FRB (Rc=0)
dctdp. FRT,FRB (Rc=1)

The DFP short operand in bits 32:63 of FRB is
converted to DFP long format and the converted result
is placed into FRT. The sign of the result is the same as
the sign of the source operand. The ideal exponent is
the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP long format and does not cause an
invalid-operation exception.

dctdp[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

DFP Convert To DFP Extended X-form

dctqpq FRTp,FRB (Rc=0)
dctqpq. FRTp,FRB (Rc=1)

The DFP long operand in the FRB is converted to DFP
extended format and placed into FRTp. The sign of the
result is the same as the sign of the operand in FRB.
The ideal exponent is the exponent of the operand in
FRB.

If the operand in FRB is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP extended format.

dctqpq[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

59 FRT /// FRB 258 Rc
0 6 11 16 21 31

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a short SNaN to long
format will not cause an exception and the SNaN is
preserved. Subsequent operation on that SNaN in
long format will cause an exception.

Programming Note

63 FRTp /// FRB 258 Rc
0 6 11 16 21 31
Chapter 5. Decimal Floating-Point 229

Version 3.1
DFP Round To DFP Short X-form

drsp FRT,FRB (Rc=0)
drsp. FRT,FRB (Rc=1)

The DFP long operand in FRB is converted and
rounded to DFP short format. The DFP short value is
extended on the left with zeros to form a 64-bit entity
and placed into FRT. The sign of the result is the same
as the sign of the source operand. The ideal exponent
is the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP short format and does not cause an
invalid-operation exception.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

drsp[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
CR1 (if Rc=1)

DFP Round To DFP Long X-form

drdpq FRTp,FRBp (Rc=0)
drdpq. FRTp,FRBp (Rc=1)

The DFP extended operand in FRBp is converted and
rounded to DFP long format. The result concatenated
with 64 0s is placed in FRTp. The sign of the result is
the same as the sign of the source operand. The ideal
exponent is the exponent of the operand in FRBp.

If the operand in FRBp is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP long format.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

drdpq[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc=1)

59 FRT /// FRB 770 Rc
0 6 11 16 21 31

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a long SNaN to short
format will not cause an exception. Converting a
long format SNaN to short format is an implied
move operation.

Programming Note

63 FRTp /// FRBp 770 Rc
0 6 11 16 21 31

Note that DFP Round to DFP Long, while produc-
ing a result in DFP long format, actually targets a
register pair, writing 64 0s in FRTp+1.

Programming Note
Power ISA™ I230

Version 3.1
5.6.5.2 DFP Data-Type Conversion Instructions
The DFP data-type conversion instructions are used to
convert data type between DFP and fixed.

The data-type conversion instructions consist of Con-
vert From Fixed and Convert To Fixed.

DFP Convert From Fixed X-form

dcffix FRT,FRB (Rc=0)
dcffix. FRT,FRB (Rc=1)

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Long value and placed into FRT.
The sign of the result is the same as the sign of the
source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.

dcffix[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

DFP Convert From Fixed Quad X-form

dcffixq FRTp,FRB (Rc=0)
dcffixq. FRTp,FRB (Rc=1)

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.

dcffixq[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

59 FRT /// FRB 802 Rc
0 6 11 16 21 31

63 FRTp /// FRB 802 Rc
0 6 11 16 21 31
Chapter 5. Decimal Floating-Point 231

Version 3.1
DFP Convert From Fixed Quadword Quad
X-form

dcffixqq FRTp,VRB

The 128-bit signed binary integer in VRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.

dcffixqq is treated as a Floating-Point and a Vector
instruction in terms of resource availability.

Special Registers Altered:
FPRF FR FI FX XX

63 FRTp 0 VRB 994 /
0 6 11 16 21 31

VSR Data Layout for dcffixqq

src VSR[VRB+32]

result
VSR[FRTp].dword[0] 0x0000_0000_0000_0000

VSR[FRTp+1].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I232

Version 3.1
DFP Convert To Fixed X-form

dctfix FRT,FRB (Rc=0)
dctfix. FRT,FRB (Rc=1)

DFP Convert To Fixed Quad X-form

dctfixq FRT,FRBp (Rc=0)
dctfixq. FRT,FRBp (Rc=1)

The DFP operand in FRB[p] is rounded to an integer
value and is placed into FRT in the 64-bit signed binary
integer format. The sign of the result is the same as
the sign of the source operand, except when the
source operand is a NaN or a zero.

Figure 94 summarizes the actions for Convert To
Fixed.

dctfix[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

DFP Convert To Fixed Quadword Quad X-form

dctfixqq VRT,FRBp

The DFP operand in FRBp is rounded to an integer
value and is placed into VRT in the 128-bit signed
binary integer format. The sign of the result is the
same as the sign of the source operand, except when
the source operand is a NaN or a zero.

Figure 96 summarizes the actions for Convert To
Fixed.

dctfixqq is treated as a Floating-Point and a Vector
instruction in terms of resource availability.

Special Registers Altered:
FPRF (undefined) FR FI FX VXSNAN VXCVI XX

59 FRT /// FRB 290 Rc
0 6 11 16 21 31

63 FRT /// FRBp 290 Rc
0 6 11 16 21 31

It is recommended that software pre-round the
operand to a floating-point integral using drintx[q]
or drintn[q] if a rounding mode other than the cur-
rent rounding mode specified by DRN is needed.
Saving, modifying and restoring the FPSCR just to
temporarily change the rounding mode is less effi-
cient than just employing drintx[p] or drint[p] which
override the current rounding mode using an imme-
diate control field.

For example if the desired function rounding is
Round to Nearest, Ties away from 0 but the default
rounding (from DRN) is Round to Nearest, Ties to
Even then following is preferred.

drintn 0,f1,f1,2
dctfix f1,f1

Programming Note

63 VRT 1 FRBp 994 /
0 6 11 16 21 31

VSR Data Layout for dctfixqq

src
VSR[FRBp].dword[0] unused

VSR[FRBp+1].dword[0] unused

result VSR[VRT+32]

0 64 127
Chapter 5. Decimal Floating-Point 233

Version 3.1
Operand b
in FRB[p] is q is

Is n not
precise
(n ≠ b)

Inv.-Op.
Except.
Enabled

Inexact
Except.
Enabled

Is n Incre-
mented

(|n| > |b|)
Actions *

-∞ ≤ b < MN < MN - No - - T(MN), FI←0, FR←0, VXCVI←1

-∞ ≤ b < MN < MN - Yes - - VXCVI←1, TV

-∞ < b < MN = MN - - No - T(MN), FI ← 1, FR←0, XX←1

-∞ < b < MN = MN - - Yes - T(MN), FI ← 1, FR←0, XX←1, TX

MN ≤ b < 0 - No - - - T(n), FI←0, FR←0

MN ≤ b < 0 - Yes - No No T(n), FI←1, FR←0, XX←1

MN ≤ b < 0 - Yes - No Yes T(n), FI←1, FR←1, XX←1

MN ≤ b < 0 - Yes - Yes No T(n), FI←1, FR←0, XX←1, TX

MN ≤ b < 0 - Yes - Yes Yes T(n), FI←1, FR←1, XX←1, TX

±0 - No - - - T(0), FI←0, FR←0

 0 < b ≤ MP - No - - - T(n), FI←0, FR←0

 0 < b ≤ MP - Yes - No No T(n), FI←1, FR←0, XX←1

 0 < b ≤ MP - Yes - No Yes T(n), FI←1, FR←1, XX←1

0 < b ≤ MP - Yes - Yes No T(n), FI←1, FR←0, XX←1, TX

0 < b ≤ MP - Yes - Yes Yes T(n), FI←1, FR←1, XX←1, TX

MP < b < +∞ = MP - - No - T(MP), FI←1, FR←0, XX←1

MP < b < +∞ = MP - - Yes - T(MP), FI←1, FR←0, XX←1, TX

MP < b ≤ +∞ > MP - No - - T(MP), FI←0, FR←0, VXCVI←1

MP < b ≤ +∞ > MP - Yes - - VXCVI←1, TV

QNaN - - No - - T(MN), FI ← 0, FR←0, VXCVI←1

QNaN - - Yes - - VXCVI←1, TV

SNaN - - No - - T(MN), FI←0, FR←0, VXCVI←1, VXSNAN←1

SNaN - - Yes - - VXCVI←1, VXSNAN←1, TV

Explanation:
* Setting of XX, VXCVI, and VXSNAN is part of the corresponding exception actions. Also, when an

invalid-operation exception occurs, setting of FI and FR bits is part of the exception actions. (See the
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

- The actions do not depend on this condition.
FI Floating-Point Fraction Inexact status bit.
FR Floating-Point Fraction Rounded status bit.
MN Maximum negative number representable by the 64-bit binary integer format
MP Maximum positive number representable by the 64-bit binary integer format.
n The value q converted to a fixed-point result.
q The value derived when the source value b is rounded to an integer using the specified rounding mode

T(x) The value x is placed in FRT[p].
TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception

if FE0 and FE1 are set to any mode other than the ignore-exception mode.
TX The system floating-point enabled exception error handler is invoked for the inexact exception if FE0 and

FE1 are set to any mode other than the ignore-exception mode.
VXCVI Floating-Point Invalid Operation (Invalid Conversion) exception status bit.
VXSNAN Floating-Point Invalid Operation (SNaN) exception status bit.
XX Floating-Point Inexact exception status bit.

Figure 94. Actions: Convert To Fixed
Power ISA™ I234

Version 3.1
5.6.6 DFP Format Instructions
The DFP format instructions are used to compose or
decompose a DFP operand. A source operand of
SNaN does not cause an invalid-operation exception.
All format instructions employ the record bit (Rc).

The format instructions consist of Decode DPD To
BCD, Encode BCD To DPD, Extract Biased Exponent,
Insert Biased Exponent, Shift Significand Left Immedi-
ate, and Shift Significand Right Immediate.

DFP Decode DPD To BCD X-form

ddedpd SP,FRT,FRB (Rc=0)
ddedpd. SP,FRT,FRB (Rc=1)

DFP Decode DPD To BCD Quad X-form

ddedpdq SP,FRTp,FRBp (Rc=0)
ddedpdq. SP,FRTp,FRBp (Rc=1)

A portion of the significand of the DFP operand in
FRB[p] is converted to a signed or unsigned BCD
number depending on the SP field. For infinity and
NaN, the significand is considered to be the contents
in the trailing significand field padded on the left by a
zero digit.

SP0 = 0 (unsigned conversion)

The rightmost 16 digits of the significand (32 digits
for ddedpdq) is converted to an unsigned BCD
number and the result is placed into FRT[p].

SP0 = 1 (signed conversion)

The rightmost 15 digits of the significand (31 digits
for ddedpdq) is converted to a signed BCD num-
ber with the same sign as the DFP operand, and
the result is placed into FRT[p]. If the DFP operand
is negative, the sign is encoded as 0b1101. If the
DFP operand is positive, SP1 indicates which pre-
ferred plus sign encoding is used. If SP1 = 0, the
plus sign is encoded as 0b1100 (the option-1 pre-
ferred sign code), otherwise the plus sign is
encoded as 0b1111 (the option-2 preferred sign
code).

ddedpd[q][.] are treated as Floating-Point instructions
in terms of resource availability.

Special Registers Altered:
CR1 (if Rc=1)

DFP Encode BCD To DPD X-form

denbcd S,FRT,FRB (Rc=0)
denbcd. S,FRT,FRB (Rc=1)

DFP Encode BCD To DPD Quad X-form

denbcdq S,FRTp,FRBp (Rc=0)
denbcdq. S,FRTp,FRBp (Rc=1)

The signed or unsigned BCD operand, depending on
the S field, in FRB[p] is converted to a DFP number.
The ideal exponent is zero.

S = 0 (unsigned BCD operand)

The unsigned BCD operand in FRB[p] is converted
to a positive DFP number of the same magnitude
and the result is placed into FRT[p].

S = 1 (signed BCD operand)

The signed BCD operand in FRB[p] is converted to
the corresponding DFP number and the result is
placed into FRT[p].

If an invalid BCD digit or sign code is detected in the
source operand, an invalid-operation exception (VXCVI)
occurs.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exception when VE=1.

denbcd[q][.] are treated as Floating-Point instructions
in terms of resource availability.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXCVI
CR1 (if Rc=1)

59 FRT SP /// FRB 322 Rc
0 6 11 13 16 21 31

63 FRTp SP /// FRBp 322 Rc
0 6 11 13 16 21 31

59 FRT S /// FRB 834 Rc
0 6 11 12 16 21 31

63 FRTp S /// FRBp 834 Rc
0 6 11 12 16 21 31
Chapter 5. Decimal Floating-Point 235

Version 3.1
DFP Extract Biased Exponent X-form

dxex FRT,FRB (Rc=0)
dxex. FRT,FRB (Rc=1)

DFP Extract Biased Exponent Quad X-form

dxexq FRT,FRBp (Rc=0)
dxexq. FRT,FRBp (Rc=1)

The biased exponent of the operand in FRB[p] is
extracted and placed into FRT in the 64-bit signed
binary integer format. When the operand in FRB is an
infinity, QNaN, or SNaN, a special code is returned.

dxex[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Rc=1)

DFP Insert Biased Exponent X-form

diex FRT,FRA,FRB (Rc=0)
diex. FRT,FRA,FRB (Rc=1)

DFP Insert Biased Exponent Quad X-form

diexq FRTp,FRA,FRBp
diexq. FRTp,FRA,FRBp (Rc=1)

Let a be the value of the 64-bit signed binary integer in
FRA.

When 0 ≤ a ≤ MBE, a is the biased target exponent
that is combined with the sign bit and the significand
value of the DFP operand in FRB[p] to form the DFP
result in FRT[p]. The ideal exponent is the specified
target exponent.

When a specifies a special code (a < 0 or a > MBE), an
infinity, QNaN, or SNaN is formed in FRT[p] with the
trailing significand field containing the value from the
trailing significand field of the source operand in
FRB[p], and with an N-bit combination field set as
follows.

 For an Infinity result,
 the leftmost 5 bits are set to 0b11110, and
 the rightmost N-5 bits are set to zero.

 For a QNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to zero, and
 the rightmost N-5 bits are set to zero.

 For an SNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to one, and
 the rightmost N-5 bits are set to zero.

diex[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Rc=1)

59 FRT /// FRB 354 Rc
0 6 11 16 21 31

63 FRT /// FRBp 354 Rc
0 6 11 16 21 31

Operand Result
Finite Number biased exponent value
Infinity -1
QNaN -2
SNaN -3

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

Programming Note

59 FRT FRA FRB 866 Rc
0 6 11 16 21 31

63 FRTp FRA FRBp 866 Rc
0 6 11 16 21 31

a Result
a > MBE1 QNaN
0 ≤ a ≤ MBE Finite number with biased exponent a
a = -1 Infinity
a = -2 QNaN
a = -3 SNaN
a < -3 QNaN
1 Maximum biased exponent for the target format

The exponent bias value is 101 for DFP Short, 398 for DFP Long, and 6176 for DFP Extended.
Programming Note
Power ISA™ I236

Version 3.1
Operand a in
FRA[p] specifies

Actions for Insert Biased Exponent when operand b in FRB[p] specifies
F ∞ QNaN SNaN

F N, Rb Z, Rb Z, Rb Z, Rb

∞ I, Rb I, Rb I, Rb I, Rb

QNaN Q, Rb Q, Rb Q, Rb Q, Rb

SNaN S, Rb S, Rb S, Rb S, Rb

Explanation:
F All finite numbers, including zeros
I The combination field in FRT[p] is set to indicate a default Infinity.
N The combination field in FRT[p] is set to the specified biased exponent in FRA and the

leftmost significand digit in FRB[p].
Q The combination field in FRT[p] is set to indicate a default QNaN.
S The combination field in FRT[p] is set to indicate a default SNaN.
Z The combination field in FRT[p] is set to indicate the specific biased exponent in FRA

and a leftmost coefficient digit of zero.
Rb The contents of the trailing significand field in FRB[p] are reencoded using preferred

DPD encodings and the reencoded result is placed in the same field in FRT[p]. The
sign bit of FRB[p] is copied into the sign bit in FRT[p].

Figure 95. Actions: Insert Biased Exponent
Chapter 5. Decimal Floating-Point 237

Version 3.1
DFP Shift Significand Left Immediate Z22-form

dscli FRT,FRA,SH (Rc=0)
dscli. FRT,FRA,SH (Rc=1)

DFP Shift Significand Left Immediate Quad
Z22-form

dscliq FRTp,FRAp,SH (Rc=0)
dscliq. FRTp,FRAp,SH (Rc=1)

The significand of the DFP operand in FRA[p] is shifted
left SH digits. For a NaN or infinity, all significand digits
are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the
leftmost digit are lost. Zeros are supplied to the
vacated positions on the right. The result is placed into
FRT[p]. The sign of the result is the same as the sign
of the source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target
format’s N-bit combination field is set as follows.

 For an Infinity result,
 the leftmost 5 bits are set to 0b11110, and
 the rightmost N-5 bits are set to zero.

 For a QNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to zero, and
 the rightmost N-6 bits are set to zero.

 For an SNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to one, and
 the rightmost N-6 bits are set to zero.

dscli[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Rc=1)

DFP Shift Significand Right Immediate
Z22-form

dscri FRT,FRA,SH (Rc=0)
dscri. FRT,FRA,SH (Rc=1)

DFP Shift Significand Right Immediate Quad
Z22-form

dscriq FRTp,FRAp,SH (Rc=0)
dscriq. FRTp,FRAp,SH (Rc=1)

The significand of the DFP operand in FRA[p] is shifted
right SH digits. For a NaN or infinity, all significand
digits are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the units
digit are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into FRT[p].
The sign of the result is the same as the sign of the
source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target
format’s N-bit combination field is set as follows.

 For an Infinity result,
 the leftmost 5 bits are set to 0b11110, and
 the rightmost N-5 bits are set to zero.

 For a QNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to zero, and
 the rightmost N-6 bits are set to zero.

 For an SNaN result,
 the leftmost 5 bits are set to 0b11111,
 bit 5 is set to one, and
 the rightmost N-6 bits are set to zero.

dscri[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Rc=1)

59 FRT FRA SH 66 Rc
0 6 11 16 21 31

63 FRTp FRAp SH 66 Rc
0 6 11 16 21 31

59 FRT FRA SH 98 Rc
0 6 11 16 21 31

63 FRTp FRAp SH 98 Rc
0 6 11 16 21 31
Power ISA™ I238

Version 3.1
5.6.7 DFP Instruction Summary
M

ne
m

on
ic

Full Name FO
R

M

Operands
SNaN
 Vs G En

co
di

ng FPRF

FP
Exception

V Z O U X FR
\F

I

IE R
c

C FP
C

C

dadd DFP Add X FRT, FRA, FRB Y N RE Y Y V O U X Y Y Y
daddq DFP Add Quad X FRTp, FRAp, FRBp Y N RE Y Y V O U X Y Y Y
dsub DFP Subtract X FRT, FRA, FRB Y N RE Y Y V O U X Y Y Y
dsubq DFP Subtract Quad X FRTp, FRAp, FRBp Y N RE Y Y V O U X Y Y Y
dmul DFP Multiply X FRT, FRA, FRB Y N RE Y Y V O U X Y Y Y
dmulq DFP Multiply Quad X FRTp, FRAp, FRBp Y N RE Y Y V O U X Y Y Y
ddiv DFP Divide X FRT, FRA, FRB Y N RE Y Y V Z O U X Y Y Y
ddivq DFP Divide Quad X FRTp, FRAp, FRBp Y N RE Y Y V Z O U X Y Y Y
dcmpo DFP Compare Ordered X BF, FRA, FRB Y - - N Y V - - N
dcmpoq DFP Compare Ordered Quad X BF, FRAp, FRBp Y - - N Y V - - N
dcmpu DFP Compare Unordered X BF, FRA, FRB Y - - N Y V - - N
dcmpuq DFP Compare Unordered Quad X BF, FRAp, FRBp Y - - N Y V - - N

dtstdc DFP Test Data Class Z22 BF, FRA, DCM N - - N Y1 - - N

dtstdcq DFP Test Data Class Quad Z22 BF, FRAp, DCM N - - N Y1 - - N

dtstdg DFP Test Data Group Z22 BF, FRA,DGM N - - N Y1 - - N

dtstdgq DFP Test Data Group Quad Z22 BF, FRAp, DGM N - - N Y1 - - N

dtstex DFP Test Exponent X BF, FRA, FRB N - - N Y - - N
dtstexq DFP Test Exponent Quad X BF, FRAp, FRBp N - - N Y - - N
dtstsf DFP Test Significance X BF, FRA(FIX), FRB N - - N Y - - N
dtstsfq DFP Test Significance Quad X BF, FRA(FIX), FRBp N - - N Y - - N
dquai DFP Quantize Immediate Z23 TE, FRT, FRB, RMC Y N RE Y Y V X Y Y Y
dquaiq DFP Quantize Immediate Quad Z23 TE, FRTp, FRBp, RMC Y N RE Y Y V X Y Y Y
dqua DFP Quantize Z23 FRT,FRA,FRB,RMC Y N RE Y Y V X Y Y Y
dquaq DFP Quantize Quad Z23 FRTp,FRAp,FRBp, RMC Y N RE Y Y V X Y Y Y
drrnd DFP Reround Z23 FRT,FRA(FIX),FRB,RMC Y N RE Y Y V X Y Y Y

drrndq DFP Reround Quad Z23 FRTp, FRA(FIX), FRBp,
RMC Y N RE Y Y V X Y Y Y

drintx DFP Round To FP Integer With
Inexact Z23 R,FRT, FRB,RMC Y N RE Y Y V X Y Y Y

drintxq DFP Round To FP Integer With
Inexact Quad Z23 R,FRTp,FRBp,RMC Y N RE Y Y V X Y Y Y

drintn DFP Round To FP Integer With-
out Inexact Z23 R,FRT, FRB,RMC Y N RE Y Y V Y# Y Y

drintnq DFP Round To FP Integer With-
out Inexact Quad Z23 R,FRTp, FRBp,RMC Y N RE Y Y V Y# Y Y

dctdp DFP Convert To DFP Long X FRT, FRB (DFP Short) N Y RE Y Y2 U Y Y

dctqpq DFP Convert To DFP Extended X FRTp, FRB Y N RE Y Y V Y# Y Y

drsp DFP Round To DFP Short X FRT (DFP Short), FRB N Y RE Y Y2 O U X Y Y Y

drdpq DFP Round To DFP Long X FRTp, FRBp Y N RE Y Y V O U X Y Y Y

Figure 96. Decimal Floating-Point Instructions Summary
Chapter 5. Decimal Floating-Point 239

Version 3.1
dcffixq DFP Convert From Fixed Quad X FRTp, FRB (FIX) - N RE Y Y U Y Y

dctfix DFP Convert To Fixed X FRT (FIX), FRB Y N - U U V X Y - Y

dctfixq DFP Convert To Fixed Quad X FRT (FIX), FRBp Y N - U U V X Y - Y

dcffixqq DFP Convert From Fixed Quad-
word Quad x FRTp,VRB (FIX) - N - Y Y U Y Y

dctfixqq DFP Convert To Fixed Quadword
Quad x VRT (FIX),FRBp Y N - U U V X Y - Y

ddedpd DFP Decode DPD To BCD X SP, FRT(BCD), FRB N - - N N - - Y
ddedpdq DFP Decode DPD To BCD Quad X SP, FRTp(BCD), FRBp N - - N N - - Y

denbcd DFP Encode BCD To DPD X S, FRT, FRB (BCD) - N RE Y Y V

Y# Y Y

denbcdq DFP Encode BCD To DPD Quad X S, FRTp, FRBp (BCD) - N RE Y Y V Y# Y Y

dxex DFP Extract Biased Exponent X FRT (FIX), FRB N N - N N - - Y

dxexq DFP Extract Biased Exponent
Quad X FRT (FIX), FRBp N N - N N - - Y

diex DFP Insert Biased Exponent X FRT, FRA(FIX), FRB N Y RE N N - Y Y

diexq DFP Insert Biased Exponent
Quad X FRTp, FRA(FIX), FRBp N Y RE N N - Y Y

dscli DFP Shift Significand Left Imme-
diate Z22 FRT,FRA,SH N Y RE N N - - Y

dscliq DFP Shift Significand Left Imme-
diate Quad Z22 FRTp,FRAp,SH N Y RE N N - - Y

dscri DFP Shift Significand Right Imme-
diate Z22 FRT,FRA,SH N Y RE N N - - Y

dscriq DFP Shift Significand Right Imme-
diate Quad Z22 FRTp,FRAp,SH N Y RE N N - - Y

 Explanation:
FI and FR are set to zeros for these instructions.
- Not applicable.
1 A unique definition of the FPSCRFPCC field is provided for the instruction.

2
These are the only instructions that may generate an SNaN and also set the FPSCFPRF field. Since the BFP FPRF field
does not include a code for SNaN, these instructions cause the need for redefining the FPRF field for DFP.

DCM A 6-bit immediate operand specifying the data-class mask.
DGM A 6-bit immediate operand specifying the data-group mask.

G An SNaN can be generated as the target operand.
IE An ideal exponent is defined for the instruction.

FI Setting of the FPSCRFI flag.

FR Setting of the FPSCRFR flag.

N No.
O An overflow exception may be recognized.

Rc The record bit, Rc, is provided to record FPSCR32:35 in CR field 1.

RE The trailing significand field is reencoded using preferred DPD encodings.The preferred DPD encoding are also used for
propagated NaNs, or converted NaNs and infinities.

RMC A 2-bit immediate operand specifying the rounding-mode control.
S An one-bit immediate operand specifying if the operation is signed or unsigned.

M
ne

m
on

ic

Full Name FO
R

M

Operands
SNaN
 Vs G En

co
di

ng FPRF

FP
Exception

V Z O U X FR
\F

I

IE R
c

C FP
C

C

Figure 96. Decimal Floating-Point Instructions Summary (Continued)
Power ISA™ I240

Version 3.1
SP A two-bit immediate operand: one bit specifies if the operation is signed or unsigned and, for signed operations, another
bit specifies which preferred plus sign code is generated.

U An underflow exception may be recognized.
V An invalid-operation exception may be recognized.
Vs An input operand of SNaN causes an invalid-operation exception.
X An inexact exception may be recognized.
Y Yes.
U Undefined
Z A zero-divide exception may be recognized.

 Explanation:
Chapter 5. Decimal Floating-Point 241

Version 3.1
Power ISA™ I242

Version 3.1
Chapter 6. Vector Facility

6.1 Vector Facility Overview
This chapter describes the registers and instructions
that make up the Vector Facility.

6.2 Chapter Conventions

6.2.1 Description of Instruction
Operation
The following notation, in addition to that described in
Section 1.3.2, is used in this chapter.

x.bit[y]
Return the contents of bit y of x.

x.bit[y:z]
Return the contents of bits y:z of x.

x.nibble[y]
Return the contents of the 4-bit nibble element y
of x.

x.nibble[y:z]
Return the contents of the 4-bit nibble elements
y:z of x.

x.byte[y]
Return the contents of 8-bit byte element y of x.

x.byte[y:z]
Return the contents of 8-bit byte elements y:z of x.

x.hword[y]
Return the contents of 16-bit halfword element y
of x.

x.hword[y:z]
Return the contents of 16-bit halfword elements
y:z of x.

x.word[y]
Return the contents of 32-bit word element y of x.

x.word[y:z]
Return the contents of 32-bit word element y:z of
x.

x.dword[y]
Return the contents of 64-bit doubleword element
y of x.

x.dword[y:z]
Return the contents of 64-bit doubleword
elements y:z of x.

x.qword[y]
Return the contents of 128-bit quadword element
y of x.

x ? y : z
if the value of x is true, then the value of y,
otherwise the value z.

+
Addition.

–
Subtraction.

×
Multiplication.

~
One’s complement.

=, <, <=, >, >=
Equal, less than, less than or equal, greater than,
and greater than or equal comparison relations.
Chapter 6. Vector Facility 243

Version 3.1
x << y
Result of shifting x left by y bits, filling vacated bits with zeros.

b ← LENGTH(x)
result ← x
do i = 0 to y-1
 result ← result.bit[1:b-1] || 0b0

x >> y
Result of shifting x right by y bits, filling vacated bits with copies of bit 0 of x.

b ← LENGTH(x)
result ← x
do i = 0 to y-1
 result ← result.bit[0] || result.bit[0:b-2]

x <<< y
Result of rotating x left by y bits.

b ← LENGTH(x)
result ← x.bit[y:b-1] || x.bit[0:y-1]

x >>> y
Result of rotating x right by y bits.

b ← LENGTH(x)
result ← x.bit[b-y+1:b-1] || x.bit[0:b-y]

bcd_ADD(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal addition of x and y.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.
If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, lt_flag is set to 1. Otherwise, lt_flag is set to 0.

If the magnitude of the unbounded result is greater than 1031-1, ox_flag is set to 1. Otherwise, ox_flag is set to
0.

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is set to 1 and lt_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.
Power ISA™ I244

Version 3.1
bcd_CONVERT_FROM_SI128(x,y)
Let x be a signed integer quadword.
Let y indicate the preferred sign code.

Return the signed integer value x in packed decimal format.

if x < 0 then do
 x ← ~x + 1
 sign ← 0x000D
end
else
 sign ← (y=0) ? 0x000C : 0x000F

result ← 0
shcnt ← 4

do while (x > 0)
 digit ← x % 10
 result ← result | (digit<<shcnt)
 x ← x ÷ 10
 shcnt ← shcnt + 4
end

return result | sign

bcd_INCREMENT(result)
Increments the magnitude of the packed decimal value x by 1.

bcd_SUBTRACT(x,y,z)
Let x and y be 31-digit signed decimal values.

Performs a signed decimal subtract of y from x.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.
If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, lt_flag is set to 1. Otherwise, lt_flag is set to 0.

If the magnitude of the unbounded result is greater than 1031-1, ox_flag is set to 1. Otherwise, ox_flag is set to
0.

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is set to 1 and lt_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.
Chapter 6. Vector Facility 245

Version 3.1
bfp32_ADD(x,y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.
Otherwise, if x is an SNaN, the result is x converted to a QNaN.
Otherwise, if y is a QNaN, the result is y.
Otherwise, if y is an SNaN, the result is y converted to a QNaN.
Otherwise, if x and y are Infinities having opposite signs, the result is the single-precision standard QNaN.
Otherwise, if x is an Infinity, the result is x.
Otherwise, if y is an Infinity, the result is y.
Otherwise, the result is the sum, x added to y, rounded to the nearest single-precision value.

Return the result represented in single-precision format.

bfp32_CONVERT_FROM_SI32(x,y)
Let x be a 32-bit signed integer value.

sign ← X.bit[0]
exp ← 32 + 127
frac.bit[0] ← x.bit[0]
frac.bit[1:32] ← x.bit[0:31]

if frac=0 return 0x0000_0000 // Zero operand
if sign=1 then frac = ~frac + 1

do while (frac.bit[0]=0)
 frac ← frac << 1
 exp ← exp - 1
end

lsb ← frac.bit[23]
gbit ← frac.bit[24]
xbit ← frac.bit[25:32]!=0
inc ← (lsb & gbit) | (gbit & xbit)

frac.bit[0:23] ← frac.bit[0:23] + inc
if carry_out=1 then exp ← exp + 1

result.bit[0] ← sign
result.bit[1:8] ← exp - y
result.bit[9:31] ← frac.bit[1:23]

return result
Power ISA™ I246

Version 3.1
bfp32_CONVERT_FROM_UI32(x,y)
x is a 32-bit unsigned integer value.

exp ← 31 + 127
frac ← x.bit[0:31]

if frac=0 return 0x0000_0000 // Zero

do while frac0=0
 frac ← frac << 1
 exp ← exp - 1
end

lsb ← frac.bit[23]
gbit ← frac.bit[24]
xbit ← frac.bit[25:31]!=0
inc ← (lsb & gbit) | (gbit & xbit)

frac.bit[0:23] ← frac.bit[0:23] + inc
if carry_out=1 then exp ← exp + 1

result.bit[0] ← 0b0
result.bit[1:8] ← exp - y
result.bit[9:31] ← frac.bit[1:23]

return result

bfp32_LOG_BASE2_ESTIMATE(x)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the base 2 logarithm of x, represented in single-precision format.

bfp32_MAXIMUM(x,y)
x is a floating-point value represented in single-precision format.
y is a floating-point value represented in single-precision format.

Return the largest value of x and y, represented in single-precision format.
The maximum of +0.0 and -0.0 is +0.0.
The maximum of any value and a NaN is a QNaN.

bfp32_MINIMUM(x,y)
x is a floating-point value represented in single-precision format.
y is a floating-point value represented in single-precision format.

Return the smallest value of x and y, represented in single-precision format.
The minimum of +0.0 and -0.0 is -0.0.
The minimum of any value and a NaN is a QNaN.
Chapter 6. Vector Facility 247

Version 3.1
bfp32_MULTIPLY_ADD(x,z,y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.
z is a binary floating-point value represented in single-precision format.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, the result is x converted to a QNaN.
Otherwise, if y is a QNaN, the result is y.
Otherwise, if y is an SNaN, the result is y converted to a QNaN.
Otherwise, if z is a QNaN, the result is z.
Otherwise, if z is an SNaN, the result is z converted to a QNaN.
Otherwise, if x is an Infinity and z is a Zero, the result is the single-precision standard QNaN.
Otherwise, if x is a Zero and z is an Infinity, the result is the single-precision standard QNaN.
Otherwise, if the product, x multiplied by z, and y are Infinities having opposite signs, the result is the
single-precision standard QNaN.
Otherwise, the result is the sum of the product, x multiplied by z, added to y, rounded to the nearest
single-precision value.

Return the result represented in single-precision format.

bfp32_NEGATIVE_MULTIPLY_SUBTRACT(x,z,y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.
z is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.
Otherwise, if x is an SNaN, the result is x converted to a QNaN.
Otherwise, if y is a QNaN, the result is y.
Otherwise, if y is an SNaN, the result is y converted to a QNaN.
Otherwise, if z is a QNaN, the result is z.
Otherwise, if z is an SNaN, the result is z converted to a QNaN.
Otherwise, if x is an Infinity and z is a Zero, the result is the single-precision standard QNaN.
Otherwise, if x is a Zero and z is an Infinity, the result is the single-precision standard QNaN.
Otherwise, if the product, x multiplied by z, and y are Infinities having the same signs, the result is the
single-precision standard QNaN.
Otherwise, the result is the difference of the product, x multiplied by z, subtracted by y, then rounded to the
nearest single-precision value, and then negated.

Return the result represented in single-precision format.

bfp32_POWER2_ESTIMATE(x)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of 2 raised to the power of x, represented in single-precision format.

bfp32_RECIPROCAL_ESTIMATE(x)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the reciprocal of x, represented in single-precision format.

bfp32_RECIPROCAL_SQRT_ESTIMATE(x)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the reciprocal of the square root of x, represented in single-precision format.
Power ISA™ I248

Version 3.1
bfp32_ROUND_TO_INTEGER_CEIL(x)
x is a floating-point value represented in single-precision format.

Returns the smallest floating-point integer that is greater than or equal to x, represented in single-precision
format.

bfp32_ROUND_TO_INTEGER_FLOOR(x)
x is a floating-point value represented in single-precision format.

Returns the largest floating-point integer that is less than or equal to x, represented in single-precision format.

bfp32_ROUND_TO_INTEGER_NEAR(x)
x is a floating-point value represented in single-precision format.

Returns the floating-point integer that is nearest to x (in case of a tie, the even single-precision floating-point
integer is used), represented in single-precision format.

bfp32_ROUND_TO_INTEGER_TRUNC(x)
x is a floating-point value represented in single-precision format.

Returns the largest floating-point integer that is less than or equal to x if x>0, or the smallest floating-point
integer that is greater than or equal to x if x>0, or represented in single-precision format.

bfp32_ROUND_TO_NEAR(x)
x is a floating-point value represented in the working floating-point format.

Returns the single-precision floating-point value that is nearest to x (in case of a tie, the single-precision
floating-point value with the least-significant bit equal to 0 is used), represented in single-precision format.

bfp32_SUBTRACT(x,y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.
Otherwise, if x is an SNaN, the result is x converted to a QNaN.
Otherwise, if y is a QNaN, the result is y.
Otherwise, if y is an SNaN, the result is y converted to a QNaN.
Otherwise, if x and y are infinities having the same signs, the result is the single-precision standard QNaN.
Otherwise, if x is an infinity, the result is x.
Otherwise, if y is an infinity, the result is y.
Otherwise, the result is the difference, x subtracted by y, rounded to the nearest single-precision value.

Return the result respresented in single-precision format.

bool_COMPARE_GE_BFP32(x,y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is greater than or equal to y. Otherwise, returns the value 0.

bool_COMPARE_GT_BFP32(x,y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is greater than y. Otherwise, returns the value 0.
Chapter 6. Vector Facility 249

Version 3.1
bool_COMPARE_EQ_BFP32(x,y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is equal to y. Otherwise, returns the value 0.

bool_COMPARE_LE_BFP32(x,y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is less than or equal to y. Otherwise, returns the value 0.

CHOP8(x)
Returns rightmost 8 bits of x padded on the left with zeros if necessary.

CHOP16(x)
Returns rightmost 16 bits of x padded on the left with zeros if necessary.

CHOP32(x)
Returns rightmost 32 bits of x padded on the left with zeros if necessary.

CHOP64(x)
Returns rightmost 64 bits of x padded on the left with zeros if necessary.

CHOP128(x)
Returns rightmost 128 bits of x padded on the left with zeros if necessary.

Clamp(x,y,z)
x is interpreted as a signed integer. If the value of x is less than y, then the value y is returned, else if the value
of x is greater than z, the value z is returned, else the value x is returned.

if x < y then
 result ← y
else if x > z then
 result ← z
else
 result ← x

EXTS(x)
Result of extending x on the left with copies of bit 0 of x to form a signed integer value having unbounded
range.

EXTS8(x)
Result of extending x on the left with copies of bit 0 of x to form an 8-bit signed integer value.

EXTS16(x)
Result of extending x on the left with copies of bit 0 of x to form a 16-bit signed integer value.

EXTS32(x)
Result of extending x on the left with copies of bit 0 of x to form a 32-bit signed integer value.

EXTS64(x)
Result of extending x on the left with copies of bit 0 of x to form a 64-bit signed integer value.

EXTS128(x)
Result of extending x on the left with copies of bit 0 of x to form a 128-bit signed integer value.

EXTZ(x)
Result of extending x on the left with 0s to form a positive signed integer value having unbounded range.
Power ISA™ I250

Version 3.1
EXTZ8(x)
Result of extending x on the left with 0s to form an 8-bit unsigned integer value.

EXTZ16(x)
Result of extending x on the left with 0s to form a 16-bit unsigned integer value.

EXTZ32(x)
Result of extending x on the left with 0s to form a 32-bit unsigned integer value.

EXTZ64(x)
Result of extending x on the left with 0s to form a 64-bit unsigned integer value.

EXTZ128(x)
Result of extending x on the left with 0s to form a 128-bit unsigned integer value.

InvMixColumns(x)
do c = 0 to 3

 result.word[c].byte[0] = 0x0E•x.word[c].byte[0] ^ 0x0B•x.word[c].byte[1] ^ 0x0D•x.word[c].byte[2] ^ 0x09•x.word[c].byte[3]

 result.word[c].byte[1] = 0x09•x.word[c].byte[0] ^ 0x0E•x.word[c].byte[1] ^ 0x0B•x.word[c].byte[2] ^ 0x0D•x.word[c].byte[3]

 result.word[c].byte[2] = 0x0D•x.word[c].byte[0] ^ 0x09•x.word[c].byte[1] ^ 0x0E•x.word[c].byte[2] ^ 0x0B•x.word[c].byte[3]

 result.word[c].byte[3] = 0x0B•x.word[c].byte[0] ^ 0x0D•x.word[c].byte[1] ^ 0x09•x.word[c].byte[2] ^ 0x0E•x.word[c].byte[3]

end

return(result);

where “•” is a GF(28) multiply, a binary polynomial multiplication reduced by modulo 0x11B.

The GF(28) multiply of 0x09•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[3]

product.bit[1] = x.bit[1] ^ x.bit[4] ^ x.bit[0]

product.bit[2] = x.bit[2] ^ x.bit[5] ^ x.bit[0] ^ x.bit[1]

product.bit[3] = x.bit[3] ^ x.bit[6] ^ x.bit[1] ^ x.bit[2]

product.bit[4] = x.bit[4] ^ x.bit[7] ^ x.bit[0] ^ x.bit[2]

product.bit[5] = x.bit[5] ^ x.bit[0] ^ x.bit[1]

product.bit[6] = x.bit[6] ^ x.bit[1] ^ x.bit[2]

product.bit[7] = x.bit[7] ^ x.bit[2]

The GF(28) multiply of 0x0B•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[1] ^ x.bit[3]

product.bit[1] = x.bit[1] ^ x.bit[2] ^ x.bit[4] ^ x.bit[0]

product.bit[2] = x.bit[2] ^ x.bit[3] ^ x.bit[5] ^ x.bit[0] ^ x.bit[1]

product.bit[3] = x.bit[3] ^ x.bit[4] ^ x.bit[6] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]

product.bit[4] = x.bit[4] ^ x.bit[5] ^ x.bit[7] ^ x.bit[2]

product.bit[5] = x.bit[5] ^ x.bit[6] ^ x.bit[0] ^ x.bit[1]

product.bit[6] = x.bit[6] ^ x.bit[7] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]

product.bit[7] = x.bit[7] ^ x.bit[0] ^ x.bit[2]

The GF(28) multiply of 0x0D•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[2] ^ x.bit[3]

product.bit[1] = x.bit[1] ^ x.bit[3] ^ x.bit[4] ^ x.bit[0]

product.bit[2] = x.bit[2] ^ x.bit[4] ^ x.bit[5] ^ x.bit[1]

product.bit[3] = x.bit[3] ^ x.bit[5] ^ x.bit[6] ^ x.bit[0] ^ x.bit[2]

product.bit[4] = x.bit[4] ^ x.bit[6] ^ x.bit[7] ^ x.bit[0] ^ x.bit[1] ^ x.bit[2]

product.bit[5] = x.bit[5] ^ x.bit[7] ^ x.bit[1]

product.bit[6] = x.bit[6] ^ x.bit[0] ^ x.bit[2]

product.bit[7] = x.bit[7] ^ x.bit[1] ^ x.bit[2]
Chapter 6. Vector Facility 251

Version 3.1
The GF(28) multiply of 0x0E•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1] ^ x.bit[2] ^ x.bit[3]

product.bit[1] = x.bit[2] ^ x.bit[3] ^ x.bit[4] ^ x.bit[0]

product.bit[2] = x.bit[3] ^ x.bit[4] ^ x.bit[5] ^ x.bit[1]

product.bit[3] = x.bit[4] ^ x.bit[5] ^ x.bit[6] ^ x.bit[2]

product.bit[4] = x.bit[5] ^ x.bit[6] ^ x.bit[7] ^ x.bit[1] ^ x.bit[2]

product.bit[5] = x.bit[6] ^ x.bit[7] ^ x.bit[1]

product.bit[6] = x.bit[7] ^ x.bit[2]

product.bit[7] = x.bit[0] ^ x.bit[1] ^ x.bit[2]

InvShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]

result.word[1].byte[0] = x.word[1].byte[0]

result.word[2].byte[0] = x.word[2].byte[0]

result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[3].byte[1]

result.word[1].byte[1] = x.word[0].byte[1]

result.word[2].byte[1] = x.word[1].byte[1]

result.word[3].byte[1] = x.word[2].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]

result.word[1].byte[2] = x.word[3].byte[2]

result.word[2].byte[2] = x.word[0].byte[2]

result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[1].byte[3]

result.word[1].byte[3] = x.word[2].byte[3]

result.word[2].byte[3] = x.word[3].byte[3]

result.word[3].byte[3] = x.word[0].byte[3]

return(result)

InvSubBytes(x)
InvSBOX.byte[256] = { 0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB,

 0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB,

 0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E,

 0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25,

 0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92,

 0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84,

 0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06,

 0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B,

 0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73,

 0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E,

 0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B,

 0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4,

 0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F,

 0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF,

 0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61,

 0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D }

do i = 0 to 15

 result.byte[i] = InvSBOX.byte[x.byte[i]]

end

return(result)

LENGTH(x)
Length of x, in bits. If x is the word “element”, LENGTH(x) is the length, in bits, of the element implied by the
instruction mnemonic.
Power ISA™ I252

Version 3.1
MASK128(x,y)
Let x and y be integer values from 0 to 127.

Generate a 128-bit mask that consists of 1-bits from a start bit, x, through and including a stop bit, y, and 0-bits
elsewhere.

if x <= y then

 mask = all 0s

 mask.bit[x:y] = all 1s

else

 mask = all 1s

 mask.bit[y+1:x-1] = all 0s

return mask

MixColumns(x)
do c = 0 to 3

 result.word[c].byte[0] = 0x02•x.word[c].byte[0] ^ 0x03•x.word[c].byte[1] ^ x.word[c].byte[2] ^ x.word[c].byte[3]

 result.word[c].byte[1] = x.word[c].byte[0] ^ 0x02•x.word[c].byte[1] ^ 0x03•x.word[c].byte[2] ^ x.word[c].byte[3]

 result.word[c].byte[2] = x.word[c].byte[0] ^ x.word[c].byte[1] ^ 0x02•x.word[c].byte[2] ^ 0x03•x.word[c].byte[3]

 result.word[c].byte[3] = 0x03•x.word[c].byte[0] ^ x.word[c].byte[1] ^ x.word[c].byte[2] ^ 0x02•x.word[c].byte[3]

end

return(result)

The GF(28) multiply of 0x02•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1]

product.bit[1] = x.bit[2]

product.bit[2] = x.bit[3]

product.bit[3] = x.bit[4] ^ x.bit[0]

product.bit[4] = x.bit[5] ^ x.bit[0]

product.bit[5] = x.bit[6]

product.bit[6] = x.bit[7] ^ x.bit[0]

product.bit[7] = x.bit[0]

The GF(28) multiply of 0x03•x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] ^ x.bit[1]

product.bit[1] = x.bit[1] ^ x.bit[2]

product.bit[2] = x.bit[2] ^ x.bit[3]

product.bit[3] = x.bit[3] ^ x.bit[4] ^ x.bit[0]

product.bit[4] = x.bit[4] ^ x.bit[5] ^ x.bit[0]

product.bit[5] = x.bit[5] ^ x.bit[6]

product.bit[6] = x.bit[6] ^ x.bit[7] ^ x.bit[0]

product.bit[7] = x.bit[7] ^ x.bit[0]

qword_bit_splat(x)
x is a 1-bit value.

Return the concatenation of 128 copies of x.

ROTL128(x,y)
Let x be a 128-bit integer value.
Let y be an integer value.

Return x rotated left by y bits.
Chapter 6. Vector Facility 253

Version 3.1
ShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]

result.word[1].byte[0] = x.word[1].byte[0]

result.word[2].byte[0] = x.word[2].byte[0]

result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[1].byte[1]

result.word[1].byte[1] = x.word[2].byte[1]

result.word[2].byte[1] = x.word[3].byte[1]

result.word[3].byte[1] = x.word[0].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]

result.word[1].byte[2] = x.word[3].byte[2]

result.word[2].byte[2] = x.word[0].byte[2]

result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[3].byte[3]

result.word[1].byte[3] = x.word[0].byte[3]

result.word[2].byte[3] = x.word[1].byte[3]

result.word[3].byte[3] = x.word[2].byte[3]

return(result)

si8_CLAMP(x)
Let x be a signed integer value.

Return the value x in 8-bit signed integer format.
– If the value of the element is greater than 27-1 the result saturates to 27-1 and sat_flag is set to 1.
– If the value of the element is less than -27 the result saturates to -27 and sat_flag is set to 1.

si16_CLAMP(x)
Let x be a signed integer value.

Return the value x in 16-bit signed integer format.
– If the value of the element is greater than 215-1 the result saturates to 215-1 and SAT is set to 1.
– If the value of the element is less than -215 the result saturates to -215 and SAT is set to 1.

si32_CLAMP(x)
Let x be a signed integer value.

Return the value x in 32-bit signed integer format.
– If the value of the element is greater than 231-1 the result saturates to 231-1 and SAT is set to 1.
– If the value of the element is less than -231 the result saturates to -231 and SAT is set to 1.
Power ISA™ I254

Version 3.1
si32_CONVERT_FROM_BFP32(x,y)
Let x be a single-precision floating-point value.
Let y be an unsigned integer value.

sign ← x.bit[0]
exp ← x.bit[1:8]
frac.bit[0:22] ← x.bit[9:31]
frac.bit[23:30] ← 0b0000_0000
if exp=255 & frac!=0 then return 0x0000_0000 // NaN operand
if exp=255 & frac=0 then do // infinity operand
 VSCR.SAT ← 1
 return (sign=1) ? 0x8000_0000 : 0x7FFF_FFFF
end
if (exp+Y-127) > 30 then do // large operand
 VSCR.SAT ← 1
 return (sign=1) ? 0x8000_0000 : 0x7FFF_FFFF
end
if (exp+y-127) < 0 then return 0x0000_0000 // -1.0 < value < 1.0 (value rounds to 0)
significand.bit[0:31] ← 0x0000_0000
significand.bit[32] ← 0x1
significand.bit[33:63] ← frac
do i = 1 to 31-(exp+Y-127)
 significand ← significand >> 1
end
return (sign=0) ? CHOP32(significand) : CHOP32(~significand + 1)

si128_CONVERT_FROM_BCD(x)
Let x be a packed decimal value.

Return the value x in 128-bit signed integer format.

result ← 0
scale ← 1
sign ← x.bit[124:127]
x ← 0b0000 || x.nibble[0:30]
do while x > 0
 digit ← x & 0x000F
 result ← result + (digit × scale)
 x ← 0b0000 || x.nibble[0:30]
 scale ← scale × 10
end

if sign=0x000B | sign=0x000D then
 result ← ~result + 1

return result
Chapter 6. Vector Facility 255

Version 3.1
SubBytes(x)
SBOX.byte[0:255] = { 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,

 0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,

 0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,

 0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,

 0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,

 0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,

 0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,

 0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,

 0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,

 0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,

 0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,

 0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,

 0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,

 0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,

 0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,

 0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16 }

do i = 0 to 15

 result.byte[i] = SBOX.byte[x.byte[i]]

end

return(result)

ui8_CLAMP(x)
Let x be a signed integer value.

Return the value x in 8-bit unsigned integer format.
– If the value of the element is greater than 28-1 the result saturates to 28-1 and SAT is set to 1.
– If the value of the element is less than 0 the result saturates to 0 and SAT is set to 1.

ui16_CLAMP(x)
Let x be a signed integer value.

Return the value x in 16-bit unsigned integer format.
– If the value of the element is greater than 216-1 the result saturates to 216-1 and SAT is set to 1.
– If the value of the element is less than 0 the result saturates to 0 and SAT is set to 1.

ui32_CLAMP(x)
Let x be a signed integer value.

Return the value x in 32-bit unsigned integer format.
– If the value of the element is greater than 232-1 the result saturates to 232-1 and SAT is set to 1.
– If the value of the element is less than 0 the result saturates to 0 and SAT is set to 1.
Power ISA™ I256

Version 3.1
ui32_CONVERT_FROM_BFP32(x,y)
Let x be a single-precision floating-point value.
Let y be an unsigned integer value.

sign ← x.bit[0]
exp ← x.bit[1:8]
frac.bit[0:22] ← x.bit[9:31]
frac.bit[23:30] ← 0b0000_0000
if exp=255 & frac!=0 then return 0x0000_0000 // NaN operand
if exp=255 & frac=0 then do // infinity operand
 VSCR.SAT ← 1
 return (sign=1) ? 0x0000_0000 : 0xFFFF_FFFF
end
if (exp+Y-127)>31 then do // large operand
 VSCR.SAT ← 1
 return (sign=1) ? 0x0000_0000 : 0xFFFF_FFFF
end
if (exp+Y-127) < 0 then return 0x0000_0000 // -1.0 < value < 1.0
 // value rounds to 0
if sign=1 then do // negative operand
 VSCR.SAT ← 1
 return 0x0000_0000
end
significand.bit[0:31] ← 0x0000_0000
significand.bit[32] ← 0b1
significand.bit[33:63] ← frac
do i = 1 to 31-(exp+Y-127)
 significand = significand >> 1
end
return CHOP32(significand)
Chapter 6. Vector Facility 257

Version 3.1
6.3 Vector Facility Registers

Figure 97. Vector-Scalar Register elements

6.3.1 Vector-Scalar Registers
The Vector instructions described in Chapter 6 are
defined to operate on the higher-numbered 32
Vector-Scalar Registers (VSRs 32-63), formerly known
as Vector Registers (VRs 0-31). See Figure 98. All
computations and other data manipulation are
performed on data residing in VSRs 32-63, and results
are placed into one of VSRs 32-63.

Figure 98. Vector-Scalar Registers

Depending on the instruction, the contents of a VSR
are interpreted as a sequence of equal-length
elements (bytes, halfwords, or words) or as a
quadword. Each of the elements is aligned within the
VSR, as shown in Figure 97. Many instructions
perform a given operation in parallel on all elements in
a VSR. Depending on the instruction, a byte, halfword,
or word element can be interpreted as a
signed-integer, an unsigned-integer, or a logical value;
a word element can also be interpreted as a
single-precision floating-point value. In the instruction
descriptions, phrases like “signed-integer word
element” are used as shorthand for “word element,
interpreted as a signed-integer”.

Load and Store instructions are provided that transfer
a byte, halfword, word, or quadword between storage
and a VSR.

6.3.2 Vector Status and Control
Register
The Vector Status and Control Register (VSCR) is a
special 32-bit register (not an SPR) that is read and
written in a manner similar to the FPSCR in the Power
ISA scalar floating-point unit. Special instructions
(mfvscr and mtvscr) are provided to move the VSCR
from and to a VSR. When moved to or from a VSR, the
32-bit VSCR is right justified in the 128-bit VSR. When
moved to a VSR, bits 0:95 of the VSR are cleared (set
to 0).

Figure 99. Vector Status and Control Register

The bit definitions for the VSCR are as follows.

Bit(s) Description
96:110 Reserved

111 Vector Non-Java Mode (NJ)

This bit controls how denormalized values
are handled by Vector Floating-Point
instructions.
0 Denormalized values are handled as

specified by Java and the IEEE stan-
dard; see Section 6.6.1.

1 If an element in a source VSR contains
a denormalized value, the value 0 is
used instead. If an instruction causes
an Underflow Exception, the corre-
sponding element in the target VSR is
set to 0. In both cases the 0 has the
same sign as the denormalized or
underflowing value.

112:126 Reserved

.qword

.dword[0] .dword[1]

.word[0] .word[1] .word[2] .word[3]

.hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

.byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

.nibble .nibble

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124

VSR[32] (formerly VR[0])
VSR[33] (formerly VR[1])

...

...

VSR[62] (formerly VR[30])
VSR[63] (formerly VR[31])

0 127

VSCR

96 127
Power ISA™ I258

Version 3.1
127 Vector Saturation (SAT)

Every vector instruction having “Saturate” in
its name implicitly sets this bit to 1 if any
result of that instruction “saturates”; see
Section 6.8. mtvscr can alter this bit explic-
itly. This bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an
mtvscr instruction.

After the mfvscr instruction executes, the result in the
target VSR will be architecturally precise. That is, it will
reflect all updates to the SAT bit that could have been
made by vector instructions logically preceding it in the
program flow, and further, it will not reflect any SAT
updates that may be made to it by vector instructions
logically following it in the program flow. To implement
this, processors may choose to make the mfvscr
instruction execution serializing within the vector unit,
meaning that it will stall vector instruction execution
until all preceding vector instructions are complete and
have updated the architectural machine state. This is
permitted in order to simplify implementation of the
sticky status bit (SAT) which would otherwise be difficult
to implement in an out-of-order execution machine.
The implication of this is that reading the VSCR can be
much slower than typical Vector instructions, and
therefore care must be taken in reading it, as advised
in Section 6.5.1, to avoid performance problems.

The mtvscr is context synchronizing. This implies that
all Vector instructions logically preceding an mtvscr in
the program flow will execute in the architectural
context (NJ mode) that existed prior to completion of
the mtvscr, and that all instructions logically following
the mtvscr will execute in the new context (NJ mode)
established by the mtvscr.

6.3.3 VR Save Register
The VR Save Register (VRSAVE) is a 32-bit register in
the fixed-point processor provided for application and
operating system use; see Section 3.2.3.

VRSAVE can be used to indicate which VSRs are
currently being used by a program. If this is done,
the operating system could save only those VSRs
when an “interrupt” occurs (see Book III), and
could restore only those VSRs when resuming the
interrupted program.

If this approach is taken it must be applied
rigorously; if a program fails to indicate that a given
VSR is in use, software errors may occur that will
be difficult to detect and correct because they are
timing-dependent.

Some operating systems save and restore VRSAVE
only for programs that also use other VSRs.

Programming Note
Chapter 6. Vector Facility 259

Version 3.1
6.4 Vector Storage Access Oper-
ations
The Vector Storage Access instructions provide the
means by which data can be copied from storage to a
VSR or from a VSR to storage. Instructions are
provided that access byte, halfword, word, and
quadword storage operands. These instructions differ
from the fixed-point and floating-point Storage Access
instructions in that vector storage operands are
assumed to be aligned, and vector storage accesses
are performed as if the appropriate number of
low-order bits of the specified effective address (EA)
were zero. For example, the low-order bit of EA is
ignored for halfword Vector Storage Access
instructions, and the low-order four bits of EA are
ignored for quadword Vector Storage Access
instructions. The effect is to load or store the storage
operand of the specified length that contains the byte
addressed by EA.

If a storage operand is unaligned, additional
instructions must be used to ensure that the operand is
correctly placed in a VSR or in storage. Instructions
are provided that shift and merge the contents of two
VSRs, such that an unaligned quadword storage
operand can be copied between storage and the VSRs
in a relatively efficient manner.

As shown in Figure 97, the elements in VSRs are
numbered; the high-order (or most significant) byte
element is numbered 0 and the low-order (or least
significant) byte element is numbered 15. The
numbering affects the values that must be placed into
the permute control vector for the Vector Permute
instruction in order for that instruction to achieve the
desired effects, as illustrated by the examples in the
following subsections.

A vector quadword Load instruction for which the
effective address (EA) is quadword-aligned places the
byte in storage addressed by EA into byte element 0 of
the target VSR, the byte in storage addressed by EA+1
into byte element 1 of the target VSR, etc. Similarly, a
vector quadword Store instruction for which the EA is
quadword-aligned places the contents of byte element
0 of the source VSR into the byte in storage addressed
by EA, the contents of byte element 1 of the source
VSR into the byte in storage addressed by EA+1, etc.

Figure 100 shows an aligned quadword in storage.
Figure 101 shows the result of loading that quadword
into a VSR or, equivalently, shows the contents that
must be in a VSR if storing that VSR is to produce the
storage contents shown in Figure 100.

When an aligned byte, halfword, or word storage
operand is loaded into a VSR, the element (byte,
halfword, or word respectively) that receives the data
is the element that would have received the data had
the entire aligned quadword containing the storage
operand addressed by EA been loaded. Similarly, when
a byte, halfword, or word element in a VSR is stored
into an aligned storage operand (byte, halfword, or
word respectively), the element selected to be stored
is the element that would have been stored into the
storage operand addressed by EA had the entire VSR
been stored to the aligned quadword containing the
storage operand addressed by EA. (Byte storage
operands are always aligned.)

For aligned byte, halfword, and word storage
operands, if the corresponding element number is
known when the program is written, the appropriate
Vector Splat and Vector Permute instructions can be
used to copy or replicate the data contained in the
storage operand after loading the operand into a VSR.
An example of this is given in the Programming Note
for Vector Splat; see page 292. Another example is to
replicate the element across an entire VSR before
storing it into an arbitrary aligned storage operand of
the same length; the replication ensures that the
correct data are stored regardless of the offset of the
storage operand in its aligned quadword in storage.

Figure 100.Aligned quadword storage operand

Figure 101.VSR contents for aligned quadword Load or Store

00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0 1 2 3 4 5 6 7 8 9 A B C D E F
Power ISA™ I260

Version 3.1
Figure 102.Unaligned quadword storage operand

Figure 103.VSR contents

00 00 01 02 03 04
10 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Vhi 00 01 02 03 04
Vlo 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0 15
Chapter 6. Vector Facility 261

Version 3.1
6.4.1 Accessing Unaligned Storage Operands
Figure 102 shows an unaligned quadword storage
operand that spans two aligned quadwords. In the
remainder of this section, the aligned quadword that
contains the most significant bytes of the unaligned
quadword is called the most significant quadword
(MSQ) and the aligned quadword that contains the
least significant bytes of the unaligned quadword is
called the least significant quadword (LSQ). Because

the Vector Storage Access instructions ignore the
low-order bits of the effective address, the unaligned
quadword cannot be transferred between storage and
a VSR using a single instruction. The remainder of this
section gives examples of accessing unaligned
quadword storage operands. Similar sequences can
be used to access unaligned halfword and word
storage operands.

Programming Note

The sequence of instructions given below is one
approach that can be used to load the unaligned
quadword shown in Figure 102 into a VSR. In
Figure 103 Vhi and Vlo are the VSRs that will receive
the most significant quadword and least significant
quadword respectively. VSR[VRT+32] is the target VSR.

After the two quadwords have been loaded into Vhi
and Vlo, using Load Vector Indexed instructions, the
alignment is performed by shifting the 32-byte quantity
Vhi || Vlo left by an amount determined by the address
of the first byte of the desired data. The shifting is done
using a Vector Permute instruction for which the
permute control vector is generated by a Load Vector
for Shift Left instruction. The Load Vector for Shift Left
instruction uses the same address specification as the
Load Vector Indexed instruction that loads the Vhi
register; this is the address of the desired unaligned
quadword.

The following sequence of instructions copies the
unaligned quadword storage operand into register Vt.

Assumptions:

Rb != 0 and contents of Rb = 0xB

lvx Vhi,0,Rb # load MSQ

lvsl Vp,0,Rb # set permute control vector

addi Rb,Rb,16 # address of LSQ

lvx Vlo,0,Rb # load LSQ

vperm Vt,Vhi,Vlo,Vp # align the data

The procedure for storing an unaligned quadword is
essentially the reverse of the procedure for loading
one. However, a read-modify-write sequence is
required that inserts the source quadword into two
aligned quadwords in storage. The quadword to be
stored is assumed to be in Vs; see Figure 103 The

contents of Vs are shifted right and split into two parts,
each of which is merged (using a Vector Select
instruction) with the current contents of the two aligned
quadwords (MSQ and LSQ) that will contain the most
significant bytes and least significant bytes,
respectively, of the unaligned quadword. The resulting
two quadwords are stored using Store Vector Indexed
instructions. A Load Vector for Shift Right instruction is
used to generate the permute control vector that is
used for the shifting. A single register is used for the
“shifted” contents; this is possible because the
“shifting” is done by means of a right rotation. The
rotation is accomplished by specifying Vs for both
components of the Vector Permute instruction. In
addition, the same permute control vector is used on a
sequence of 1s and 0s to generate the mask used by
the Vector Select instructions that do the merging.

The following sequence of instructions copies the
contents of Vs into an unaligned quadword in storage.

Assumptions:

Rb != 0 and contents of Rb = 0xB

lvx Vhi,0,Rb # load current MSQ

lvsr Vp,0,Rb # set permute control vector

addi Rb,Rb,16 # address of LSQ

lvx Vlo,0,Rb # load current LSQ

vspltisb V1s,-1 # generate the select mask bits

vspltisb V0s,0

vperm Vmask,V0s,V1s,Vp # generate the select mask

vperm Vs,Vs,Vs,Vp # right rotate the data

vsel Vlo,Vs,Vlo,Vmask # insert LSQ component

vsel Vhi,Vhi,Vs,Vmask # insert MSQ component

stvx Vlo,0,Rb # store LSQ

addi Rb,Rb,-16 # address of MSQ

stvx Vhi,0,Rb # store MSQ
Power ISA™ I262

Version 3.1
6.5 Vector Integer Operations

Many of the instructions that produce fixed-point
integer results have the potential to compute a result
value that cannot be represented in the target format.
When this occurs, this unrepresentable intermediate
value is converted to a representable result value
using one of the following methods.

1. The high-order bits of the intermediate result that
do not fit in the target format are discarded. This
method is used by instructions having names that
include the word "Modulo".

2. The intermediate result is converted to the nearest
value that is representable in the target format
(i.e., to the minimum or maximum representable
value, as appropriate). This method is used by
instructions having names that include the word
"Saturate". An intermediate result that is forced to
the minimum or maximum representable value as
just described is said to "saturate".

An instruction for which an intermediate result
saturates causes SAT to be set to 1; see Section
6.3.2.

3. If the intermediate result includes non-zero
fraction bits it is rounded up to the nearest
fixed-point integer value. This method is used by
the six Vector Average Integer instructions and by
the Vector Multiply-High-Round-Add Signed
Halfword Saturate instruction. The latter
instruction then uses method 2, if necessary.

Because SAT is sticky, it can be used to detect
whether any instruction in a sequence of
“Saturate”-type instructions produced an inexact
result due to saturation. For example, the contents
of the VSCR can be copied to a VSR (mfvscr),
bits other than SAT can be cleared in the VSR
(vand with a constant), the result can be
compared to zero setting CR6 (vcmpequb.), and a
branch can be taken according to whether SAT was
set to 1 (Branch Conditional that tests CR field 6).

Testing SAT after each “Saturate”-type instruction
would degrade performance considerably.
Alternative techniques include the following:

– Retain sufficient information at "checkpoints"
that the sequence of computations performed
between one checkpoint and the next can be
redone (more slowly) in a manner that detects
exactly when saturation occurs. Test SAT only
at checkpoints, or when redoing a sequence
of computations that saturated.

– Perform intermediate computations using an
element length sufficient to prevent saturation,
and then use a Vector Pack Integer Saturate
instruction to pack the final result to the
desired length. (Vector Pack Integer Saturate
causes results to saturate if necessary, and
sets SAT to 1 if any result saturates.)

Programming Note
Chapter 6. Vector Facility 263

Version 3.1
6.5.1 Integer Saturation
Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned
saturation clamps results to zero (0) on underflow and
to the maximum positive integer value (2n-1, e.g. 255
for byte fields) on overflow. Signed saturation clamps
results to the smallest representable negative number
(-2n-1, e.g. -128 for byte fields) on underflow, and to
the largest representable positive number (2n-1-1, e.g.
+127 for byte fields) on overflow.

In most cases, the simple maximum/minimum
saturation performed by the vector instructions is
adequate. However, sometimes, e.g. in the creation of
very high quality images, more complex saturation
functions must be applied. To support this, the Vector
facility provides a mechanism for detecting that
saturation has occurred. The VSCR has a bit, SAT,
which is set to a one (1) anytime any field in a
saturating instruction saturates. SAT can only be
cleared by explicitly writing zero to it. Thus SAT
accumulates a summary result of any integer overflow
or underflow that occurs on a saturating instruction.

Borderline cases that generate results equal to
saturation values, for example unsigned 0+0=0 and
unsigned byte 1+254=255, are not considered saturation
conditions and do not cause SAT to be set.

SAT can be set by the following types of instructions:

– Move To VSCR
– Vector Add Integer with Saturation
– Vector Subtract Integer with Saturation
– Vector Multiply-Add Integer with Saturation
– Vector Multiply-Sum with Saturation
– Vector Sum-Across with Saturation
– Vector Pack with Saturation
– Vector Convert to Fixed-point with Saturation

Note that only instructions that explicitly call for
“saturation” can set SAT. “Modulo” integer instructions
and floating-point arithmetic instructions never set SAT.

The SAT state can be tested and used to alter
program flow by moving the VSCR to a VSR (with
mfvscr), then masking out bits 0:126 (to clear
undefined and reserved bits) and performing a
vector compare equal-to unsigned byte w/record
(vcmpequb.) with zero to get a testable value into
the condition register for consumption by a
subsequent branch.

Since mfvscr will be slow compared to other
Vector instructions, reading and testing SAT after
each instruction would be prohibitively expensive.
Therefore, software is advised to employ
strategies that minimize checking SAT. For
example: checking SAT periodically and
backtracking to the last checkpoint to identify
exactly which field in which instruction saturated;
or, working in an element size sufficient to prevent
any overflow or underflow during intermediate
calculations, then packing down to the desired
element size as the final operation (the vector pack
instruction saturates the results and updates SAT
when a loss of significance is detected).

Programming Note
Power ISA™ I264

Version 3.1
6.6 Vector Floating-Point Opera-
tions

6.6.1 Floating-Point Overview
Unless NJ=1 (see Section 6.3.2), the floating-point
model provided by the Vector Facility conforms to The
Java Language Specification (hereafter referred to as
“Java”), which is a subset of the default environment
specified by the IEEE standard (i.e., by ANSI/IEEE
Standard 754-1985, “IEEE Standard for Binary
Floating-Point Arithmetic”). For aspects of
floating-point behavior that are not defined by Java but
are defined by the IEEE standard, vector floating-point
conforms to the IEEE standard. For aspects of
floating-point behavior that are defined neither by Java
nor by the IEEE standard but are defined by the “C9X
Floating-Point Proposal” (hereafter referred to as
“C9X”), vector floating-point conforms to C9X.

The single-precision floating-point data format, value
representations, and computational models defined in
Chapter 4. “Floating-Point Facility” on page 131 apply
to vector floating-point except as follows.

– In general, no status bits are set to reflect the
results of floating-point operations. The only
exception is that SAT may be set by the Vector
Convert To Fixed-Point Word instructions.

– With the exception of the two Vector Convert To
Fixed-Point Word instructions and three of the four
Vector Round to Floating-Point Integer
instructions, all vector floating-point instructions
that round use the rounding mode Round to
Nearest.

– Floating-point exceptions (see Section 6.6.2)
cannot cause the system error handler to be
invoked.

6.6.2 Floating-Point Exceptions
The following floating-point exceptions may occur
during execution of vector floating-point instructions.

– NaN Operand Exception
– Invalid Operation Exception
– Zero Divide Exception
– Log of Zero Exception
– Overflow Exception
– Underflow Exception

If an exception occurs, a result is placed into the
corresponding target element as described in the
following subsections. This result is the default result
specified by Java, the IEEE standard, or C9X, as
applicable.

Recall that denormalized source values are treated as
if they were zero when NJ=1. This has the following
consequences regarding exceptions.

– Exceptions that can be caused by a zero source
value can be caused by a denormalized source
value when NJ=1.

– Exceptions that can be caused by a nonzero
source value cannot be caused by a denormalized
source value when NJ=1.

6.6.2.1 NaN Operand Exception
A NaN Operand Exception occurs when a source
value for any of the following instructions is a NaN.

– A vector instruction that would normally produce
floating-point results

– Either of the two Vector Convert To Fixed-Point
Word instructions

– Any of the four Vector Floating-Point Compare
instructions

The following actions are taken:

If the vector instruction would normally produce
floating-point results, the corresponding result is a
source NaN selected as follows. In all cases, if the
selected source NaN is a Signaling NaN it is converted
to the corresponding Quiet NaN (by setting the
high-order bit of the fraction field to 1) before being
placed into the target element.

If a function is required that is specified by the
IEEE standard, is not supported by the Vector
Facility, and cannot be emulated satisfactorily
using the functions that are supported by the
Vector Facility, the functions provided by the
Floating-Point Facility should be used; see
Chapter 4.

Programming Note
Chapter 6. Vector Facility 265

Version 3.1
if the element in VSR[VRA+32] is a NaN
 then the result is that NaN
 else if the element in VSR[VRB+32] is a NaN

then the result is that NaN
else if the element in VSR[VRC+32] is a NaN

then the result is that NaN
else if Invalid Operation exception
 (Section 6.6.2.2)
then the result is the QNaN 0x7FC0_0000

If the instruction is either of the two Vector Convert To
Fixed-Point Word instructions, the corresponding result
is 0x0000_0000. SAT is not affected.

If the instruction is Vector Compare Bounds
Floating-Point, the corresponding result is 0xC000_0000.

If the instruction is one of the other Vector
Floating-Point Compare instructions, the
corresponding result is 0x0000_0000.

6.6.2.2 Invalid Operation Exception
An Invalid Operation Exception occurs when a source
value or set of source values is invalid for the specified
operation. The invalid operations are:

– Magnitude subtraction of infinities
– Multiplication of infinity by zero
– Reciprocal square root estimate of a negative,

nonzero number or -infinity.
– Log base 2 estimate of a negative, nonzero

number or -infinity.

The corresponding result is the QNaN 0x7FC0_0000.

6.6.2.3 Zero Divide Exception
A Zero Divide Exception occurs when a Vector
Reciprocal Estimate Floating-Point or Vector
Reciprocal Square Root Estimate Floating-Point
instruction is executed with a source value of zero.

The corresponding result is an infinity, where the sign
is the sign of the source value.

6.6.2.4 Log of Zero Exception
A Log of Zero Exception occurs when a Vector Log
Base 2 Estimate Floating-Point instruction is executed
with a source value of zero.

The corresponding result is -Infinity.

6.6.2.5 Overflow Exception
An Overflow Exception occurs under either of the
following conditions.

– For a vector instruction that would normally
produce floating-point results, the magnitude of
what would have been the result if the exponent
range were unbounded exceeds that of the largest
finite floating-point number for the target
floating-point format.

– For either of the two Vector Convert To
Fixed-Point Word instructions, either a source
value is an infinity or the product of a source value
and 2UIM is a number too large in magnitude to be
represented in the target fixed-point format.

The following actions are taken:

1. If the vector instruction would normally produce
floating-point results, the corresponding result is
an infinity, where the sign is the sign of the inter-
mediate result.

2. If the instruction is Vector Convert To Unsigned
Fixed-Point Word Saturate, the corresponding
result is 0xFFFF_FFFF if the source value is a posi-
tive number or +infinity, and is 0x0000_0000 if the
source value is a negative number or -infinity. SAT
is set to 1.

3. If the instruction is Vector Convert To Signed
Fixed-Point Word Saturate, the corresponding
result is 0x7FFF_FFFF if the source value is a posi-
tive number or +infinity., and is 0x8000_0000 if the
source value is a negative number or -infinity. SAT
is set to 1.

6.6.2.6 Underflow Exception
An Underflow Exception can occur only for vector
instructions that would normally produce floating-point
results. It is detected before rounding. It occurs when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
is less in magnitude than the smallest normalized
floating-point number for the target floating-point
format.

The following actions are taken:

1. If NJ=0, the corresponding result is the value pro-
duced by denormalizing and rounding the interme-
diate result.

2. If NJ=1, the corresponding result is a zero, where
the sign is the sign of the intermediate result.
Power ISA™ I266

Version 3.1
6.7 Vector Storage Access
Instructions
The Vector Storage Access instructions compute the
effective address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address
Calculation” on page 29. The low-order bits of the EA
that would correspond to an unaligned storage
operand are ignored.

The Load Vector Element Indexed and Store Vector
Element Indexed instructions transfer a byte, halfword,
or word element between storage and a VSR. The
Load Vector Indexed and Store Vector Indexed
instructions transfer an aligned quadword between
storage and a VSR.

6.7.1 Storage Access Exceptions
Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is
unavailable.
Chapter 6. Vector Facility 267

Version 3.1
6.7.2 Vector Load Instructions
The aligned byte, halfword, word, or quadword in storage addressed by EA is loaded into VSR[VRT+32].

Load Vector Element Byte Indexed X-form

lvebx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

eb ← EA.bit[60:63]

VSR[VRT+32] ← undefined

if Big-Endian byte ordering then

 VSR[VRT+32].byte[eb] ← MEM(EA,1)

else

 VSR[VRT+32].byte[15-eb] ← MEM(EA,1)

Let EA be the sum of the contents of GPR[RA], or 0 if
RA=0, and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of VSR[VRT+32]. The
remaining bytes of VSR[VRT+32] are set to undefined
values.

If Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of VSR[VRT+32]. The
remaining bytes of VSR[VRT+32] are set to undefined
values.

Special Registers Altered:
None

The Load Vector Element instructions load the specified element into the same location in the target register as
the location into which it would be loaded using the Load Vector instruction.

Programming Note

31 VRT RA RB 7 /
0 6 11 16 21 31

Register Data Layout for lvebx

src1 GPR[RA]

src2 GPR[RB]

result VSR[VRT+32]

0 63 127
Power ISA™ I268

Version 3.1
Load Vector Element Halfword Indexed X-form

lvehx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFFE

eb ← EA.bit[60:63]

VSR[VRT+32] ← undefined

if Big-Endian byte ordering then

 VSR[VRT+32].byte[eb:eb+1] ← MEM(EA,2)

else

 VSR[VRT+32].byte[14-eb:15-eb] ← MEM(EA,2)

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFFE
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+1
are placed into byte eb+1 of VSR[VRT+32], and

– the remaining bytes of VSR[VRT+32] are set to
undefined values.

If Little-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte 15-eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+1
are placed into byte 14-eb of VSR[VRT+32], and

– the remaining bytes of VSR[VRT+32] are set to
undefined values.

Special Registers Altered:
None

31 VRT RA RB 39 /
0 6 11 16 21 31

Register Data Layout for lvehx

src1 GPR[RA]

src2 GPR[RB]

result VSR[VRT+32]

0 63 127
Chapter 6. Vector Facility 269

Version 3.1
Load Vector Element Word Indexed X-form

lvewx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFFC

eb ← EA.bit[60:63]

VSR[VRT+32] ← undefined

if Big-Endian byte ordering then

 VSR[VRT+32].byte[eb:eb+3] ← MEM(EA,4)

else

 VSR[VRT+32].byte[12-eb:15-eb] ← MEM(EA,4)

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFFC
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+1
are placed into byte eb+1 of VSR[VRT+32],

– the contents of the byte in storage at address EA+2
are placed into byte eb+2 of VSR[VRT+32],

– the contents of the byte in storage at address EA+3
are placed into byte eb+3 of VSR[VRT+32], and

– the remaining bytes of VSR[VRT+32] are set to
undefined values.

If if Little-Endian byte ordering is used for the storage
access,

– the contents of the byte in storage at address EA
are placed into byte 15-eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+1
are placed into byte 14-eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+2
are placed into byte 13-eb of VSR[VRT+32],

– the contents of the byte in storage at address EA+3
are placed into byte 12-eb of VSR[VRT+32], and

– the remaining bytes of VSR[VRT+32] are set to
undefined values.

Special Registers Altered:
None

31 VRT RA RB 71 /
0 6 11 16 21 31

Register Data Layout for lvewx

src1 GPR[RA]

src2 GPR[RB]

result VSR[VRT+32]

0 63 127
Power ISA™ I270

Version 3.1
Load Vector Indexed X-form

lvx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFF0

VSR[VRT+32] ← MEM(EA, 16)

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFF0
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

The contents of the quadword in storage at address EA
are placed into VSR[VRT+32].

Special Registers Altered:
None

Load Vector Indexed Last X-form

lvxl VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFF0

VSR[VRT+32] ← MEM(EA, 16)

mark_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFF0
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

The contents of the quadword in storage at address EA
are placed into VSR[VRT+32].

lvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRT RA RB 103 /
0 6 11 16 21 31

31 VRT RA RB 359 /
0 6 11 16 21 31

Register Data Layout for lxvx & lxvxl

src1 GPR[RA]

src2 GPR[RB]

result VSR[VRT+32]

0 63 127

On some implementations, the hint provided by the lvxl instruction and the corresponding hint provided by the
stvxl instruction are applied to the entire cache block containing the specified quadword. On such
implementations, the effect of the hint may be to cause that cache block to be considered a likely candidate for
replacement when space is needed in the cache for a new block. Thus, on such implementations, the hint
should be used with caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last reference in a sequence of
references to the quadword if the subsequent references are likely to occur sufficiently soon that the cache
block containing the quadword is not likely to be displaced from the cache before the last reference.

Programming Note
Chapter 6. Vector Facility 271

Version 3.1
6.7.3 Vector Store Instructions
Some portion or all of the contents of VSR[VRS+32] are stored into the aligned byte, halfword, word, or quadword in
storage addressed by EA.

Store Vector Element Byte Indexed X-form

stvebx VRS,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

eb ← EA.bit[60:63]

if Big-Endian byte ordering then

 MEM(EA,1) ← VSR[VRS+32].byte[eb]

else

 MEM(EA,1) ← VSR[VRS+32].byte[15-eb]

Let EA be the sum of the contents of GPR[RA], or 0 if
RA=0, and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of byte eb of VSR[VRS+32] are
placed in the byte in storage at address EA.

If Little-Endian byte ordering is used for the storage
access, the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA.

Special Registers Altered:
None

The Store Vector Element instructions store the specified element into the same storage location as the location
into which it would be stored using the Store Vector instruction.

Programming Note

31 VRS RA RB 135 /
0 6 11 16 21 31

Unless bits 60:63 of the address are known to
match the byte offset of the subject byte element in
VSR[VRS+32], software should use Vector Splat to
splat the subject byte element before performing
the store.

Programming Note

Register Data Layout for stvebx

src1 GPR[RA]

src2 GPR[RB]

src3 VSR[VRS+32]

0 63 127
Power ISA™ I272

Version 3.1
Store Vector Element Halfword Indexed X-form

stvehx VRS,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFFE

eb ← EA.bit[60:63]

if Big-Endian byte ordering then

 MEM(EA,2) ← VSR[VRS+32].byte[eb:eb+1]

else

 MEM(EA,2) ← VSR[VRS+32][14-eb:15-eb]

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFFE
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

– the contents of byte eb of VSR[VRS+32] are placed
in the byte in storage at address EA, and

– the contents of byte eb+1 of VSR[VRS+32] are
placed in the byte in storage at address EA+1.

If Little-Endian byte ordering is used for the storage
access,

– the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA, and

– the contents of byte 14-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+1.

Special Registers Altered:
None

31 VRS RA RB 167 /
0 6 11 16 21 31

Unless bits 60:62 of the address are known to
match the halfword offset of the subject halfword
element in VSR[VRS+32] software should use Vector
Splat to splat the subject halfword element before
performing the store.

Programming Note

Register Data Layout for stvehx

src1 GPR[RA]

src2 GPR[RB]

src3 VSR[VRS+32]

0 63 127
Chapter 6. Vector Facility 273

Version 3.1
Store Vector Element Word Indexed X-form

stvewx VRS,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFFC

eb ← EA.bit[60:63]

if Big-Endian byte ordering then

 MEM(EA,4) ← VSR[VRS+32].byte[eb:eb+3]

else

 MEM(EA,4) ← VSR[VRS+32].byte[12-eb:15-eb]

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFFC
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

– the contents of byte eb of VSR[VRS+32] are placed
in the byte in storage at address EA,

– the contents of byte eb+1 of VSR[VRS+32] are
placed in the byte in storage at address EA+1,

– the contents of byte eb+2 of VSR[VRS+32] are
placed in the byte in storage at address EA+2, and

– the contents of byte eb+3 of VSR[VRS+32] are
placed in the byte in storage at address EA+3.

If Little-Endian byte ordering is used for the storage
access,

– the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA,

– the contents of byte 14-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+1,

– the contents of byte 13-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+2, and

– the contents of byte 12-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+3.

Special Registers Altered:
None

31 VRS RA RB 199 /
0 6 11 16 21 31

Unless bits 60:61 of the address are known to
match the word offset of the subject word element
in VSR[VRS+32], software should use Vector Splat to
splat the subject word element before performing
the store.

Programming Note

Register Data Layout for stvewx

src1 GPR[RA]

src2 GPR[RB]

src3 VSR[VRS+32]

0 63 127
Power ISA™ I274

Version 3.1
Store Vector Indexed X-form

stvx VRS,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFF0

MEM(EA, 16) ← VSR[VRS+32]

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFF0
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

The contents of VSR[VRS+32] are placed into the
quadword in storage at address EA.

Special Registers Altered:
None

Store Vector Indexed Last X-form

stvxl VRS,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

EA ← EA & 0xFFFF_FFFF_FFFF_FFF0

MEM(EA, 16) ← VSR[VRS+32]

mark_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let EA be the result of ANDing 0xFFFF_FFFF_FFFF_FFF0
with the sum of the contents of GPR[RA], or 0 if RA=0,
and the contents of GPR[RB].

The contents of VSR[VRS+32] are placed into the
quadword in storage at address EA.

stvxl provides a hint that the quadword in storage
addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

31 VRS RA RB 231 /
0 6 11 16 21 31

31 VRS RA RB 487 /
0 6 11 16 21 31

See the Programming Note for the lvxl instruction
on page 271.

Programming Note

Register Data Layout for stvx & stvxl

src1 GPR[RA]

src2 GPR[RB]

src3 VSR[VRS+32]

0 63 127
Chapter 6. Vector Facility 275

Version 3.1
6.7.4 Vector Alignment Support Instructions

The lvsl and lvsr instructions can be used to cre-
ate the permute control vector to be used by a sub-
sequent vperm instruction (see page 296). Let X
and Y be the contents of VSR[VRA+32] and
VSR[VRB+32] specified by the vperm. The control
vector created by lvsl causes the vperm to select
the high-order 16 bytes of the result of shifting the
32-byte value X || Y left by sh bytes. The control vec-
tor created by lvsr causes the vperm to select the
low-order 16 bytes of the result of shifting X || Y right
by sh bytes.

Programming Note
Examples of uses of lvsl, lvsr, and vperm to load
and store unaligned data are given in Section 6.4.1.

These instructions can also be used to rotate or
shift the contents of a VSR left (lvsl) or right (lvsr)
by sh bytes. For rotating, the VSR to be rotated
should be specified as both VSR[VRA+32] and
VSR[VRB+32] for vperm. For shifting left,
VSR[VRB+32] for vperm should be a register con-
taining all zeros and VSR[VRA+32] should contain
the value to be shifted, and vice versa for shifting
right.

Programming Note
Power ISA™ I276

Version 3.1
Load Vector for Shift Left Indexed X-form

lvsl VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

sh ← (((RA=0) ? 0 : GPR[RA]) + GPR[RB]).bit[60:63]

switch(sh)

 case(0x0): VSR[VRT+32]←0x000102030405060708090A0B0C0D0E0F

 case(0x1): VSR[VRT+32]←0x0102030405060708090A0B0C0D0E0F10

 case(0x2): VSR[VRT+32]←0x02030405060708090A0B0C0D0E0F1011

 case(0x3): VSR[VRT+32]←0x030405060708090A0B0C0D0E0F101112

 case(0x4): VSR[VRT+32]←0x0405060708090A0B0C0D0E0F10111213

 case(0x5): VSR[VRT+32]←0x05060708090A0B0C0D0E0F1011121314

 case(0x6): VSR[VRT+32]←0x060708090A0B0C0D0E0F101112131415

 case(0x7): VSR[VRT+32]←0x0708090A0B0C0D0E0F10111213141516

 case(0x8): VSR[VRT+32]←0x08090A0B0C0D0E0F1011121314151617

 case(0x9): VSR[VRT+32]←0x090A0B0C0D0E0F101112131415161718

 case(0xA): VSR[VRT+32]←0x0A0B0C0D0E0F10111213141516171819

 case(0xB): VSR[VRT+32]←0x0B0C0D0E0F101112131415161718191A

 case(0xC): VSR[VRT+32]←0x0C0D0E0F101112131415161718191A1B

 case(0xD): VSR[VRT+32]←0x0D0E0F101112131415161718191A1B1C

 case(0xE): VSR[VRT+32]←0x0E0F101112131415161718191A1B1C1D

 case(0xF): VSR[VRT+32]←0x0F101112131415161718191A1B1C1D1E

Let sh be bits 60:63 of the sum of the contents of
GPR[RA], or 0 if RA=0, and the contents of GPR[RB].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || … || 0x1D ||
0x1E || 0x1F.

Bytes sh to sh+15 of X are placed into VSR[VRT+32].

Special Registers Altered:
None

Load Vector for Shift Right Indexed X-form

lvsr VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

sh ← (((RA=0) ? 0 : GPR[RA]) + GPR[RB]).bit[60:63]

switch(sh)

 case(0x0): VSR[VRT+32]←0x101112131415161718191A1B1C1D1E1F

 case(0x1): VSR[VRT+32]←0x0F101112131415161718191A1B1C1D1E

 case(0x2): VSR[VRT+32]←0x0E0F101112131415161718191A1B1C1D

 case(0x3): VSR[VRT+32]←0x0D0E0F101112131415161718191A1B1C

 case(0x4): VSR[VRT+32]←0x0C0D0E0F101112131415161718191A1B

 case(0x5): VSR[VRT+32]←0x0B0C0D0E0F101112131415161718191A

 case(0x6): VSR[VRT+32]←0x0A0B0C0D0E0F10111213141516171819

 case(0x7): VSR[VRT+32]←0x090A0B0C0D0E0F101112131415161718

 case(0x8): VSR[VRT+32]←0x08090A0B0C0D0E0F1011121314151617

 case(0x9): VSR[VRT+32]←0x0708090A0B0C0D0E0F10111213141516

 case(0xA): VSR[VRT+32]←0x060708090A0B0C0D0E0F101112131415

 case(0xB): VSR[VRT+32]←0x05060708090A0B0C0D0E0F1011121314

 case(0xC): VSR[VRT+32]←0x0405060708090A0B0C0D0E0F10111213

 case(0xD): VSR[VRT+32]←0x030405060708090A0B0C0D0E0F101112

 case(0xE): VSR[VRT+32]←0x02030405060708090A0B0C0D0E0F1011

 case(0xF): VSR[VRT+32]←0x0102030405060708090A0B0C0D0E0F10

Let sh be bits 60:63 of the sum of the contents of
GPR[RA], or 0 if RA=0, and the contents of GPR[RB].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || … || 0x1D ||
0x1E || 0x1F.

Bytes 16-sh to 31-sh of X are placed into VSR[VRT+32].

Special Registers Altered:
None

31 VRT RA RB 6 /
0 6 11 16 21 31

31 VRT RA RB 38 /
0 6 11 16 21 31

Register Data Layout for lvsl & lvsr

src1 GPR[RA]

src2 GPR[RB]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 277

Version 3.1
6.8 Vector Permute and Formatting Instructions

6.8.1 Vector Pack Instructions
Vector Pack Pixel VX-form

vpkpx VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 7

 VSR[VRT+32].hword[i].bit[0] ← vsrc.word[i].bit[7]

 VSR[VRT+32].hword[i].bit[1:5] ← vsrc.word[i].bit[8:12]

 VSR[VRT+32].hword[i].bit[6:10] ← vsrc.word[i].bit[16:20]

 VSR[VRT+32].hword[i].bit[11:15] ← vsrc.word[i].bit[24:28]

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The contents of word element i of vsrc are
packed to produce a 16-bit value as described
below.

– bit 7 of the first byte (bit 7 of the word)

– bits 0:4 of the second byte (bits 8:12 of the
word)

– bits 0:4 of the third byte (bits 16:20 of the
word)

– bits 0:4 of the fourth byte (bits 24:28 of the
word)

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 782
0 6 11 16 21 31

Register Data Layout for vpkpx

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Each source word can be considered to be a 32-bit "pixel", consisting of four 8-bit "channels". Each target
halfword can be considered to be a 16-bit pixel, consisting of one 1-bit channel and three 5-bit channels. A
channel can be used to specify the intensity of a particular color, such as red, green, or blue, or to provide other
information needed by the application.

Programming Note
Power ISA™ I278

Version 3.1
Vector Pack Signed Halfword Signed Saturate
VX-form

vpkshss VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 VSR[VRT+32].byte[i] ← si8_CLAMP(EXTS(vsrc.hword[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The signed integer value in halfword element i of
vsrc is placed into byte element i of VSR[VRT+32]
in signed integer format.

– If the value of the element is greater than 27-1
the result saturates to 27-1 and SAT is set to 1.

– If the value of the element is less than -27 the
result saturates to -27 and SAT is set to 1.

Special Registers Altered:
SAT

Vector Pack Signed Halfword Unsigned
Saturate VX-form

vpkshus VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 VSR[VRT+32].byte[i] ← ui8_CLAMP(EXTS(vsrc.hword[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The signed integer value in halfword element i of
vsrc is placed into byte element i of VSR[VRT+32]
in unsigned integer format.

– If the value of the element is greater than 28-1
the result saturates to 28-1 and SAT is set to 1.

– If the value of the element is less than 0 the
result saturates to 0 and SAT is set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 398
0 6 11 16 21 31

4 VRT VRA VRB 270
0 6 11 16 21 31

Register Data Layout for vpkshss & vpkshus

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 279

Version 3.1
Vector Pack Signed Word Signed Saturate
VX-form

vpkswss VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 7

 VSR[VRT+32].hword[i] ← si16_CLAMP(EXTS(vsrc.word[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The signed integer value in word element i of vsrc
is placed into halfword element i of VSR[VRT+32] in
signed integer format.

– If the value of the element is greater than
215-1 the result saturates to 215-1 and SAT is
set to 1.

– If the value of the element is less than -215
the result saturates to -215 and SAT is set to 1.

Special Registers Altered:
SAT

Vector Pack Signed Word Unsigned Saturate
VX-form

vpkswus VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 7

 VSR[VRT+32].hword[i] ← ui16_CLAMP(EXTS(vsrc.word[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The signed integer value in word element i of vsrc
is placed into halfword element i of VSR[VRT+32] in
unsigned integer format.

– If the value of the element is greater than
216-1 the result saturates to 216-1 and SAT is
set to 1.

– If the value of the element is less than 0 the
result saturates to 0 and SAT is set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 462
0 6 11 16 21 31

4 VRT VRA VRB 334
0 6 11 16 21 31

Register Data Layout for vpkswss & vpkswus

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I280

Version 3.1
Vector Pack Signed Doubleword Signed
Saturate VX-form

vpksdss VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← si32_CLAMP(EXTS(VSR[VRA+32].dword[0]))

VSR[VRT+32].word[1] ← si32_CLAMP(EXTS(VSR[VRA+32].dword[1]))

VSR[VRT+32].word[2] ← si32_CLAMP(EXTS(VSR[VRB+32].dword[0]))

VSR[VRT+32].word[3] ← si32_CLAMP(EXTS(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of vsrc is placed into word element i of
VSR[VRT+32] in signed integer format.

– If the value is greater than 231-1 the result
saturates to 231-1 and SAT is set to 1.

– If the value is less than -231 the result
saturates to -231 and SAT is set to 1.

Special Registers Altered:
SAT

Vector Pack Signed Doubleword Unsigned
Saturate VX-form

vpksdus VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← ui32_CLAMP(EXTS(VSR[VRA+32].dword[0]))

VSR[VRT+32].word[1] ← ui32_CLAMP(EXTS(VSR[VRA+32].dword[1]))

VSR[VRT+32].word[2] ← ui32_CLAMP(EXTS(VSR[VRB+32].dword[0]))

VSR[VRT+32].word[3] ← ui32_CLAMP(EXTS(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of vsrc is placed into word element i of
VSR[VRT+32] in unsigned integer format.

– If the value is greater than 232-1 the result
saturates to 232-1 and SAT is set to 1.

– If the value is less than 0 the result saturates
to 0 and SAT is set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 1486
0 6 11 16 21 31

4 VRT VRA VRB 1358
0 6 11 16 21 31

Register Data Layout for vpksdss & vpksdus

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 281

Version 3.1
Vector Pack Unsigned Halfword Unsigned
Modulo VX-form

vpkuhum VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 VSR[VRT+32].byte[i] ← vsrc.hword[i].bit[8:15]

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The contents of bits 8:15 of halfword element i of
vsrc are placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Pack Unsigned Halfword Unsigned
Saturate VX-form

vpkuhus VRT,VRA,VRB

if MSR.VEC then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 VSR[VRT+32].byte[i] ← ui8_CLAMP(EXTZ(vsrc.hword[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The unsigned integer value in halfword element i
of vsrc are placed into byte element i of
VSR[VRT+32] in unsigned integer format.

– If the value of the element is greater than 28-1
the result saturates to 28-1 and SAT is set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 14
0 6 11 16 21 31

4 VRT VRA VRB 142
0 6 11 16 21 31

Register Data Layout for vpkuhum & vpkuhus

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I282

Version 3.1
Vector Pack Unsigned Word Unsigned Modulo
VX-form

vpkuwum VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 7

 VSR[VRT+32].hword[i] ← vsrc.word[i].bit[16:31]

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The contents of bits 16:31 of word element i of
vsrc are placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Pack Unsigned Word Unsigned
Saturate VX-form

vpkuwus VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 7

 VSR[VRT+32].hword[i] ← ui16_CLAMP(EXTZ(vsrc.word[i]))

end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The unsigned integer value in word element i of
vsrc is placed into halfword element i of
VSR[VRT+32] in unsigned integer format.

– If the value of the element is greater than
216-1 the result saturates to 216-1 and SAT is
set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 78
0 6 11 16 21 31

4 VRT VRA VRB 206
0 6 11 16 21 31

Register Data Layout for vpkuwum & vpkuwus

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 283

Version 3.1
Vector Pack Unsigned Doubleword Unsigned
Modulo VX-form

vpkudum VRT,VRA,VRB

if MSR.VEC then Vector_Unavailable()

VSR[VRT+32].word[0] ← VSR[VRA+32].dword[0].bit[32:63]

VSR[VRT+32].word[1] ← VSR[VRA+32].dword[1].bit[32:63]

VSR[VRT+32].word[2] ← VSR[VRB+32].dword[0].bit[32:63]

VSR[VRT+32].word[3] ← VSR[VRB+32].dword[1].bit[32:63]

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The contents of bits 32:63 of doubleword element
i of vsrc are placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Pack Unsigned Doubleword Unsigned
Saturate VX-form

vpkudus VRT,VRA,VRB

if MSR.VEC then Vector_Unavailable()

VSR[VRT+32].word[0] ← ui32_CLAMP(EXTZ(VSR[VRA+32].dword[0]))

VSR[VRT+32].word[1] ← ui32_CLAMP(EXTZ(VSR[VRA+32].dword[1]))

VSR[VRT+32].word[2] ← ui32_CLAMP(EXTZ(VSR[VRB+32].dword[0]))

VSR[VRT+32].word[3] ← ui32_CLAMP(EXTZ(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The unsigned integer value in doubleword
element i of vsrc are placed into halfword element
i of VSR[VRT+32] in unsigned integer format.

– If the value of the element is greater than
232-1 the result saturates to 232-1 and SAT is
set to 1.

Special Registers Altered:
SAT

4 VRT VRA VRB 1102
0 6 11 16 21 31

4 VRT VRA VRB 1230
0 6 11 16 21 31

Register Data Layout for vpkudum & vpkudus

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I284

Version 3.1
6.8.2 Vector Unpack Instructions
Vector Unpack High Signed Byte VX-form

vupkhsb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 VSR[VRT+32].hword[i] ← EXTS16(VSR[VRB+32].byte[i])

end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i of
VSR[VRB+32] is sign-extended and placed into
halfword element i in VSR[VRT+32].

Special Registers Altered:
None

Vector Unpack Low Signed Byte VX-form

vupklsb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 VSR[VRT+32].hword[i] ← EXTS16(VSR[VRB+32].byte[i+8])

end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i+8 of
VSR[VRB+32] is sign-extended and placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 526
0 6 11 16 21 31

4 VRT /// VRB 654
0 6 11 16 21 31

Register Data Layout for vupkhsh

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 8 16 24 32 40 48 56 64 96 127

Register Data Layout for vupklsh

src unused .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 285

Version 3.1
Vector Unpack High Signed Halfword VX-form

vupkhsh VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← EXTS32(VSR[VRB+32].hword[0])

VSR[VRT+32].word[1] ← EXTS32(VSR[VRB+32].hword[1])

VSR[VRT+32].word[2] ← EXTS32(VSR[VRB+32].hword[2])

VSR[VRT+32].word[3] ← EXTS32(VSR[VRB+32].hword[3])

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element i of
VSR[VRB+32] is sign-extended and placed into word
element i in VSR[VRT+32].

Special Registers Altered:
None

Vector Unpack Low Signed Halfword VX-form

vupklsh VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← EXTS32(VSR[VRB+32].hword[4])

VSR[VRT+32].word[1] ← EXTS32(VSR[VRB+32].hword[5])

VSR[VRT+32].word[2] ← EXTS32(VSR[VRB+32].hword[6])

VSR[VRT+32].word[3] ← EXTS32(VSR[VRB+32].hword[7])

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element i+4
of VSR[VRB+32] is sign-extended to produce a
signed-integer word and placed into word element
i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 590
0 6 11 16 21 31

4 VRT /// VRB 718
0 6 11 16 21 31

Register Data Layout for vupkhsh

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 96 127

Register Data Layout for vupklsh

src unused VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 80 96 112 127
Power ISA™ I286

Version 3.1
Vector Unpack High Signed Word VX-form

vupkhsw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].dword[0] ← EXTS64(VSR[VRB+32].word[0])

VSR[VRT+32].dword[1] ← EXTS64(VSR[VRB+32].word[1])

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i of
VSR[VRB+32] is sign-extended and placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Unpack Low Signed Word VX-form

vupklsw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].dword[0] ← EXTS64(VSR[VRB+32].word[2])

VSR[VRT+32].dword[1] ← EXTS64(VSR[VRB+32].word[3])

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i+2 of
VSR[VRB+32] is sign-extended and placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 1614
0 6 11 16 21 31

4 VRT /// VRB 1742
0 6 11 16 21 31

Register Data Layout for vupkhsw

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] unused

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127

Register Data Layout for vupklsw

src unused VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127
Chapter 6. Vector Facility 287

Version 3.1
Vector Unpack High Pixel VX-form

vupkhpx VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].hword[i]

 VSR[VRT+32].word[i].byte[0] ← EXTS8(src.bit[0])

 VSR[VRT+32].word[i].byte[1] ← EXTZ8(src.bit[1:5])

 VSR[VRT+32].word[i].byte[2] ← EXTZ8(src.bit[6:10])

 VSR[VRT+32].word[i].byte[3] ← EXTZ8(src.bit[11:15])

end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i of VSR[VRB+32]
are unpacked as follows.

– sign-extend bit 0 of the halfword to 8 bits
– zero-extend bits 1:5 of the halfword to 8 bits
– zero-extend bits 6:10 of the halfword to 8 bits
– zero-extend bits 11:15 of the halfword to 8

bits

The result is placed in word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Unpack Low Pixel VX-form

vupklpx VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].hword[i+4]

 VSR[VRT+32].word[i].byte[0] ← EXTS8(src.bit[0])

 VSR[VRT+32].word[i].byte[1] ← EXTZ8(src.bit[1:5])

 VSR[VRT+32].word[i].byte[2] ← EXTZ8(src.bit[6:10])

 VSR[VRT+32].word[i].byte[3] ← EXTZ8(src.bit[11:15])

end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i+4 of
VSR[VRB+32] are unpacked as follows.

– sign-extend bit 0 of the halfword to 8 bits
– zero-extend bits 1:5 of the halfword to 8 bits
– zero-extend bits 6:10 of the halfword to 8 bits
– zero-extend bits 11:15 of the halfword to 8

bits

The result is placed in word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 846
0 6 11 16 21 31

4 VRT /// VRB 974
0 6 11 16 21 31

Register Data Layout for vupkhpx

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 96 127

Register Data Layout for vupklpx

src unused VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 80 96 112 127

The source and target elements can be considered to be 16-bit and 32-bit “pixels” respectively, having the
formats described in the Programming Note for the Vector Pack Pixel instruction on page 278.

Notice that the unpacking done by the Vector Unpack Pixel instructions does not reverse the packing done by
the Vector Pack Pixel instruction. Specifically, if a 16-bit pixel is unpacked to a 32-bit pixel which is then packed
to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for
each channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack Pixel discards
low-order bits).

Programming Note

Programming Note
Power ISA™ I288

Version 3.1
6.8.3 Vector Merge Instructions

Vector Merge High Byte VX-form

vmrghb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 VSR[VRT+32].hword[i].byte[0] ← VSR[VRA+32].byte[i]

 VSR[VRT+32].hword[i].byte[1] ← VSR[VRB+32].byte[i]

end

For each integer value i from 0 to 7, do the following.
The contents of byte element i of VSR[VRA+32] are
placed into byte element 2×i of VSR[VRT+32].

The contents of byte element i of VSR[VRB+32] are
placed into byte element 2×i+1 of VSR[VRT+32].

Special Registers Altered:
None

Vector Merge Low Byte VX-form

vmrglb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 VSR[VRT+32].hword[i].byte[0] ← VSR[VRA+32].byte[i+8]

 VSR[VRT+32].hword[i].byte[1] ← VSR[VRB+32].byte[i+8]

end

For each integer value i from 0 to 7, do the following.
The contents of byte element i+8 of VSR[VRA+32]
are placed into byte element 2×i of VSR[VRT+32].

The contents of byte element i+8 of VSR[VRB+32]
are placed into byte element 2×i+1 of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 12
0 6 11 16 21 31

4 VRT VRA VRB 268
0 6 11 16 21 31

Register Data Layout for vmrghb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] unused

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] unused

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vmrglb

src1 unused .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 unused .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 289

Version 3.1
Vector Merge High Halfword VX-form

vmrghh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 VSR[VRT+32].word[i].hword[0] ← VSR[VRA+32].hword[i]

 VSR[VRT+32].word[i].hword[1] ← VSR[VRB+32].hword[i]

end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i of VSR[VRA+32]
are placed into halfword element 2×i of
VSR[VRT+32].

The contents of halfword element i of VSR[VRB+32]
are placed into halfword element 2×i+1 of
VSR[VRT+32].

Special Registers Altered:
None

Vector Merge Low Halfword VX-form

vmrglh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 VSR[VRT+32].word[i].hword[0] ← VSR[VRA+32].hword[i+4]

 VSR[VRT+32].word[i].hword[1] ← VSR[VRB+32].hword[i+4]

end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i+4 of
VSR[VRA+32] are placed into halfword element 2×i
of VSR[VRT+32].

The contents of halfword element i+4 of
VSR[VRB+32] are placed into halfword element
2×i+1 of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 76
0 6 11 16 21 31

4 VRT VRA VRB 332
0 6 11 16 21 31

Register Data Layout for vmrghh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] unused

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] unused

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Register Data Layout for vmrglh

src1 unused VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 unused VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I290

Version 3.1
Vector Merge High Word VX-form

vmrghw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← VSR[VRA+32].word[0]

VSR[VRT+32].word[1] ← VSR[VRB+32].word[0]

VSR[VRT+32].word[2] ← VSR[VRA+32].word[1]

VSR[VRT+32].word[3] ← VSR[VRB+32].word[1]

The contents of word element 0 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element 0 of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 1 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 1 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

Special Registers Altered:
None

Vector Merge Low Word VX-form

vmrglw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← VSR[VRA+32].word[2]

VSR[VRT+32].word[1] ← VSR[VRB+32].word[2]

VSR[VRT+32].word[2] ← VSR[VRA+32].word[3]

VSR[VRT+32].word[3] ← VSR[VRB+32].word[3]

The contents of word element 2 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element 2 of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 3 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 3 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 140
0 6 11 16 21 31

4 VRT VRA VRB 396
0 6 11 16 21 31

Register Data Layout for vmrghw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] unused

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vmrglw

src1 unused VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 unused VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Chapter 6. Vector Facility 291

Version 3.1
Vector Merge Even Word VX-form

vmrgew VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← VSR[VRA+32].word[0]

VSR[VRT+32].word[1] ← VSR[VRB+32].word[0]

VSR[VRT+32].word[2] ← VSR[VRA+32].word[2]

VSR[VRT+32].word[3] ← VSR[VRB+32].word[2]

The contents of word element 0 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element 0 of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 2 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 2 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

vmrgew is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered:
None

Vector Merge Odd Word VX-form

vmrgow VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].word[0] ← VSR[VRA+32].word[1]

VSR[VRT+32].word[1] ← VSR[VRB+32].word[1]

VSR[VRT+32].word[2] ← VSR[VRA+32].word[3]

VSR[VRT+32].word[3] ← VSR[VRB+32].word[3]

The contents of word element 1 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element 1 of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 3 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 3 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

vmrgow is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered:
None

4 VRT VRA VRB 1932
0 6 11 16 21 31

4 VRT VRA VRB 1676
0 6 11 16 21 31

Register Data Layout for vmrgew

src1 VSR[VRA+32].word[0] unused VSR[VRA+32].word[2] unused

src2 VSR[VRB+32].word[0] unused VSR[VRB+32].word[2] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vmrgow

src1 unused VSR[VRA+32].word[1] unused VSR[VRA+32].word[3]

src2 unused VSR[VRB+32].word[1] unused VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I292

Version 3.1
6.8.4 Vector Splat Instructions

Vector Splat Byte VX-form

vspltb VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

b ← UIM || 0b000
do i = 0 to 15

 VSR[VRT+32].byte[i] ← VSR[VRB+32].bit[b:b+7]

end

For each integer value i from 0 to 15, do the following.
The contents of byte element UIM in VSR[VRB+32]
are placed into byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Splat Halfword VX-form

vsplth VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

b ← UIM || 0b0000
do i = 0 to 7

 VSR[VRT+32].hword[i] ← VSR[VRB+32].bit[b:b+15]

end

For each integer value i from 0 to 7, do the following.
The contents of halfword element UIM in
VSR[VRB+32] are placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

The Vector Splat instructions can be used in
preparation for performing arithmetic for which one
source vector is to consist of elements that all
have the same value (e.g., multiplying all elements
of a VSR by a constant).

Programming Note

4 VRT / UIM VRB 524
0 6 11 12 16 21 31

4 VRT // UIM VRB 588
0 6 11 13 16 21 31

Register Data Layout for vspltb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsplth

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 293

Version 3.1
Vector Splat Word VX-form

vspltw VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

b ← UIM || 0b00000
do i = 0 to 3

 VSR[VRT+32].word[i] ← VSR[VRB+32].bit[b:b+31]

end

For each integer value i from 0 to 3, do the following.
The contents of word element UIM in VSR[VRB+32]
are placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// UIM VRB 652
0 6 11 14 16 21 31

Register Data Layout for vspltw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I294

Version 3.1
Vector Splat Immediate Signed Byte VX-form

vspltisb VRT,SIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 VSR[VRT+32].byte[i] ← EXTS8(SIM, 8)

end

For each integer value i from 0 to 15, do the following.
The value of the SIM field, sign-extended to 8 bits,
is placed into byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Splat Immediate Signed Halfword
VX-form

vspltish VRT,SIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 VSR[VRT+32].hword[i] ← EXTS16(SIM, 16)

end

For each integer value i from 0 to 7, do the following.
The value of the SIM field, sign-extended to 16
bits, is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Splat Immediate Signed Word VX-form

vspltisw VRT,SIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 VSR[VRT+32].word[i] ← EXTS32(SIM, 32)

end

For each integer value i from 0 to 3, do the following.
The value of the SIM field, sign-extended to 32
bits, is placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT SIM /// 780
0 6 11 16 21 31

4 VRT SIM /// 844
0 6 11 16 21 31

4 VRT SIM /// 908
0 6 11 16 21 31

Register Data Layout for vspltisb

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vspltish

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Register Data Layout for vspltisw

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Chapter 6. Vector Facility 295

Version 3.1
6.8.5 Vector Permute Instruction
The Vector Permute instruction allows any byte in two source VSRs to be copied to any byte in the target VSR. The
bytes in a third source VSR specify from which byte in the first two source VSRs the corresponding target byte is to
be copied. The contents of the third source VSR are sometimes referred to as the “permute control vector”.

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 index ← VSR[VRC+32].byte[i].bit[3:7]

 VSR[VRT+32].byte[i] ← src.byte[index]

end

Let the source vector be the concatenation of the
contents of VSR[VRA+32] followed by the contents of
VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
Let index be the value specified by bits 3:7 of byte
element i of VSR[VRC+32].

The contents of byte element index of src are
placed into byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Permute Right-indexed VA-form

vpermr VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

do i = 0 to 15

 index ← VSR[VRC+32].byte[i].bit[3:7]

 VSR[VRT+32].byte[i] ← src.byte[31-index]

end

Let the source vector be the concatenation of the
contents of VSR[VRA+32] followed by the contents of
VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
Let index be the value specified by bits 3:7 of byte
element i of VSR[VRC+32].

The contents of byte element 31-index of src are
placed into byte element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 43
0 6 11 16 21 26 31

See the Programming Notes with the Load Vector
for Shift Left and Load Vector for Shift Right
instructions on page 276 for examples of uses of
vperm.

Programming Note

4 VRT VRA VRB VRC 59
0 6 11 16 21 26 31

Register Data Layout for vperm & vpermr

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127
Power ISA™ I296

Version 3.1
6.8.6 Vector Select Instruction
Vector Select VA-form

vsel VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VSR[VRA+32]

src2 ← VSR[VRB+32]

mask ← VSR[VRC+32]

VSR[VRT+32] ← (src1 & ~mask) | (src2 & mask)

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].
Let mask be the contents of VSR[VRC+32].

The value, (src1 & ~mask) | (src2 & mask), is placed
into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 42
0 6 11 16 21 26 31

Register Data Layout for vsel

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 297

Version 3.1
6.8.7 Vector Shift Instructions
The Vector Shift instructions rotate or shift the contents
of a VSR or a pair of VSRs left or right by a specified
number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr).
Depending on the instruction, this “shift count” is
specified either by the contents of a VSR or by an
immediate field in the instruction. In the former case, 7
bits of the shift count register give the shift count in bits
(0 ≤ count ≤ 127). Of these 7 bits, the high-order 4 bits
give the number of complete bytes by which to shift
and are used by vslo and vsro; the low-order 3 bits
give the number of remaining bits by which to shift and
are used by vsl and vsr.

Vector Shift Left Double by Bit Immediate
VN-form

vsldbi VRT,VRA,VRB,SH

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32] ← vsrc.bit[SH:SH+127]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

The contents of bits SH:SH+127 of vsrc are placed into
VSR[VRT+32].

SH can be any integer value between 0 and 7.

Special Registers Altered:
None

Vector Shift Left Double by Octet Immediate
VA-form

vsldoi VRT,VRA,VRB,SHB

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32] ← src.byte[SHB:SHB+15]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

Bytes SHB:SHB+15 of vsrc are placed into VSR[VRT+32].

Special Registers Altered:
None

A pair of these instructions, specifying the same
shift count register, can be used to shift the
contents of a VSR left or right by the number of
bits (0-127) specified in the shift count register.
The following example shifts the contents of
register Vx left by the number of bits specified in
register Vy and places the result into register Vz.

 vslo Vz,Vx,Vy

 vspltb Vy,Vy,15

 vsl Vz,Vz,Vy

Programming Note

4 VRT VRA VRB 0 SH 22
0 6 11 16 21 23 26 31

4 VRT VRA VRB / SHB 44
0 6 11 16 21 22 26 31
Power ISA™ I298

Version 3.1
Vector Shift Right Double by Bit Immediate
VN-form

vsrdbi VRT,VRA,VRB,SH

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32] ← vsrc.bit[128-SH:255-SH]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

The contents of bits 128-SH:255-SH of vsrc are placed
into VSR[VRT+32].

SH can be any integer value between 0 and 7.

Special Registers Altered:
None

4 VRT VRA VRB 1 SH 22
0 6 11 16 21 23 26 31

Register Data Layout for vsldbi, & vsrdbi & vsldoi

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 299

Version 3.1
Vector Shift Left VX-form

vsl VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

shb ← VSR[VRB+32].bit[125:127]

t ← 1

do i = 0 to 14

 t ← t & (VSR[VRB+32].byte[i].bit[5:7] = sh)

end

if t=1 then

 VSR[VRT+32] ← VSR[VRA+32] << sh

else

 VSR[VRT+32] ← UNDEFINED

The contents of VSR[VRA+32] are shifted left by the
number of bits specified in bits 125:127 of VSR[VRB+32].

– Bits shifted out of bit 0 are lost.
– Zeros are supplied to the vacated bits on the right.

The result is place into VSR[VRT+32], except if, for any
byte element in VSR[VRB+32], the low-order 3 bits are
not equal to the shift amount, then VSR[VRT+32] is
undefined.

Special Registers Altered:
None

Vector Shift Right VX-form

vsr VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

sh ← VSR[VRB+32].bit[125:127]

t ← 1

do i = 0 to 14

 t ← t & (VSR[VRB+32].byte[i].bit[5:7]=sh)

end

if t=1 then

 VSR[VRT+32] ← CHOP128(EXTZ(VSR[VRA+32]) >> sh)

else

 VSR[VRT+32] ← UNDEFINED

The contents of VSR[VRA+32] are shifted right by the
number of bits specified in bits 125:127 of VSR[VRB+32].

– Bits shifted out of bit 127 are lost.
– Zeros are supplied to the vacated bits on the left.

The result is place into VSR[VRT+32], except if, for any
byte element in VSR[VRB+32], the low-order 3 bits are
not equal to the shift amount, then VSR[VRT+32] is
undefined.

Special Registers Altered:
None

4 VRT VRA VRB 452
0 6 11 16 21 31

4 VRT VRA VRB 708
0 6 11 16 21 31

Register Data Layout for vsl & vsr

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I300

Version 3.1
Vector Shift Left by Octet VX-form

vslo VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

shb ← VSR[VRB+32].bit[121:124] << 3

VSR[VRT+32] ← VSR[VRA+32] << shb

The contents of VSR[VRA+32] are shifted left by the
number of bytes specified in bits 121:124 of
VSR[VRB+32].

– Bytes shifted out of byte 0 are lost.
– Zeros are supplied to the vacated bytes on the

right.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right by Octet VX-form

vsro VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

shb ← VSR[VRB+32].bit[121:124] << 3

VSR[VRT+32] ← VSR[VRA+32] >> shb

The contents of VSR[VRA+32] are shifted right by the
number of bytes specified in bits 121:124 of
VSR[VRB+32].

– Bytes shifted out of byte 15 are lost.
– Zeros are supplied to the vacated bytes on the

left.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1036
0 6 11 16 21 31

4 VRT VRA VRB 1100
0 6 11 16 21 31

Register Data Layout for vslo & vsro

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127

A double-register shift by a dynamically specified number of bits (0-127) can be performed in six instructions.
The following example shifts Vw || Vx left by the number of bits specified in Vy and places the high-order 128 bits
of the result into Vz.

vslo Vt1,Vw,Vy # shift high-order reg left

vspltb Vy,Vy,15

vsl Vt1,Vt1,Vy

vsububm Vt3,V0,Vy # adjust shift count ((V0)=0)

vsro Vt2,Vx,Vt3 # shift low-order reg right

vspltb Vt3,Vt3,15

vsr Vt2,Vt2,Vt3

vor Vz,Vt1,Vt2 # merge to get final result

Programming Note
Chapter 6. Vector Facility 301

Version 3.1
Vector Shift Left Variable VX-form

vslv VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable_Interrupt()

vsrc.byte[0:15] ← VSR[VRA+32]

vsrc.byte[16] ← 0x00

do i = 0 to 15

 sh ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← src.byte[i:i+1].bit[sh:sh+7]

end

Let bytes 0:15 of vsrc be the contents of VSR[VRA+32].
Let byte 16 of vsrc be the value 0x00.

For each integer value i from 0 to 15, do the following.
Let sh be the value in bits 5:7 of byte element i of
VSR[VRB+32].

The contents of bits sh:sh+7 of the halfword in
byte elements i:i+1 of vsrc are placed into byte
element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right Variable VX-form

vsrv VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable_Interrupt()

vsrc.byte[0] ← 0x00

vsrc.byte[1:16] ← VSR[VRA+32]

do i = 0 to 15

 sh ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← src.byte[i:i+1].bit[8-sh:15-sh]

end

Let bytes 1:16 of vsrc be the contents of VSR[VRA+32].
Let byte 0 of vsrc be the value 0x00.

For each integer value i from 0 to 15, do the following.
Let sh be the value in bits 5:7 of byte element i of
VSR[VRB+32].

The contents of bits 8-sh:15-sh of the halfword in
byte elements i:i+1 of vsrc are placed into byte
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1860
0 6 11 16 21 31

4 VRT VRA VRB 1796
0 6 11 16 21 31

Register Data Layout for vslv & vsrv

src1 VSR[VRA+32]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I302

Version 3.1

Assume vSRC contains a vector of packed 7-bit values, A located in bits 0:6, B located in bits 7:13, C located in
bits 14:20, etc..

 # vSRC = { 0bAAAAAAAB, 0bBBBBBBCC, 0bCCCCCDDD, 0bDDDDEEEE,

 # 0bEEEFFFFF, 0bFFGGGGGG, 0bGHHHHHHH, 0bIIIIIIIJ,

 # 0bJJJJJJKK, 0bKKKKKLLL, 0bLLLLMMMM, 0bMMMNNNNN,

 # 0bNNOOOOOO, 0bOPPPPPPP, 0bQQQQQQQR, 0bRRRRRRSS };

Assume the following registers are pre-loaded as follows,

 # vSHCNT1 = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x07,

 # 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07 };

 # vSHCNT2 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,

 # 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x07, 0x07 };

 # vSHCNT3 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 # 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02 };

 # vMASK = { 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,

 # 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F };

The leftmost seven packed 7-bit values can be unpacked into byte elements 0 to 6 using vsrv with vSHCNT1.

vsrv vTMP1, vSRC, vSHCT1 # vTMP1 = { 0b0AAAAAAA, 0bABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

 # 0bDEEEEEEE, 0bEFFFFFFF, 0bFGGGGGGG, 0bHHHHHHHI,

 # 0bIIIIIIJJ, 0bJJJJJKKK, 0bKKKKLLLL, 0bLLLMMMMM,

 # 0bMMNNNNNN, 0bNOOOOOOO, 0bPPPPPPPQ, 0bQQQQQQRR };

The next seven packed 7-bit values can then be unpacked into byte elements 7 to 13 using vsrv with vSHCNT2.

vsrv vTMP2, vTMP1, vSHCT2 # vTMP2 = { 0b0AAAAAAA, 0bABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

 # 0bDEEEEEEE, 0bEFFFFFFF, 0bFGGGGGGG, 0bGHHHHHHH,

 # 0bHIIIIIII, 0bIJJJJJJJ, 0bJKKKKKKK, 0bKLLLLLLL,

 # 0bLMMMMMMM, 0bMNNNNNNN, 0bOOOOOOOP, 0bPPPPPPQQ };

The next two packed 7-bit values can then be unpacked into byte elements 14 to 15 using vsrv with vSHCNT3.

vsrv vTMP3, vTMP2, vSHCT3 # vTMP3 = { 0b0AAAAAAA, 0bABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

 # 0bDEEEEEEE, 0bEFFFFFFF, 0bFGGGGGGG, 0bGHHHHHHH,

 # 0bHIIIIIII, 0bIJJJJJJJ, 0bJKKKKKKK, 0bKLLLLLLL,

 # 0bLMMMMMMM, 0bMNNNNNNN, 0bNOOOOOOO, 0bOPPPPPPP };

The most-significant bit in each byte element is masked off to produce a vector of sixteen unsigned byte
elements.

vand vTMP4, vTMP3, vMASK # vTMP4 = { 0b0AAAAAAA, 0b0BBBBBBB, 0b0CCCCCCC, 0b0DDDDDDD,

 # 0b0EEEEEEE, 0b0FFFFFFF, 0b0GGGGGGG, 0b0HHHHHHH,

 # 0b0IIIIIII, 0b0JJJJJJJ, 0b0KKKKKKK, 0b0LLLLLLL,

 # 0b0MMMMMMM, 0b0NNNNNNN, 0b0OOOOOOO, 0b0PPPPPPP };

The vector of sixteen unsigned byte elements can be further unpacked to two vectors of eight unsigned halfword
elements using a vupkhsb and a vupklsb.

vupkhsb vTMP5, vTMP4 # vTMP5 = { 0b00000000_0AAAAAAA, 0b00000000_0BBBBBBB, ... };

vupklsb vTMP6, vTMP4 # vTMP6 = { 0b00000000_0IIIIIII, 0b00000000_0JJJJJJJ, ... };

The resultant two vectors of eight unsigned halfword elements can then be further unpacked to four vectors of
four unsigned word elements using two vupkhsh and two vupklsh instructions.

vupkhsh vRESULT0, vTMP5 # vRESULT0 = { 0b00000000_00000000_00000000_0AAAAAAA, ... };

vupklsh vRESULT1, vTMP5 # vRESULT1 = { 0b00000000_00000000_00000000_0EEEEEEE, ... };

vupkhsh vRESULT2, vTMP6 # vRESULT2 = { 0b00000000_00000000_00000000_0IIIIIII, ... };

vupklsh vRESULT3, vTMP6 # vRESULT3 = { 0b00000000_00000000_00000000_0MMMMMMM, ... };

Programming Note
Chapter 6. Vector Facility 303

Version 3.1
6.8.8 Vector Extract Element Instructions

6.8.8.1 Vector Extract Element to VSR using Immediate-specified Index Instructions

Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

vextractub VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

src ← VSR[VRB+32].byte[UIM]

VSR[VRT+32].dword[0] ← EXTZ64(src)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

The contents of byte element UIM of VSR[VRB+32] are
placed into bits 56:63 of VSR[VRT+32]. The contents of
the remaining byte elements of VSR[VRT+32] are set to
0.

Special Registers Altered:
None

Vector Extract Unsigned Halfword to VSR
using immediate-specified index VX-form

vextractuh VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

src ← VSR[VRB+32].byte[UIM:UIM+1]

VSR[VRT+32].dword[0] ← EXTZ64(src)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+1 of
VSR[VRB+32] are placed into halfword element 3 of
VSR[VRT+32]. The contents of the remaining halfword
elements of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 14, the results are
undefined.

Special Registers Altered:
None

4 VRT / UIM VRB 525
0 6 11 12 16 21 31

4 VRT / UIM VRB 589
0 6 11 12 16 21 31

Register Data Layout for vextractub

src VSR[VRB+32]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 63 127

Register Data Layout for vextractuh

src VSR[VRB+32]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 63 127
Power ISA™ I304

Version 3.1
Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

vextractuw VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

src ← VSR[VRB+32].byte[UIM:UIM+3]

VSR[VRT+32].dword[0] ← EXTZ64(src)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+3 of
VSR[VRB+32] are placed into word element 1 of
VSR[VRT+32]. The contents of the remaining word
elements of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 12, the results are
undefined.

Special Registers Altered:
None

Vector Extract Doubleword to VSR using
immediate-specified index VX-form

vextractd VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

src ← VSR[VRB+32].byte[UIM:UIM+7]

VSR[VRT+32].dword[0] ← src

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+7 of
VSR[VRB+32] are placed into VSR[VRT+32]. The contents
of doubleword element 1 of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 8, the results are
undefined.

Special Registers Altered:
None

4 VRT / UIM VRB 653
0 6 11 12 16 21 31

4 VRT / UIM VRB 717
0 6 11 12 16 21 31

Register Data Layout for vextractuw

src VSR[VRB+32]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 63 127

Register Data Layout for vextractd

src VSR[VRB+32]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 63 127
Chapter 6. Vector Facility 305

Version 3.1
6.8.8.2 Vector Extract Element to GPR using GPR-specified Index Instructions

Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

vextublx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte element index of VSR[VRB+32] are
placed into bits 56:63 of GPR[RT].

The contents of bits 0:55 of GPR[RT] are set to 0.

Special Registers Altered:
None

Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

vextubrx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[15-index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte element 15-index of VSR[VRB+32]
are placed into bits 56:63 of GPR[RT].

The contents of bits 0:55 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT RA VRB 1549
0 6 11 16 21 31

4 RT RA VRB 1805
0 6 11 16 21 31

Register Data Layout for vextublx & vextubrx

src1 GPR[RA]

src2 VSR[VRB+32]

result GPR[RT]

0 63 127
Power ISA™ I306

Version 3.1
Vector Extract Unsigned Halfword to GPR
using GPR-specified Left-Index VX-form

vextuhlx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[index:index+1])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements index:index+1 of
VSR[VRB+32] are placed into bits 48:63 of GPR[RT].

The contents of bits 0:47 of GPR[RT] are set to 0.

If the value of index is greater than 14, the results are
undefined.

Special Registers Altered:
None

Vector Extract Unsigned Halfword to GPR
using GPR-specified Right-Index VX-form

vextuhrx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[14-index:15-index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements 14-index:15-index of
VSR[VRB+32] are placed into bits 48:63 of GPR[RT].

The contents of bits 0:47 of GPR[RT] are set to 0.

If the value of index is greater than 14, the results are
undefined.

Special Registers Altered:
None

4 RT RA VRB 1613
0 6 11 16 21 31

4 RT RA VRB 1869
0 6 11 16 21 31

Register Data Layout for vextuhlx & vextuhrx

src1 GPR[RA]

src2 VSR[VRB+32]

result GPR[RT]

0 63 127
Chapter 6. Vector Facility 307

Version 3.1
Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

vextuwlx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[index:index+3])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements index:index+3 of
VSR[VRB+32] are placed into bits 32:63 of GPR[RT].

The contents of bits 0:31 of GPR[RT] are set to 0.

If the value of index is greater than 12, the results are
undefined.

Special Registers Altered:
None

Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

vextuwrx RT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

GPR[RT] ← EXTZ64(VSR[VRB+32].byte[12-index:15-index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements index:index+3 of
VSR[VRB+32] are placed into bits 32:63 of GPR[RT].

The contents of bits 0:31 of GPR[RT] are set to 0.

If the value of index is greater than 12, the results are
undefined.

Special Registers Altered:
None

4 RT RA VRB 1677
0 6 11 16 21 31

4 RT RA VRB 1933
0 6 11 16 21 31

Register Data Layout for vextuwlx & vextuwrx

src1 GPR[RA]

src2 VSR[VRB+32]

result GPR[RT]

0 63 127
Power ISA™ I308

Version 3.1
6.8.8.3 Vector Extract Double Element to VSR Using GPR-specified Index Instructions

Vector Extract Double Unsigned Byte to VSR
using GPR-specified Left-Index VA-form

vextdubvlx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(vsrc.byte[index])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte element index of vsrc are
zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

Special Registers Altered:
None

Vector Extract Double Unsigned Byte to VSR
using GPR-specified Right-Index VA-form

vextdubvrx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(vsrc.byte[31-index])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte element 31-index of vsrc are
zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

Special Registers Altered:
None

4 VRT VRA VRB RC 24
0 6 11 16 21 26 31

4 VRT VRA VRB RC 25
0 6 11 16 21 26 31

Register Data Layout for vextdubvlx & vextdubvrx

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 GPR[RC]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 6. Vector Facility 309

Version 3.1
Vector Extract Double Unsigned Halfword to
VSR using GPR-specified Left-Index VA-form

vextduhvlx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(vsrc.byte[index:index+1])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+1 of vsrc
are zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 30, the result is undefined.

Special Registers Altered:
None

Vector Extract Double Unsigned Halfword to
VSR using GPR-specified Right-Index VA-form

vextduhvrx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

vsrc.qword[0] ← VSR[VRA+32]

vsrc.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(vsrc.byte[30-index:31-index])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 30-index:31-index of
vsrc are zero-extended and placed into doubleword 0
of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 30, the result is undefined.

Special Registers Altered:
None

4 VRT VRA VRB RC 26
0 6 11 16 21 26 31

4 VRT VRA VRB RC 27
0 6 11 16 21 26 31

Register Data Layout for vextduhvlx & vextduhvrx

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 GPR[RC]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I310

Version 3.1
Vector Extract Double Unsigned Word to VSR
using GPR-specified Left-Index VA-form

vextduwvlx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

src.qword[0] ← VSR[VRA+32]

src.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(src.byte[index:index+3])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+3 of src
are zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 28, the result is undefined.

Special Registers Altered:
None

Vector Extract Double Unsigned Word to VSR
using GPR-specified Right-Index VA-form

vextduwvrx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

src.qword[0] ← VSR[VRA+32]

src.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(src.byte[28-index:31-index])

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 28-index:31-index of
src are zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 28, the result is undefined.

Special Registers Altered:
None

4 VRT VRA VRB RC 28
0 6 11 16 21 26 31

4 VRT VRA VRB RC 29
0 6 11 16 21 26 31

Register Data Layout for vextduwvlx & vextduwvrx

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 GPR[RC]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 6. Vector Facility 311

Version 3.1
Vector Extract Double Doubleword to VSR
using GPR-specified Left-Index VA-form

vextddvlx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

src.qword[0] ← VSR[VRA+32]

src.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← src.byte[index:index+7]

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+7 of src
are placed into doubleword 0 of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 24, the result is undefined.

Special Registers Altered:
None

Vector Extract Double Doubleword to VSR
using GPR-specified Right-Index VA-form

vextddvrx VRT,VRA,VRB,RC

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RC].bit[59:63]

src.qword[0] ← VSR[VRA+32]

src.qword[1] ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← src.byte[24-index:31-index]

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 24-index:31-index of
src are placed into doubleword 0 of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 24, the result is undefined.

Special Registers Altered:
None

4 VRT VRA VRB RC 30
0 6 11 16 21 26 31

4 VRT VRA VRB RC 31
0 6 11 16 21 26 31

Register Data Layout for vextddvlx & vextddvrx

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 GPR[RC]

result VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I312

Version 3.1
6.8.9 Vector Insert Element Instructions

6.8.9.1 Vector Insert Element from VSR Using Immediate-specified Index Instructions

Vector Insert Byte from VSR using
immediate-specified index VX-form

vinsertb VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM] ← VSR[VRB+32].byte[7]

The contents of byte element 7 of VSR[VRB+32] are
placed into byte element UIM of VSR[VRT+32]. The
contents of the remaining byte elements of
VSR[VRT+32] are not modified.

Special Registers Altered:
None

Vector Insert Halfword from VSR using
immediate-specified index VX-form

vinserth VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM:UIM+1] ← VSR[VRB+32].hword[3]

The contents of halfword element 3 of VSR[VRB+32] are
placed into byte elements UIM:UIM+1 of VSR[VRT+32].
The contents of the remaining byte elements of
VSR[VRT+32] are not modified.

If the value of UIM is greater than 14, the results are
undefined.

Special Registers Altered:
None

4 VRT / UIM VRB 781
0 6 11 12 16 21 31

4 VRT / UIM VRB 845
0 6 11 12 16 21 31

Register Data Layout for vinsertb

src unused .byte[7] unused

result VSR[VRT+32]

0 56 64 127

Register Data Layout for vinsertb

src unused VSR[VRB+32].hword[1] unused

result VSR[VRT+32]

48 64 127
Chapter 6. Vector Facility 313

Version 3.1
Vector Insert Word from VSR using
immediate-specified index VX-form

vinsertw VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM:UIM+3] ← VSR[VRB+32].word[1]

The contents of word element 1 of VSR[VRB+32] are
placed into byte elements UIM:UIM+3 of VSR[VRT+32].
The contents of the remaining byte elements of
VSR[VRT+32] are not modified.

If the value of UIM is greater than 12, the results are
undefined.

Special Registers Altered:
None

Vector Insert Doubleword from VSR using
immediate-specified index VX-form

vinsertd VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM:UIM+7] ← VSR[VRB+32].dword[0]

The contents of doubleword element 0 of VSR[VRB+32]
are placed into byte elements UIM:UIM+7 of
VSR[VRT+32]. The contents of the remaining byte
elements of VSR[VRT+32] are not modified.

If the value of UIM is greater than 8, the results are
undefined.

Special Registers Altered:
None

4 VRT / UIM VRB 909
0 6 11 12 16 21 31

4 VRT / UIM VRB 973
0 6 11 12 16 21 31

Register Data Layout for vinsertw

src unused VSR[VRB+32].word[1] unused

result VSR[VRT+32]

0 32 64 127

Register Data Layout for vinsertd

src VSR[VRB+32].dword[0] unused

result VSR[VRT+32]

0 64 127
Power ISA™ I314

Version 3.1
6.8.9.2 Vector Insert Element from GPR Using GPR-specified Index Instructions

Vector Insert Byte from GPR using
GPR-specified Left-Index VX-form

vinsblx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[index] ← GPR[RB].bit[56:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of GPR[RB] are placed into
byte element index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:
None

Vector Insert Byte from GPR using
GPR-specified Right-Index VX-form

vinsbrx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[15-index] ← GPR[RB].bit[56:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of GPR[RB] are placed into
byte element 15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:
None

4 VRT RA RB 527
0 6 11 16 21 31

4 VRT RA RB 783
0 6 11 16 21 31

Register Data Layout for vinshlx & vinshrx

src1 GPR[RA]

src2 unused .byte[7]

result VSR[VRT+32]

0 56 64 127
Chapter 6. Vector Facility 315

Version 3.1
Vector Insert Halfword from GPR using
GPR-specified Left-Index VX-form

vinshlx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[index:index+1] ← GPR[RB].bit[48:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of GPR[RB] are placed into
byte elements index:index+1 of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:
None

Vector Insert Halfword from GPR using
GPR-specified Right-Index VX-form

vinshrx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[14-index:15-index] ← GPR[RB].bit[48:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of GPR[RB] are placed into
byte elements 14-index:15-index of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:
None

4 VRT RA RB 591
0 6 11 16 21 31

4 VRT RA RB 847
0 6 11 16 21 31

Register Data Layout for vinshlx & vinshrx

src1 GPR[RA]

src2 unused GPR[RB].hword[3]

result VSR[VRT+32]

0 48 64 127
Power ISA™ I316

Version 3.1
Vector Insert Word from GPR using
GPR-specified Left-Index VX-form

vinswlx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[index:index+3] ← GPR[RB].bit[32:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of GPR[RB] are placed into
byte elements index:index+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:
None

Vector Insert Word from GPR using
GPR-specified Right-Index VX-form

vinswrx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[12-index:15-index] ← GPR[RB].bit[32:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of GPR[RB] are placed into
byte elements 12-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:
None

4 VRT RA RB 655
0 6 11 16 21 31

4 VRT RA RB 911
0 6 11 16 21 31

Register Data Layout for vinswlx & vinswrx

src1 GPR[RA]

src2 unused GPR[RB].word[1]

result VSR[VRT+32]

0 32 64 127
Chapter 6. Vector Facility 317

Version 3.1
Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

vinsdlx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[index:index+7] ← GPR[RB]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of GPR[RB] are placed into byte elements
index:index+7 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 8, the result is undefined.

Special Registers Altered:
None

Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

vinsdrx VRT,RA,RB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[8-index:15-index] ← GPR[RB]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of GPR[RB] are placed into byte elements
8-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 8, the result is undefined.

Special Registers Altered:
None

4 VRT RA RB 719
0 6 11 16 21 31

4 VRT RA RB 975
0 6 11 16 21 31

Register Data Layout for vinsdlx & vinsdrx

src1 GPR[RA]

src2 GPR[RB]

result VSR[VRT+32]

0 64 127
Power ISA™ I318

Version 3.1
6.8.9.3 Vector Insert Element from GPR Using Immediate-specified Index Instructions

Vector Insert Word from GPR using
immediate-specified index VX-form

vinsw VRT,RB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM:UIM+3] ← GPR[RB].bit[32:63]

The contents of bits 32:63 of GPR[RB] are placed into
byte elements UIM:UIM+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If UIM is greater than 12, the result is undefined.

Special Registers Altered:
None

Vector Insert Doubleword from GPR using
immediate-specified index VX-form

vinsd VRT,RB,UIM

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIM:UIM+7] ← GPR[RB]

The contents of GPR[RB] are placed into byte elements
UIM:UIM+7 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If UIM is greater than 8, the result is undefined.

Special Registers Altered:
None

4 VRT / UIM RB 207
0 6 11 12 16 21 31

4 VRT / UIM RB 463
0 6 11 12 16 21 31

Register Data Layout for vinsw

src unused GPR[RB].word[1]

result VSR[VRT+32]

0 32 64 127

Register Data Layout for vinsd

src GPR[RB]

result VSR[VRT+32]

0 64 127
Chapter 6. Vector Facility 319

Version 3.1
6.8.9.4 Vector Insert Element from VSR Using GPR-specified Index Instructions

Vector Insert Byte from VSR using
GPR-specified Left-Index VX-form

vinsbvlx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[index] ← VSR[VRB+32].bit[56:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of VSR[VRB+32] are placed
into byte element index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:
None

Vector Insert Byte from VSR using
GPR-specified Right-Index VX-form

vinsbvrx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[15-index] ← VSR[VRB+32].bit[56:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of VSR[VRB+32] are placed
into byte element 15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:
None

4 VRT RA VRB 15
0 6 11 16 21 31

4 VRT RA VRB 271
0 6 11 16 21 31

Register Data Layout for vinsbvlx & vinsbvrx

src1 GPR[RA]

src2 unused .byte[7] unused

result VSR[VRT+32]

0 56 64 127
Power ISA™ I320

Version 3.1
Vector Insert Halfword from VSR using
GPR-specified Left-Index VX-form

vinshvlx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[index:index+1] ← VSR[VRB+32].bit[48:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of VSR[VRB+32] are placed
into byte elements index:index+1 of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:
None

Vector Insert Halfword from VSR using
GPR-specified Right-Index VX-form

vinshvrx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

src.byte[0:15] ← 0

VSR[VRT+32].byte[14-index:15-index] ← VSR[VRB+32].bit[48:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of VSR[VRB+32] are placed
into byte elements 14-index:15-index of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:
None

4 VRT RA VRB 79
0 6 11 16 21 31

4 VRT RA VRB 335
0 6 11 16 21 31

Register Data Layout for vinshvlx & vinshvrx

src1 GPR[RA]

src2 unused VSR[VRB+32].hword[1] unused

result VSR[VRT+32]

0 48 64 127
Chapter 6. Vector Facility 321

Version 3.1
Vector Insert Word from VSR using
GPR-specified Left-Index VX-form

vinswvlx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[index:index+3] ← VSR[VRB+32].bit[32:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of VSR[VRB+32] are placed
into byte elements index:index+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:
None

Vector Insert Word from VSR using
GPR-specified Right-Index VX-form

vinswvrx VRT,RA,VRB

if MSR.VEC=0 then Vector_Unavailable()

index ← GPR[RA].bit[60:63]

VSR[VRT+32].byte[12-index:15-index] ← VSR[VRB+32].bit[32:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of VSR[VRB+32] are placed
into byte elements 12-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:
None

4 VRT RA VRB 143
0 6 11 16 21 31

4 VRT RA VRB 399
0 6 11 16 21 31

Register Data Layout for vinswvlx & vinswvrx

src1 GPR[RA]

src2 unused VSR[VRB+32].word[1] unused

result VSR[VRT+32]

0 32 64 127
Power ISA™ I322

Version 3.1
6.9 Vector Integer Instructions

6.9.1 Vector Integer Arithmetic Instructions

6.9.1.1 Vector Integer Add Instructions

Vector Add & Write Carry-out Unsigned Word
VX-form

vaddcuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

src1 ← EXTZ(VSR[VRA+32].word[i])

src2 ← EXTZ(VSR[VRB+32].word[i])

VSR[VRT+32].word[i] ← CHOP32((src1 + src2) >> 32)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VSR[VRA+32] is added to the unsigned integer
value in word element i in VSR[VRB+32]. The carry
out of the 32-bit sum is zero-extended to 32 bits
and placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Add Signed Byte Saturate VX-form

vaddsbs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

src1 ← EXTS(VSR[VRA+32].byte[i])

src2 ← EXTS(VSR[VRB+32].byte[i])

VSR[VRT+32].byte[i] ← si8_CLAMP(src1 + src2)

end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element i of
VSR[VRA+32] is added to the signed integer value
in byte element i of VSR[VRB+32].

– If the sum is greater than 27-1 the result
saturates to 27-1 and SAT is set to 1.

– If the sum is less than -27 the result saturates
to -27 and SAT is set to 1.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 384
0 6 11 16 21 31

4 VRT VRA VRB 768
0 6 11 16 21 31

Register Data Layout for vaddcuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vaddsbs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 323

Version 3.1
Vector Add Signed Halfword Saturate VX-form

vaddshs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

src1 ← EXTS(VSR[VRA+32].hword[i])

src2 ← EXTS(VSR[VRB+32].hword[i])

VSR[VRT+32].hword[i] ← si16_CLAMP(src1 + src2)

end

For each integer value i from 0 to 7, do the following.
The signed integer value in halfword element i of
VSR[VRA+32] is added to the signed integer value
in halfword element i of VSR[VRB+32].

– If the sum is greater than 215-1 the result
saturates to 215-1 and SAT is set to 1.

– If the sum is less than -215 the result
saturates to -215 and SAT is set to 1.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Vector Add Signed Word Saturate VX-form

vaddsws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA].word[i])

 src2 ← EXTS(VSR[VRB].word[i])

 VSR[VRT+32].word[i] ← si32_CLAMP(src1 + src2)

end

For each integer value i from 0 to 3, do the following.
The signed integer value in word element i of
VSR[VRA+32] is added to the signed integer value
in word element i of VSR[VRB+32].

– If the sum is greater than 231-1 the result
saturates to 231-1 and SAT is set to 1.

– If the sum is less than -231 the result
saturates to -231 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 832
0 6 11 16 21 31

4 VRT VRA VRB 896
0 6 11 16 21 31

Register Data Layout for vaddshs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Register Data Layout for vaddsws

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I324

Version 3.1
Vector Add Unsigned Byte Modulo VX-form

vaddubm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

src1 ← EXTZ(VSR[VRA+32].byte[i])

src2 ← EXTZ(VSR[VRB+32].byte[i])

VSR[VRT+32].byte[i] ← CHOP8(src1 + src2)

end

For each integer value i from 0 to 15, do the following.
The integer value in byte element i of VSR[VRA+32]
is added to the integer value in byte element i of
VSR[VRB+32].

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Add Unsigned Halfword Modulo
VX-form

vadduhm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

VSR[VRT+32].hword[i] ← CHOP16(src1 + src2)

end

For each integer value i from 0 to 7, do the following.
The integer value in halfword element i of
VSR[VRA+32] is added to the integer value in
halfword element i of VSR[VRB+32].

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 0
0 6 11 16 21 31

vaddubm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB 64
0 6 11 16 21 31

vadduhm can be used for unsigned or
signed-integers.

Programming Note

Register Data Layout for vaddubm

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vadduhm

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 325

Version 3.1
Vector Add Unsigned Word Modulo VX-form

vadduwm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

VSR[VRT+32].word[i] ← CHOP32(src1 + src2)

end

For each integer value i from 0 to 3, do the following.
The integer value in word element i of
VSR[VRA+32] is added to the integer value in word
element i of VSR[VRB+32].

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Add Unsigned Doubleword Modulo
VX-form

vaddudm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

VSR[VRT+32].dword[i] ← CHOP64(src1 + src2)

end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i of
VSR[VRB+32] is added to the integer value in
doubleword element i of VSR[VRA+32].

The low-order 64 bits of the result are placed into
doubleword el ement i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 128
0 6 11 16 21 31

vadduwm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB 192
0 6 11 16 21 31

vaddudm can be used for signed or unsigned inte-
gers.

Programming Note

Register Data Layout for vadduwm

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vaddudm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I326

Version 3.1
Vector Add Unsigned Byte Saturate VX-form

vaddubs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

VSR[VRT+32].byte[i] ← ui8_CLAMP(src1 + src2)

end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element i of
VSR[VRA+32] is added to the unsigned integer
value in byte element i of VSR[VRB+32].

– If the sum is greater than 28-1 the result
saturates to 28-1 and SAT is set to 1.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Vector Add Unsigned Halfword Saturate
VX-form

vadduhs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

VSR[VRT+32].hword[i] ← ui16_CLAMP(src1 + src2)

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in halfword element i
of VSR[VRA+32] is added to the unsigned integer
value in halfword element i of VSR[VRB+32].

– If the sum is greater than 216-1 the result
saturates to 216-1 and SAT is set to 1.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 512
0 6 11 16 21 31 4 VRT VRA VRB 576

0 6 11 16 21 31

Register Data Layout for vaddubs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vadduhs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 327

Version 3.1
Vector Add Unsigned Word Saturate VX-form

vadduws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

VSR[VRT+32].word[i] ← ui32_CLAMP(src1 + src2)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i of
VSR[VRA+32] is added to the unsigned integer
value in word element i of VSR[VRB+32].

– If the sum is greater than 232-1 the result
saturates to 232-1 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 640
0 6 11 16 21 31

Register Data Layout for vadduws

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I328

Version 3.1
Vector Add Unsigned Quadword Modulo
VX-form

vadduqm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(src1 + src2)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1 and src2 are
placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Add Extended Unsigned Quadword
Modulo VA-form

vaddeuqm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

cin ← EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] ← CHOP128(src1 + src2 + cin)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, src2, and cin
are placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 256
0 6 11 16 21 31

4 VRT VRA VRB VRC 60
0 6 11 16 21 26 31

Register Data Layout for vadduqm

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127

Register Data Layout for vaddeuqm

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 329

Version 3.1
Vector Add & write Carry-out Unsigned
Quadword VX-form

vaddcuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

sum ← EXTZ(src1) + EXTZ(src2)

VSR[VRT+32] ← EXTZ128((src1 + src2) >> 128)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1 and src2 is placed
into VSR[VRT+32].

Special Registers Altered:
None

Vector Add Extended & write Carry-out
Unsigned Quadword VA-form

vaddecuq VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

cin ← EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] ← EXTZ128((src1 + src2 + cin) >> 128)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, src2, and cin are
placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 320
0 6 11 16 21 31

4 VRT VRA VRB VRC 61
0 6 11 16 21 26 31

Register Data Layout for vaddcuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127

Register Data Layout for vaddecuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127

The Vector Add Unsigned Quadword instructions support efficient wide-integer addition. The following code
sequence can be used to implement a 512-bit signed or unsigned add operation.

vadduqm vS3,vA3,vB3 # bits 384:511 of sum
vaddcuq vC3,vA3,vB3 # carry out of bit 384 of sum
vaddeuqm vS2,vA2,vB2,vC3 # bits 256:383 of sum
vaddecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of sum
vaddeuqm vS1,vA1,vB1,vC2 # bits 128:255 of sum
vaddecuq vC1,vA1,vB1,vC2 # carry out of bit 128 of sum
vaddeuqm vS0,vA0,vB0,vC1 # bits 0:127 of sum

Programming Note
Power ISA™ I330

Version 3.1
6.9.1.2 Vector Integer Subtract Instructions

Vector Subtract & Write Carry-Out Unsigned
Word VX-form

vsubcuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(¬VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← EXTZ32((src1+src2+1) >> 32)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i in VSR[VRA+32].
The complement of the borrow out of bit 0 of the
32-bit difference is zero-extended to 32 bits and
placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Signed Byte Saturate VX-form

vsubsbs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTS(VSR[VRA+32].byte[i])

 src2 ← EXTS(VSR[VRB+32].byte[i])

 VSR[VRT+32].byte[i] ← si8_CLAMP(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element i in
VSR[VRB+32] is subtracted from the signed integer
value in byte element i in VSR[VRA+32].

– If the intermediate result is greater than 127
the result saturates to 127 and SAT is set to 1.

– If the intermediate result is less than -128 the
result saturates to -128 and SAT is set to 1.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1408
0 6 11 16 21 31

4 VRT VRA VRB 1792
0 6 11 16 21 31

Register Data Layout for vsubcuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vsubsbs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 331

Version 3.1
Vector Subtract Signed Halfword Saturate
VX-form

vsubshs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].hword[i])

 src2 ← EXTS(VSR[VRB+32].hword[i])

 VSR[VRT+32].hword[i] ← si16_CLAMP(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 7, do the following.
The signed integer value in halfword element i in
VSR[VRB+32] is subtracted from the signed integer
value in halfword element i in VSR[VRA+32].

– If the intermediate result is greater than 215-1
the result saturates to 215-1 and SAT is set to
1.

– If the intermediate result is less than -215 the
result saturates to -215 and SAT is set to 1

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Vector Subtract Signed Word Saturate
VX-form

vsubsws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].word[i])

 src2 ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← si32_CLAMP(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 3, do the following.
The signed integer value in word element i in
VSR[VRB+32] is subtracted from the signed integer
value in word element i in VSR[VRA+32].

– If the intermediate result is greater than 231-1
the result saturates to 231-1 and SAT is set to
1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1856
0 6 11 16 21 31

4 VRT VRA VRB 1920
0 6 11 16 21 31

Register Data Layout for vsubshs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Register Data Layout for vsubsws

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I332

Version 3.1
Vector Subtract Unsigned Byte Modulo
VX-form

vsububm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

 VSR[VRT+32].byte[i] ← CHOP8(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element i in
VSR[VRB+32] is subtracted from the unsigned
integer value in byte element i in VSR[VRA+32].

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Unsigned Halfword Modulo
VX-form

vsubuhm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 VSR[VRT+32].hword[i] ← CHOP16(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in halfword element i
in VSR[VRB+32] is subtracted from the unsigned
integer value in halfword element i in VSR[VRA+32].

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1024
0 6 11 16 21 31

4 VRT VRA VRB 1088
0 6 11 16 21 31

Register Data Layout for vsububm

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsubuhm

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 333

Version 3.1
Vector Subtract Unsigned Word Modulo
VX-form

vsubuwm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i in VSR[VRA+32].

The low-order 16 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Unsigned Doubleword
Modulo VX-form

vsubudm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 1, do the following.
The integer value in doubleword element i in
VSR[VRB+32] is subtracted from the integer value in
doubleword element i in VSR[VRA+32].

The low-order 64 bits of the result are placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1152
0 6 11 16 21 31

4 VRT VRA VRB 1216
0 6 11 16 21 31

vsubudm can be used for signed or unsigned inte-
gers.

Programming Note

Register Data Layout for vsubuwm

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127

Register Data Layout for vsubudm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I334

Version 3.1
Vector Subtract Unsigned Byte Saturate
VX-form

vsububs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

 VSR[VRT+32].byte[i] ← ui8_CLAMP(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in byte element i of VSR[VRA+32].

– If the intermediate result is less than 0 the
result saturates to 0 and SAT is set to 1.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Vector Subtract Unsigned Halfword Saturate
VX-form

vsubuhs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 VSR[VRT+32].hword[i] ← ui16_CLAMP(src1 + ¬src2 + 1)

 VSCR.SAT ← VSCR.SAT | sat_flag

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in halfword element i
of VSR[VRB+32] is subtracted from the unsigned
integer value in halfword element i of
VSR[VRA+32].

– If the intermediate result is less than 0 the
result saturates to 0 and SAT is set to 1.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1536
0 6 11 16 21 31

4 VRT VRA VRB 1600
0 6 11 16 21 31

Register Data Layout for vsububs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsubuhs

src1 .hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

src2 .hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

result .hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 335

Version 3.1
Vector Subtract Unsigned Word Saturate
VX-form

vsubuws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← ui32_CLAMP(src1 + ¬src2 + 1)

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in word element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i of VSR[VRA+32].

– If the intermediate result is less than 0 the
result saturates to 0 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1664
0 6 11 16 21 31

Register Data Layout for vmulesw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 48 127
Power ISA™ I336

Version 3.1
Vector Subtract Unsigned Quadword Modulo
VX-form

vsubuqm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(¬VSR[VRB+32])

VSR[VRT+32] ← CHOP128(src1 + src2 + 1)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, the one’s
complement of src2, and the value 1 are placed into
VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Extended Unsigned
Quadword Modulo VA-form

vsubeuqm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(¬VSR[VRB+32])

cin ← EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] ← CHOP128(src1 + src2 + cin)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

src1 and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of src1, the one’s
complement of src2, and cin are placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1280
0 6 11 16 21 31

4 VRT VRA VRB VRC 62
0 6 11 16 21 26 31

Register Data Layout for vsubuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127

Register Data Layout for vsubeuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 337

Version 3.1
Vector Subtract & write Carry-out Unsigned
Quadword VX-form

vsubcuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(¬VSR[VRB+32])

VSR[VRT+32] ← CHOP128((src1 + src2 + 1) >> 128)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, the one’s
complement of src2, and the value 1 is placed into
VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Extended & write Carry-out
Unsigned Quadword VA-form

vsubecuq VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(¬VSR[VRB+32])

cin ← EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] ← CHOP128((src1 + src2 + cin) >> 128)

Let src1 be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

src1 and src2 can be signed or unsigned integers.

The carry out of the sum of src1, the one’s
complement of src2, and cin are placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1344
0 6 11 16 21 31

4 VRT VRA VRB VRC 63
0 6 11 16 21 26 31

Register Data Layout for vsubcuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127

Register Data Layout for vsubecuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

src3 VSR[VRC+32]

result VSR[VRT+32]

0 127

The Vector Subtract Unsigned Quadword instructions support efficient wide-integer subtraction. The following
code sequence can be used to implement a 512-bit signed or unsigned subtract operation.

vsubuqm vS3,vA3,vB3 # bits 384:511 of difference

vsubcuq vC3,vA3,vB3 # carry out of bit 384 of difference

vsubeuqm vS2,vA2,vB2,vC3 # bits 256:383 of difference

vsubecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of difference

vsubeuqm vS1,vA1,vB1,vC2 # bits 128:255 of difference

vsubecuq vC1,vA1,vB1,vC2 # carry out of bit 128 of difference

vsubeuqm vS0,vA0,vB0,vC1 # bits 0:127 of difference

Programming Note
Power ISA™ I338

Version 3.1
6.9.1.3 Vector Integer Multiply Instructions

Vector Multiply Even Signed Byte VX-form

vmulesb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].byte[2×i])

 src2 ← EXTS(VSR[VRB+32].byte[2×i])

 VSR[VRT+32].hword[i] ← CHOP16(src1 × src2)

end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i×2 of
VSR[VRA+32] is multiplied by the signed integer
value in byte element i×2 of VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Signed Byte VX-form

vmulosb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].byte[2×i+1])

 src2 ← EXTS(VSR[VRB+32].byte[2×i+1])

 VSR[VRT+32].hword[i] ← CHOP16(src1 × src2)

end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i×2+1 of
VSR[VRA+32] is multiplied by the signed integer
value in byte element i×2+1 of VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 776
0 6 11 16 21 31

4 VRT VRA VRB 264
0 6 11 16 21 31

Register Data Layout for vmulesb

src1 .byte[0] unused .byte[2] unused .byte[4] unused .byte[6] unused .byte[8] unused .byte[10] unused .byte[12] unused .byte[14] unused

src2 .byte[0] unused .byte[2] unused .byte[4] unused .byte[6] unused .byte[8] unused .byte[10] unused .byte[12] unused .byte[14] unused

result .hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vmulosb

src1 unused .byte[1] unused .byte[3] unused .byte[5] unused .byte[7] unused .byte[9] unused .byte[11] unused .byte[13] unused .byte[15]

src2 unused .byte[1] unused .byte[3] unused .byte[5] unused .byte[7] unused .byte[9] unused .byte[11] unused .byte[13] unused .byte[15]

result .hword[0] .hword[1] .hword[2] .hword[3] .hword[4] .hword[5] .hword[6] .hword[7]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 339

Version 3.1
Vector Multiply Even Unsigned Byte VX-form

vmuleub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].byte[2×i])

 src2 ← EXTZ(VSR[VRB+32].byte[2×i])

 VSR[VRT+32].hword[i] ← CHOP16(src1 × src2)

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in byte element i×2 of
VSR[VRA+32] is multiplied by the unsigned integer
value in byte element i×2 of VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Byte VX-form

vmuloub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].byte[2×i+1])

 src2 ← EXTZ(VSR[VRB+32].byte[2×i+1])

 VSR[VRT+32].hword[i] ← CHOP16(src1 × src2)

end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in byte element i×2+1
of VSR[VRA+32] is multiplied by the unsigned
integer value in byte element i×2+1 of
VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 520
0 6 11 16 21 31

4 VRT VRA VRB 8
0 6 11 16 21 31

Register Data Layout for vmuleub

src1 .byte[0] unused .byte[2] unused .byte[4] unused .byte[6] unused .byte[8] unused .byte[10] unused .byte[12] unused .byte[14] unused

src2 .byte[0] unused .byte[2] unused .byte[4] unused .byte[6] unused .byte[8] unused .byte[10] unused .byte[12] unused .byte[14] unused

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vmuloub

src1 unused .byte[1] unused .byte[3] unused .byte[5] unused .byte[7] unused .byte[9] unused .byte[11] unused .byte[13] unused .byte[15]

src2 unused .byte[1] unused .byte[3] unused .byte[5] unused .byte[7] unused .byte[9] unused .byte[11] unused .byte[13] unused .byte[15]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I340

Version 3.1
Vector Multiply Even Signed Halfword
VX-form

vmulesh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].hword[2×i])

 src2 ← EXTS(VSR[VRB+32].hword[2×i])

 VSR[VRT+32].word[i] ← CHOP32(src1 × src2)

end

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element i×2
of VSR[VRA+32] is multiplied by the signed integer
value in halfword element i×2 of VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Signed Halfword VX-form

vmulosh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].hword[2×i+1])

 src2 ← EXTS(VSR[VRB+32].hword[2×i+1])

 VSR[VRT+32].word[i] ← CHOP32(src1 × src2)

end

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element
i×2+1 of VSR[VRA+32] is multiplied by the signed
integer value in halfword element i×2+1 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 840
0 6 11 16 21 31

4 VRT VRA VRB 328
0 6 11 16 21 31

Register Data Layout for vmulesh

src1 VSR[VRA+32].hword[0] unused VSR[VRA+32].hword[2] unused VSR[VRA+32].hword[4] unused VSR[VRA+32].hword[6] unused

src2 VSR[VRB+32].hword[0] unused VSR[VRB+32].hword[2] unused VSR[VRB+32].hword[4] unused VSR[VRB+32].hword[6] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127

Register Data Layout for vmulosh

src1 unused VSR[VRA+32].hword[1] unused VSR[VRA+32].hword[3] unused VSR[VRA+32].hword[5] unused VSR[VRA+32].hword[7]

src2 unused VSR[VRB+32].hword[1] unused VSR[VRB+32].hword[3] unused VSR[VRB+32].hword[5] unused VSR[VRB+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 341

Version 3.1
Vector Multiply Even Unsigned Halfword
VX-form

vmuleuh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].hword[2×i])

 src2 ← EXTZ(VSR[VRB+32].hword[2×i])

 VSR[VRT+32].word[i] ← CHOP32(src1 × src2)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in halfword element
i×2 of VSR[VRA+32] is multiplied by the unsigned
integer value in halfword element i×2 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Halfword
VX-form

vmulouh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].hword[2×i+1])

 src2 ← EXTZ(VSR[VRB+32].hword[2×i+1])

 VSR[VRT+32].word[i] ← CHOP32(src1 × src2)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in halfword element
i×2+1 of VSR[VRA+32] is multiplied by the unsigned
integer value in halfword element i×2+1 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 584
0 6 11 16 21 31

4 VRT VRA VRB 72
0 6 11 16 21 31

Register Data Layout for vmuleuh

src1 VSR[VRA+32].hword[0] unused VSR[VRA+32].hword[2] unused VSR[VRA+32].hword[4] unused VSR[VRA+32].hword[6] unused

src2 VSR[VRB+32].hword[0] unused VSR[VRB+32].hword[2] unused VSR[VRB+32].hword[4] unused VSR[VRB+32].hword[6] unused

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127

Register Data Layout for vmulouh

src1 unused VSR[VRA+32].hword[1] unused VSR[VRA+32].hword[3] unused VSR[VRA+32].hword[5] unused VSR[VRA+32].hword[7]

src2 unused VSR[VRB+32].hword[1] unused VSR[VRB+32].hword[3] unused VSR[VRB+32].hword[5] unused VSR[VRB+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Power ISA™ I342

Version 3.1
Vector Multiply Even Signed Word VX-form

vmulesw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTS(VSR[VRA+32].word[2×i])

 src2 ← EXTS(VSR[VRB+32].word[2×i])

 VSR[VRT+32].dword[i] ← CHOP64(src1 × src2)

end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2×i of
VSR[VRA+32] is multiplied by the signed integer in
word element 2×i of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Signed Word VX-form

vmulosw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTS(VSR[VRA+32].word[2×i+1])

 src2 ← EXTS(VSR[VRB+32].word[2×i+1])

 VSR[VRT+32].dword[i] ← CHOP64(src1 × src2)

end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2×i+1 of
VSR[VRA+32] is multiplied by the signed integer in
word element 2×i+1 of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 904
0 6 11 16 21 31

4 VRT VRA VRB 392
0 6 11 16 21 31

Register Data Layout for vmulesw

src1 VSR[VRA+32].word[0] unused VSR[VRA+32].word[2] unused

src2 VSR[VRB+32].word[0] unused VSR[VRB+32].word[2] unused

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127

Register Data Layout for vmulosw

src1 unused VSR[VRA+32].word[1] unused VSR[VRA+32].word[3]

src2 unused VSR[VRB+32].word[1] unused VSR[VRB+32].word[3]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127
Chapter 6. Vector Facility 343

Version 3.1
Vector Multiply Even Unsigned Word VX-form

vmuleuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].word[2×i])

 src2 ← EXTZ(VSR[VRB+32].word[2×i])

 VSR[VRT+32].dword[i] ← CHOP64(src1 × src2)

end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2×i of
VSR[VRA+32] is multiplied by the unsigned integer
in word element 2×i of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Word VX-form

vmulouw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].word[2×i+1])

 src2 ← EXTZ(VSR[VRB+32].word[2×i+1])

 VSR[VRT+32].dword[i] ← CHOP64(src1 × src2)

end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2×i+1 of
VSR[VRA+32] is multiplied by the unsigned integer
in word element 2×i+1 of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 648
0 6 11 16 21 31

4 VRT VRA VRB 136
0 6 11 16 21 31

Register Data Layout for vmuleuw

src1 VSR[VRA+32].word[0] unused VSR[VRA+32].word[2] unused

src2 VSR[VRB+32].word[0] unused VSR[VRB+32].word[2] unused

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127

Register Data Layout for vmulouw

src1 unused VSR[VRA+32].word[1] unused VSR[VRA+32].word[3]

src2 unused VSR[VRB+32].word[1] unused VSR[VRB+32].word[3]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 48 127
Power ISA™ I344

Version 3.1
Vector Multiply Even Unsigned Doubleword
VX-form

vmuleud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32].dword[0])

src2 ← EXTZ(VSR[VRB+32].dword[0])

VSR[VRT+32] ← CHOP128(src1 × src2)

Let src1 be the unsigned integer value in doubleword
element 0 of VSR[VRA+32].

Let src2 be the unsigned integer value in doubleword
element 0 of VSR[VRB+32].

The 128-bit product of src1 multiplied by src2 is placed
into VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Unsigned Doubleword
VX-form

vmuloud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32].dword[1])

src2 ← EXTZ(VSR[VRB+32].dword[1])

VSR[VRT+32] ← CHOP128(src1 × src2)

Let src1 be the unsigned integer value in doubleword
element 1 of VSR[VRA+32].

Let src2 be the unsigned integer value in doubleword
element 1 of VSR[VRB+32].

The 128-bit product of src1 multiplied by src2 is placed
into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 712
0 6 11 16 21 31

4 VRT VRA VRB 200
0 6 11 16 21 31

Register Data Layout for vmuleud

src1 VSR[VRA+32].dword[0] unused

src2 VSR[VRB+32].dword[0] unused

result VSR[VRT+32]

0 64 127

Register Data Layout for vmuloud

src1 unused VSR[VRA+32].dword[1]

src2 unused VSR[VRB+32].dword[1]

result VSR[VRT+32]

0 64 127
Chapter 6. Vector Facility 345

Version 3.1
Vector Multiply Even Signed Doubleword
VX-form

vmulesd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTS(VSR[VRA+32].dword[0])

src2 ← EXTS(VSR[VRB+32].dword[0])

VSR[VRT+32] ← CHOP128(src1 × src2)

Let src1 be the signed integer value in doubleword
element 0 of VSR[VRA+32].

Let src2 be the signed integer value in doubleword
element 0 of VSR[VRB+32].

The 128-bit product of src1 multiplied by src2 is placed
into VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply Odd Signed Doubleword
VX-form

vmulosd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTS(VSR[VRA+32].dword[1])

src2 ← EXTS(VSR[VRB+32].dword[1])

VSR[VRT+32] ← CHOP128(src1 × src2)

Let src1 be the signed integer value in doubleword
element 1 of VSR[VRA+32].

Let src2 be the signed integer value in doubleword
element 1 of VSR[VRB+32].

The 128-bit product of src1 multiplied by src2 is placed
into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 968
0 6 11 16 21 31

4 VRT VRA VRB 456
0 6 11 16 21 31

Register Data Layout for vmulesd

src1 VSR[VRA+32].dword[0] unused

src2 VSR[VRB+32].dword[0] unused

result VSR[VRT+32]

0 64 127

Register Data Layout for vmulosd

src1 unused VSR[VRA+32].dword[1]

src2 unused VSR[VRB+32].dword[1]

result VSR[VRT+32]

0 64 127
Power ISA™ I346

Version 3.1
Vector Multiply Unsigned Word Modulo
VX-form

vmuluwm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(src1 × src2)

end

For each integer value i from 0 to 3, do the following.

The integer in word element i of VSR[VRA+32] is
multiplied by the integer in word element i of
VSR[VRB+32].

The low-order 32 bits of the product are placed
into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply High Signed Word VX-form

vmulhsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].word[i])

 src2 ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32((src1 × src2) >> 32)

end

For each integer value i from 0 to 3, do the following.

The signed integer value in word element i of
VSR[VRA+32] is multiplied by the signed integer
value in word element i of VSR[VRB+32].

The high-order 32 bits of the 64-bit product are
placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 137
0 6 11 16 21 31

vmuluwm can be used for unsigned or signed
integers.

Programming Note

4 VRT VRA VRB 905
0 6 11 16 21 31

Register Data Layout for vmuluwm

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vmulhsw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 347

Version 3.1
Vector Multiply High Unsigned Word VX-form

vmulhuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32((src1 × src2) >> 32)

end

For each integer value i from 0 to 3, do the following.

The unsigned integer value in word element i of
VSR[VRA+32] is multiplied by the unsigned integer
value in word element i of VSR[VRB+32].

The high-order 32 bits of the 64-bit product are
placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 649
0 6 11 16 21 31

Register Data Layout for vmulhuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I348

Version 3.1
Vector Multiply High Signed Doubleword
VX-form

vmulhsd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTS(VSR[VRA+32].dword[i])

 src2 ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64((src1 × src2) >> 64)

end

For each integer value i from 0 to 1, do the following.

The signed integer value in doubleword element i
of VSR[VRA+32] is multiplied by the signed integer
value in doubleword element i of VSR[VRB+32].

The high-order 64 bits of the 128-bit product are
placed into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply High Unsigned Doubleword
VX-form

vmulhud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64((src1 × src2) >> 64)

end

For each integer value i from 0 to 1, do the following.

The unsigned integer value in doubleword
element i of VSR[VRA+32] is multiplied by the
unsigned integer value in doubleword element i of
VSR[VRB+32].

The high-order 64 bits of the 128-bit product are
placed into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 969
0 6 11 16 21 31

4 VRT VRA VRB 713
0 6 11 16 21 31

Register Data Layout for vmulhsd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127

Register Data Layout for vmulhud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 349

Version 3.1
Vector Multiply Low Doubleword VX-form

vmulld VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← EXTS(VSR[VRA+32].dword[i])

 src2 ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(src1 × src2)

end

For each integer value i from 0 to 1, do the following.

The integer value in doubleword element i of
VSR[VRA+32] is mutiplied by the integer value in
doubleword element i of VSR[VRB+32].

The low-order 64 bits of the product are placed
into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 457
0 6 11 16 21 31

Register Data Layout for vmulld

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I350

Version 3.1
6.9.1.4 Vector Integer Multiply-Add/Sum Instructions

Vector Multiply-High-Add Signed Halfword
Saturate VA-form

vmhaddshs VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].hword[i])

 src2 ← EXTS(VSR[VRB+32].hword[i])

 src3 ← EXTS(VSR[VRC+32].hword[i])

 result ← ((src1 × src2)) >> 15) + src3

 VSR[VRT+32].hword[i] ← si16_CLAMP(result)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 7, do the following.

The signed integer value in halfword element i of
VSR[VRA+32] is multiplied by the signed integer
value in halfword element i of VSR[VRB+32],
producing a 32-bit signed integer product.

Bits 0:16 of the product are added to the signed
integer value in halfword element i of
VSR[VRC+32].

– If the intermediate result is greater than 215-1
the result saturates to 215-1 and SAT is set to
1.

– If the intermediate result is less than -215 the
result saturates to -215 and SAT is set to 1.

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
SAT

Vector Multiply-High-Round-Add Signed
Halfword Saturate VA-form

vmhraddshs VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].hword[i])

 src2 ← EXTS(VSR[VRB+32].hword[i])

 src3 ← EXTS(VSR[VRC+32].hword[i])

 result ← (((src1 × src2) + 0x0000_4000) >> 15) + src3

 VSR[VRT+32].hword[i] ← si16_CLAMP(result)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 7, do the following.

The signed integer value in halfword element i of
VSR[VRA+32] is multiplied by the signed integer
value in halfword element i of VSR[VRB+32],
producing a 32-bit signed integer product.

The value 0x0000_4000 is added to the product.

Bits 0:16 of the 32-bit sum are added to the
signed integer value in halfword element i of
VSR[VRC+32].

– If the intermediate result is greater than 215-1
the result saturates to 215-1 and SAT is set to
1.

– If the intermediate result is less than -215 the
result saturates to -215 and SAT is set to 1.

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 32
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 33
0 6 11 16 21 26 31

Register Data Layout for vmhaddshs & vmhraddshs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 351

Version 3.1
Vector Multiply-Low-Add Unsigned Halfword
Modulo VA-form

vmladduhm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 src3 ← EXTZ(VSR[VRC+32].hword[i])

VSR[VRT+32].hword[i] ← CHOP16((src1 × src2) + src3)

end

For each integer value i from 0 to 7, do the following.

The unsigned integer value in halfword element i
of VSR[VRA+32] is multiplied by the unsigned
integer value in halfword element i in VSR[VRB+32].

The product is added to the unsigned integer
value in halfword element i of VSR[VRC+32].

The low-order 16 bits of the sum of the product
and the unsigned integer value in word element i
of VSR[VRC+32] are placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply-Sum Unsigned Byte Modulo
VA-form

vmsumubm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTZ(VSR[VRC+32].word[i])

 do j = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i].byte[j])

 src2 ← EXTZ(VSR[VRB+32].word[i].byte[j])

 temp ← temp + (src1 × src2)

 end

 VSR[VRT+32].word[i] ← CHOP32(temp)

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 3, do the
following.

The unsigned integer value in byte element j
of word element i of VSR[VRA+32] is multiplied
by the unsigned integer value in byte element
j of word element i of VSR[VRB+32].

The sum of the four products is added to the
unsigned integer value in word element i of
VSR[VRC+32].

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 34
0 6 11 16 21 26 31

vmladduhm can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB VRC 36
0 6 11 16 21 26 31

Register Data Layout for vmladduhm

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

src3 VSR[VRC+32].hword[0] VSR[VRC+32].hword[1] VSR[VRC+32].hword[2] VSR[VRC+32].hword[3] VSR[VRC+32].hword[4] VSR[VRC+32].hword[5] VSR[VRC+32].hword[6] VSR[VRC+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127

Register Data Layout for vmsumubm

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I352

Version 3.1
Vector Multiply-Sum Mixed Byte Modulo
VA-form

vmsummbm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTS(VSR[VRC+32].word[i])

 do j = 0 to 3

 src1 ← EXTS(VSR[VRA+32].word[i].byte[j])

 src2 ← EXTZ(VSR[VRB+32].word[i].byte[j])

 temp ← temp + (src1 × src2)

 end

 VSR[VRT+32].word[i] ← CHOP32(temp)

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 3, do the
following.

The signed integer value in byte element j of
word element i of VSR[VRA+32] is multiplied by
the unsigned integer value in byte element j
of word element i of VSR[VRB+32].

The sum of the four products is added to the
signed integer value in word element i of
VSR[VRC+32].

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply-Sum Signed Halfword Modulo
VA-form

vmsumshm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTS(VSR[VRC+32].word[i])

 do j = 0 to 1

 src1 ← EXTS(VSR[VRA+32].word[i].hword[j])

 src2 ← EXTS(VSR[VRB+32].word[i].hword[j])

 temp ← temp + (src1 × src2)

 end

 VSR[VRT+32].word[i] ← CHOP32(temp)

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 1, do the
following.

The signed integer value in halfword element
j of word element i of VSR[VRA+32] is
multiplied by the signed integer value in
halfword element j of word element i of
VSR[VRB+32].

The sum of the two products is added to the
signed integer value in word element i of
VSR[VRC+32].

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 37
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 40
0 6 11 16 21 26 31

Register Data Layout for vmsummbm

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vmsumshm

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 353

Version 3.1
Vector Multiply-Sum Signed Halfword
Saturate VA-form

vmsumshs VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTS(VSR[VRC+32].word[i])

 do j = 0 to 1

 src1 ← EXTS(VSR[VRA+32].word[i].hword[j])

 src2 ← EXTS(VSR[VRB+32].word[i].hword[j])

 temp ← temp + (src1 × src2)

 end

 VSR[VRT+32].word[i] ← si32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 1, do the
following.

The signed integer value in halfword element
j of word element i of VSR[VRA+32] is
multiplied by the signed integer value in
halfword element j of word element i of
VSR[VRB+32].

The sum of the two products is added to the
signed integer value in word element i of
VSR[VRC+32].

– If the intermediate result is greater than 231-1
the result saturates to 231-1 and SAT is set to
1,

– If the intermediate result is less than -231 it
saturates to -231 and SAT is set to 1,

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
SAT

Vector Multiply-Sum Unsigned Halfword
Modulo VA-form

vmsumuhm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTZ(VSR[VRC+32].word[i])

 do j = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].word[i].hword[j])

 src2 ← EXTZ(VSR[VRB+32].word[i].hword[j])

 temp ← temp + (src1 × src2)

 end

 VSR[VRT+32].word[i] ← CHOP32(temp)

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 1, do the
following.

The unsigned integer value in halfword
element j of word element i of VSR[VRA+32] is
multiplied by the unsigned integer value in
halfword element j of word element i of
VSR[VRB+32].

The sum of the two products is added to the
signed integer value in word element i of
VSR[VRC+32].

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 41
0 6 11 16 21 26 31

4 VRT VRA VRB VRC 38
0 6 11 16 21 26 31

Register Data Layout for vmsumshs & vmsumuhm

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Power ISA™ I354

Version 3.1
Vector Multiply-Sum Unsigned Halfword
Saturate VA-form

vmsumuhs VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTZ(VSR[VRC+32].word[i])

 do j = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].word[i].hword[j])

 src2 ← EXTZ(VSR[VRB+32].word[i].hword[j])

 temp ← temp + src1 × src2

 end

 VSR[VRT+32].word[i] ← ui32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 3, do the following.

For each integer value j from 0 to 1, do the
following.

The unsigned integer value in halfword
element j of word element i of VSR[VRA+32] is
multiplied by the unsigned integer value in
halfword element j of word element i of
VSR[VRB+32].

The sum of the two products is added to the
signed integer value in word element i of
VSR[VRC+32].

– If the intermediate result is greater than 232-1
the result saturates to 232-1 and SAT is set to
1,

– If the intermediate result is less than -232 it
saturates to -232 and SAT is set to 1,

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB VRC 39
0 6 11 16 21 26 31

Register Data Layout for vmsumuhs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 355

Version 3.1
Vector Multiply-Sum Unsigned Doubleword
Modulo VA-form

vmsumudm VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

temp ← EXTZ(VSR[VRC+32])

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

 temp ← temp + (src1 × src2)

end

VSR[VRT+32] ← CHOP128(temp)

Let prod0 be the product of the unsigned integer values
in doubleword element 0 of VSR[VRA+32] and
doubleword element 0 of VSR[VRB+32].

Let prod1 be the product of the unsigned integer values
in doubleword element 1 of VSR[VRA+32] and
doubleword element 1 of VSR[VRB+32].

The low-order 128 bits of the sum of prod0, prod1, and
the unsigned integer value in VSR[VRC+32] are placed
into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 35
0 6 11 16 21 26 31

A horizontal add of the doubleword elements in
VSR[VRA+32] can be performed using vmsumudm
when VSR[VRB+32] contains the doubleword integer
values {1,1} and VSR[VRC+32] contains the
quadword integer value 0.

A horizontal subtract of the doubleword elements
in VSR[VRA+32] can be performed using
vmsumudm when VSR[VRB+32] contains the
doubleword integer values {1,-1} and VSR[VRC+32]
contains the quadword integer value 0.

A multiply even unsigned doubleword operation
can be performed using vmsumudm when the
contents of doubleword element 1 of VSR[VRA+32]
or VSR[VRB+32] are 0 and the contents of
VSR[VRC+32] to 0.

A multiply odd unsigned doubleword operation can
be performed using vmsumudm when the
contents of doubleword element 0 of VSR[VRA+32]
or VSR[VRB+32] are 0 and the contents of
VSR[VRC+32] to 0.

Programming Note

Register Data Layout for vmsumudm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

src3 VSR[VRC+32].dword[0] VSR[VRC+32].dword[1]

result VSR[VRT+32]

0 64 127
Power ISA™ I356

Version 3.1
Vector Multiply-Sum & write Carry-out
Unsigned Doubleword VA-form

vmsumcud VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

temp ← EXTZ(VSR[VRC+32])

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

 temp ← temp + (src1 × src2)

end

VSR[VRT+32] ← CHOP128(temp >> 128)

Let prod0 be the quadword product of the unsigned
integer values in doubleword element 0 of VSR[VRA+32]
and doubleword element 0 of VSR[VRB+32].

Let prod1 be the quadword product of the unsigned
integer values in doubleword element 1 of VSR[VRA+32]
and doubleword element 1 of VSR[VRB+32].

The carry out of the low-order 128 bits of the sum of
prod0, prod1, and the unsigned integer value in
VSR[VRC+32] is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 23
0 6 11 16 21 26 31

Register Data Layout for vmsumcud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

src3 VSR[VRC+32].dword[0] VSR[VRC+32].dword[1]

result VSR[VRT+32]

0 64 127
Chapter 6. Vector Facility 357

Version 3.1
6.9.1.5 Vector Integer Divide Instructions

Vector Divide Signed Word VX-form

vdivsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTS(VSR[VRA+32].word[i])

 divisor ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend ÷ divisor)

end

For each integer value i from 0 to 3, do the following.

The signed integer in word element i of
VSR[VRA+32] is divided by the signed integer in
word element i of VSR[VRB+32].

The quotient is the unique signed integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor| if the dividend is
nonnegative, and -|divisor| < r <= 0 if the
dividend is negative.

If an attempt is made to perform any of the
divisions

0x8000_0000 ÷ -1
<anything> ÷ 0

then the quotient is undefined.

The quotient is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

Vector Divide Unsigned Word VX-form

vdivuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTZ(VSR[VRA+32].word[i])

 divisor ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend ÷ divisor)

end

For each integer value i from 0 to 3, do the following.

The unsigned integer in word element i of
VSR[VRA+32] is divided by the unsigned integer in
word element i of VSR[VRB+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor|.

If an attempt is made to perform the division

<anything> ÷ 0

then the quotient is undefined.

The quotient is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 395
0 6 11 16 21 31

4 VRT VRA VRB 139
0 6 11 16 21 31

Register Data Layout for vdivsw & vdivuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Power ISA™ I358

Version 3.1
Vector Divide Extended Signed Word VX-form

vdivesw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTS(VSR[VRA+32].word[i]) << 32

 divisor ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend ÷ divisor)

end

For each integer value i from 0 to 3, do the following.

Let dividend be the signed integer value in word
element i of VSR[VRA+32], shifted left by 32 bits.

Let divisor be the signed integer value in word
element i of VSR[VRB+32].

dividend is divided by divisor.

The quotient is the unique signed integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor| if the dividend is
nonnegative, and -|divisor| < r <= 0 if the
dividend is negative.

If the quotient cannot be represented in 32 bits, or
if an attempt is made to perform the division,

<anything> ÷ 0

the quotient is undefined.

The quotient is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Divide Extended Unsigned Word
VX-form

vdiveuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTZ(VSR[VRA+32].word[i]) << 32

 divisor ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend ÷ divisor)

end

For each integer value i from 0 to 3, do the following.

Let dividend be the unsigned integer value in
word element i of VSR[VRA+32], shifted left by 32
bits.

Let divisor be the unsigned integer value in word
element i of VSR[VRB+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor|.

If the quotient cannot be represented in 32 bits, or
if an attempt is made to perform the division,

<anything> ÷ 0

the quotient is undefined.

The quotient is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 907
0 6 11 16 21 31 4 VRT VRA VRB 651

0 6 11 16 21 31

Register Data Layout for vdivesw & vdiveuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 359

Version 3.1
Vector Divide Signed Doubleword VX-form

vdivsd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTS(VSR[VRA+32].dword[i])

 divisor ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend ÷ divisor)

end

For each integer value i from 0 to 1, do the following.

The signed integer in doubleword element i of
VSR[VRA+32] is divided by the signed integer in
doubleword element i of VSR[VRB+32].

The quotient is the unique signed integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder <= 0 if the
dividend is negative.

If an attempt is made to perform any of the
divisions

0x8000_0000_0000_0000 ÷ -1
<anything> ÷ 0

then the quotient is undefined.

The quotient is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

Vector Divide Unsigned Doubleword VX-form

vdivud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTZ(VSR[VRA+32].dword[i])

 divisor ← EXTZ(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend ÷ divisor)

end

For each integer value i from 0 to 1, do the following.

The unsigned integer in doubleword element i of
VSR[VRA+32] is divided by the unsigned integer in
doubleword element i of VSR[VRB+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= remainder < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the quotient is undefined.

The quotient is placed into doubleword element i
of VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 459
0 6 11 16 21 31

4 VRT VRA VRB 203
0 6 11 16 21 31

Register Data Layout for vdivsd & vdivud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I360

Version 3.1
Vector Divide Extended Signed Doubleword
VX-form

vdivesd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTS(VSR[VRA+32].dword[i]) << 64

 divisor ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend ÷ divisor)

end

For each integer value i from 0 to 1, do the following.

Let dividend be the signed integer value in
doubleword element i of VSR[VRA+32], shifted left
by 64 bits.

Let divisor be the signed integer value in
doubleword element i of VSR[VRB+32].

dividend is divided by divisor.

The quotient is the unique signed integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor| if the dividend is
nonnegative, and -|divisor| < r <= 0 if the
dividend is negative.

If the quotient cannot be represented in 64 bits, or
if an attempt is made to perform the division,
<anything> ÷ 0, the quotient is undefined.

The quotient is placed into doubleword element i
of VSR[VRT+32].

Special Registers Altered:
None

Vector Divide Extended Unsigned Doubleword
VX-form

vdiveud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTZ(VSR[VRA+32].dword[i]) << 64

 divisor ← EXTZ(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend ÷ divisor)

end

For each integer value i from 0 to 1, do the following.

Let dividend be the unsigned integer value in
doubleword element i of VSR[VRA+32], shifted left
by 64 bits.

Let divisor be the unsigned integer value in
doubleword element i of VSR[VRB+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + remainder

where 0 <= r < |divisor|.

If the quotient cannot be represented in 64 bits, or
if an attempt is made to perform the division,

<anything> ÷ 0

the quotient is undefined.

The quotient is placed into doubleword element i
of VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 971
0 6 11 16 21 31

4 VRT VRA VRB 715
0 6 11 16 21 31

Register Data Layout for vdivesd & vdiveud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 361

Version 3.1
Vector Divide Signed Quadword VX-form

vdivsq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTS(VSR[VRA+32])

divisor ← EXTS(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend ÷ divisor)

Let src1 be the signed integer value in VSR[VRA+32].
Let src2 be the signed integer value in VSR[VRB+32].

The quotient of src1 divided by src2 is placed into
VSR[VRT+32].

The quotient is the unique signed integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is
nonnegative, and -|divisor| < r ≤ 0 if the dividend is
negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 ÷ -1
<anything> ÷ 0

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

Vector Divide Unsigned Quadword VX-form

vdivuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTZ(VSR[VRA+32])

divisor ← EXTZ(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend ÷ divisor)

Let src1 be the unsigned integer value in VSR[VRA+32].
Let src2 be the unsigned integer value in VSR[VRB+32].

The quotient of src1 divided by src2 is placed into
VSR[VRT+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

4 VRT VRA VRB 267
0 6 11 16 21 31

4 VRT VRA VRB 11
0 6 11 16 21 31

Register Data Layout for vdivsq & vdivuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I362

Version 3.1
Vector Divide Extended Signed Quadword
VX-form

vdivesq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTS(VSR[VRA+32]) << 128

divisor ← EXTS(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend ÷ divisor)

Let src1 be the signed integer value in VSR[VRA+32]
concatenated with 128 0s.

Let src2 be the signed integer value in VSR[VRB+32].

The quotient of src1 divided by src2 is placed into
VSR[VRT+32].

The quotient is the unique signed integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if dividend is nonnegative,
and -|divisor| < r ≤ 0 if dividend is negative.

If the quotient cannot be represented in 128 bits, or if
an attempt is made to perform the division

<anything> ÷ 0

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

Vector Divide Extended Unsigned Quadword
VX-form

vdiveuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTZ(VSR[VRA+32]) << 128

divisor ← EXTZ(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend ÷ divisor)

Let src1 be the unsigned integer value in VSR[VRA+32]
concatenated with 128 0s.

Let src2 be the unsigned integer value in VSR[VRB+32].

The quotient of src1 divided by src2 is placed into
VSR[VRT+32].

The quotient is the unique unsigned integer that
satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If the quotient cannot be represented in 128 bits, or if
an attempt is made to perform the division

<anything> ÷ 0

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

4 VRT VRA VRB 779
0 6 11 16 21 31

4 VRT VRA VRB 523
0 6 11 16 21 31

Register Data Layout for vdivesq & vdiveuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 363

Version 3.1
6.9.1.6 Vector Integer Modulo Instructions

Vector Modulo Signed Word VX-form

vmodsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTS(VSR[VRA+32].word[i])

 divisor ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend % divisor)

end

For each integer value i from 0 to 3, do the following.

The signed integer in word element i of
VSR[VRA+32] is divided by the signed integer in
word element i of VSR[VRB+32].

The remainder is the unique signed integer that
satisfies

quotient = dividend ÷ divisor
remainder = dividend - (quotient × divisor)

where 0 <= remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder <= 0 if the
dividend is negative.

If an attempt is made to perform any of the
modulo operations

0x8000_0000 % -1
<anything> % 0

then the remainder is undefined.

The remainder is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

Vector Modulo Unsigned Word VX-form

vmoduw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 dividend ← EXTZ(VSR[VRA+32].word[i])

 divisor ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(dividend % divisor)

end

For each integer value i from 0 to 3, do the following.

The unsigned integer in word element i of
VSR[VRA+32] is divided by the unsigned integer in
word element i of VSR[VRB+32].

The remainder is the unique unsigned integer that
satisfies

quotient = dividend ÷ divisor
remainder = dividend - (quotient × divisor)

where 0 <= remainder < divisor.

If an attempt is made to perform the modulo
operation

<anything> % 0

then the remainder is undefined.

The remainder is placed into word element i of
VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 1931
0 6 11 16 21 31

4 VRT VRA VRB 1675
0 6 11 16 21 31

Register Data Layout for vmodsw & vmoduw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I364

Version 3.1
Vector Modulo Signed Doubleword VX-form

vmodsd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTS(VSR[VRA+32].dword[i])

 divisor ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend % divisor)

end

For each integer value i from 0 to 1, do the following.

The signed integer in doubleword element i of
VSR[VRA+32] is divided by the signed integer in
doubleword element i of VSR[VRB+32].

The remainder is the unique signed integer that
satisfies

quotient = dividend ÷ divisor
remainder = dividend - (quotient × divisor)

where 0 <= remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder <= 0 if the
dividend is negative.

If an attempt is made to perform any of the
modulo operations

0x8000_0000 % -1
<anything> % 0

the remainder is undefined.

The remainder is placed into doubleword element
i of VSR[VRT+32]

Special Registers Altered:
None

Vector Modulo Unsigned Doubleword VX-form

vmodud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 dividend ← EXTZ(VSR[VRA+32].dword[i])

 divisor ← EXTZ(VSR[VRB+32].dword[i])

 VSR[VRT+32].dword[i] ← CHOP64(dividend % divisor)

end

For each integer value i from 0 to 1, do the following.

The unsigned integer in doubleword element i of
VSR[VRA+32] is divided by the unsigned integer in
doubleword element i of VSR[VRB+32].

The remainder is the unique unsigned integer that
satisfies

quotient = dividend ÷ divisor
remainder = dividend - (quotient × divisor)

where 0 <= remainder < divisor.

If an attempt is made to perform the modulo
operation

<anything> % 0

the remainder is undefined.

The remainder is placed into doubleword element
i of VSR[VRT+32]

Special Registers Altered:
None

4 VRT VRA VRB 1995
0 6 11 16 21 31

4 VRT VRA VRB 1739
0 6 11 16 21 31

Register Data Layout for vdivesd & vdiveud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 365

Version 3.1
Vector Modulo Signed Quadword VX-form

vmodsq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTS(VSR[VRA+32])

divisor ← EXTS(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend % divisor)

Let src1 be the signed integer value in VSR[VRA+32].
Let src2 be the signed integer value in VSR[VRB+32].

The remainder of src1 divided by src2 is placed into
VSR[VRT+32].

The remainder is the unique signed integer that
satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < |divisor| if the dividend is
nonnegative, and -|divisor| < remainder ≤ 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

<anything> % 0
0x8000_0000_0000_0000 % -1

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

Vector Modulo Unsigned Quadword VX-form

vmoduq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

dividend ← EXTZ(VSR[VRA+32])

divisor ← EXTZ(VSR[VRB+32])

VSR[VRT+32] ← CHOP128(dividend % divisor)

Let src1 be the signed integer value in VSR[VRA+32].
Let src2 be the signed integer value in VSR[VRB+32].

The remainder of src1 divided by src2 is placed into
VSR[VRT+32].

The remainder is the unique signed integer that
satisfies

remainder = dividend - (quotient × divisor)

where 0 ≤ remainder < divisor.

If an attempt is made to perform any of the divisions

<anything> % 0

then the contents of VSR[VRT+32] are undefined.

Special Registers Altered:
None

4 VRT VRA VRB 1803
0 6 11 16 21 31

4 VRT VRA VRB 1547
0 6 11 16 21 31

Register Data Layout for vmodsq & vmoduq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I366

Version 3.1
6.9.1.7 Vector Integer Sum-Across Instructions

Vector Sum across Signed Word Saturate
VX-form

vsumsws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

temp ← EXTS(VSR[VRB+32].word[3])

do i = 0 to 3

 temp ← temp + EXTS(VSR[VRA+32].word[i])

end

VSR[VRT+32].word[0] ← 0x0000_0000

VSR[VRT+32].word[1] ← 0x0000_0000

VSR[VRT+32].word[2] ← 0x0000_0000

VSR[VRT+32].word[3] ← si32_CLAMP(temp)

VSCR.SAT ← sat_flag

The sum of the signed integer values in the four word
elements of VSR[VRA+32] is added to the signed integer
value in the word element 3 of VSR[VRB+32].

– If the intermediate result is greater than 231-1 the
result saturates to 231-1 and SAT is set to 1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1.

The low-order 32 bits of the result are placed into word
element 3 of VSR[VRT+32].

Word elements 0 to 2 of VSR[VRT+32] are set to 0.

Special Registers Altered:
SAT

4 VRT VRA VRB 1928
0 6 11 16 21 31

Register Data Layout for vsumsws

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result 0x0000_0000 0x0000_0000 0x0000_0000 VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 367

Version 3.1
Vector Sum across Half Signed Word Saturate
VX-form

vsum2sws VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 temp ← EXTS(VSR[VRB+32].dword[i].word[1])

 do j = 0 to 1

 temp ← temp + EXTS(VSR[VRA+32].dword[i].word[j])

 end

 VSR[VRT+32].dword[i].word[0] ← 0x0000_0000

 VSR[VRT+32].dword[i].word[1] ← si32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

Word elements 0 and 2 of VSR[VRT+32] are set to 0.

The sum of the signed integer values in word elements
0 and 1 in VSR[VRA+32] is added to the signed integer
value in word element 1 of VSR[VRB+32].

– If the intermediate result is greater than 231-1 the
result saturates to 231-1 and SAT is set to 1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1.

The low-order 32 bits of the result are placed into word
element 1 of VSR[VRT+32].

The sum of the signed integer values in word elements
2 and 3 in VSR[VRA+32] is added to the signed integer
value in word element 3 of VSR[VRB+32].

– If the intermediate result is greater than 231-1 the
result saturates to 231-1 and SAT is set to 1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1.

The low-order 32 bits of the result are placed into word
element 3 of VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1672
0 6 11 16 21 31

Register Data Layout for vsum2sws

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result 0x0000_0000 VSR[VRT+32].word[1] 0x0000_0000 VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I368

Version 3.1
Vector Sum across Quarter Signed Byte
Saturate VX-form

vsum4sbs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTS(VSR[VRB+32].word[i])

 do j = 0 to 3

 temp ← temp + EXTS(VSR[VRA+32].word[i].byte[j])

 end

 VSR[VRT+32].word[i] ← si32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 3, do the following.
The sum of the signed integer values in the four
byte elements contained in word element i of
VSR[VRA+32] is added to the signed integer value
in word element i of VSR[VRB+32].

– If the intermediate result is greater than 231-1
the result saturates to 231-1 and SAT is set to
1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Vector Sum across Quarter Signed Halfword
Saturate VX-form

vsum4shs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTS(VSR[VRB+32].word[i])

 do j = 0 to 1

 temp ← temp + EXTS(VSR[VRA+32].word[i].hword[j])

 end

 VSR[VRT+32].word[i] ← si32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 3, do the following.
The sum of the signed integer values in the two
halfword elements contained in word element i of
VSR[VRA+32] is added to the signed integer value
in word element i of VSR[VRB+32].

– If the intermediate result is greater than 231-1
the result saturates to 231-1 and SAT is set to
1.

– If the intermediate result is less than -231 the
result saturates to -231 and SAT is set to 1.

The result is placed into the corresponding word
element of VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1800
0 6 11 16 21 31

4 VRT VRA VRB 1608
0 6 11 16 21 31

Register Data Layout for vsum4sbs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsum4shs

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 369

Version 3.1
Vector Sum across Quarter Unsigned Byte
Saturate VX-form

vsum4ubs VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 temp ← EXTZ(VSR[VRB+32].word[i])

 do j = 0 to 3

 temp ← temp + EXTZ(VSR[VRA+32].word[i].byte[j])

 end

 VSR[VRT+32].word[i] ← ui32_CLAMP(temp)

 VSCR.SAT ← sat_flag

end

For each integer value i from 0 to 3, do the following.
The sum of the unsigned integer values in the four
byte elements contained in word element i of
VSR[VRA+32] is added to the unsigned integer
value in word element i of VSR[VRB+32].

– If the intermediate result is greater than 232-1
it saturates to 232-1 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

4 VRT VRA VRB 1544
0 6 11 16 21 31

Register Data Layout for vsum4ubs

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I370

Version 3.1
6.9.1.8 Vector Integer Negate Instructions

Vector Negate Word VX-form

vnegw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← CHOP32(¬src + 1)

end

For each integer value i from 0 to 3, do the following.
The sum of the one’s-complement of the signed
integer in word element i of VSR[VRB+32] and 1 is
placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Negate Doubleword VX-form

vnegd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← EXTS(VSR[VRB+32].dword[i])

 VSR[VRT+32]dword[i] ← CHOP64(¬src + 1)

end

For each integer value i from 0 to 1, do the following.
The sum of the one’s-complement of the signed
integer in doubleword element i of VSR[VRB+32]
and 1 is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT 6 VRB 1538
0 6 11 16 21 31

4 VRT 7 VRB 1538
0 6 11 16 21 31

Register Data Layout for vnegw

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vnegd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 371

Version 3.1
6.9.1.9 Vector Extend Sign Instructions

Vector Extend Sign Byte To Word VX-form

vextsb2w VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i].bit[24:31]

 VSR[VRT+32].word[i] ← EXTS32(src)

end

For each integer value i from 0 to 3, do the following.
The signed integer in bits 24:31 of word element i
of VSR[VRB+32] is sign-extended and placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Extend Sign Halfword To Word
VX-form

vextsh2w VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i].bit[16:31]

 VSR[VRT+32].word[i] ← EXTS32(src)

end

For each integer value i from 0 to 3, do the following.
The signed integer in bits 16:31 of word element i
of VSR[VRB+32] is sign-extended and placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT 16 VRB 1538
0 6 11 16 21 31 4 VRT 17 VRB 1538

0 6 11 16 21 31

Register Data Layout for vextsb2w

src unused .byte[3] unused .byte[7] unused .byte[11] unused .byte[15]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 24 32 56 64 88 96 120 127

Register Data Layout for vextsh2w

src unused VSR[VRA+32].hword[1] unused VSR[VRA+32].hword[3] unused VSR[VRA+32].hword[5] unused VSR[VRA+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 104 127
Power ISA™ I372

Version 3.1
Vector Extend Sign Byte To Doubleword
VX-form

vextsb2d VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← VSR[VRB+32].dword[i].bit[56:63]

 VSR[VRT+32].dword[i] ← EXTS64(src)

end

For each integer value i from 0 to 1, do the following.
The signed integer in bits 56:63 of doubleword
element i of VSR[VRB+32] is sign-extended and
placed into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Extend Sign Halfword To Doubleword
VX-form

vextsh2d VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← VSR[VRB+32].dword[i].bit[48:63]

 VSR[VRT+32].dword[i] ← EXTS64(src)

end

For each integer value i from 0 to 1, do the following.
The signed integer in bits 48:63 of doubleword
element i of VSR[VRB+32] is sign-extended and
placed into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT 24 VRB 1538
0 6 11 16 21 31

4 VRT 25 VRB 1538
0 6 11 16 21 31

Register Data Layout for vextsb2d

src unused .byte[7] unused .byte[15]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 56 64 120 127

Register Data Layout for vextsh2d

src unused VSR[VRA+32].hword[3] unused VSR[VRA+32].hword[7]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 48 64 104 127
Chapter 6. Vector Facility 373

Version 3.1
Vector Extend Sign Word To Doubleword
VX-form

vextsw2d VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← VSR[VRB+32].dword[i].bit[32:63]

 VSR[VRT+32].dword[i] ← EXTS64(src)

end

For each integer value i from 0 to 1, do the following.
The signed integer in bits 32:63 of doubleword
element i of VSR[VRB+32] is sign-extended and
placed into doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Extend Sign Doubleword to Quadword
VX-form

vextsd2q VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← EXTS128(VSR[VRB+32].bit[64:127])

The signed integer in bits 64:127 of VSR[VRB+32] is
signed extended to 128 bits and placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT 26 VRB 1538
0 6 11 16 21 31

4 VRT 27 VRB 1538
0 6 11 16 21 31

Register Data Layout for vextsw2d

src unused VSR[VRT+32].word[1] unused VSR[VRT+32].word[3]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 96 127

Register Data Layout for vextsd2q

src unused VSR[VRB+32].dword[1]

result VSR[VRT+32]

0 64 127
Power ISA™ I374

Version 3.1
6.9.1.10 Vector Integer Average Instructions

Vector Average Signed Byte VX-form

vavgsb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTS(VSR[VRA+32].byte[i])

 src2 ← EXTS(VSR[VRB+32].byte[i])

 VSR[VRT+32].byte[i] ← CHOP8((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 15, do the following.
Let src1 be the signed integer value in byte
element i of VSR[VRA+32].

Let src2 be the signed integer value in byte
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Average Unsigned Byte VX-form

vavgub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

 VSR[VRT+32].byte[i] ← CHOP8((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1282
0 6 11 16 21 31

4 VRT VRA VRB 1026
0 6 11 16 21 31

Register Data Layout for vavgsb & vavgub

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 375

Version 3.1
Vector Average Signed Halfword VX-form

vavgsh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].hword[i])

 src2 ← EXTS(VSR[VRB+32].hword[i])

 VSR[VRT+32].hword[i] ← CHOP16((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 7, do the following.
Let src1 be the signed integer value in halfword
element i of VSR[VRA+32].

Let src2 be the signed integer value in halfword
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Average Unsigned Halfword VX-form

vavguh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 VSR[VRT+32].hword[i] ← CHOP16((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1346
0 6 11 16 21 31

4 VRT VRA VRB 1090
0 6 11 16 21 31

Register Data Layout for vavgsh & vavguh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I376

Version 3.1
Vector Average Signed Word VX-form

vavgsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].word[i])

 src2 ← EXTS(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← Chop32((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the signed integer value in word
element i of VSR[VRA+32].

Let src2 be the signed integer value in word
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Average Unsigned Word VX-form

vavguw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 VSR[VRT+32].word[i] ← Chop32((src1 + src2 + 1) >> 1)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is added to src2.

The sum is incremented by 1 and then shifted
right 1 bit.

The low-order 32 bits of the result are placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1410
0 6 11 16 21 31

4 VRT VRA VRB 1154
0 6 11 16 21 31

Register Data Layout for vavgsw & vavguw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 377

Version 3.1
6.9.1.11 Vector Integer Absolute Difference Instructions

This section describes a set of instructions that return the absolute value of the difference of integer values.

Vector Absolute Difference Unsigned Byte
VX-form

vabsdub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

 if src1 > src2 then

 VSR[VRT+32].byte[i] ← CHOP8(src1 + ¬src2 + 1)

 else

 VSR[VRT+32].byte[i] ← CHOP8(src2 + ¬src1 + 1)

end

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is subtracted by src2.

The absolute value of the difference is placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Absolute Difference Unsigned
Halfword VX-form

vabsduh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 if src1 > src2 then

 VSR[VRT+32].hword[i] ← CHOP16(src1 + ¬src2 + 1)

 else

 VSR[VRT+32].hword[i] ← CHOP16(src2 + ¬src1 + 1)

end

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is subtracted by src2.

The absolute value of the difference is placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1027
0 6 11 16 21 31

4 VRT VRA VRB 1091
0 6 11 16 21 31

Register Data Layout for vabsdub

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vabsduh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I378

Version 3.1
Vector Absolute Difference Unsigned Word
VX-form

vabsduw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 if src1 > src2 then

 VSR[VRT+32].word[i] ← CHOP32(src1 + ¬src2 + 1)

 else

 VSR[VRT+32].word[i] ← CHOP32(src2 + ¬src1 + 1)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is subtracted by src2.

The absolute value of the difference is placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1155
0 6 11 16 21 31

Register Data Layout for vabsduw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 379

Version 3.1
6.9.2 Vector Integer Maximum/Minimum Instructions

6.9.2.1 Vector Integer Maximum Instructions

Vector Maximum Signed Byte VX-form

vmaxsb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 gt_flag ← EXTS(src1) > EXTS(src2)

 VSR[VRT+32].byte[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 15, do the following.
Let src1 be the signed integer value in byte
element i of VSR[VRA+32].

Let src2 be the signed integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Maximum Unsigned Byte VX-form

vmaxub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 gt_flag ← EXTZ(src1) > EXTZ(src2)

 VSR[VRT+32].byte[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 15, do the following.
Let src1 be the signed integer value in byte
element i of VSR[VRA+32].

Let src2 be the signed integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 258
0 6 11 16 21 31

4 VRT VRA VRB 2
0 6 11 16 21 31

Register Data Layout for vmaxsb & vmaxub

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I380

Version 3.1
Vector Maximum Signed Halfword VX-form

vmaxsh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 gt_flag ← EXTS(src1) > EXTS(src2)

 VSR[VRT+32].hword[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 7, do the following.
Let src1 be the signed integer value in halfword
element i of VSR[VRA+32].

Let src2 be the signed integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Maximum Unsigned Halfword VX-form

vmaxuh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 gt_flag ← EXTZ(src1) > EXTZ(src2)

 VSR[VRT+32].hword[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 322
0 6 11 16 21 31

4 VRT VRA VRB 66
0 6 11 16 21 31

Register Data Layout for vmaxsh & vmaxuh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 381

Version 3.1
Vector Maximum Signed Word VX-form

vmaxsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 gt_flag ← EXTS(src1) > EXTS(src2)

 VSR[VRT+32].word[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 3, do the following.
Let src1 be the signed integer value in word
element i of VSR[VRA+32].

Let src2 be the signed integer value in word
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Maximum Unsigned Word VX-form

vmaxuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 gt_flag ← EXTZ(src1) > EXTZ(src2)

 VSR[VRT+32].word[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 386
0 6 11 16 21 31

4 VRT VRA VRB 130
0 6 11 16 21 31

Register Data Layout for vmaxsw & vmaxuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I382

Version 3.1
Vector Maximum Signed Doubleword VX-form

vmaxsd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 gt_flag ← EXTS(src1) > EXTS(src2)

 VSR[VRT+32].dword[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 1, do the following.
Let src1 be the signed integer value in doubleword
element i of VSR[VRA+32].

Let src2 be the signed integer value in doubleword
element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Maximum Unsigned Doubleword
VX-form

vmaxud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 gt_flag ← EXTZ(src1) > EXTZ(src2)

 VSR[VRT+32].dword[i] ← gt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 1, do the following.
Let src1 be the unsigned integer value in
doubleword element i of VSR[VRA+32].

Let src2 be the unsigned integer value in
doubleword element i of VSR[VRB+32].

src1 is compared to src2. The larger of the two
values is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 450
0 6 11 16 21 31 4 VRT VRA VRB 194

0 6 11 16 21 31

Register Data Layout for vmaxsd & vmaxud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 383

Version 3.1
6.9.2.2 Vector Integer Minimum Instructions

Vector Minimum Signed Byte VX-form

vminsb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 lt_flag ← EXTS(src1) < EXTS(src2)

 VSR[VRT+32].byte[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 15, do the following.
Let src1 be the signed integer value in byte
element i of VSR[VRA+32].

Let src2 be the signed integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Minimum Unsigned Byte VX-form

vminub VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 lt_flag ← EXTZ(src1) < EXTZ(src2)

 VSR[VRT+32].byte[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 770
0 6 11 16 21 31

4 VRT VRA VRB 514
0 6 11 16 21 31

Register Data Layout for vminsb & vminub

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I384

Version 3.1
Vector Minimum Signed Halfword VX-form

vminsh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 lt_flag ← EXTS(src1) < EXTS(src2)

 VSR[VRT+32].hword[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 7, do the following.
Let src1 be the signed integer value in halfword
element i of VSR[VRA+32].

Let src2 be the signed integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Minimum Unsigned Halfword VX-form

vminuh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 lt_flag ← EXTZ(src1) < EXTZ(src2)

 VSR[VRT+32].hword[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 834
0 6 11 16 21 31

4 VRT VRA VRB 578
0 6 11 16 21 31

Register Data Layout for vminsh & vminuh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 385

Version 3.1
Vector Minimum Signed Word VX-form

vminsw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 lt_flag ← EXTS(src1) < EXTS(src2)

 VSR[VRT+32].word[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 3, do the following.
Let src1 be the signed integer value in word
element i of VSR[VRA+32].

Let src2 be the signed integer value in word
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Minimum Unsigned Word VX-form

vminuw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 lt_flag ← EXTZ(src1) < EXTZ(src2)

 VSR[VRT+32].word[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 898
0 6 11 16 21 31

4 VRT VRA VRB 642
0 6 11 16 21 31

Register Data Layout for vminsw & vminuw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I386

Version 3.1
Vector Minimum Signed Doubleword VX-form

vminsd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 lt_flag ← EXTS(src1) < EXTS(src2)

 VSR[VRT+32].dword[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 1, do the following.
Let src1 be the signed integer value in doubleword
element i of VSR[VRA+32].

Let src2 be the signed integer value in doubleword
element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Minimum Unsigned Doubleword
VX-form

vminud VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 lt_flag ← EXTZ(src1) < EXTZ(src2)

 VSR[VRT+32].dword[i] ← lt_flag=1 ? src1 : src2

end

For each integer value i from 0 to 1, do the following.
Let src1 be the unsigned integer value in
doubleword element i of VSR[VRA+32].

Let src2 be the unsigned integer value in
doubleword element i of VSR[VRB+32].

src1 is compared to src2. The smaller of the two
values is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 962
0 6 11 16 21 31 4 VRT VRA VRB 706

0 6 11 16 21 31

Register Data Layout for vminsd & vminud

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 387

Version 3.1
6.9.3 Vector Integer Compare Instructions
The Vector Integer Compare instructions compare two
VSRs element by element, interpreting the elements
as unsigned or signed-integers depending on the
instruction, and set the corresponding element of the
target VSR to all 1s if the relation being tested is true
and to all 0s if the relation being tested is false.

If Rc=1 CR Field 6 is set to reflect the result of the
comparison, as follows.

Vector Compare Equal Unsigned Byte VC-form

vcmpequb VRT,VRA,VRB (Rc=0)
vcmpequb. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 if src1 = src2 then do

 VSR[VRT+32].byte[i] ← 0xFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].byte[i] ← 0x00

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if src1 is equal to src2, and is set to all
0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Bit Description
0 The relation is true for all element pairs

(i.e., VSR[VRT+32] is set to all 1s)
1 0
2 The relation is false for all element pairs

(i.e., VSR[VRT+32] is set to all 0s)
3 0

vcmpequb[.], vcmpequh[.], vcmpequw[.], and
vcmpequd[.] can be used for unsigned or
signed-integers.

Programming Note

4 VRT VRA VRB Rc 6
0 6 11 16 21 22 31

Register Data Layout for vcmpequb[.]

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I388

Version 3.1
Vector Compare Equal Unsigned Halfword VC-form

vcmpequh VRT,VRA,VRB (Rc=0)
vcmpequh. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 if src1 = src2 then do

 VSR[VRT+32].hword[i] ← 0xFFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].hword[i] ← 0x0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if src1 is equal to src2, and is set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 70
0 6 11 16 21 22 31

Register Data Layout for vcmpequh[.]

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 389

Version 3.1
Vector Compare Equal Unsigned Word VC-form

vcmpequw VRT,VRA,VRB (Rc=0)
vcmpequw. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if src1 = src2 then do

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is equal to src2, and is set to all
0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 134
0 6 11 16 21 22 31

Register Data Layout for vcmpequw[.]

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I390

Version 3.1
Vector Compare Equal Unsigned Doubleword VC-form

vcmpequd VRT,VRA,VRB (Rc=0)
vcmpequd. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 if src1 = src2 then do

 VSR[VRT+32].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 1, do the following.
Let src1 be the unsigned integer value in
doubleword element i of VSR[VRA+32].

Let src2 be the unsigned integer value in
doubleword element i of VSR[VRB+32].

src1 is compared to src2.

The contents of doubleword element i of
VSR[VRT+32] are set to all 1s if src1 is equal to
src2, and is set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 199
0 6 11 16 21 22 31

Register Data Layout for vcmpequd[.]

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 391

Version 3.1
Vector Compare Equal Quadword VC-form

vcmpequq VRT,VRA,VRB (Rc=0)
vcmpequq. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

src1 ← VSR[VRA+32]

src2 ← VSR[VRB+32]

if src1 = src2 then do

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 all_false ← 0

end

else do

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

 all_true ← 0

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

Let src1 be the unsigned integer value in VSR[VRA+32].
Let src2 be the unsigned integer value in VSR[VRB+32].

If src1 is equal to src2, set VSR[VRT+32] to all 1s.
Otherwise, set VSR[VRT+32] to all 0s.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 455
0 6 11 16 21 22 31

Register Data Layout for vcmpequq[.]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I392

Version 3.1
Vector Compare Greater Than Signed Byte
VC-form

vcmpgtsb VRT,VRA,VRB (Rc=0)
vcmpgtsb. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 15

 src1 ← EXTS(VSR[VRA+32].byte[i])

 src2 ← EXTS(VSR[VRB+32].byte[i])

 if src1 > src2 then do

 VSR[VRT+32].byte[i] ← 0xFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].byte[i] ← 0x00

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if src1 is equal to src2, and is set to all
0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Vector Compare Greater Than Unsigned Byte
VC-form

vcmpgtub VRT,VRA,VRB (Rc=0)
vcmpgtub. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 15

 src1 ← EXTZ(VSR[VRA+32].byte[i])

 src2 ← EXTZ(VSR[VRB+32].byte[i])

 if src1 > src2 then do

 VSR[VRT+32].byte[i] ← 0xFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].byte[i] ← 0x00

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 15, do the following.
Let src1 be the unsigned integer value in byte
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in byte
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if src1 is greater than src2, and is set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 774
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 518
0 6 11 16 21 22 31

Register Data Layout for vcmpgtsb[.] & vcmpgtub[.]

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 393

Version 3.1
Vector Compare Greater Than Signed
Halfword VC-form

vcmpgtsh VRT,VRA,VRB (Rc=0)
vcmpgtsh. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 7

 src1 ← EXTS(VSR[VRA+32].hword[i])

 src2 ← EXTS(VSR[VRB+32].hword[i])

 if src1 > src2 then do

 VSR[VRT+32].hword[i] ← 0xFFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].hword[i] ← 0x0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 7, do the following.
Let src1 be the signed integer value in halfword
element i of VSR[VRA+32].

Let src2 be the signed integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if src1 is greater than src2, and is
set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Vector Compare Greater Than Unsigned
Halfword VC-form

vcmpgtuh VRT,VRA,VRB (Rc=0)
vcmpgtuh. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 7

 src1 ← EXTZ(VSR[VRA+32].hword[i])

 src2 ← EXTZ(VSR[VRB+32].hword[i])

 if src1 > src2 then do

 VSR[VRT+32].hword[i] ← 0xFFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].hword[i] ← 0x0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 7, do the following.
Let src1 be the unsigned integer value in halfword
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in halfword
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if src1 is greater than src2, and is
set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 838
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 582
0 6 11 16 21 22 31

Register Data Layout for vcmpgtsh[.] & vcmpgtuh[.]

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I394

Version 3.1
Vector Compare Greater Than Signed Word
VC-form

vcmpgtsw VRT,VRA,VRB (Rc=0)
vcmpgtsw. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← EXTS(VSR[VRA+32].word[i])

 src2 ← EXTS(VSR[VRB+32].word[i])

 if src1 > src2 then do

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the signed integer value in word
element i of VSR[VRA+32].

Let src2 be the signed integer value in word
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is greater than src2, and is set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Vector Compare Greater Than Unsigned Word
VC-form

vcmpgtuw VRT,VRA,VRB (Rc=0)
vcmpgtuw. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← EXTZ(VSR[VRA+32].word[i])

 src2 ← EXTZ(VSR[VRB+32].word[i])

 if src1 > src2 then do

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[VRA+32].

Let src2 be the unsigned integer value in word
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is greater than src2, and is set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 902
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 646
0 6 11 16 21 22 31

Register Data Layout for vcmpgtsw[.] & vcmpgtuw[.]

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 395

Version 3.1
Vector Compare Greater Than Signed
Doubleword VC-form

vcmpgtsd VRT,VRA,VRB (Rc=0)
vcmpgtsd. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 1

 src1 ← EXTS(VSR[VRA+32].dword[i])

 src2 ← EXTS(VSR[VRB+32].dword[i])

 if src1 > src2 then do

 VSR[VRT+32].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 1, do the following.
Let src1 be the signed integer value in doubleword
element i of VSR[VRA+32].

Let src2 be the signed integer value in doubleword
element i of VSR[VRB+32].

src1 is compared to src2.

The contents of doubleword element i of
VSR[VRT+32] are set to all 1s if src1 is greater than
src2, and is set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Vector Compare Greater Than Unsigned
Doubleword VC-form

vcmpgtud VRT,VRA,VRB (Rc=0)
vcmpgtud. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 1

 src1 ← EXTZ(VSR[VRA+32].dword[i])

 src2 ← EXTZ(VSR[VRB+32].dword[i])

 if src1 > src2 then do

 VSR[VRT+32].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 1, do the following.
Let src1 be the unsigned integer value in
doubleword element i of VSR[VRA+32].

Let src2 be the unsigned integer value in
doubleword element i of VSR[VRB+32].

src1 is compared to src2.

The contents of doubleword element i of
VSR[VRT+32] are set to all 1s if src1 is greater than
src2, and is set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 967
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 711
0 6 11 16 21 22 31

Register Data Layout for vcmpgtsd[.] & vcmpgtud[.]

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I396

Version 3.1
Vector Compare Greater Than Signed
Quadword VC-form

vcmpgtsq VRT,VRA,VRB (Rc=0)
vcmpgtsq. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

src1 ← EXTS(VSR[VRA+32])

src2 ← EXTS(VSR[VRB+32])

if src1 > src2 then do

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 all_false ← 0

end

else do

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

 all_true ← 0

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

Let src1 be the signed integer value in VSR[VRA+32].
Let src2 be the signed integer value in VSR[VRB+32].

src1 is compared to src2.

The contents of VSR[VRT+32] are set to all 1s if src1 is
greater than src2, and are set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate if src1 is greater
than src2 or if src1 is not greater than src2.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector Compare Greater Than Unsigned
Quadword VC-form

vcmpgtuq VRT,VRA,VRB (Rc=0)
vcmpgtuq. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

if src1 > src2 then do

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 all_false ← 0

end

else do

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

 all_true ← 0

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

Let src1 be the unsigned integer value in VSR[VRA+32].
Let src2 be the unsigned integer value in VSR[VRB+32].

src1 is compared to src2.

The contents of VSR[VRT+32] are set to all 1s if src1 is
greater than src2, and are set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate if src1 is greater
than src2 or if src1 is not greater than src2.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 903
0 6 11 16 21 22 31

4 VRT VRA VRB Rc 647
0 6 11 16 21 22 31

Register Data Layout for vcmpgtsq[.] & vcmpgtuq[.]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 397

Version 3.1
Vector Compare Not Equal Byte VC-form

vcmpneb VRT,VRA,VRB (Rc=0)
vcmpneb. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 if src1 != src2 then do

 VSR[VRT+32].byte[i] ← 0xFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].byte[i] ← 0x00

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if src1 is not equal to src2, and are set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector Compare Not Equal or Zero Byte
VC-form

vcmpnezb VRT,VRA,VRB (Rc=0)
vcmpnezb. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i]

 if src1 = 0 | src2 = 0 | src1 != src2 then do

 VSR[VRT+32].byte[i] ← 0xFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].byte[i] ← 0x00

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if src1 is not equal to src2 or either
src1 or src2 is equal to 0x00, and are set to all 0s
otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 7
0 6 11 16 21 31 4 VRT VRA VRB Rc 263

0 6 11 16 21 31

Register Data Layout for vcmpneb[.] & vcmpnezb[.]

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I398

Version 3.1
Vector Compare Not Equal Halfword VC-form

vcmpneh VRT,VRA,VRB (Rc=0)
vcmpneh. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 if src1 != src2 then do

 VSR[VRT+32].hword[i] ← 0xFFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].hword[i] ← 0x0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if src1 is not equal to src2, and is
set to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector Compare Not Equal or Zero Halfword
VC-form

vcmpnezh VRT,VRA,VRB (Rc=0)
vcmpnezh. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i]

 if src1 = 0 | src2 = 0 | src1 != src2 then do

 VSR[VRT+32].hword[i] ← 0xFFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].hword[i] ← 0x0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if src1 is not equal to src2 or
either src1 or src2 is equal to 0x00, and is set to all
0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 71
0 6 11 16 21 31 4 VRT VRA VRB Rc 327

0 6 11 16 21 31

Register Data Layout for vcmpneh[.] & vcmpnezh[.]

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 399

Version 3.1
Vector Compare Not Equal Word VC-form

vcmpnew VRT,VRA,VRB (Rc=0)
vcmpnew. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if src1 != src2 then do

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is not equal to src2, and is set
to all 0s otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector Compare Not Equal or Zero Word
VC-form

vcmpnezw VRT,VRA,VRB (Rc=0)
vcmpnezw. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if src1 = 0 | src2 = 0 | src1 != src2 then do

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 end

 else do

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

 end

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is not equal to src2 or either
src1 or src2 is equal to 0x00, and is set to all 0s
otherwise.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT VRA VRB Rc 135
0 6 11 16 21 31 4 VRT VRA VRB Rc 391

0 6 11 16 21 31

Register Data Layout for vcmpnew[.] & vcmpnezw[.]

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I400

Version 3.1
Vector Compare Signed Quadword VX-form

vcmpsq BF,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTS(VSR[VRA+32])

src2 ← EXTS(VSR[VRB+32])

lt_flag ← src1 < src2

gt_flag ← src1 > src2

eq_flag ← src1 = src2

CR.field[BF] ← lt_flag<<3 | gt_flag<<2 | eq_flag<<1

Let src1 be the signed integer value in VSR[VRA+32].
Let src2 be the signed integer value in VSR[VRB+32].

Compare src1 with src2, place the comparison flags
into CR field BF.

Special Registers Altered:
CR field BF

Vector Compare Unsigned Quadword VX-form

vcmpuq BF,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← EXTZ(VSR[VRA+32])

src2 ← EXTZ(VSR[VRB+32])

lt_flag ← src1 < src2

gt_flag ← src1 > src2

eq_flag ← src1 = src2

CR.field[BF] ← lt_flag<<3 | gt_flag<<2 | eq_flag<<1

Let src1 be the unsigned integer value in VSR[VRA+32].
Let src2 be the unsigned integer value in VSR[VRB+32].

Compare src1 with src2, place the comparison flags
into CR field BF.

Special Registers Altered:
CR field BF

4 BF // VRA VRB 321
0 6 9 11 16 21 31

4 BF // VRA VRB 257
0 6 9 11 16 21 31

Register Data Layout for vcmpsq[.] & vcmpuq[.]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

0 127
Chapter 6. Vector Facility 401

Version 3.1
6.9.4 Vector Logical Instructions
Extended mnemonics for vector logical opera-
tions

Extended mnemonics are provided that use the Vector
OR and Vector NOR instructions to copy the contents
of one VSR to another, with and without
complementing. These are shown as examples with
the two instructions.

Vector Move Register

Several vector instructions can be coded in a way
such that they simply copy the contents of one
VSR to another. An extended mnemonic is
provided to convey the idea that no computation is

being performed but merely data movement (from
one register to another).

The following instruction copies the contents of
register Vy to register Vx.

vmr Vx,Vy (equivalent to: vor Vx,Vy,Vy)

Vector Complement Register

The Vector NOR instruction can be coded in a
way such that it complements the contents of one
VSR and places the result into another VSR. An
extended mnemonic is provided that allows this
operation to be coded easily.

The following instruction complements the
contents of register Vy and places the result into
register Vx.

vnot Vx,Vy (equivalent to: vnor Vx,Vy,Vy)

Vector Logical AND VX-form

vand VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] & VSR[VRB+32]

The contents of VSR[VRA+32] are ANDed with the
contents of VSR[VRB+32] and the result is placed into
VSR[VRT+32].

Special Registers Altered:
None

Vector Logical AND with Complement
VX-form

vandc VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] & ~VSR[VRB+32]

The contents of VSR[VRA+32] are ANDed with the
complement of the contents of VSR[VRB+32] and the
result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1028
0 6 11 16 21 31 4 VRT VRA VRB 1092

0 6 11 16 21 31

Register Data Layout for vand & vandc

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I402

Version 3.1
Vector Logical Equivalence VX-form

veqv VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] ≡ VSR[VRB+32]

The contents of VSR[VRA+32] are XORed with the
contents of VSR[VRB+32] and the complemented result
is placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Logical NAND VX-form

vnand VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← ~(VSR[VRA+32] & VSR[VRB+32])

The contents of VSR[VRA+32] are ANDed with the
contents of VSR[VRB+32] and the complemented result
is placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Logical OR VX-form

vor VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] | VSR[VRB+32]

The contents of VSR[VRA+32] are ORed with the
contents of VSR[VRB+32] and the result is placed into
VSR[VRT+32].

Special Registers Altered:
None

Vector Logical OR with Complement VX-form

vorc VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] | ~VSR[VRB+32]

The contents of VSR[VRA+32] are ORed with the
complement of the contents of VSR[VRB+32] and the
result is placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Logical NOR VX-form

vnor VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← ~(VSR[VRA+32] | VSR[VRB+32])

The contents of VSR[VRA+32] are ORed with the
contents of VSR[VRB+32] and the complemented result
is placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Logical XOR VX-form

vxor VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] ⊕ VSR[VRB+32]

The contents of VSR[VRA+32] are XORed with the
contents of VSR[VRB+32] and the result is placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 1668
0 6 11 16 21 31

4 VRT VRA VRB 1412
0 6 11 16 21 31

4 VRT VRA VRB 1156
0 6 11 16 21 31

4 VRT VRA VRB 1348
0 6 11 16 21 31

4 VRT VRA VRB 1284
0 6 11 16 21 31

4 VRT VRA VRB 1220
0 6 11 16 21 31

Register Data Layout for veqv, vnand, vor, vorc, vnor & vxor

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 403

Version 3.1
6.9.5 Vector Integer Rotate Instructions

6.9.5.1 Vector Integer Rotate Left Instructions

Vector Rotate Left Byte VX-form

vrlb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src ← VSR[VRA+32].byte[i]

 sh ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← src <<< sh

end

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is rotated left by the number of bits specified
in the low-order 3 bits of src2.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Rotate Left Halfword VX-form

vrlh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src ← VSR[VRA+32].hword[i]

 sh ← VSR[VRB+32].hword[i].bit[12:15]

 VSR[VRT+32].hword[i] ← src <<< sh

end

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is rotated left by the number of bits specified
in the low-order 4 bits of src2.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 4
0 6 11 16 21 31

4 VRT VRA VRB 68
0 6 11 16 21 31

Register Data Layout for vrlb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vrlh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I404

Version 3.1
Vector Rotate Left Word VX-form

vrlw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRA+32].word[i]

 sh ← VSR[VRB+32].word[i].bit[27:31]

 VSR[VRT+32].word[i] ← src <<< sh

end

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is rotated left by the number of bits specified
in the low-order 5 bits of src2.

The result is placed into word element i in
VSR[VRT+32].

Special Registers Altered:
None

Vector Rotate Left Doubleword VX-form

vrld VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← VSR[VRA+32].dword[i]

 sh ← VSR[VRB+32].dword[i].bit[58:63]

 VSR[VRT+32].dword[i] ← src <<< sh

end

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

src1 is rotated left by the number of bits specified
in the low-order 6 bits of src2.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 132
0 6 11 16 21 31

4 VRT VRA VRB 196
0 6 11 16 21 31

Register Data Layout for vrlw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vrld

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 405

Version 3.1
Vector Rotate Left Quadword VX-form

vrlq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

n ← VSR[VRB+32].bit[57:63]

VSR[VRT+32] ← ROTL128(VSR[VRA+32], n)

Let SH be the contents of bits 57:63 of VSR[VRB+32].

Let src1 be the contents of VSR[VRA+32].

src1 is rotated left by SH bits. Bits shifted out on the left
are shifted in on the right to replace vacated bits.

Special Registers Altered:
None

4 VRT VRA VRB 5
0 6 11 16 21 31

Register Data Layout for vrlq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I406

Version 3.1
6.9.5.2 Vector Integer Rotate Left then AND with Mask Instructions

Vector Rotate Left Word then AND with Mask VX-form

vrlwnm VRT,VRA,VRB

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

Let mb be the contents of bits 11:15 of src2.
Let me be the contents of bits 19:23 of src2.
Let sh be the contents of bits 27:31 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb
through bit me and 0-bits elsewhere.

The rotated data are ANDed with the generated
mask.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 389
0 6 11 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1.word[0] ← VSR[VRA+32].word[i]

 src1.word[1] ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 b ← src2.bit[11:15]

 e ← src2.bit[19:23]

 n ← src2.bit[27:31]

 r ← src1.bit[n:n+31]

 m ← MASK(b, e)

 VSR[VRT+32].word[i] ← r & m

end

Register Data Layout for vrlwnm

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 407

Version 3.1
Vector Rotate Left Doubleword then AND with Mask VX-form

vrldnm VRT,VRA,VRB

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

Let mb be the contents of bits 42:47 of src2.
Let me be the contents of bits 50:55 of src2.
Let sh be the contents of bits 58:63 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb
through bit me and 0-bits elsewhere.

The rotated data are ANDed with the generated
mask.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 453
0 6 11 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1.dword[0] ← VSR[VRA+32].dword[i]

 src1.dword[1] ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 b ← src2.bit[42:47]

 e ← src2.bit[50:55]

 n ← src2.bit[58:63]

 r ← src1.bit[n:n+63]

 m ← MASK(b, e)

 VSR[VRT+32].dword[i] ← r & m

end

Register Data Layout for vrldnm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I408

Version 3.1
Vector Rotate Left Quadword then AND with Mask VX-form

vrlqnm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

b ← VSR[VRB+32].bit[41:47]

e ← VSR[VRB+32].bit[49:55]

n ← VSR[VRB+32].bit[57:63]

r ← ROTL128(VSR[VRA+32],n)

m ← MASK128(b, e)

VSR[VRT+32] ← r & m

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].

Let mb be the contents of bits 41:47 of src2.
Let me be the contents of bits 49:55 of src2.
Let sh be the contents of bits 57:63 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb through
bit me and 0-bits elsewhere.

The rotated data are ANDed with the generated mask.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 325
0 6 11 16 21 31

Register Data Layout for vrlqnm

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 409

Version 3.1
6.9.5.3 Vector Integer Rotate Left then Mask Insert Instructions

Vector Rotate Left Word then Mask Insert VX-form

vrlwmi VRT,VRA,VRB For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

Let src3 be the contents of word element i of
VSR[VRT+32].

Let mb be the contents of bits 11:15 of src2.
Let me be the contents of bits 19:23 of src2.
Let sh be the contents of bits 27:31 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb
through bit me and 0-bits elsewhere.

The rotated data are inserted into src3 under
control of the generated mask.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 133
0 6 11 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1.word[0] ← VSR[VRA+32].word[i]

 src1.word[1] ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 src3 ← VSR[VRT+32].word[i]

 b ← src2.bit[11:15]

 e ← src2.bit[19:23]

 n ← src2.bit[27:31]

 r ← src1.bit[n:n+31]

 m ← MASK(b, e)

 VSR[VRT+32].word[i] ← (r & m) | (src3 & ¬m)

end

Register Data Layout for vrlwmi

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I410

Version 3.1
Vector Rotate Left Doubleword then Mask Insert VX-form

vrldmi VRT,VRA,VRB

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

Let src3 be the contents of doubleword element i
of VSR[VRT+32].

Let mb be the contents of bits 42:47 of src2.
Let me be the contents of bits 50:55 of src2.
Let sh be the contents of bits 58:63 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb
through bit me and 0-bits elsewhere.

The rotated data are inserted into src3 under
control of the generated mask.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 197
0 6 11 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1.dword[0] ← VSR[VRA+32].dword[i]

 src1.dword[1] ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i]

 src3 ← VSR[VRT+32].dword[i]

 b ← src2.bit[42:47]

 e ← src2.bit[50:55]

 n ← src2.bit[58:63]

 r ← src1.bit[n:n+63]

 m ← MASK(b, e)

 VSR[VRT+32].dword[i] ← (r & m) | (src3 & ¬m)

end

Register Data Layout for vrldmi

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 411

Version 3.1
Vector Rotate Left Quadword then Mask Insert VX-form

vrlqmi VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

b ← VSR[VRB+32].bit[41:47]

e ← VSR[VRB+32].bit[49:55]

n ← VSR[VRB+32].bit[57:63]

r ← ROTL128(VSR[VRA+32],n)

m ← MASK128(b, e)

VSR[VRT+32] ← (r & m) | (VSR[VRT+32] & ~m)

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].
Let src3 be the contents of VSR[VRT+32].

Let mb be the contents of bits 41:47 of src2.
Let me be the contents of bits 49:55 of src2.
Let sh be the contents of bits 57:63 of src2.

src1 is rotated left sh bits.

A mask is generated having 1-bits from bit mb through
bit me and 0-bits elsewhere.

The rotated data are inserted into src3 under control of
the generated mask.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 69
0 6 11 16 21 31

Register Data Layout for vrlqmi

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I412

Version 3.1
6.9.6 Vector Integer Shift Instructions

6.9.6.1 Vector Integer Shift Left Instructions

Vector Shift Left Byte VX-form

vslb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← src1 << src2

end

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is shifted left by the number of bits specified
in the low-order 3 bits of src2.

– Bits shifted out the most-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
right.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Left Halfword VX-form

vslh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i].bit[12:15]

 VSR[VRT+32].hword[i] ← src1 << src2

end

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is shifted left by the number of bits specified
in the low-order 4 bits of src2.

– Bits shifted out the most-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
right.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 260
0 6 11 16 21 31

4 VRT VRA VRB 324
0 6 11 16 21 31

Register Data Layout for vslb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vslh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 413

Version 3.1
Vector Shift Left Word VX-form

vslw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i].bit[27:31]

 VSR[VRT+32].word[i] ← src1 << src2

end

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is shifted left by the number of bits specified
in the low-order 5 bits of src2.

– Bits shifted out the most-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
right.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Left Doubleword VX-form

vsld VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i].bit[58:63]

 VSR[VRT+32].dword[i] ← src1 << src2

end

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

src1 is shifted left by the number of bits specified
in the low-order 6 bits of src2.

– Bits shifted out the most-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
right.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 388
0 6 11 16 21 31

4 VRT VRA VRB 1476
0 6 11 16 21 31

Register Data Layout for vslw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vsld

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I414

Version 3.1
Vector Shift Left Quadword VX-form

vslq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← VSR[VRA+32] << VSR[VRB+32].bit[57:63]

Let n be the contents of bits 57:63 of VSR[VRB+32].

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].

src1 is shifted left by the number of bits specified in the
low-order 7 bits of src2.

– Bits shifted out the most-significant bit are lost.
– Zeros are supplied to the vacated bits on the right.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 261
0 6 11 16 21 31

Register Data Layout for vslq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 415

Version 3.1
6.9.6.2 Vector Integer Shift Right Instructions

Vector Shift Right Byte VX-form

vsrb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← CHOP8(EXTZ(src1) >> src2)

end

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 3 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
left.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right Halfword VX-form

vsrh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i].bit[12:15]

 VSR[VRT+32].hword[i] ← CHOP16(EXTZ(src1) >> src2)

end

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 4 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
left.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 516
0 6 11 16 21 31

4 VRT VRA VRB 580
0 6 11 16 21 31

Register Data Layout for vsrb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsrh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I416

Version 3.1
Vector Shift Right Word VX-form

vsrw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i].bit[27:31]

 VSR[VRT+32].word[i] ← CHOP32(EXTZ(src1) >> src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 5 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
left.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right Doubleword VX-form

vsrd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i].bit[58:63]

 VSR[VRT+32].dword[i] ← CHOP64(EXTZ(src1) >> src2)

end

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

src1 are shifted right by the number of bits
specified in bits 58:63 of src2.

– Bits shifted out the least-significant bit are
lost.

– Zeros are supplied to the vacated bits on the
left.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 644
0 6 11 16 21 31

4 VRT VRA VRB 1732
0 6 11 16 21 31

Register Data Layout for vsrw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vsrd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 417

Version 3.1
Vector Shift Right Quadword VX-form

vsrq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VSR[VRA+32]

src2 ← VSR[VRB+32].bit[57:63]

VSR[VRT+32] ← CHOP128(EXTZ(src1) >> src2)

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].

src1 is shifted right by the number of bits specified in
the low-order 7 bits of src2.

– Bits shifted out the least-significant bit are lost.
– Zeros are supplied to the vacated bits on the left.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 517
0 6 11 16 21 31

Register Data Layout for vsrq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I418

Version 3.1
6.9.6.3 Vector Integer Shift Right Algebraic Instructions

Vector Shift Right Algebraic Byte VX-form

vsrab VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 src1 ← VSR[VRA+32].byte[i]

 src2 ← VSR[VRB+32].byte[i].bit[5:7]

 VSR[VRT+32].byte[i] ← CHOP8(EXTS(src1) >> src2)

end

For each integer value i from 0 to 15, do the following.
Let src1 be the contents of byte element i of
VSR[VRA+32].

Let src2 be the contents of byte element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 3 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Copies of bit 0 of src1 are supplied to the
vacated bits on the left.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right Algebraic Halfword VX-form

vsrah VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 src1 ← VSR[VRA+32].hword[i]

 src2 ← VSR[VRB+32].hword[i].bit[12:15]

 VSR[VRT+32].hword[i] ← CHOP16(EXTS(src1) >> src2)

end

For each integer value i from 0 to 7, do the following.
Let src1 be the contents of halfword element i of
VSR[VRA+32].

Let src2 be the contents of halfword element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 4 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Copies of bit 0 of src1 are supplied to the
vacated bits on the left.

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 772
0 6 11 16 21 31

4 VRT VRA VRB 836
0 6 11 16 21 31

Register Data Layout for vsrab

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vsrah

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 419

Version 3.1
Vector Shift Right Algebraic Word VX-form

vsraw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i].bit[27:31]

 VSR[VRT+32].word[i] ← CHOP32(EXTS(src1) >> src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the contents of word element i of
VSR[VRA+32].

Let src2 be the contents of word element i of
VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 5 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Copies of bit 0 of src1 are supplied to the
vacated bits on the left.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Vector Shift Right Algebraic Doubleword
VX-form

vsrad VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src1 ← VSR[VRA+32].dword[i]

 src2 ← VSR[VRB+32].dword[i].bit[58:63]

 VSR[VRT+32].dword[i] ← CHOP64(EXTS(src1) >> src2)

end

For each integer value i from 0 to 1, do the following.
Let src1 be the contents of doubleword element i
of VSR[VRA+32].

Let src2 be the contents of doubleword element i
of VSR[VRB+32].

src1 is shifted right by the number of bits specified
in the low-order 6 bits of src2.

– Bits shifted out the least-significant bit are
lost.

– Copies of bit 0 of src1 are supplied to the
vacated bits on the left.

The result is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 900
0 6 11 16 21 31 4 VRT VRA VRB 964

0 6 11 16 21 31

Register Data Layout for vsraw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vsrad

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I420

Version 3.1
Vector Shift Right Algebraic Quadword
VX-form

vsraq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src1 ← VSR[VRA+32]

src2 ← VSR[VRB+32].bit[57:63]

VSR[VRT+32] ← CHOP128(EXTS(src1) >> src2)

Let src1 be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].

src1 is shifted right by the number of bits specified in
the low-order 7 bits of src2.

– Bits shifted out the least-significant bit are lost.

– Copies of bit 0 of src1 are supplied to the vacated
bits on the left.

The result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 773
0 6 11 16 21 31

Register Data Layout for vsraq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 421

Version 3.1
6.10 Vector Floating-Point Instruction Set

6.10.1 Vector Floating-Point Arithmetic Instructions
Vector Add Floating-Point VX-form

vaddfp VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_ADD(src1,src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

src1 is added to src2.

The intermediate result is rounded to the nearest
single-precision floating-point number and placed
into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Subtract Floating-Point VX-form

vsubfp VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_SUBTRACT(src1,src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

src2 is subtracted from src1.

The intermediate result is rounded to the nearest
single-precision floating-point number and placed
into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 10
0 6 11 16 21 31

4 VRT VRA VRB 74
0 6 11 16 21 31

Register Data Layout for vaddfp & vsubfp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I422

Version 3.1
Vector Multiply-Add Floating-Point VA-form

vmaddfp VRT,VRA,VRC,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 src3 ← VSR[VRC+32].word[i]

 result ← bfp32_MULTIPLY_ADD(src1,src3,src2)

 VSR[VRT+32].word[i] ← result

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

Let src3 be the single-precision floating-point
value in word element i of VSR[VRC+32].

src1 is multiplied by src3.

src2 is added to the infinitely-precise product.

The intermediate result is rounded to the nearest
single-precision floating-point number and placed
into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Negative Multiply-Subtract
Floating-Point VA-form

vnmsubfp VRT,VRA,VRC,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 src3 ← VSR[VRC+32].word[i]

 result ← bfp32_NEGATIVE_MULTIPLY_SUBTRACT(src1,src3,src2)

 VSR[VRT+32].word[i] ← result

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

Let src3 be the single-precision floating-point
value in word element i of VSR[VRC+32].

src1 is multiplied by src3.

src2 is subtracted from the infinitely-precise
product.

The intermediate result is rounded to the nearest
single-precision floating-point number, then
negated and placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 46
0 6 11 16 21 26 31

To use a multiply-add to perform an IEEE or Java
compliant multiply, the addend must be -0.0. This
is necessary to insure that the sign of a zero result
will be correct when the product is -0.0
(+0.0 + -0.0 ≥ +0.0, and -0.0 + -0.0 ≥ -0.0).
When the sign of a resulting 0.0 is not important,
then +0.0 can be used as an addend which may, in
some cases, avoid the need for a second register
to hold a -0.0 in addition to the integer
floating-point +0.0 that may already be available.

Programming Note

4 VRT VRA VRB VRC 47
0 6 11 16 21 26 31

Register Data Layout for vmaddfp & vnmsubfp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

src3 VSR[VRC+32].word[0] VSR[VRC+32].word[1] VSR[VRC+32].word[2] VSR[VRC+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 423

Version 3.1
6.10.2 Vector Floating-Point Maximum/Minimum Instructions
Vector Maximum Floating-Point VX-form

vmaxfp VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_MAXIMUM(src1,src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

src1 is compared to src2.

The larger of the two values is placed into word
element i of VSR[VRT+32].

The maximum of +0.0 and -0.0 is +0.0. The maximum
of any value and a NaN is a QNaN.

Special Registers Altered:
None

Vector Minimum Floating-Point VX-form

vminfp VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_MINIMUM(src1,src2)

end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in word element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in word element i of VSR[VRB+32].

src1 is compared to src2.

The smaller of the two values is placed into word
element i of VSR[VRT+32].

The minimum of +0.0 and -0.0 is -0.0. The minimum
of any value and a NaN is a QNaN.

Special Registers Altered:
None

4 VRT VRA VRB 1034
0 6 11 16 21 31

4 VRT VRA VRB 1098
0 6 11 16 21 31

Register Data Layout for vmaxfp & vminfp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I424

Version 3.1
6.10.3 Vector Floating-Point Rounding and Conversion Instructions

6.10.3.1 Vector Floating-Point Conversion Instructions

Vector Convert with round to zero from
floating-point To Signed Word format Saturate
VX-form

vctsxs VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← si32_CONVERT_FROM_BFP32(src, UIM)

end

For each integer value i from 0 to 3, do the following.
Let src be the signed fixed-point value in word
element i of VSR[VRB+32].

src is multiplied by 2UIM. The product is converted
to a 32-bit signed fixed-point integer using the
rounding mode Round toward Zero.

– If the intermediate result is greater than 231-1
the result saturates to 231-1.

– If the intermediate result is less than -231 the
result saturates to -231.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Extended Mnemonics:

Example of an extended mnemonics for Vector
Convert to Signed Fixed-Point Word Saturate:

Vector Convert with round to zero from
floating-point To Unsigned Word format
Saturate VX-form

vctuxs VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← ui32_CONVERT_FROM_BFP32(src, UIM)

end

For each integer value i from 0 to 3, do the following.
Let src be the signed fixed-point value in word
element i of VSR[VRB+32].

src is multiplied by 2UIM. The product is converted
to a 32-bit unsigned fixed-point integer using the
rounding mode Round toward Zero.

– If the intermediate result is greater than 232-1
the result saturates to 232-1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Extended Mnemonics:

Example of an extended mnemonics for Vector
Convert to Unsigned Fixed-Point Word Saturate:

4 VRT UIM VRB 970
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
vcfpsxws VRT,VRB,UIM vctsxs VRT,VRB,UIM

4 VRT UIM VRB 906
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
vcfpuxws VRT,VRB,UIM vctuxs VRT,VRB,UIM

Register Data Layout for vctsxs & vctuxs

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 425

Version 3.1
Vector Convert with round to nearest From
Signed Word to floating-point format VX-form

vcfsx VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_CONVERT_FROM_SI32(src,UIM)

end

For each integer value i from 0 to 3, do the following.
Let src be the signed fixed-point value in word
element i of VSR[VRB+32].

src is converted to the nearest single-precision
floating-point value. Each result is divided by 2UIM
and placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Vector Convert
from Signed Fixed-Point Word:

Vector Convert with round to nearest From
Unsigned Word to floating-point format
VX-form

vcfux VRT,VRB,UIM

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_CONVERT_FROM_UI32(src,UIM)

end

For each integer value i from 0 to 3, do the following.
Let src be the unsigned fixed-point value in word
element i of VSR[VRB+32].

src is converted to the nearest single-precision
floating-point value. The result is divided by 2UIM
and placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Vector Convert
from Unsigned Fixed-Point Word:

4 VRT UIM VRB 842
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
vcsxwfp VRT,VRB,UIM vcfsx VRT,VRB,UIM

4 VRT UIM VRB 778
0 6 11 16 21 31

Extended mnemonic: Equivalent to:
vcuxwfp VRT,VRB,UIM vcfux VRT,VRB,UIM

Register Data Layout for vcfsx & vcfux

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I426

Version 3.1
6.10.3.2 Vector Floating-Point Round to Integral Instructions

Vector Round to Floating-Point Integer toward
-Infinity VX-form

vrfim VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_ROUND_TO_INTEGER_FLOOR(src)

end

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in element i of VSR[VRB+32].

src is rounded to a single-precision floating-point
integer using the rounding mode Round toward
-Infinity.

The result is placed into the corresponding word
element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Round to Floating-Point Integer
Nearest VX-form

vrfin VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_ROUND_TO_INTEGER_NEAR(src)

end

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in element i of VSR[VRB+32].

src is rounded to a single-precision floating-point
integer using the rounding mode Round to
Nearest.

The result is placed into the corresponding word
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 714
0 6 11 16 21 31

4 VRT /// VRB 522
0 6 11 16 21 31

Register Data Layout for vrfim & vrfin

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

The Vector Convert To Fixed-Point Word instructions support only the rounding mode Round toward Zero. A
floating-point number can be converted to a fixed-point integer using any of the other three rounding modes by
executing the appropriate Vector Round to Floating-Point Integer instruction before the Vector Convert To
Fixed-Point Word instruction.

The fixed-point integers used by the Vector Convert instructions can be interpreted as consisting of 32-UIM
integer bits followed by UIM fraction bits.

Programming Note

Programming Note
Chapter 6. Vector Facility 427

Version 3.1
Vector Round to Floating-Point Integer toward
+Infinity VX-form

vrfip VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_ROUND_TO_INTEGER_CEIL(src)

end

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in element i of VSR[VRB+32].

src is rounded to a single-precision floating-point
integer using the rounding mode Round toward
+Infinity.

The result is placed into the corresponding word
element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Round to Floating-Point Integer toward
Zero VX-form

vrfiz VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_ROUND_TO_INTEGER_TRUNC(src)

end

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in element i of VSR[VRB+32].

src is rounded to a single-precision floating-point
integer using the rounding mode Round toward
Zero.

The result is placed into the corresponding word
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 650
0 6 11 16 21 31

4 VRT /// VRB 586
0 6 11 16 21 31

Register Data Layout for vrfip & vrfiz

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I428

Version 3.1
6.10.4 Vector Floating-Point Compare Instructions
The Vector Floating-Point Compare instructions
compare two VSRs word element by word element,
interpreting the elements as single-precision
floating-point numbers. With the exception of the
Vector Compare Bounds Floating-Point instruction,
they set the target VSR, and CR Field 6 if Rc=1, in the
same manner as do the Vector Integer Compare
instructions; see Section 6.9.3.

The Vector Compare Bounds Floating-Point instruction
sets the target VSR, and CR Field 6 if Rc=1, to indicate
whether the elements in VSR[VRA+32] are within the
bounds specified by the corresponding element in
VSR[VRB+32], as explained in the instruction
description. A single-precision floating-point value x is
said to be “within the bounds” specified by a
single-precision floating-point value y if -y ≤ x ≤ y.

Vector Compare Bounds Floating-Point
VC-form

vcmpbfp VRT,VRA,VRB (Rc=0)
vcmpbfp. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 le ← bool_COMPARE_LE_BFP32(src1,src2)

 ge ← bool_COMPARE_GE_BFP32(src1,src2)

 VSR[VRT+32].word[i] ← ~le || ~ge || 300
end

if Rc=1 then do

 ib ← (VSR[VRT+32]=0)

 CR6 ← 0b00 || ib || 0b0
end

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in element i of VSR[VRB+32].

src1 is compared to src2.

A 2-bit value is formed that indicates whether src1
is within the bounds specified by src2, as follows.

– Bit 0 of the 2-bit value is set to 0 if src1 is less
than or equal to src2, and is set to 1
otherwise.

– Bit 1 of the 2-bit value is set to 0 if src1 is
greater than or equal to the negation of src2,
and is set to 1 otherwise.

The 2-bit value is placed into the high-order two
bits of word element i of VSR[VRT+32] and the
remaining bits of element i are set to 0.

If Rc=1, CR field 6 is set as follows.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 966
0 6 11 16 21 22 31

Bit Description
0 Set to 0
1 Set to 0
2 Set to indicate whether all four elements in

VSR[VRA+32] are within the bounds specified by
the corresponding element in VSR[VRB+32],
otherwise set to 0.

3 Set to 0

Each single-precision floating-point value in
VSR[VRB+32] should be non-negative; if it is
negative, the corresponding element in
VSR[VRA+32] will necessarily be out of bounds.

One exception to this is when the value of an
element in VSR[VRB+32] is -0.0 and the value of the
corresponding element in VSR[VRA+32] is either
+0.0 or -0.0. +0.0 and -0.0 compare equal to -0.0.

Programming Note

Register Data Layout for vrfip & vrfiz

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 429

Version 3.1
Vector Compare Equal Floating-Point VC-form

vcmpeqfp VRT,VRA,VRB (Rc=0)
vcmpeqfp. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if bool_COMPARE_EQ_BFP32(src1,src2)=1 then

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 else

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is equal to src2, and are set to
all 0s otherwise.

If src1 or src2 is a NaN, the contents of word
element i of VSR[VRT+32] are set to all 0s,
indicating “not equal to”. If src1 and src2 are both
infinity with the same sign, the contents of word
element i of VSR[VRT+32] are set to all 1s,
indicating “equal to”.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

Vector Compare Greater Than or Equal
Floating-Point VC-form

vcmpgefp VRT,VRA,VRB (Rc=0)
vcmpgefp. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if bool_COMPARE_GE_BFP32(src1,src2)=1 then

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 else

 VSR[VRT+32].word[i] ← 0x0000_0000

 all_true ← 0

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is greater than or equal to src2,
and are set to all 0s otherwise.

If src1 or src2 is a NaN, the contents of word
element i of VSR[VRT+32] are set to all 0s,
indicating “not greater than or equal to”. If src1
and src2 are both infinity with the same sign, the
contents of word element i of VSR[VRT+32] are set
to all 1s, indicating “greater than or equal to”.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 198
0 6 11 16 21 22 31 4 VRT VRA VRB Rc 454

0 6 11 16 21 22 31

Register Data Layout for vcmpeqfp[.] & vcmpgefp[.]

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I430

Version 3.1
Vector Compare Greater Than Floating-Point
VC-form

vcmpgtfp VRT,VRA,VRB (Rc=0)
vcmpgtfp. VRT,VRA,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

all_true ← 1

all_false ← 1

do i = 0 to 3

 src1 ← VSR[VRA+32].word[i]

 src2 ← VSR[VRB+32].word[i]

 if bool_COMPARE_GT_BFP32(src1,src2)=1 then

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 all_false ← 0

 else

 all_true ← 0

 VSR[VRT+32].word[i] ← 0x0000_0000

end

if Rc=1 then CR.bit[56:59] ← (all_true<<3) + (all_false<<1)

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
value in element i of VSR[VRA+32].

Let src2 be the single-precision floating-point
value in element i of VSR[VRB+32].

src1 is compared to src2.

The contents of word element i of VSR[VRT+32] are
set to all 1s if src1 is greater than src2, and are
set to all 0s otherwise.

If src1 or src2 is a NaN, the contents of word
element i of VSR[VRT+32] are set to all 0s,
indicating “not greater than”. If src1 and src2 are
both infinity with the same sign, the contents of
word element i of VSR[VRT+32] are set to all 0s,
indicating “not greater than”.

If Rc=1, CR field 6 is set to indicate whether all vector
elements compared true and whether all vector
elements compared false.

Special Registers Altered:
CR field 6 . (if Rc=1)

4 VRT VRA VRB Rc 710
0 6 11 16 21 22 31

Register Data Layout for vcmpgtfp[.]

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 431

Version 3.1
6.10.5 Vector Floating-Point Estimate Instructions
Vector 2 Raised to the Exponent Estimate
Floating-Point VX-form

vexptefp VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_POWER2_ESTIMATE(src)

end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of 2
raised to the power of single-precision
floating-point element i of VSR[VRB+32] is placed
into word element i of VSR[VRT+32].

Let x be any single-precision floating-point input value.
Unless x < -146 or the single-precision floating-point
result of computing 2 raised to the power x would be a
zero, an infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in 16. The
most significant 12 bits of the estimate’s significand
are monotonic. An integral input value returns an
integral value when the result is representable.

The result for various special cases of the source
value is given below.

Special Registers Altered:
None

4 VRT /// VRB 394
0 6 11 16 21 31

Value Result
- Infinity +0

-0 +1

+0 +1

+Infinity +Infinity

NaN QNaN

Register Data Layout for vexptefp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I432

Version 3.1
Vector Log Base 2 Estimate Floating-Point
VX-form

vlogefp VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_LOG_BASE2_ESTIMATE(src)

end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
base 2 logarithm of single-precision floating-point
element i of VSR[VRB+32] is placed into the
corresponding word element i of VSR[VRT+32].

Let x be any single-precision floating-point input value.
Unless | x-1 | is less than or equal to 0.125 or the
single-precision floating-point result of computing the
base 2 logarithm of x would be an infinity or a QNaN,
the estimate has an absolute error in precision
(absolute value of the difference between the estimate
and the infinitely precise value) no greater than 2-5.
Under the same conditions, the estimate has a relative
error in precision no greater than one part in 8.

The most significant 12 bits of the estimate’s
significand are monotonic. The estimate is exact if
x=2y, where y is an integer between -149 and +127
inclusive. Otherwise the value placed into the element
of VSR[VRT+32] may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Special Registers Altered:
None

4 VRT /// VRB 458
0 6 11 16 21 31

Value Result
- Infinity QNaN

< 0 QNaN

- 0 - Infinity

+0 - Infinity

+Infinity +Infinity

NaN QNaN

Register Data Layout for vexptefp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 433

Version 3.1
Vector Reciprocal Estimate Floating-Point
VX-form

vrefp VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_RECIPROCAL_ESTIMATE(src)

end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of single-precision floating-point
element i of VSR[VRB+32] is placed into word
element i of VSR[VRT+32].

Unless the single-precision floating-point result of
computing the reciprocal of a value would be a zero,
an infinity, or a QNaN, the estimate has a relative error
in precision no greater than one part in 4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Special Registers Altered:
None

Vector Reciprocal Square Root Estimate
Floating-Point VX-form

vrsqrtefp VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRB+32].word[i]

 VSR[VRT+32].word[i] ← bfp32_RECIPROCAL_SQRT_ESTIMATE(src)

end

For each integer value i from 0 to 3, do the following.
The single-precision floating-point estimate of the
reciprocal of the square root of single-precision
floating-point element i of VSR[VRB+32] is placed
into word element i of VSR[VRT+32].

Let x be any single-precision floating-point value.
Unless the single-precision floating-point result of
computing the reciprocal of the square root of x would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
4096.

Note that results may vary between implementations,
and between different executions on the same
implementation.

The result for various special cases of the source
value is given below.

Special Registers Altered:
None

4 VRT /// VRB 266
0 6 11 16 21 31

Value Result
- Infinity -0

- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN

4 VRT /// VRB 330
0 6 11 16 21 31

Value Result
- Infinity QNaN

< 0 QNaN
- 0 - Infinity
+0 + Infinity

+Infinity +0
NaN QNaN

Register Data Layout for vrefp & vrsqrtefp

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I434

Version 3.1
6.11 Vector Exclusive-OR-based Instructions

6.11.1 Vector AES Instructions
This section describes a set of instructions that support
the Federal Information Processing Standards Publica-

tion 197 Advanced Encryption Standard for encryption
and decryption.

Vector AES Cipher VX-form

vcipher VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

State ← VSR[VRA+32]

RoundKey ← VSR[VRB+32]

vtemp1 ← SubBytes(State)

vtemp2 ← ShiftRows(vtemp1)

vtemp3 ← MixColumns(vtemp2)

VSR[VRT+32] ← vtemp3 ^ RoundKey

Let State be the contents of VSR[VRA+32], representing
the intermediate state array during AES cipher
operation.

Let RoundKey be the contents of VSR[VRB+32],
representing the round key.

One round of an AES cipher operation is performed on
the intermediate State array, sequentially applying the
transforms, SubBytes(), ShiftRows(), MixColumns(),
and AddRoundKey(), as defined in FIPS-197.

The result is placed into VSR[VRT+32], representing the
new intermediate state of the cipher operation.

Special Registers Altered:
None

Vector AES Cipher Last VX-form

vcipherlast VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

State ← VSR[VRA+32]

RoundKey ← VSR[VRB+32]

vtemp1 ← SubBytes(State)

vtemp2 ← ShiftRows(vtemp1)

VSR[VRT+32] ← vtemp2 ^ RoundKey

Let State be the contents of VSR[VRA+32], representing
the intermediate state array during AES cipher
operation.

Let RoundKey be the contents of VSR[VRB+32],
representing the round key.

The final round in an AES cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, SubBytes(),
ShiftRows(), AddRoundKey(), as defined in FIPS-197.

The result is placed into VSR[VRT+32], representing the
final state of the cipher operation.

Special Registers Altered:
None

4 VRT VRA VRB 1288
0 6 11 16 21 31

4 VRT VRA VRB 1289
0 6 11 16 21 31

Register Data Layout for vcipher & vcipherlast

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 435

Version 3.1
Vector AES Inverse Cipher VX-form

vncipher VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

State ← VSR[VRA+32]

RoundKey ← VSR[VRB+32]

vtemp1 ← InvShiftRows(State)

vtemp2 ← InvSubBytes(vtemp1)

vtemp3 ← vtemp2 ^ RoundKey

VSR[VRT+32] ← InvMixColumns(vtemp3)

Let State be the contents of VSR[VRA+32], representing
the intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VSR[VRB+32],
representing the round key.

One round of an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), AddRoundKey(), and InvMixColumns(),
as defined in FIPS-197.

The result is placed into VSR[VRT+32], representing the
new intermediate state of the inverse cipher operation.

Special Registers Altered:
None

Vector AES Inverse Cipher Last VX-form

vncipherlast VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

State ← VSR[VRA+32]

RoundKey ← VSR[VRB+32]

vtemp1 ← InvShiftRows(State)

vtemp2 ← InvSubBytes(vtemp1)

VSR[VRT+32] ← vtemp2 ^ RoundKey

Let State be the contents of VSR[VRA+32], representing
the intermediate state array during AES inverse cipher
operation.

Let RoundKey be the contents of VSR[VRB+32],
representing the round key.

The final round in an AES inverse cipher operation is
performed on the intermediate State array,
sequentially applying the transforms, InvShiftRows(),
InvSubBytes(), and AddRoundKey(), as defined in
FIPS-197.

The result is placed into VSR[VRT+32], representing the
final state of the inverse cipher operation.

Special Registers Altered:
None

4 VRT VRA VRB 1352
0 6 11 16 21 31

4 VRT VRA VRB 1353
0 6 11 16 21 31

Register Data Layout for vncipher & vncipherlast

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I436

Version 3.1
Vector AES SubBytes VX-form

vsbox VRT,VRA

if MSR.VEC=0 then Vector_Unavailable()

State ← VSR[VRA+32]

VSR[VRT+32] ← SubBytes(State)

Let State be the contents of VSR[VRA+32], representing
the intermediate state array during AES cipher
operation.

The result of applying the transform, SubBytes() on
State, as defined in FIPS-197, is placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA /// 1480
0 6 11 16 21 31

Register Data Layout for vsbox

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 437

Version 3.1
6.11.2 Vector SHA-256 and SHA-512 Sigma Instructions
This section describes a set of instructions that support the Federal Information Processing Standards Publication
180-3 Secure Hash Standard.

Vector SHA-512 Sigma Doubleword VX-form

vshasigmad VRT,VRA,ST,SIX

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 src ← VSR[VRA+32].dword[i]

 if ST=0 & SIX.bit[2×i]=0 then // SHA-512 σ0 function
 VSR[VRT+32].dword[i] ← (src >>> 1) ^

 VSR[VRT+32].dword[i] ← (src >>> 8) ^

 VSR[VRT+32].dword[i] ← (src >> 7)

 if ST=0 & SIX.bit[2×i]=1 then // SHA-512 σ1 function
 VSR[VRT+32].dword[i] ← (src >>> 19) ^

 VSR[VRT+32].dword[i] ← (src >>> 61) ^

 VSR[VRT+32].dword[i] ← (src >> 6)

 if ST=1 & SIX.bit[2×i]=0 then // SHA-512 Σ0 function
 VSR[VRT+32].dword[i] ← (src >>> 28) ^

 VSR[VRT+32].dword[i] ← (src >>> 34) ^

 VSR[VRT+32].dword[i] ← (src >>> 39)

 if ST=1 & SIX.bit[2×i]=1 then // SHA-512 Σ1 function
 VSR[VRT+32].dword[i] ← (src >>> 14) ^

 VSR[VRT+32].dword[i] ← (src >>> 18) ^

 VSR[VRT+32].dword[i] ← (src >>> 41)

end

For each integer value i from 0 to 1, do the following.
When ST=0 and bit 2×i of SIX is 0, a SHA-512 σ0
function is performed on the contents of
doubleword element i of VSR[VRA+32] and the
result is placed into doubleword element i of
VSR[VRT+32].

When ST=0 and bit 2×i of SIX is 1, a SHA-512 σ1
function is performed on the contents of
doubleword element i of VSR[VRA+32] and the
result is placed into doubleword element i of
VSR[VRT+32].

When ST=1 and bit 2×i of SIX is 0, a SHA-512 Σ0
function is performed on the contents of
doubleword element i of VSR[VRA+32] and the
result is placed into doubleword element i of
VSR[VRT+32].

When ST=1 and bit 2×i of SIX is 1, a SHA-512 Σ1
function is performed on the contents of
doubleword element i of VSR[VRA+32] and the
result is placed into doubleword element i of
VSR[VRT+32].

Bits 1 and 3 of SIX are reserved.

Special Registers Altered:
None

4 VRT VRA ST SIX 1730
0 6 11 16 17 21 31

Register Data Layout for vshasigmad

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I438

Version 3.1
Vector SHA-256 Sigma Word VX-form

vshasigmaw VRT,VRA,ST,SIX

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 src ← VSR[VRA+32].word[i]

 if ST=0 & SIX.bit[i]=0 then // SHA-256 σ0 function
 VSR[VRT+32].word[i] ← (src >>> 7) ^

 VSR[VRT+32].word[i] ← (src >>> 18) ^

 VSR[VRT+32].word[i] ← (src >> 3)

 if ST=0 & SIX.bit[i]=1 then // SHA-256 σ1 function
 VSR[VRT+32].word[i] ← (src >>> 17) ^

 VSR[VRT+32].word[i] ← (src >>> 19) ^

 VSR[VRT+32].word[i] ← (src >> 10)

 if ST=1 & SIX.bit[i]=0 then // SHA-256 Σ0 function
 VSR[VRT+32].word[i] ← (src >>> 2) ^

 VSR[VRT+32].word[i] ← (src >>> 13) ^

 VSR[VRT+32].word[i] ← (src >>> 22)

 if ST=1 & SIX.bit[i]=1 then // SHA-256 Σ1 function
 VSR[VRT+32].word[i] ← (src >>> 6) ^

 VSR[VRT+32].word[i] ← (src >>> 11) ^

 VSR[VRT+32].word[i] ← (src >>> 25)

end

For each integer value i from 0 to 3, do the following.
When ST=0 and bit i of SIX is 0, a SHA-256 σ0
function is performed on the contents of word
element i of VSR[VRA+32] and the result is placed
into word element i of VSR[VRT+32].

When ST=0 and bit i of SIX is 1, a SHA-256 σ1
function is performed on the contents of word
element i of VSR[VRA+32] and the result is placed
into word element i of VSR[VRT+32].

When ST=1 and bit i of SIX is 0, a SHA-256 Σ0
function is performed on the contents of word
element i of VSR[VRA+32] and the result is placed
into word element i of VSR[VRT+32].

When ST=1 and bit i of SIX is 1, a SHA-256 Σ1
function is performed on the contents of word
element i of VSR[VRA+32] and the result is placed
into word element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA ST SIX 1666
0 6 11 16 17 21 31

Register Data Layout for vshasigmaw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 439

Version 3.1
6.11.3 Vector Binary Polynomial Multiplication Instructions
This section describes a set of binary polynomial multi-
ply-sum instructions. Corresponding elements are mul-
tiplied and the exclusive-OR of each even-odd pair of

products sum, useful for a variety of finite field arithme-
tic operations.

Vector Polynomial Multiply-Sum Byte VX-form

vpmsumb VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 prod[i].bit[0:14] ← 0

 srcA ← VSR[VRA+32].byte[i]

 srcB ← VSR[VRB+32].byte[i]

 do j = 0 to 7

 do k = 0 to j

 gbit ← srcA.bit[k] & srcB.bit[j-k]

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

 do j = 8 to 14

 do k = j-7 to 7

 gbit ← (srcA.bit[k] & srcB.bit[j-k])

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

end

do i = 0 to 7

 VSR[VRT+32].hword[i] ← 0b0 || (prod[2×i] ^ prod[2×i+1])

end

For each integer value i from 0 to 15, do the following.
Let prod[i] be the 15-bit result of a binary
polynomial multiplication of the contents of byte
element i of VSR[VRA+32] and the contents of byte
element i of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:15 of halfword element i of
VSR[VRT+32]. Bit 0 of halfword element i of
VSR[VRT+32] is set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1032
0 6 11 16 21 31

Register Data Layout for vpmsumb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I440

Version 3.1
Vector Polynomial Multiply-Sum Halfword VX-form

vpmsumh VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 prod.bit[0:30] ← 0

 srcA ← VSR[VRA+32].halfword[i]

 srcB ← VSR[VRB+32].halfword[i]

 do j = 0 to 15

 do k = 0 to j

 gbit ← srcA.bit[k] & srcB.bit[j-k]

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

 do j = 16 to 30

 do k = j-15 to 15

 gbit ← (srcA.bit[k] & srcB.bit[j-k])

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

end

VSR[VRT+32].word[0] ← 0b0 || (prod[0] ^ prod[1])

VSR[VRT+32].word[1] ← 0b0 || (prod[2] ^ prod[3])

VSR[VRT+32].word[2] ← 0b0 || (prod[4] ^ prod[5])

VSR[VRT+32].word[3] ← 0b0 || (prod[6] ^ prod[7])

For each integer value i from 0 to 7, do the following.
Let prod[i] be the 31-bit result of a binary
polynomial multiplication of the contents of
halfword element i of VSR[VRA+32] and the
contents of halfword element i of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:31 of word element i of
VSR[VRT+32]. Bit 0 of word element i of
VSR[VRT+32] is set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1096
0 6 11 16 21 31

Register Data Layout for vpmsumh

src1 VSR[VRA+32].hword[0] VSR[VRA+32].hword[1] VSR[VRA+32].hword[2] VSR[VRA+32].hword[3] VSR[VRA+32].hword[4] VSR[VRA+32].hword[5] VSR[VRA+32].hword[6] VSR[VRA+32].hword[7]

src2 VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 441

Version 3.1
Vector Polynomial Multiply-Sum Word VX-form

vpmsumw VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 prod[i].bit[0:62] ← 0

 srcA ← VSR[VRA+32].word[i]

 srcB ← VSR[VRB+32].word[i]

 do j = 0 to 31

 do k = 0 to j

 gbit ← srcA.bit[k] & srcB.bit[j-k]

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

 do j = 32 to 62

 do k = j-31 to 31

 gbit ← (srcA.bit[k] & srcB.bit[j-k])

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

end

VSR[VRT+32].dword[0] ← 0b0 || (prod[0] ^ prod[1])

VSR[VRT+32].dword[1] ← 0b0 || (prod[2] ^ prod[3])

For each integer value i from 0 to 3, do the following.
Let prod[i] be the 63-bit result of a binary
polynomial multiplication of the contents of word
element i of VSR[VRA+32] and the contents of word
element i of VSR[VRB+32].

For each integer value i from 0 to 1, do the following.
The exclusive-OR of prod[2×i] and prod[2×i+1] is
placed in bits 1:63 of doubleword element i of
VSR[VRT+32]. Bit 0 of doubleword element i of
VSR[VRT+32] is set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1160
0 6 11 16 21 31

Register Data Layout for vpmsumw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 32 64 96 127
Power ISA™ I442

Version 3.1
Vector Polynomial Multiply-Sum Doubleword VX-form

vpmsumd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 prod[i].bit[0:126] ← 0

 srcA ← VSR[VRA+32].doubleword[i]

 srcB ← VSR[VRB+32].doubleword[i]

 do j = 0 to 63

 do k = 0 to j

 gbit ← srcA.bit[k] & srcB.bit[j-k]

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

 do j = 64 to 126

 do k = j-63 to 63

 gbit ← (srcA.bit[k] & srcB.bit[j-k])

 prod[i].bit[j] ← prod[i].bit[j] ^ gbit

 end

 end

end

VSR[VRT+32] ← 0b0 || (prod[0] ^ prod[1])

Let prod[0] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 0
of VSR[VRA+32] and the contents of doubleword
element 0 of VSR[VRB+32].

Let prod[1] be the 127-bit result of a binary polynomial
multiplication of the contents of doubleword element 1
of VSR[VRA+32] and the contents of doubleword
element 1 of VSR[VRB+32].

The exclusive-OR of prod[0] and prod[1] is placed in
bits 1:127 of VSR[VRT+32]. Bit 0 of VSR[VRT+32] is set to
0.

Special Registers Altered:
None

4 VRT VRA VRB 1224
0 6 11 16 21 31

Register Data Layout for vpmsumd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32]

0 64 127
Chapter 6. Vector Facility 443

Version 3.1
6.11.4 Vector Permute & Exclusive-OR Instruction
Vector Permute & Exclusive-OR VA-form

vpermxor VRT,VRA,VRB,VRC

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 indexA ← VSR[VRC+32].byte[i].bit[0:3]

 indexB ← VSR[VRC+32].byte[i].bit[4:7]

 src1 ← VSR[VRA+32].byte[indexA]

 src2 ← VSR[VRB+32].byte[indexB]

 VSR[VRT+32].byte[i] ← src1 ^ src2

end

For each integer value i from 0 to 15, do the following.
Let indexA be the contents of bits 0:3 of byte
element i of VSR[VRC+32].

Let indexB be the contents of bits 4:7 of byte
element i of VSR[VRC+32].

The exclusive OR of the contents of byte element
indexA of VSR[VRA+32] and the contents of byte
element indexB of VSR[VRB+32] is placed into byte
element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB VRC 45
0 6 11 16 21 26 31

Register Data Layout for vpermxor

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I444

Version 3.1
6.12 Vector Bit Manipulation Instructions

6.12.1 Vector Gather Bits Instructions
Vector Gather Bits by Bytes by Doubleword VX-form

vgbbd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 do j = 0 to 7

 do k = 0 to 7

 b ← VSR[VRB+32].dword[i].byte[k].bit[j]

 VSR[VRT+32].dword[i].byte[j].bit[k] ← b

 end

 end

end

Let src be the contents of VSR[VRB+32], composed of
two doubleword elements numbered 0 and 1.

Let each doubleword element be composed of eight
bytes numbered 0 through 7.

An 8-bit × 8-bit bit-matrix transpose is performed on
the contents of each doubleword element of
VSR[VRB+32] (see Figure 104).

For each integer value i from 0 to 1, do the following,
The contents of bit 0 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 0 of doubleword element i of
VSR[VRT+32].

The contents of bit 1 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 1 of doubleword element i of
VSR[VRT+32].

The contents of bit 2 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 2 of doubleword element i of
VSR[VRT+32].

The contents of bit 3 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 3 of doubleword element i of
VSR[VRT+32].

The contents of bit 4 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 4 of doubleword element i of
VSR[VRT+32].

The contents of bit 5 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 5 of doubleword element i of
VSR[VRT+32].

The contents of bit 6 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 6 of doubleword element i of
VSR[VRT+32].

The contents of bit 7 of each byte of doubleword
element i of VSR[VRB+32] are concatenated and
placed into byte 7 of doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

Figure 104.Vector Gather Bits by Bytes by Doubleword

4 VRT /// VRB 1292
0 6 11 16 21 31

Register Data Layout for vgbbd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127

VSR[VRB+32]

VSR[VRT+32]
Chapter 6. Vector Facility 445

Version 3.1
Vector Gather every Nth Bit VX-form

vgnb RT,VRB,N

if MSR.VEC=0 then Vector_Unavailable()

if N<2 | N>7 then

 result ← UNDEFINED

else do

 j ← 0

 result ← 0x0000_0000_0000_0000

 do i = 0 to 127 by N

 result.bit[j] ← VSR[VRB+32].bit[i]

 j ← j + 1

 end

end

GPR[RT] ← result

Starting with bit 0, the contents of every Nth bit of
VSR[VRB+32] are concatenated and placed into GPR[RT].

N can be any value between 2 and 7, inclusive.

Special Registers Altered:
None

4 RT // N VRB 1228
0 6 11 13 16 21 31

Register Data Layout for vpmsumd

src VSR[VRB+32]

result GPR[RT]

0 63
Power ISA™ I446

Version 3.1
6.12.2 Vector Count Leading Zeros Instructions
Vector Count Leading Zeros Byte VX-form

vclzb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 n ← 0

 do while n < 8

 if VSR[VRB+32].byte[i].bit[n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].byte[i] ← n

end

For each integer value i from 0 to 15, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of byte element i of VSR[VRB+32] is
placed into byte element i of VSR[VRT+32]. This
number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Halfword
VX-form

vclzh VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 n ← 0

 do while n < 16

 if VSR[VRB+32].hword[i].bit[n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].hword[i] ← n

end

For each integer value i from 0 to 7, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of halfword element i of
VSR[VRB+32] is placed into halfword element i of
VSR[VRT+32]. This number ranges from 0 to 16,
inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1794
0 6 11 16 21 31 4 VRT /// VRB 1858

0 6 11 16 21 31

Register Data Layout for vclzb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vclzh

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 447

Version 3.1
Vector Count Leading Zeros Word VX-form

vclzw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 n ← 0

 do while n < 32

 if VSR[VRB+32].word[i].bit[n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].word[i] ← n

end

For each integer value i from 0 to 3, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of word element i of VSR[VRB+32]
is placed into word element i of VSR[VRT+32]. This
number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1922
0 6 11 16 21 31

Register Data Layout for vclzw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I448

Version 3.1
Vector Count Leading Zeros Doubleword
VX-form

vclzd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 n ← 0

 do while (n<64) & (VSR[VRB+32].dword[i].bit[n]=0b0)

 n ← n + 1

 end

 VSR[VRT+32].dword[i] ← n

end

For each integer value i from 0 to 1, do the following.
A count of the number of consecutive zero bits
starting at bit 0 of doubleword element i of
VSR[VRB+32] is placed into doubleword element i
of VSR[VRT+32]. This number ranges from 0 to 64,
inclusive.

Special Registers Altered:
None

Vector Count Leading Zeros Doubleword
under bit Mask VX-form

vclzdm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 count ← 0

 do j = 0 to 63

 if VSR[VRB+32].dword[i].bit[j]=1 then do

 if VSR[VRA+32].dword[i].bit[i]=1 then break

 count ← count + 1

 end

 end

 VSR[VRT+32].dword[i] ← EXTZ64(count)

end

For each integer value i from 0 to 1, starting on the
left, count the number of consecutive 0 bits in
doubleword element i of VSR[VRA+32] corresponding to
1 bits in doubleword element i of VSR[VRB+32]. Place
count in doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT /// VRB 1986
0 6 11 16 21 31

4 VRT VRA VRB 1924
0 6 11 16 21 31

Register Data Layout for vclzd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127

Register Data Layout for vclzdm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 449

Version 3.1
6.12.3 Vector Count Trailing Zeros Instructions
Vector Count Trailing Zeros Byte VX-form

vctzb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 n ← 0

 do while n < 8

 if VSR[VRB+32].byte[i].bit[7-n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].byte[i] ← CHOP8(EXTZ(n))

end

For each integer value i from 0 to 15, do the following.
A count of the number of consecutive zero bits
starting at bit 7 of byte element i of VSR[VRB+32] is
placed into byte element i of VSR[VRT+32]. This
number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

Vector Count Trailing Zeros Halfword VX-form

vctzh VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 n ← 0

 do while n < 16

 if VSR[VRB+32].hword[i].bit[15-n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].hword[i] ← CHOP16(EXTZ(n))

end

For each integer value i from 0 to 7, do the following.
A count of the number of consecutive zero bits
starting at bit 15 of halfword element i of
VSR[VRB+32] is placed into halfword element i of
VSR[VRT+32]. This number ranges from 0 to 16,
inclusive.

Special Registers Altered:
None

4 VRT 28 VRB 1538
0 6 11 16 21 31

4 VRT 29 VRB 1538
0 6 11 16 21 31

Register Data Layout for vctzb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vctzh

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I450

Version 3.1
Vector Count Trailing Zeros Word VX-form

vctzw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 n ← 0

 do while n < 32

 if VSR[VRB+32].word[i].bit[31-n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].word[i] ← CHOP32(EXTZ(n))

end

For each integer value i from 0 to 3, do the following.
A count of the number of consecutive zero bits
starting at bit 31 of word element i of VSR[VRB+32]
is placed into word element i of VSR[VRT+32]. This
number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

4 VRT 30 VRB 1538
0 6 11 16 21 31

Register Data Layout for vctzw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127
Chapter 6. Vector Facility 451

Version 3.1
Vector Count Trailing Zeros Doubleword
VX-form

vctzd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 n ← 0

 do while n < 64

 if VSR[VRB+32].dword[i].bit[63-n] = 0b1 then leave

 n ← n + 1

 end

 VSR[VRT+32].dword[i] ← CHOP64(EXTZ(n))

end

For each integer value i from 0 to 1, do the following.
A count of the number of consecutive zero bits
starting at bit 63 of doubleword element i of
VSR[VRB+32] is placed into doubleword element i
of VSR[VRT+32]. This number ranges from 0 to 64,
inclusive.

Special Registers Altered:
None

Vector Count Trailing Zeros Doubleword
under bit Mask VX-form

vctzdm VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 count ← 0

 do j = 0 to 63

 if VSR[VRB+32].dword[i].bit[63-j]=1 then do

 if VSR[VRA+32].dword[i].bit[63-i]=1 then break

 count ← count + 1

 end

 end

 VSR[VRT+32].dword[i] ← EXTZ64(count)

end

For each integer value i from 0 to 1, starting on the
right, count the number of consecutive 0 bits in
doubleword element i of VSR[VRA+32] corresponding to
1 bits in doubleword element i of VSR[VRB+32]. Place
count in doubleword element i of VSR[VRT+32].

Special Registers Altered:
None

4 VRT 31 VRB 1538
0 6 11 16 21 31

4 VRT VRA VRB 1988
0 6 11 16 21 31

Register Data Layout for vctzd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127

Register Data Layout for vctzdm

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I452

Version 3.1
6.12.4 Vector Count Leading/Trailing Zero LSB Instructions
Vector Count Leading Zero Least-Significant
Bits Byte VX-form

vclzlsbb RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

count ← 0

do while count < 16

 if VSR[VRB+32].byte[count].bit[7]=1 break

 count ← count + 1

end

GPR[RT] ← EXTZ64(count)

Let count be the number of contiguous leading byte
elements in VSR[VRB+32] having a zero least-significant
bit.

count is placed into GPR[RT].

Special Registers Altered:
None

Vector Count Trailing Zero Least-Significant
Bits Byte VX-form

vctzlsbb RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

count ← 0

do while count < 16

 if VSR[VRB+32].byte[15-count].bit[7]=1 break

 count ← count + 1

end

GPR[RT] ← EXTZ64(count)

Let count be the number of contiguous trailing byte
elements of VSR[VRB+32] having a zero least-significant
bit.

count is placed into GPR[RT].

Special Registers Altered:
None

4 RT 0 VRB 1538
0 6 11 16 21 31

4 RT 1 VRB 1538
0 6 11 16 21 31

Register Data Layout for vclzlsbb & vctzlsbb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result GPR[RT]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 453

Version 3.1
6.12.5 Vector Bit Insert/Extract Instructions
Vector Parallel Bits Deposit Doubleword VX-form

vpdepd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 VSR[VRT+32].dword[i] ← 0

 m ← 0

 k ← 0

 do while(m < 64)

 if VSR[VRB+32].dword[i].bit[63-m]=1 then do

 result ← VSR[VRA+32].dword[i].bit[63-k]

 VSR[VRT+32].dword[i].bit[63-m] ← result

 k ← k + 1

 end

 m ← m + 1

 end

end

For each integer value i from 0 to 1, do the following.
Let n be the number of bits in doubleword element
i of VSR[VRB+32] that contain a 1.

The contents of the rightmost n bits of doubleword
element i of VSR[VRA+32] are placed into
doubleword element i of VSR[VRT+32] under

control of the mask in doubleword element i of
VSR[VRB+32] as follows.

– The contents of bit 63 of doubleword element
i of VSR[VRA+32] are placed into the bit in
doubleword element i of VSR[VRT+32]
corresponding to the rightmost bit in
doubleword element i of VSR[VRB+32] that
contains a 1 (if any),

– the contents of bit 62 of doubleword element i
of VSR[VRA+32] are placed into the bit in
doubleword element i of VSR[VRT+32]
corresponding to the second rightmost bit in
doubleword element i of VSR[VRB+32] that
contains a 1 (if any), and so forth until

– the contents of bit 64-n of doubleword
element i of VSR[VRA+32] are placed into the
bit in doubleword element i of VSR[VRT+32]
corresponding to the leftmost bit in
doubleword element i of VSR[VRB+32] that
contains a 1 (if any).

The contents of bits in doubleword element i of
VSR[VRT+32] corresponding to bits in doubleword
element i of VSR[VRB+32] that contain a 0 are set
to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1485
0 6 11 16 21 31

Register Data Layout for vpdepd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I454

Version 3.1
Vector Parallel Bits Extract Doubleword VX-form

vpextd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 result ← 0

 m ← 0

 k ← 0

 do while(m < 64)

 if VSR[VRB+32].dword[i].bit[63-m]=1 then do

 result.bit[63-k] ← VSR[VRA+32].dword[i].bit[63-m]

 k ← k + 1

 end

 m ← m + 1

 end

 VSR[VRT+32].dword[i] ← result

end

For each integer value i from 0 to 1, do the following.
Starting from the right, for each bit in doubleword
element i of VSR[VRB+32] that is equal to 1, place
the contents of the corresponding bit in
doubleword element i of VSR[VRA+32] into the
rightmost unoccupied bit of doubleword element i
of VSR[VRT+32]. Any bits in doubleword element i
of VSR[VRT+32]to the left of the most-significant bit
copied are set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1421
0 6 11 16 21 31

Register Data Layout for vpextd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 455

Version 3.1
6.12.6 Vector Centrifuge Instruction
Vector Centrifuge Doubleword VX-form

vcfuged VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 ptr0 ← 0

 ptr1 ← 0

 do j = 0 to 63

 if VSR[VRB+32].dword[i].bit[j]=0b0 then do

 result.bit[ptr0] ← VSR[VRA+32].dword[i].bit[j]

 ptr0 ← ptr0 + 1

 end

 if VSR[VRB+32].dword[i].bit[63-j]=1 then do

 result.bit[63-ptr1] ← VSR[VRA+32].dword[i].bit[63-j]

 ptr1 ← ptr1 + 1

 end

 end

 VSR[VRT+32].dword[i] ← result

end

For each doubleword element i of VSR[VRA+32], the
bits whose corresponding bits in the mask in
doubleword element i of VSR[VRB+32] equal 1 are
placed in the rightmost bits in doubleword element i of
VSR[VRT+32], maintaining their original relative order.
The other bits in doubleword element i of VSR[VRA+32]
are placed in the leftmost bits in doubleword element i
of VSR[VRT+32], maintaining their original relative order.

Special Registers Altered:
None

4 VRT VRA VRB 1357
0 6 11 16 21 31

Register Data Layout for vcfuged

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I456

Version 3.1
6.12.7 Vector Population Count Instructions
Vector Population Count Byte VX-form

vpopcntb VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 n ← 0

 do j = 0 to 7

 n ← n + VSR[VRB+32].byte[i].bit[j]

 end

 VSR[VRT+32].byte[i] ← n

end

For each integer value i from 0 to 15, do the following.
A count of the number of bits set to 1 in byte
element i of VSR[VRB+32] is placed into byte
element i of VSR[VRT+32]. This number ranges
from 0 to 8, inclusive.

Special Registers Altered:
None

Vector Population Count Halfword VX-form

vpopcnth VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 n ← 0

 do j = 0 to 15

 n ← n + VSR[VRB+32].hword[i].bit[j]

 end

 VSR[VRT+32].hword[i] ← n

end

For each integer value i from 0 to 7, do the following.
A count of the number of bits set to 1 in halfword
element i of VSR[VRB+32] is placed into halfword
element i of VSR[VRT+32]. This number ranges
from 0 to 16, inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1795
0 6 11 16 21 31

4 VRT /// VRB 1859
0 6 11 16 21 31

Register Data Layout for vpopcntb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vpopcnth

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 457

Version 3.1
Vector Population Count Word VX-form

vpopcntw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 n ← 0

 do j = 0 to 31

 n ← n + VSR[VRB+32].word[i].bit[j]

 end

 VSR[VRT+32].word[i] ← n

end

For each integer value i from 0 to 3, do the following.
A count of the number of bits set to 1 in word
element i of VSR[VRB+32] is placed into word
element i of VSR[VRT+32]. This number ranges
from 0 to 32, inclusive.

Special Registers Altered:
None

Vector Population Count Doubleword VX-form

vpopcntd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 n ← 0

 do j = 0 to 63

 n ← n + VSR[VRB+32].dword[i].bit[j]

 end

 VSR[VRT+32].dword[i] ← n

end

For each integer value i from 0 to 1, do the following.
A count of the number of bits set to 1 in
doubleword element i of VSR[VRB+32] is placed
into doubleword element i of VSR[VRT+32]. This
number ranges from 0 to 64, inclusive.

Special Registers Altered:
None

4 VRT /// VRB 1923
0 6 11 16 21 31

4 VRT /// VRB 1987
0 6 11 16 21 31

Register Data Layout for vpopcntw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vpopcntd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I458

Version 3.1
6.12.8 Vector Parity Byte Instructions
Vector Parity Byte Word VX-form

vprtybw VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 s ← 0

 do j = 0 to 3

 s ← s ^ VSR[VRB+32].word[i].byte[j].bit[7]

 end

 VSR[VRT+32].word[i] ← CHOP32(EXTZ(s))

end

For each integer value i from 0 to 3, do the following
If the sum of the least significant bit in each byte
sub-element of word element i of VSR[VRB+32] is
odd, the value 1 is placed into word element i of
VSR[VRT+32]; otherwise the value 0 is placed into
word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Parity Byte Doubleword VX-form

vprtybd VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 s ← 0

 do j = 0 to 7

 s ← s ^ VSR[VRB+32].dword[i].byte[j].bit[7]

 end

 VSR[VRT+32].dword[i] ← CHOP64(EXTZ(s))

end

For each integer value i from 0 to 1, do the following
If the sum of the least significant bit in each byte
sub-element of doubleword element i of
VSR[VRB+32] is odd, the value 1 is placed into
doubleword element i of VSR[VRT+32]; otherwise
the value 0 is placed into doubleword element i of
VSR[VRT+32].

Special Registers Altered:
None

4 VRT 8 VRB 1538
0 6 11 16 21 31

4 VRT 9 VRB 1538
0 6 11 16 21 31

Register Data Layout for vprtybw

src1 VSR[VRA+32].word[0] VSR[VRA+32].word[1] VSR[VRA+32].word[2] VSR[VRA+32].word[3]

src2 VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vprtybd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 459

Version 3.1
Vector Parity Byte Quadword VX-form

vprtybq VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

s ← 0

do j = 0 to 15

 s ← s ^ VSR[VRB+32].byte[j].bit[7]

end

VSR[VRT+32] ← CHOP128(EXTZ(s))

If the sum of the least significant bit in each byte
element of VSR[VRB+32] is odd, the value 1 is placed
into VSR[VRT+32]; otherwise the value 0 is placed into
VSR[VRT+32].

Special Registers Altered:
None

4 VRT 10 VRB 1538
0 6 11 16 21 31

Register Data Layout for vprtybq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 64 127
Power ISA™ I460

Version 3.1
6.12.9 Vector Bit Permute Instructions
Vector Bit Permute Doubleword VX-form

vbpermd VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 do j = 0 to 7

 index ← VSR[VRB+32].dword[i].byte[j]

 if index < 64 then

 perm.bit[j] ← VSR[VRA+32].dword[i].bit[index]

 else

 perm.bit[j] ← 0

 end

 VSR[VRT+32].dword[i] ← EXTZ64(perm)

end

For each integer value i from 0 to 1, and for each
integer value j from 0 to 7, do the following.

Let index be the contents of byte sub-element j of
doubleword element i of VSR[VRB+32].

If index is less than 64, then the contents of bit
index of doubleword i of VSR[VRA+32] are placed
into bit 56+j of doubleword element i of
VSR[VRT+32]. Otherwise, bit 56+j of doubleword
element i of VSR[VRT+32] is set to 0.

The contents of bits 0:55 of doubleword element i
of VSR[VRT+32] are set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1484
0 6 11 16 21 31

Register Data Layout for vbpermd

src1 VSR[VRA+32].dword[0] VSR[VRA+32].dword[1]

src2 VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 461

Version 3.1
Vector Bit Permute Quadword VX-form

vbpermq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 index ← VSR[VRB+32].byte[i]

 if index < 128 then

 perm.bit[i] ← VSR[VRA+32].bit[index]

 else

 perm.bit[i] ← 0

end

VSR[VRT+32].dword[0] ← CHOP64(EXTZ(perm))

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

For each integer value i from 0 to 15, do the following.

Let index be the contents of byte element i of
VSR[VRB+32].

If index is less than 128, then the contents of bit
index of VSR[VRA+32] are placed into bit 48+i of
doubleword element i of VSR[VRT+32]. Otherwise,
bit 48+i of doubleword element i of VSR[VRT+32] is
set to 0.

The contents of bits 0:47 of VSR[VRT+32] are set to 0.
The contents of bits 64:127 of VSR[VRT+32] are set to 0.

Special Registers Altered:
None

4 VRT VRA VRB 1356
0 6 11 16 21 31

Register Data Layout for mtvsrqm

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 64 127

The fact that the permuted bit is 0 if the corresponding index value exceeds 127 permits the permuted bits to be
selected from a 256-bit quantity, using a single index register. For example, assume that the 256-bit quantity Q,
from which the permuted bits are to be selected, is in registers v2 (high-order 128 bits of Q) and v3 (low-order
128 bits of Q), that the index values are in register v1, with each byte of v1 containing a value in the range 0:255,
and that each byte of register v4 contains the value 128. The following code sequence selects eight permuted
bits from Q and places them into the low-order byte of v6.

vbpermq v6,v1,v2 # select from high-order half of Q
vxor v0,v1,v4 # adjust index values
vbpermq v5,v0,v3 # select from low-order half of Q
vor v6,v6,v5 # merge the two selections

Programming Note
Power ISA™ I462

Version 3.1
6.13 Vector Mask Manipulation Instructions

6.13.1 Vector Mask Move Instructions
The Vector Mask Move instructions support creating a field mask in a VSR from a bit mask specified either in a GPR
or as an immediate operand.

Move to VSR Byte Mask VX-form

mtvsrbm VRT,RB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 if GPR[RB].bit[48+i]=0 then

 VSR[VRT+32].byte[i] ← 0x00

 else

 VSR[VRT+32].byte[i] ← 0xFF

end

Let bm be the contents of bits 48:63 of GPR[RB].

For each integer value i from 0 to 15, do the following.
The contents of byte element i of VSR[VRT+32] is
set to all 0s if bit i of bm is equal to 0.

The contents of byte element i of VSR[VRT+32] is
set to all 1s if bit i of bm is equal to 1.

Special Registers Altered:
None

Move to VSR Halfword Mask VX-form

mtvsrhm VRT,RB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 if GPR[RB].bit[56+i]=0 then

 VSR[VRT+32].hword[i] ← 0x0000

 else

 VSR[VRT+32].hword[i] ← 0xFFFF

end

Let bm be the contents of bits 56:63 of GPR[RB].

For each integer value i from 0 to 7, do the following.
The contents of halfword element i of VSR[VRT+32]
is set to all 0s if bit i of bm is equal to 0.

The contents of halfword element i of VSR[VRT+32]
is set to all 1s if bit i of bm is equal to 1.

Special Registers Altered:
None

4 VRT 16 RB 1602
0 6 11 16 21 31

4 VRT 17 RB 1602
0 6 11 16 21 31

Register Data Layout for vcntmbb

src GPR[RB]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vcntmbh

src GPR[RB]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 463

Version 3.1
Move to VSR Word Mask VX-form

mtvsrwm VRT,RB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 if GPR[RB].bit[60+i]=0 then

 VSR[VRT+32].word[i] ← 0x0000_0000

 else

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

end

Let bm be the contents of bits 60:63 of GPR[RB].

For each integer value i from 0 to 3, do the following.
The contents of word element i of VSR[VRT+32] is
set to all 0s if bit i of bm is equal to 0.

The contents of word element i of VSR[VRT+32] is
set to all 1s if bit i of bm is equal to 1.

Special Registers Altered:
None

Move to VSR Doubleword Mask VX-form

mtvsrdm VRT,RB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 if GPR[RB].bit[62+i]=0 then

 VSR[VRT+32].dword[i] ← 0x0000_0000_0000_0000

 else

 VSR[VRT+32].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

end

Let bm be the contents of bits 62:63 of GPR[RB].

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of
VSR[VRT+32] is set to all 0s if bit i of bm is equal to
0.

The contents of doubleword element i of
VSR[VRT+32] is set to all 1s if bit i of bm is equal to
1.

Special Registers Altered:
None

4 VRT 18 RB 1602
0 6 11 16 21 31

4 VRT 19 RB 1602
0 6 11 16 21 31

Register Data Layout for mtvsrwm

src GPR[RB]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for mtvsrdm

src GPR[RB]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Power ISA™ I464

Version 3.1
Move to VSR Quadword Mask VX-form

mtvsrqm VRT,RB

if MSR.VEC=0 then Vector_Unavailable()

if GPR[RB].bit[63]=0 then

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

else

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

Let bm be the contents of bits 63 of GPR[RB].

The contents of VSR[VRT+32] is set to all 0s if bm is
equal to 0.

The contents of VSR[VRT+32] is set to all 1s if bm is
equal to 1.

Special Registers Altered:
None

Move To VSR Byte Mask Immediate DX-form

mtvsrbmi VRT,bm

if MSR.VEC=0 then Vector_Unavailable()

bm.bit[0:9] ← b0

bm.bit[10:14] ← b1

bm.bit[15] ← b2

do i = 0 to 15

 if bm.bit[i]=0 then

 VSR[VRT+32].byte[i] ← 0x00

 else

 VSR[VRT+32].byte[i] ← 0xFF

end

Let bm be the concatenation of b0, b1 and b2.

For each integer value i from 0 to 15, do the following.
The contents of byte element i of VSR[VRT+32] is
set to all 0s if bit i of bm is equal to 0.

The contents of byte element i of VSR[VRT+32] is
set to all 1s if bit i of bm is equal to 1.

Special Registers Altered:
None

4 VRT 20 RB 1602
0 6 11 16 21 31

4 VRT b1 b0 10 b2
0 6 11 16 26 31

Register Data Layout for mtvsrqm

src GPR[RB]

result VSR[VRT+32]

0 64 127

Register Data Layout for mtvsrbmi

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 6. Vector Facility 465

Version 3.1
6.13.2 Vector Expand Mask Instructions
The Vector Expand Mask instructions support creating a field mask by replicating the contents of bit 0 of each
element in the source VSR to all bits in the corresponding element in the target VSR.

Vector Expand Byte Mask VX-form

vexpandbm VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 if VSR[VRB+32].byte[i].bit[0]=1 then

 VSR[VRT+32].byte[i] ← 0xFF

 end

 VSR[VRT+32].byte[i] ← 0x00

end

For each integer value i from 0 to 15, do the following.
Let bmi be the contents of bit 0 of byte element i
of VSR[VRB+32].

The contents of byte element i of VSR[VRT+32] are
set to all 0s if bmi is equal to 0.

The contents of byte element i of VSR[VRT+32] are
set to all 1s if bmi is equal to 1.

Special Registers Altered:
None

Vector Expand Halfword Mask VX-form

vexpandhm VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 if VSR[VRB+32].hword[i].bit[0]=1 then

 VSR[VRT+32].hword[i] ← 0xFFFF

 else

 VSR[VRT+32].hword[i] ← 0x0000

end

For each integer value i from 0 to 7, do the following.
Let bmi be the contents of bit 0 of halfword
element i of VSR[VRB+32],

The contents of halfword element i of VSR[VRT+32]
are set to all 0s if bmi is equal to 0.

The contents of halfword element i of VSR[VRT+32]
are set to all 1s if bmi is equal to 1.

Special Registers Altered:
None

4 VRT 0 VRB 1602
0 6 11 16 21 31

4 VRT 1 VRB 1602
0 6 11 16 21 31

Register Data Layout for vexpandbm

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vexpandhm

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I466

Version 3.1
Vector Expand Word Mask VX-form

vexpandwm VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 if VSR[VRB+32].word[i].bit[0]=1 then

 VSR[VRT+32].word[i] ← 0xFFFF_FFFF

 else

 VSR[VRT+32].word[i] ← 0x0000_0000

end

For each integer value i from 0 to 3, do the following.
Let bmi be the contents of bit 0 of word element i
of VSR[VRB+32].

The contents of word element i of VSR[VRT+32] are
set to all 0s if bmi is equal to 0.

The contents of word element i of VSR[VRT+32] are
set to all 1s if bmi is equal to 1.

Special Registers Altered:
None

Vector Expand Doubleword Mask VX-form

vexpanddm VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 if VSR[VRB+32].dword[i].bit[0]=1 then

 VSR[VRT+32].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 else

 VSR[VRT+32].dword[i] ← 0x0000_0000_0000_0000

end

For each integer value i from 0 to 1, do the following.
Let bmi be the contents of bit 0 of doubleword
element i of VSR[VRB+32],

The contents of doubleword element i of
VSR[VRT+32] are set to all 0s if bmi is equal to 0.

The contents of doubleword element i of
VSR[VRT+32] are set to all 1s if bmi is equal to 1.

Special Registers Altered:
None

4 VRT 2 VRB 1602
0 6 11 16 21 31

4 VRT 3 VRB 1602
0 6 11 16 21 31

Register Data Layout for vcntmbw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result VSR[VRT+32].word[0] VSR[VRT+32].word[1] VSR[VRT+32].word[2] VSR[VRT+32].word[3]

0 32 64 96 127

Register Data Layout for vcntmbd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result VSR[VRT+32].dword[0] VSR[VRT+32].dword[1]

0 64 127
Chapter 6. Vector Facility 467

Version 3.1
Vector Expand Quadword Mask VX-form

vexpandqm VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

if VSR[VRB+32].bit[0]=1 then

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

else

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

Let bmi be the contents of bit 0 of VSR[VRB+32].

The contents of VSR[VRT+32] are set to all 0s if bmi is
equal to 0.

The contents of VSR[VRT+32] are set to all 1s if bmi is
equal to 1.

Special Registers Altered:
None

4 VRT 4 VRB 1602
0 6 11 16 21 31

Register Data Layout for vexpandqm

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I468

Version 3.1
6.13.3 Vector Count Mask Bits Instructions
The Vector Count Mask Bits instructions count the number of true (or false) mask bits (bit 0 of each element) in a
VSR and place the count in the leftmost byte of a GPR (i.e., can be used by Load VSX Vector with Length and Store
Vector with Length).

Vector Count Mask Bits Byte VX-form

vcntmbb RT,VRB,MP

if MSR.VEC=0 then Vector_Unavailable()

count = 0

do i = 0 to 15

 count ← count + EXTZ8(VSR[VRB+32].byte[i].bit[0]=MP)

end

GPR[RT] ← count << 56

The number of byte elements having bit 0 set to the
value MP in VSR[VRB+32] is placed into bits 0:7 of
GPR[RT]. Bits 8:63 of GPR[RT] are set to 0.

Special Registers Altered:
None

Vector Count Mask Bits Halfword VX-form

vcntmbh RT,VRB,MP

if MSR.VEC=0 then Vector_Unavailable()

count = 0

do i = 0 to 7

 count ← count + EXTZ64(VSR[VRB+32].hword[i].bit[0]=MP)

GPR[RT] ← count << 57

The number of halfword elements having bit 0 set to
the value MP in VSR[VRB+32] is placed into bits 0:6 of
GPR[RT]. Bits 7:63 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT 12 MP VRB 1602
0 6 11 15 16 21 31

4 RT 13 MP VRB 1602
0 6 11 15 16 21 31

Register Data Layout for vcntmbb

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result GPR[RT]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vcntmbh

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result GPR[RT]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 469

Version 3.1
Vector Count Mask Bits Word VX-form

vcntmbw RT,VRB,MP

if MSR.VEC=0 then Vector_Unavailable()

count = 0

do i = 0 to 3

 count ← count + EXTZ64(VSR[VRB+32].word[i].bit[0]=MP)

end

GPR[RT] ← count << 58

The number of word elements having bit 0 set to the
value MP in VSR[VRB+32] is placed into bits 0:5 of
GPR[RT]. Bits 6:63 of GPR[RT] are set to 0.

Special Registers Altered:
None

Vector Count Mask Bits Doubleword VX-form

vcntmbd RT,VRB,MP

if MSR.VEC=0 then Vector_Unavailable()

count = 0

do i = 0 to 1

 count ← count + EXTZ64(VSR[VRB+32].dword[i].bit[0]=MP)

end

GPR[RT] ← count << 59

The number of doubleword elements having bit 0 set
to the value MP in VSR[VRB+32] is placed into bits 0:4 of
GPR[RT]. Bits 5:63 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT 14 MP VRB 1602
0 6 11 15 16 21 31

4 RT 15 MP VRB 1602
0 6 11 15 16 21 31

Register Data Layout for vcntmbw

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result GPR[RT]

0 32 64 96 127

Register Data Layout for vcntmbd

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result GPR[RT]

0 64 127
Power ISA™ I470

Version 3.1
6.13.4 Vector Extract Mask Instructions
The Vector Extract Mask instructions extracts bit 0 of each element from a VSR into a GPR.

Vector Extract Byte Mask VX-form

vextractbm RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 GPR[RT].bit[48+i] ← VSR[VRB+32].byte[i].bit[0]

end

GPR[RT].bit[0:47] ← 0

The contents of bit 0 of each byte element of
VSR[VRB+32] are concatenated and placed into bits
48:63 of GPR[RT]. Bits 0:47 of GPR[RT] are set to 0.

Special Registers Altered:
None

Vector Extract Halfword Mask VX-form

vextracthm RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 7

 GPR[RT].bit[56+i] ← VSR[VRB+32].hword[i].bit[0]

end

GPR[RT].bit[0:55] ← 0

The contents of bit 0 of each halfword element of
VSR[VRB+32] are concatenated and placed into bits
56:63 of GPR[RT]. Bits 0:55 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT 8 VRB 1602
0 6 11 16 21 31

4 RT 9 VRB 1602
0 6 11 16 21 31

Register Data Layout for vextractbm

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result GPR[RT]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Register Data Layout for vextracthm

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result GPR[RT]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 471

Version 3.1
Vector Extract Word Mask VX-form

vextractwm RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 3

 GPR[RT].bit[60+i] ← VSR[VRB+32].word[i].bit[0]

end

GPR[RT].bit[0:59] ← 0

The contents of bit 0 of each word element of
VSR[VRB+32] are concatenated and placed into bits
60:63 of GPR[RT]. Bits 0:59 of GPR[RT] are set to 0.

Special Registers Altered:
None

Vector Extract Doubleword Mask VX-form

vextractdm RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 1

 GPR[RT].bit[62+i] ← VSR[VRB+32].dword[i].bit[0]

end

GPR[RT].bit[0:61] ← 0

The contents of bit 0 of each doubleword element of
VSR[VRB+32] are concatenated and placed into bits
62:63 of GPR[RT]. Bits 0:61 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT 10 VRB 1602
0 6 11 16 21 31

4 RT 11 VRB 1602
0 6 11 16 21 31

Register Data Layout for vextractwm

src VSR[VRB+32].word[0] VSR[VRB+32].word[1] VSR[VRB+32].word[2] VSR[VRB+32].word[3]

result GPR[RT]

0 32 64 96 127

Register Data Layout for vextractdm

src VSR[VRB+32].dword[0] VSR[VRB+32].dword[1]

result GPR[RT]

0 64 127
Power ISA™ I472

Version 3.1
Vector Extract Quadword Mask VX-form

vextractqm RT,VRB

if MSR.VEC=0 then Vector_Unavailable()

GPR[RT] ← EXTZ64(VSR[VRB+32].bit[0])

The contents of bit 0 of VSR[VRB+32] are placed into bit
63 of GPR[RT]. Bits 0:62 of GPR[RT] are set to 0.

Special Registers Altered:
None

4 RT 12 VRB 1602
0 6 11 16 21 31

Register Data Layout for vextractqm

src VSR[VRB+32]

result GPR[RT]

0 64 127
Chapter 6. Vector Facility 473

Version 3.1
6.14 Vector String Instructions

6.14.1 Vector String Isolate Instructions
Vector String Isolate Byte Right-justified
VX-form

vstribr VRT,VRB (Rc=0)
vstribr. VRT,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

null_found ← 0

while(!null_found) do i = 0 to 15

 null_found ← (VSR[VRB+32].byte[15-i]=0)

 VSR[VRT+32].byte[15-i] ← VSR[VRB+32].byte[15-i]

end

do j = i to 15

 VSR[VRT+32].byte[15-j] ← 0

end

if Rc=1 then

 CR.field[6] ← 0b00 || null_found || 0b0

From right-to-left, the contents of each byte element of
VSR[VRB+32] are placed into the corresponding byte
element in VSR[VRT+32]. If a byte element in
VSR[VRB+32] is found to contain 0, the corresponding
byte element and all byte elements to the left of that
byte element in VSR[VRT+32] are set to 0.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector String Isolate Byte Left-justified
VX-form

vstribl VRT,VRB (Rc=0)
vstribl. VRT,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

null_found ← 0

while(!null_found) do i = 0 to 15

 null_found ← (VSR[VRB+32].byte[i]=0)

 VSR[VRT+32].byte[i] ← VSR[VRB+32].byte[i]

end

do j = i to 15

 VSR[VRT+32].byte[j] ← 0

end

if Rc=1 then

 CR.field[6] ← 0b00 || null_found || 0b0

From left-to-right, the contents of each byte element of
VSR[VRB+32] are placed into the corresponding byte
element in VSR[VRT+32]. If a byte element in
VSR[VRB+32] is found to contain 0, the corresponding
byte element and all byte elements to the right of that
byte element in VSR[VRT+32] are set to 0.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT 1 VRB Rc 13
0 6 11 16 21 22 31

4 VRT 0 VRB Rc 13
0 6 11 16 21 22 31

Register Data Layout for vstribr[.] & vstribl[.]

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

result .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I474

Version 3.1
Vector String Isolate Halfword Right-justified
VX-form

vstrihr VRT,VRB (Rc=0)
vstrihr. VRT,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

null_found ← 0

while(!null_found) do i = 0 to 7

 null_found ← (VSR[VRB+32].hword[7-i] = 0)

 VSR[VRT+32].hword[7-i] ← VSR[VRB+32].hword[7-i]

end

do j = i to 7

 VSR[VRT+32].hword[7-j] ← 0

end

if Rc=1 then

 CR.field[6] ← 0b00 || null_found || 0b0

From right-to-left, the contents of each halfword
element of VSR[VRB+32] are placed into the
corresponding halfword element in VSR[VRT+32]. If a
halfword element in VSR[VRB+32] is found to contain 0,
the corresponding halfword element and all halfword
elements to the left of that halfword element in
VSR[VRT+32] are set to 0.

Special Registers Altered:
CR field 6 (if Rc=1)

Vector String Isolate Halfword Left-justified
VX-form

vstrihl VRT,VRB (Rc=0)
vstrihl. VRT,VRB (Rc=1)

if MSR.VEC=0 then Vector_Unavailable()

null_found ← 0

while(!null_found) do i = 0 to 7

 null_found ← (VSR[VRB+32].hword[i] = 0)

 VSR[VRT+32].hword[i] ← VSR[VRB+32].hword[i]

end

do j = i to 7

 VSR[VRT+32].hword[j] ← 0

end

if Rc=1 then

 CR.field[6] ← 0b00 || null_found || 0b0

From left-to-right, the contents of each halfword
element of VSR[VRB+32] are placed into the
corresponding halfword element in VSR[VRT+32]. If a
halfword element in VSR[VRB+32] is found to contain 0,
the corresponding halfword element and all halfword
elements to the right of that halfword element in
VSR[VRT+32] are set to 0.

Special Registers Altered:
CR field 6 (if Rc=1)

4 VRT 3 VRB Rc 13
0 6 11 16 21 22 31

4 VRT 2 VRB Rc 13
0 6 11 16 21 22 31

Register Data Layout for vstrihr[.] & vstrihl[.]

src VSR[VRB+32].hword[0] VSR[VRB+32].hword[1] VSR[VRB+32].hword[2] VSR[VRB+32].hword[3] VSR[VRB+32].hword[4] VSR[VRB+32].hword[5] VSR[VRB+32].hword[6] VSR[VRB+32].hword[7]

result VSR[VRT+32].hword[0] VSR[VRT+32].hword[1] VSR[VRT+32].hword[2] VSR[VRT+32].hword[3] VSR[VRT+32].hword[4] VSR[VRT+32].hword[5] VSR[VRT+32].hword[6] VSR[VRT+32].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 6. Vector Facility 475

Version 3.1
6.14.2 Vector Clear Bytes Instructions
Vector Clear Leftmost Bytes VX-form

vclrlb VRT,VRA,RB

if MSR.VEC=0 then Vector_Unavailable()

N ← (GPR[RB] > 15) ? 16: GPR[RB]

do i = 0 to N-1

 VSR[VRT+32].byte[15-i] ← VSR[VRA+32].byte[15-i]

end

do i = N to 15

 VSR[VRT+32].byte[15-i] ← 0x00

end

Let N be the integer value in GPR[RB], or the integer
value 16 if the integer value in GPR[RB] is greater than
15.

The contents of VSR[VRA+32] are placed into
VSR[VRT+32] with the leftmost 16-N bytes of VSR[VRT+32]
set to 0.

Special Registers Altered
None

Vector Clear Rightmost Bytes VX-form

vclrrb VRT,VRA,RB

if MSR.VEC=0 then Vector_Unavailable()

N ← (GPR[RB] > 15) ? 16: GPR[RB]

do i = 0 to N-1

 VSR[VRT+32].byte[i] ← VSR[VRA+32].byte[i]

end

do i = N to 15

 VSR[VRT+32].byte[i] ← 0x00

end

Let N be the integer value in GPR[RB], or the integer
value 16 if the integer value in GPR[RB] is greater than
15.

The contents of VSR[VRA+32] are placed into
VSR[VRT+32] with the rightmost 16-N bytes of
VSR[VRT+32] set to 0.

Special Registers Altered
None

4 VRT VRA RB 397
0 6 11 16 21 31

4 VRT VRA RB 461
0 6 11 16 21 31

Register Data Layout for vclrlb & vclrrb

src1 VSR[VRA+32]

src2 GPR[RB]

result VSR[VRT+32]

0 64 127
Power ISA™ I476

Version 3.1
6.15 Decimal Integer Instructions

A valid encoding of a packed decimal integer value
requires the following properties.

– Each of the 31 4-bit digits of the operand’s
magnitude (bits 0:123) must be in the range 0-9.

– The sign code (bits 124:127) must be in the range
10-15.

Source operands with sign codes of 0b1010, 0b1100,
0b1110, and 0b1111 are interpreted as positive values.

Source operands with sign codes of 0b1011 and 0b1101
are interpreted as negative values.

Positive and zero results are encoded with a either
sign code of 0b1100 or 0b1111, depending on the
preferred sign (indicated as an immediate operand).

Negative results are encoded with a sign code of
0b1101.

6.15.1 Decimal Integer Arithmetic Instructions
The Decimal Integer Arithmetic instructions operate on
decimal integer values only in signed packed decimal
format. Signed packed decimal format consists of 31
4-bit base-10 digits of magnitude and a trailing 4-bit

sign code. Operations are performed as
sign-magnitude, and produce a decimal result placed
in a VSR (i.e., bcdadd, bcdsub).
Chapter 6. Vector Facility 477

Version 3.1
Decimal Add Modulo VX-form

bcdadd. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← bcd_ADD(VSR[VRA+32],VSR[VRB+32],PS)

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← ox_flag | inv_flag

Let src1 be the decimal integer value in VSR[VRA+32].
Let src2 be the decimal integer value in VSR[VRB+32].

src1 is added to src2.

If the unbounded result is equal to zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.

The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VSR[VRT+32].

The sign code is placed in bits 124:127 of VSR[VRT+32].

If either src1 or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR
field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

Decimal Subtract Modulo VX-form

bcdsub. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← bcd_SUBTRACT(VSR[VRA+32],VSR[VRB+32],PS)

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← ox_flag | inv_flag

Let src1 be the decimal integer value in VSR[VRA+32].
Let src2 be the decimal integer value in VSR[VRB+32].

src1 is subtracted by src2.

If the unbounded result is equal to zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

CR field 6 is set to 0b0010.

If the unbounded result is greater than zero, do the
following.

If PS=0, the sign code of the result is set to 0b1100.
If PS=1, the sign code of the result is set to 0b1111.

If the operation overflows, CR field 6 is set to
0b0101. Otherwise, CR field 6 is set to 0b0100.

If the unbounded result is less than zero, do the
following.

The sign code of the result is set to 0b1101.

If the operation overflows, CR field 6 is set to
0b1001. Otherwise, CR field 6 is set to 0b1000.

The low-order 31 digits of the magnitude of the result
are placed in bits 0:123 of VSR[VRT+32].

The sign code is placed in bits 124:127 of VSR[VRT+32].

If either src1 or src2 is an invalid encoding of a 31-digit
signed decimal value, the result is undefined and CR
field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 PS 1
0 6 11 16 21 22 23 31

4 VRT VRA VRB 1 PS 65
0 6 11 16 21 22 23 31
Power ISA™ I478

Version 3.1

Register Data Layout for bcdadd. & bcdsub.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127

Software should take care when interoperability
with the Decimal Floating-Point facilities is
required. The register format defined for 31-digit
signed decimal values employed by bcdadd. and
bcdsub. is a single 128-bit VSR. The register
format defined for 31-digit signed decimal values
employed by the Decimal Floating-Point
instructions ddedpdq[.] and denbcdq[.] is a pair of
64-bit FPRs. xxpermdi can be used to convert
between the two register formats as well as move
data beween the FPR and VSR halves of the
Vector-Scalar Registers.

gew and fmrgow are provided to support direct
move operations in 32-bit mode.

bcdsub. vTmp,vA,vB,0 can be used to compare
decimal operands vA and vB. Bits 0:2 of CR field 6
will be set to indicate vA is less than vB (LT), vA is
greater than vB (GT), and vA is equal to vB (EQ).

bcdsub. vTmp,vA,vA,0 can be used to test if an
operand vA is an invalid encoding of a decimal
value.

Programming Note

Programming Note

When bit 3 of CR field 6 is set to 1 by bcdadd. or
bcdsub., either an overflow occurred or one or
both operands are not valid encodings of decimal
values. Discerning whether an overflow occurred
can be accomplished by performing the other
decimal instruction on the operands. For example,
if bcdadd. caused bit 3 of CR field 6 to be set to 1,
performing bcdsub. on the same set of operands
will cause bit 3 of CR field 6 to be set to 1 if and only
if one or both of the operands is an invalid
encoding. If bit 3 of CR field 6 is not set by bcdsub.
then the bcdadd. can be asserted to have
overflowed. Likewise, bcdadd. can be used in a
similar manner to determine the cause of bit 3 of CR
field 6 getting set by a bcdsub..

Programming Note
Chapter 6. Vector Facility 479

Version 3.1
6.15.2 Decimal Integer Format Conversion Instructions
Decimal Convert From National VX-form

bcdcfn. VRT,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

src_sign ← (VSR[VRB+32].hword[7] = 0x002D)

eq_flag ← 1

/* check for valid sign */

inv_flag ← (VSR[VRB+32].hword[7] != 0x002B) &

 (VSR[VRB+32].hword[7] != 0x002D)

do i = 0 to 6

 eq_flag ← eq_flag & (VSR[VRB+32].hword[i] = 0x0030)

 /* check for valid digit */

 inv_flag ← inv_flag | (VSR[VRB+32].hword[i] < 0x0030)

 | (VSR[VRB+32].hword[i] > 0x0039)

end

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

do i = 0 to 23

 result.nibble[i] ← 0x0

end

do i = 0 to 6

 result.nibble[i+24] ← VSR[VRB+32].hword[i].nibble[3]

end

result.nibble[31] ← (src_sign=0) ? ((PS=0) ? 0xC : 0xF) : 0xD

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag

Let src be the national decimal value in VSR[VRB+32].

src is placed in VSR[VRT+32] in packed decimal format.

A valid encoding of a national decimal value requires
the following.

– The contents of halfword 7 (sign code) must be
either 0x002B or 0x002D.

– The contents of halfwords 0 to 6 must be in the
range 0x0030 to 0x0039.

National decimal values having a sign code of 0x002B
are interpreted as positive values.

National decimal values having a sign code of 0x002D
are interpreted as negative values.

For each integer value i from 0 to 23, do the following.
The contents of nibble element i of VSR[VRT+32]
are set to 0x0.

For each integer value i from 0 to 6, do the following.
The contents of nibble 3 of halfword element i of
src are placed into nibble element i+24 of
VSR[VRT+32].

For PS=0, the contents of nibble element 31 (i.e., sign
code) of VSR[VRT+32] are set to 0xC for positive values
and to 0xD for negative values.

For PS=1, the contents of nibble element 31 (i.e., sign
code) of VSR[VRT+32] are set to 0xF for positive values
and to 0xD for negative values.

CR field 6 is set to reflect src compared to zero.

If src is an invalid encoding of a national decimal
value, the contents of VSR[VRT+32] are undefined and
CR field 6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 7 VRB 1 PS 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdcfn.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I480

Version 3.1
Decimal Convert From Zoned VX-form

bcdcfz. VRT,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

/* check for valid sign */

inv_flag ← ((VSR[VRB+32].byte[15].nibble[0] < 0xA) & (PS=1)) |

 (VSR[VRB+32].byte[15].nibble[1] > 0x9)

/* check for valid digits */

MIN ← (PS=0) ? 0x30 : 0xF0

MAX ← (PS=0) ? 0x39 : 0xF9

do i = 0 to 14

 inv_flag ← inv_flag | (VSR[VRB+32].byte[i] < MIN)

 | (VSR[VRB+32].byte[i] > MAX)

end

if PS=0 then

 src_sign ← VSR[VRB+32].nibble[30].bit[1]

else

 src_sign ← (VSR[VRB+32].nibble[30] = 0b1011) |

 (VSR[VRB+32].nibble[30] = 0b1101)

eq_flag ← 1

do i = 0 to 14

 result.nibble[i] ← 0x0

end

do i = 0 to 15

 result.nibble[i+15] ← VSR[VRB+32].byte[i].nibble[1]

 eq_flag ← eq_flag & (VSR[VRB+32].byte[i].nibble[1]=0x0)

end

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

result.nibble[31] ← (src_sign=0) ? 0xC : 0xD

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag

Let src be the zoned decimal value in VSR[VRB+32].

src is placed in VSR[VRT+32] in packed decimal format.

When PS=0, do the following.
A valid encoding of a zoned decimal value
requires the following.

– The contents of bits 0:3 of byte 15 (sign code)
can be any value in the range 0x0 to 0xF.

– The contents of bits 0:3 of bytes 0 to 14 must
be the value 0x3.

– The contents of bits 4:7 of bytes 0 to 15 must
be a value in the range 0x0 to 0x9.

Zoned decimal values having a sign code of 0x0,
0x1, 0x2, 0x3, 0x8, 0x9, 0xA, or 0xB are interpreted
as positive values.

Zoned decimal values having a sign code of 0x4,
0x5, 0x6, 0x7, 0xC, 0xD, 0xE, or 0xF are interpreted
as negative values.

When PS=1, do the following.
A valid encoding of a zoned decimal source
operand requires the following.

– The contents of bits 0:3 of byte 15 (sign code)
must be a value in the range 0xA to 0xF.

– The contents of bits 0:3 of bytes 0 to 14 must
be the value 0xF.

– The contents of bits 4:7 of bytes 0 to 15 must
be a value in the range 0x0 to 0x9.

Zoned decimal source operands having a sign
code of 0xA, 0xC, 0xE, or 0xF are interpreted as
positive values.

Zoned decimal source operands having a sign
code of 0xB or 0xD are interpreted as negative
values.

Positive packed decimal results are returned with a
sign code of 0xC.

Negative packed decimal results are returned with a
sign code of 0xD.

For each integer value i from 0 to 14,
The contents of nibble element i of VSR[VRT+32]
are set to 0x0.

For each integer value i from 0 to 15,
The contents of nibble 1 of byte element i of src
are placed into nibble element i+15 of
VSR[VRT+32].

CR field 6 is set to reflect src compared to zero.

If src is an invalid encoding of a zoned decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 6 VRB 1 PS 385
0 6 11 16 21 22 23 31
Chapter 6. Vector Facility 481

Version 3.1
Register Data Layout for bcdcfz.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I482

Version 3.1
Decimal Convert To National VX-form

bcdctn. VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

ox_flag ← 0

do i = 0 to 23

 ox_flag ← ox_flag | (VSR[VRB+32].nibble[i] != 0x0)

end

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

src.sign ← (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

do i = 0 to 6

 result.hword[i].nibble[0:2] ← 0x003

 result.hword[i].nibble[3] ← VSR[VRB+32].nibble[i+24]

end

result.hword[7] ← (src_sign=1) ? 0x002D : 0x002B

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let src be the packed decimal value in VSR[VRB+32].

src is placed into VSR[VRT+32] in national decimal
format.

A valid encoding of a signed packed decimal value
requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble 0-30 must be a value
in the range 0x0 to 0x9.

Packed decimal values with sign codes of 0xA, 0xC,
0xE, or 0xF are interpreted as positive values.

Packed decimal values with sign codes of 0xB or 0xD
are interpreted as negative values.

Values greater in magnitude than 107 - 1 are too large
to be represented in national decimal format.

For each integer value i from 0 to 6, do the following.
The value 0x003 is placed into nibbles 0:2 of
halfword element i of VSR[VRT+32].

The contents of nibble element i+24 of
VSR[VRB+32] are placed into nibble 3 of halfword
element i of VSR[VRT+32].

The contents of halfword element 7 (i.e., sign code) of
VSR[VRT+32] are set to 0x002B for positive values and to
0x002D for negative values.

CR field 6 is set to reflect src compared to zero,
including whether or not src is too large to be
represented in national decimal format.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 5 VRB 1 / 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdctn.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 483

Version 3.1
Decimal Convert To Zoned VX-form

bcdctz. VRT,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

ox_flag ← 0

do i = 0 to 15

 ox_flag ← ox_flag | (VSR[VRB+32].nibble[i] != 0x0)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

do i = 0 to 14

 result.byte[i].nibble[0] ← (PS=0) ? 0x3 : 0xF

 result.byte[i].nibble[1] ← VSR[VRB+32].nibble[i+15]

end

if src.sign=0 then

 result.byte[15].nibble[0] ← (PS=0) ? 0x3 : 0xC

else

 result.byte[15].nibble[0] ← (PS=0) ? 0x7 : 0xD

result.byte[15].nibble[1] ← VSR[VRB+32].nibble[30]

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let src be the packed decimal value in VSR[VRB+32].

src is placed into VSR[VRT+32] in zoned decimal
format.

A valid encoding of a signed packed decimal value
requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble 0-30 must be a value
in the range 0x0 to 0x9.

Packed decimal values with sign codes of 0xA, 0xC,
0xE, or 0xF are interpreted as positive values.

Packed decimal values with sign codes of 0xB or 0xD
are interpreted as negative values.

Values greater in magnitude than 1016 - 1 are too large
to be represented in zoned decimal format.

For PS=0, do the following.
The leftmost nibble of each digit 0-14 of the zoned
decimal result is set to 0x3.

Positive zoned decimal results are returned with a
sign code of 0x3.

Negative zoned decimal results are returned with
a sign code of 0x7.

For PS=1, do the following.
The leftmost nibble of each digit 0-14 of the zoned
decimal result is set to 0xF.

Positive zoned decimal results are returned with a
sign code of 0xC.

Negative zoned decimal results are returned with
a sign code of 0xD.

For each integer value i from 0 to 15, do the following.
The rightmost nibble of each digit i of the zoned
decimal result is set to the contents of nibble i+15
of src.

The result is placed into VSR[VRT+32].

CR field 6 is set to reflect src compared to zero,
including whether or not src is too large to be
represented in zoned decimal format.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 4 VRB 1 PS 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdctz.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I484

Version 3.1
Decimal Convert From Signed Quadword VX-form

bcdcfsq. VRT,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

ox_flag ← (EXTS(VSR[VRB+32]) > 1031-1) |

 (EXTS(VSR[VRB+32]) < -1031-1)

lt_flag ← (EXTS(VSR[VRB+32]) < 0)

gt_flag ← (EXTS(VSR[VRB+32]) > 0)

eq_flag ← (EXTS(VSR[VRB+32]) = 0)

if ox_flag=0 then

 result ← bcd_CONVERT_FROM_SI128(EXTS(VSR[VRB+32]),PS)

else

 result ← 0xUUUU_UUUU_UUUU_UUUU_UUUU_UUUU_UUUU_UUUU

VSR[VRT+32] ← ox_flag ? undefined : result

CR.bit[56] ← lt_flag

CR.bit[57] ← gt_flag

CR.bit[58] ← eq_flag

CR.bit[59] ← ox_flag

Let src be the signed integer value in VSR[VRB+32].

src is placed into VSR[VRT+32] in signed packed
decimal format.

For PS=0, the contents of nibble element 31 (i.e., sign
code) of VSR[VRT+32] are set to 0xC for values greater
than or equal to 0 and to 0xD for values less than 0.

For PS=1, the contents of nibble element 31 (i.e., sign
code) of VSR[VRT+32] are set to 0xF for values greater
than or equal to 0 and to 0xD for values less than 0.

If the signed integer value in VSR[VRB+32] is greater
than 1031-1 or less than -1031-1, the value is too large
to be represented in packed decimal format, and the
contents of VSR[VRT+32] are undefined.

CR field 6 is set to reflect src compared to zero and
whether or not src is too large in magnitude to be
represented in packed decimal format.

Special Registers Altered:
CR field 6

4 VRT 2 VRB 1 PS 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdcfsq.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 485

Version 3.1
Decimal Convert To Signed Quadword VX-form
bcdctsq. VRT,VRB

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

result ← si128_CONVERT_FROM_BCD(VSR[VRB+32])

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag

Let src be the packed decimal value in VSR[VRB+32].

src is placed into VSR[VRT+32] in signed integer format.

A valid encoding of a signed packed decimal value
requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble, 0-30, must be a
value in the range 0x0 to 0x9.

Packed decimal values with sign codes of 0xA, 0xC,
0xE, or 0xF are interpreted as positive values.

Packed decimal values with sign codes of 0xB or 0xD
are interpreted as negative values.

CR field 6 is set to reflect src compared to zero.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 0 VRB 1 / 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdctsq.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I486

Version 3.1
Vector Multiply-by-10 Unsigned Quadword
VX-form

vmul10uq VRT,VRA

if MSR.VEC=0 then Vector_Unavailable()

src ← EXTZ(VSR[VRA+32])

prod ← (src << 3) + (src << 1)

VSR[VRT+32] ← CHOP128(prod)

Let src be the unsigned integer value in VSR[VRA+32].

The rightmost 128 bits of the product of src multiplied
by the value 10 are placed into VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply-by-10 & write Carry-out
Unsigned Quadword VX-form

vmul10cuq VRT,VRA

if MSR.VEC=0 then Vector_Unavailable()

src ← EXTZ(VSR[VRA+32])

prod ← (src << 3) + (src << 1)

VSR[VRT+32] ← CHOP128(prod >> 128)

Let src be the unsigned integer value in VSR[VRA+32].

The product of src multiplied by the value 10 is shifted
right by 128 bits. The rightmost 128 bits of the shifted
result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA /// 513
0 6 11 16 21 31

4 VRT VRA /// 1
0 6 11 16 21 31

Register Data Layout for vmul10uq & vmul10cuq

src VSR[VRA+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 487

Version 3.1
Vector Multiply-by-10 Extended Unsigned
Quadword VX-form

vmul10euq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src ← EXTZ(VSR[VRA+32])

cin ← EXTZ(VSR[VRB+32].bit[124:127])

prod ← (src << 3) + (src << 1) + cin

VSR[VRT+32] ← CHOP128(prod)

Let src be the unsigned integer value in VSR[VRA+32].

Let cin be the unsigned packed decimal value in bits
124:127 of VSR[VRB+32]. Values of cin greater than 9
are undefined.

The rightmost 128 bits of the sum of cin and the
product of src multiplied by the value 10 are placed
into VSR[VRT+32].

Special Registers Altered:
None

Vector Multiply-by-10 Extended & write
Carry-out Unsigned Quadword VX-form

vmul10ecuq VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

src ← EXTZ(VSR[VRA+32])

cin ← EXTZ(VSR[VRB+32].bit[124:127])

prod ← (src << 3) + (src << 1) + cin

VSR[VRT+32] ← CHOP128(prod>>128)

Let src be the unsigned integer value in VSR[VRA+32].

Let cin be the unsigned packed decimal value in bits
124:127 of VSR[VRA+32]. Values of cin greater than 9
are undefined.

The sum of cin and the product of src multiplied by the
value 10 is shifted right by 128 bits. The rightmost 128
bits of the shifted result is placed into VSR[VRT+32].

Special Registers Altered:
None

4 VRT VRA VRB 577
0 6 11 16 21 31

4 VRT VRA VRB 65
0 6 11 16 21 31

Register Data Layout for vmul10euq & vmul10ecuq

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I488

Version 3.1
6.15.3 Decimal Integer Sign Manipulation Instructions
Decimal Copy Sign VX-form

bcdcpsgn. VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← (VSR[VRA+32].nibble[31] < 0xA) |

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRA+32].nibble[i] > 0x9)

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRA+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

result.nibble[0:30] ← VSR[VRA+32].nibble[0:30]

result.nibble[31] ← VSR[VRB+32].nibble[31]

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag

The decimal value in VSR[VRA+32] is placed into
VSR[VRT+32] with the sign code of the decimal value in
VSR[VRB+32].

CR field 6 is set to reflect the result compared to zero.

If either the decimal value in VSR[VRA+32] or the
decimal value in VSR[VRB+32] is an invalid encoding,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 833
0 6 11 16 21 31

Register Data Layout for bcdcpsgn.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 489

Version 3.1
Decimal Set Sign VX-form

bcdsetsgn. VRT,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

result.nibble[0:30] ← VSR[VRB+32].nibble[0:30]

result.nibble[31] ← (src_sign=0) ? ((PS=0) ? 0xC:0xF) : 0xD

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag

Let src be the packed decimal value in VSR[VRB+32].

Packed decimal values with sign codes of 0xA, 0xC,
0xE, or 0xF are interpreted as positive values.

Packed decimal values with sign codes of 0xB or 0xD
are interpreted as negative values.

If src is negative, src is placed into VSR[VRT+32] with
the sign code set to 0xD.

If src is positive and PS=0, src is placed into
VSR[VRT+32] with the sign code set to 0xC.

If src is positive and PS=1, src is placed into
VSR[VRT+32] with the sign code set to 0xF.

CR field 6 is set to reflect src compared to zero.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT 31 VRB 1 PS 385
0 6 11 16 21 22 23 31

Register Data Layout for bcdsetsgn.

src VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I490

Version 3.1
6.15.4 Decimal Integer Shift and Round Instructions
Decimal Shift VX-form

bcds. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

n ← EXTS(VSR[VRA+32].byte[7])

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

if n > 0 then do // shift left

 shcnt ← (n<32) ? n : 31

 src.nibble[0:30] ← VSR[VRB+32].nibble[0:30]

 src.nibble[31:61] ← 0

 result.nibble[0:30] ← src.data.nibble[shcnt:shcnt+30]

 ox_flag ← (shcnt > 0) & (src.nibble[0:shcnt-1] != 0)

end

else do // shift right

 shcnt ← ((~n+1)<32) ? (~n+1) : 31

 src.nibble[0:30] ← 0

 src.nibble[31:61] ← VSR[VRB+32].nibble[0:30]

 result.nibble[0:30] ← src.nibble[31-shcnt:61-shcnt]

 ox_flag ← 0b0

end

result.nibble[31] ← (src_sign=0) ? ((PS=0) ? 0xC : 0xF) : 0xD

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let n be the signed integer value in byte element 7 of
VSR[VRA+32].

Let src be the signed packed decimal value in
VSR[VRB+32].

A valid encoding of a signed packed decimal value
requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble 0-30 must be a value
in the range 0x0 to 0x9.

Packed decimal source operands with sign codes of
0xA, 0xC, 0xE, or 0xF are interpreted as positive values.

Packed decimal source operands with sign codes of
0xB or 0xD are interpreted as negative values.

If n is greater than zero, src is shifted left n digits.
Zeros are supplied to vacated digits on the right. If any
non-zero digits are shifted out, an overflow occurs.

If n is less than zero, src is shifted right -n digits. Zeros
are supplied to vacated digits on the left.

If the packed decimal value in VSR[VRB+32] is negative,
the sign code of the result is set to 0b1101.

If the packed decimal value in VSR[VRB+32] is positive,
the sign code of the result is set to 0b1100 if PS=0 and is
set to 0b1111 if PS=1.

The shifted result is placed into VSR[VRT+32].

CR field 6 is set to reflect src compared to zero,
including whether or not significant digits were shifted
out when the shift count is positive (i.e., left shift
operation).

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 PS 193
0 6 11 16 21 22 23 31

Register Data Layout for bcds.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 491

Version 3.1
Decimal Unsigned Shift VX-form

bcdus. VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

n ← EXTS(VSR[VRA+32].byte[7])

inv_flag ← 0

do i = 0 to 31

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

eq_flag ← (VSR[VRB+32].nibble[0:31] = 0)

gt_flag ← (eq_flag=0)

if n > 0 then do // shift left

 shcnt ← (n<33) ? n : 32

 src.nibble[0:31] ← VSR[VRB+32]

 src.nibble[32:63] ← 0

 result ← src.nibble[shcnt:shcnt+31]

 ox_flag ← (shcnt > 0) & (src.nibble[0:shcnt-1] != 0)

end

else do // shift right

 shcnt ← ((~n+1)<33) ? (~n+1) : 32

 src.nibble[0:31] ← 0

 src.nibble[32:63] ← VSR[VRB+32]

 result ← src.nibble[32-shcnt:63-shcnt]

 ox_flag ← 0

end

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← 0b0

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let n be the signed integer value in byte element 7 of
VSR[VRA+32].

Let src be the unsigned packed decimal value in
VSR[VRB+32].

A valid encoding of an unsigned packed decimal value
requires the contents of each nibble 0-31 must be a
value in the range 0x0 to 0x9.

If n is greater than zero, src is shifted left n digits.
Zeros are supplied to vacated digits on the right. If any
non-zero digits are shifted out, an overflow occurs.

If n is less than zero, src is shifted right -n digits. Zeros
are supplied to vacated digits on the left.

The shifted result is placed into VSR[VRT+32].

CR field 6 is set to reflect src compared to zero,
including whether or not significant digits were shifted
out when the shift count is positive (i.e., left shift
operation).

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 / 129
0 6 11 16 21 22 23 31

Register Data Layout for bcdus.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I492

Version 3.1
Decimal Shift & Round VX-form

bcdsr. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

n ← EXTS(VSR[VRA+32].byte[7])

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← (eq_flag=0) & (src_sign=1)

gt_flag ← (eq_flag=0) & (src_sign=0)

if n > 0 then do // shift left

 shcnt ← Clamp(n, 0, 31)

 src.nibble[0:30] ← VSR[VRB+32].nibble[0:30]

 src.nibble[31:61] ← 0

 result.nibble[0:30] ← src.nibble[shcnt:shcnt+30]

 ox_flag ← (shcnt > 0) & (src.nibble[0:shcnt-1] != 0)

 g_flag ← 0

end

else do // shift right

 shcnt ← Clamp(~n + 1, 0, 31)

 src.nibble[0:30] ← 0

 src.nibble[31:61] ← VSR[VRB+32].nibble[0:30]

 result.nibble[0:30] ← src.nibble[31-shcnt:61-shcnt]

 ox_flag ← 0

 g_flag ← (shcnt > 0) &

 (EXTZ(src.nibble[62-shcnt]) >= 5)

end

result.nibble[31] ← (src_sign=0) ? ((PS=0) ? 0xC : 0xF) : 0xD

result ← (g_flag=0) ? result : bcd_INCREMENT(result)

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let n be the signed integer value in byte element 7 of
VSR[VRA+32].

Let src be the signed packed decimal value in
VSR[VRB+32].

A valid encoding of a signed packed decimal source
operand requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble 0-30 must be a value
in the range 0x0 to 0x9.

Packed decimal source operands with sign codes of
0xA, 0xC, 0xE, or 0xF are interpreted as positive values.

Packed decimal source operands with sign codes of
0xB or 0xD are interpreted as negative values.

If n is greater than zero, src is shifted left n digits.
Zeros are supplied to vacated digits on the right. If any
non-zero digits are shifted out, an overflow occurs.

If n is less than zero, src is shifted right -n digits. Zeros
are supplied to vacated digits on the left. If the value of
the last nibble shifted out on the right was greater than
or equal to 5, the magnitude of the result is
incremented by 1.

If src is negative, the sign code of the result is set to
0b1101.

If src is positive, the sign code of the result is set to
0b1100 if PS=0 and is set to 0b1111 if PS=1.

The shifted and rounded result is placed into
VSR[VRT+32].

CR field 6 is set to reflect src compared to zero,
including whether or not significant digits were shifted
out when the shift count is positive (i.e., left shift
operation).

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 PS 449
0 6 11 16 21 22 23 31

Register Data Layout for bcdsr.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 493

Version 3.1
6.15.5 Decimal Integer Truncate Instructions
Decimal Truncate VX-form

bcdtrunc. VRT,VRA,VRB,PS

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← (VSR[VRB+32].nibble[31] < 0xA)

do i = 0 to 30

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

length ← VSR[VRA+32].bit[48:63]

ox_flag ← 0

src_sign ← (VSR[VRB+32].nibble[31] = 0xB) |

 (VSR[VRB+32].nibble[31] = 0xD)

eq_flag ← (VSR[VRB+32].nibble[0:30] = 0)

lt_flag ← src_sign & ~eq_flag

gt_flag ← ~src_sign & ~eq_flag

if length < 31 then do

 do i = 0 to 30-length

 if VSR[VRB+32].nibble[i]!=0b0000 then ox_flag ← 1

 result.nibble[i] ← 0b0000

 end

 if length > 0 then do

 do i = 31-length to 30

 result.nibble[i] ← VSR[VRB+32].nibble[i]

 end

 end

end

else result.nibble[0:30] ← VSR[VRB+32].nibble[0:30]

result.nibble[31] ← (src_sign=0) ? ((PS=0) ? 0xC : 0xF) : 0xD

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← inv_flag ? 0b0 : lt_flag

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let length be the integer value in bits 48:63 of
VSR[VRA+32].

Let src be the signed decimal value in VSR[VRB+32].

A valid encoding of a packed decimal source operand
requires the following.

– The contents of nibble 31 (sign code) must be a
value in the range 0xA to 0xF.

– The contents of each nibble 0-30 must be a value
in the range 0x0 to 0x9.

Packed decimal values with sign codes of 0xA, 0xC,
0xE, or 0xF are interpreted as positive values.

Packed decimal values with sign codes of 0xB or 0xD
are interpreted as negative values.

If src is negative, the sign code of the result is set to
0b1101.

If src is positive, the sign code of the result is set to
0b1100 if PS=0 and is set to 0b1111 if PS=1.

src is copied into VSR[VRT+32] with the leftmost
31-length digits each set to 0b0000. If any of the
leftmost 31-length digits of the signed decimal value in
VSR[VRB+32] are non-zero, an overflow occurs.

CR field 6 is set to reflect src compared to zero,
including whether or not significant digits were
truncated.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 PS 257
0 6 11 16 21 22 23 31

Register Data Layout for bcdtrunc.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Power ISA™ I494

Version 3.1
Decimal Unsigned Truncate VX-form

bcdutrunc. VRT,VRA,VRB

if MSR.VEC=0 then Vector_Unavailable()

inv_flag ← 0

do i = 0 to 31

 inv_flag ← inv_flag | (VSR[VRB+32].nibble[i] > 0x9)

end

length ← VSR[VRA+32].bit[48:63]

ox_flag ← 0

eq_flag ← (VSR[VRB+32].nibble[0:31] = 0)

gt_flag ← (VSR[VRB+32].nibble[0:31] != 0)

if length < 32 then do

 do i = 0 to 31-length

 if VSR[VRB+32].nibble[i]!=0b0000 then ox_flag ← 1

 result.nibble[i] ← 0b0000

 end

 if length > 0 then do

 do i = 32-length to 31

 result.nibble[i] ← VSR[VRB+32].nibble[i]

 end

 end

end

else result ← VSR[VRB+32]

VSR[VRT+32] ← inv_flag ? undefined : result

CR.bit[56] ← 0b0

CR.bit[57] ← inv_flag ? 0b0 : gt_flag

CR.bit[58] ← inv_flag ? 0b0 : eq_flag

CR.bit[59] ← inv_flag | ox_flag

Let length be the integer value in bits 48:63 of
VSR[VRA+32].

Let src be the unsigned decimal value in VSR[VRB+32].

A valid encoding of a packed decimal source operand
requires the contents of each nibble 0-31 must be a
value in the range 0x0 to 0x9.

src is copied into VSR[VRT+32] with the leftmost
32-length digits each set to 0b0000. If any of the
leftmost 32-length digits of the signed decimal value in
VSR[VRB+32] are non-zero, an overflow occurs.

CR field 6 is set to reflect src compared to zero,
including whether or not significant digits were
truncated.

If src is an invalid encoding of a packed decimal value,
the contents of VSR[VRT+32] are undefined and CR field
6 is set to 0b0001.

Special Registers Altered:
CR field 6

4 VRT VRA VRB 1 / 321
0 6 11 16 21 22 23 31

Register Data Layout for bcdutrunc.

src1 VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]

0 127
Chapter 6. Vector Facility 495

Version 3.1
6.16 Vector Status and Control Register Instructions

Move To Vector Status and Control Register
VX-form

mtvscr VRB

if MSR.VEC=0 then Vector_Unavailable()

VSCR ← VSR[VRB+32].word[3]

The contents of word element 3 of VSR[VRB+32] are
placed into the VSCR.

Special Registers Altered:
None

Move From Vector Status and Control
Register VX-form

mfvscr VRT

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] ← EXTZ128(VSCR)

The contents of the VSCR are placed into word
element 3 of VSR[VRT+32].

The remaining word elements in VSR[VRT+32] are set to
0.

Special Registers Altered:
None

4 /// /// VRB 1604
0 6 11 16 21 31

4 VRT /// /// 1540
0 6 11 16 21 31

Register Data Layout for mtvscr

src unused VSR[VRB+32].word[3]

result VSCR

0 96 127

Register Data Layout for mfvscr

src VSCR

result 0x0000_0000 0x0000_0000 0x0000_0000 VSR[VRT+32].word[3]

0 32 64 96 127
Power ISA™ I496

Version 3.1
Chapter 7. Vector-Scalar Extension Facility

7.1 Introduction

7.1.1 Overview of the
Vector-Scalar Extension
Vector-Scalar Extension (VSX) provides facilities
supporting vector and scalar binary floating-point
operations. The following VSX features are provided to
increase opportunities for vectorization.

– A unified register file, a set of Vector-Scalar
Registers (VSR), supporting both scalar and vector
operations is provided, eliminating the overhead of
vector-scalar data transfer through storage.

– Support for word-aligned storage accesses for
both scalar and vector operations is provided.

– Robust support for IEEE-754 for both vector and
scalar floating-point operations is provided.

7.1.1.1 Combining the Floating-Point Registers
(FPR) defined in Chapter 4. Floating-Point Facility and
the Vector Registers (VR) defined in Chapter 6. Vector
Facility provides additional registers to support more
aggressive compiler optimizations for both vector and
scalar operations.Compatibility with Float-
ing-Point and Decimal Floating-Point
Operations
The instruction sets defined in Chapter 4.
Floating-Point Facility and Chapter 5. Decimal
Floating-Point retain their definition with one primary
difference. The FPRs are mapped to doubleword
element 0 of VSRs 0-31. The contents of doubleword 1
of the VSR corresponding to a source FPR specified
by an instruction are ignored. The contents of
doubleword 1 of a VSR corresponding to the target
FPR specified by an instruction are set to 0.

7.1.1.2 Compatibility with Vector Oper-
ations
The instruction set defined in Chapter 6. Vector
Facility, retains its definition with one primary
difference. The VRs are mapped to VSRs 32-63.

Application binary interfaces extended to support
VSX require special care of vector data written to
VSRs 0-31 (i.e., VSRs corresponding to FPRs).
Legacy scalar function calls employ
doubleword-based loads and stores to preserve
the contents of any nonvolatile registers, This has
the adverse effect of not preserving the contents of
doubleword 1 of these VSRs.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note
Chapter 7. Vector-Scalar Extension Facility 497

Version 3.1
7.2 VSX Registers

7.2.1 Vector-Scalar Registers
Sixty-four 128-bit VSRs are provided. See Figure 105
All VSX floating-point computations and other data
manipulation are performed on data residing in
Vector-Scalar Registers, and results are placed into a
VSR.

Depending on the instruction, the contents of a VSR
are interpreted as a sequence of equal-length
elements (words or doublewords) or as a quadword.
Each of the elements is aligned within the VSR, as
shown in Figure 105. Many instructions perform a
given operation in parallel on all elements in a VSR.

Depending on the instruction, a word element can be
interpreted as a signed integer word (SW), an
unsigned integer word (UW), a logical mask value
(MW), or a single-precision floating-point value (SP); a
doubleword element can be interpreted as a
doubleword signed integer (SD), a doubleword
unsigned integer (UD), a doubleword mask (DM), or a
double-precision floating-point value (DP). In the
instructions descriptions, phrases like signed integer
word element are used as shorthand for word element,
interpreted as a signed integer.

Load and Store instructions are provided that transfer
a byte, a specified number of bytes (up to 16), a
halfword, a word, a doubleword, or a quadword
between storage and a VSR, or an octword between
storage and a pair of VSRs.

7.2.1.1 Floating-Point Registers
Chapter 4. Floating-Point Facility provides 32 64-bit
FPRs. Chapter 5. Decimal Floating-Point also employs
FPRs in decimal floating-point (DFP) operations. When
VSX is implemented, the 32 FPRs are mapped to
doubleword 0 of VSRs 0-31. For example, FPR[0] is
located in doubleword element 0 of VSR[0], FPR[1] is
located in doubleword element 0 of VSR[1], and so
forth.

All instructions that operate on an FPR are redefined
to operate on doubleword element 0 of the
corresponding VSR. The contents of doubleword
element 1 of the VSR corresponding to a source FPR
or FPR pair for these instructions are ignored and the
contents of doubleword element 1 of the VSR

corresponding to the target FPR or FPR pair for these
instructions are set to 0.

VSR[0]

VSR[1]

…
…

VSR[62]

VSR[63]
0 127

Figure 105.Vector-Scalar Registers

SQ/UQ/QP/BCD

SD/UD/MD/DP 0 SD/UD/MD/DP 1

SW/UW/MW/SP 0 SW/UW/MW/SP 1 SW/UW/MW/SP 2 SW/UW/MW/SP 3

HP 0 HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7
0 16 32 48 64 80 96 112 127

Figure 106.Vector-Scalar Register Elements
Power ISA™ I498

Version 3.1
VSR[0] FPR[0]

VSR[1] FPR[1]

…
…

VSR[30] FPR[30]

VSR[31] FPR[31]

VSR[32]

VSR[33]

…
…

VSR[62]

VSR[63]

0 63 127

Figure 107.Floating-Point Registers as part of VSRs
Chapter 7. Vector-Scalar Extension Facility 499

Version 3.1
7.2.1.2 Vector Registers

Chapter 6. Vector Facility provides 32 128-bit VRs.
When VSX is implemented, the 32 VRs are mapped to
VSRs 32-63. For example, VR[0] is located in VSR[32],
VR[1] is located in VSR[33], and so forth.

All instructions that operate on a VR are redefined to
operate on the corresponding VSR.

VSR[0]

VSR[1]

…
…

VSR[30]

VSR[31]

VSR[32] VR[0]

VSR[33] VR[1]

…
…

VSR[62] VR[30]

VSR[63] VR[31]

0 127

Figure 108.Vector Registers as part of VSRs
Power ISA™ I500

Version 3.1
7.2.1.3 VSX Accumulators

Eight 512-bit Accumulators (ACC) are provided. Each
ACC contains four 128-bit rows.

ACC[i][0] = ACC[i].bit[0:127]
ACC[i][1] = ACC[i].bit[128:255]
ACC[i][2] = ACC[i].bit[256:383]
ACC[i][3] = ACC[i].bit[384:511]

Each ACC is associated with four VSRs in the
following manner.

ACC[0][0] ↔ VSR[0]
ACC[0][1] ↔ VSR[1]
ACC[0][2] ↔ VSR[2]
ACC[0][3] ↔ VSR[3]

ACC[1][0] ↔ VSR[4]
ACC[1][1] ↔ VSR[5]
ACC[1][2] ↔ VSR[6]
ACC[1][3] ↔ VSR[7]

 : :

ACC[i][0] ↔ VSR[4×i]
ACC[i][1] ↔ VSR[4×i+1]
ACC[i][2] ↔ VSR[4×i+2]
ACC[i][3] ↔ VSR[4×i+3]

 : :

ACC[7][0] ↔ VSR[28]
ACC[7][1] ↔ VSR[29]
ACC[7][2] ↔ VSR[30]
ACC[7][3] ↔ VSR[31]

While the ACCs are treated as separate registers from
the VSRs, ACC[i] may use its associated VSRs 4×i to
4×i+3 as scratch space. That is, when ACC[i] contains
defined data, the contents of VSRs 4×i to 4×i+3 are
undefined until either a VSX Move From ACC
instruction is used to copy the contents of ACC[i] to
VSRs 4×i to 4×i+3 or some other instruction directly
writes to one of these VSRs.

Any instruction that targets any VSR(s) associated with
an ACC causes the contents of that ACC to be
undefined. If the instruction is not xxmfacc, the target
VSR(s) will contain defined data generated by the
instruction, and the contents of the other VSRs
associated with the ACC will be undefined. If the
instruction is xxmfacc, all four VSRs associated with
the ACC will contain defined data if the ACC contained
defined data, and will have undefined contents
otherwise.

Any instruction that targets an ACC causes any
subsequent use of that ACC as a source operand to
be defined, but causes the contents of all VSRs
associated with the ACC to be undefined.

The following instructions can be used to copy the
contents of an ACC into its associated VSRs.

VSX Move From Accumulator (xxmfacc)
The contents of the source ACC are copied
into the VSRs associated with the target ACC.

The following instructions can be used to initialize the
contents of an ACC.

VSX Move To Accumulator (xxmtacc)
The contents of the VSRs associated with the
target ACC are copied into the target ACC.

VSX Set ACC to Zero (xxsetaccz)
The target ACC is set to 0.

[Prefixed Masked] VSX Vector 4-bit Signed
Integer GER (rank-8) ([pm]xvi4ger8)

The sum of the eight outer products of the
4-bit signed integer values in the two vector
source operands are placed into the target
ACC.

[Prefixed Masked] VSX Vector 8-bit Signed/
Unsigned Integer GER (rank-4) ([pm]xvi8ger4)

The sum of the four outer products of the 8-bit
signed and unsigned integer values in the two
vector source operands are placed into the
target ACC.

Application software must strictly adhere to the pro-
gramming model described in this section to guar-
antee compatibility with future versions of the
architecture.

For this version of the architecture, the hardware
implementation provides the effect of ACC[i] and
VSRs 4*i to 4*i+3 logically containing the same
data. Being subject to change in future versions of
this architecture, application software must not rely
on this behavior. However, system software that
handles context save/restore operations need only
save and restore data from and to the VSRs (that
is, the most current data between the VSRs and
associated ACCs will be provided by the hardware
implementation). The Accumulators introduce no
new logical state at this time. However, future ver-
sions of the architecture may define new architec-
tural state or re-define the backing state of the ACC
registers. In turn, this may require changes to the
system software to support programs written
according to this version of the architecture.

Programming Note
Chapter 7. Vector-Scalar Extension Facility 501

Version 3.1
[Prefixed Masked] VSX Vector 16-bit Signed
Integer GER (rank-2) ([pm]xvi16ger2s)

The sum of the two outer products of the
16-bit signed integer values in the two vector
source operands are placed into the target
ACC.

[Prefixed Masked] VSX Vector 16-bit
Floating-Point GER (rank-2) ([pm]xvf16ger2)

The sum of the two outer products of the
16-bit floating-point values in the two vector
source operands are placed into the target
ACC.

[Prefixed Masked] VSX Vector bfloat16 GER
(rank-2) ([pm]xvbf16ger2)

The sum of the two outer products of the
bfloat16 values in the two vector source
operands are placed into the target ACC.

[Prefixed Masked] VSX Vector 32-bit
Floating-Point GER (rank-1) ([pm]xvf32ger)

The outer product of the 32-bit floating-point
values in the two vector source operands is
placed into the target ACC.

[Prefixed Masked] VSX Vector 64-bit
Floating-Point GER (rank-1) ([pm]xvf64ger)

The outer product of the 64-bit floating-point
values in the two vector source operands is
placed into the target ACC.
Power ISA™ I502

Version 3.1
7.2.2 Floating-Point Status and Control Register
The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point
exceptions and records status resulting from the
floating-point operations. Bits 0:19 and 32:55 are
status bits. Bits 56:63 are control bits.

The exception status bits in the FPSCR (bits 35:44,
53:55) are sticky; that is, once set to 1 they remain set
to 1 until they are set to 0 by an mcrfs, mtfsfi, mtfsf,
or mtfsb0 instruction. The exception summary bits in
the FPSCR (FX, FEX, and VX, which are bits 32:34) are
not considered to be “exception status bits”, and only
FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

The bit definitions for the FPSCR are as follows.

Bit(s) Definition

0:28 Decimal Floating-Point Rounding
Control (DRN)
This field is not used by VSX instructions.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 can alter FX explicitly.

33 Floating-Point Enabled Exception
Summary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FEX explicitly.

Bit(s) Definition

34 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter VX explicitly.

35 Floating-Point Overflow Exception (OX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Overflow
exception. See Section 7.4.3 , “Floating-Point
Overflow Exception” on page 542.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

36 Floating-Point Underflow Exception (UX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar DP-SP
Conversion or VSX Vector DP-SP Conversion
class instruction causes an Underflow
exception. See Section 7.4.4 , “Floating-Point
Underflow Exception” on page 548.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

37 Floating-Point Zero Divide Exception (ZX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes an Zero Divide exception. See
Section 7.4.2 , “Floating-Point Zero Divide
Exception” on page 539.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

38 Floating-Point Inexact Exception (XX)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic, VSX Vector
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, VSX Vector Integer Conversion,
VSX Scalar Round to Floating-Point Integer,
or VSX Vector Round to Floating-Point
Integer class instruction causes an Inexact
exception. See Section 7.4.5 , “Floating-Point
Inexact Exception” on page 554.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Access to Move To FPSCR and Move From
FPSCR instructions requires FP=1.

FX is defined not to be altered implicitly by
mtfsfi and mtfsf because permitting
these instructions to alter FX implicitly can
cause a paradox. An example is an mtfsfi
or mtfsf instruction that supplies 0 for FX
and 1 for OX, and is executed when OX=0.
See also the Programming Notes with the
definition of these two instructions.

Programming Note

Programming Note
Chapter 7. Vector-Scalar Extension Facility 503

Version 3.1
Bit(s) Definition

39 Floating-Point Invalid Operation Exception
(SNAN) (VXSNAN)
This bit is set to 1 when a VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instruction causes an SNaN type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

40 Floating-Point Invalid Operation Exception
(Inf-Inf) (VXISI)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity – Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

41 Floating-Point Invalid Operation Exception
(Inf÷Inf) (VXIDI)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes an Infinity ÷ Infinity type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

42 Floating-Point Invalid Operation Exception
(Zero÷Zero) (VXZDZ)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Zero ÷ Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Bit(s) Definition

43 Floating-Point Invalid Operation Exception
(Inf×Zero) (VXIMZ)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic and VSX Vector
Floating-Point Arithmetic class instruction
causes a Infinity × Zero type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

44 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
This bit is set to 1 when a VSX Scalar
Compare Double-Precision, VSX Vector
Compare Double-Precision, or VSX Vector
Compare Single-Precision class instruction
causes an Invalid Compare type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

45 Floating-Point Fraction Rounded (FR)
This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the fraction was
incremented during rounding. See Section
7.3.2.6 , “Rounding” on page 518. This bit is
not sticky.

46 Floating-Point Fraction Inexact (FI)
This bit is set to 0 or 1 by VSX Scalar
Floating-Point Arithmetic, VSX Scalar Integer
Conversion, and VSX Scalar Round to
Floating-Point Integer class instructions to
indicate whether or not the rounded result is
inexact or the instruction caused a disabled
Overflow exception. See Section 7.3.2.6 on
page 518. This bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.
Power ISA™ I504

Version 3.1
Bit(s) Definition

47:51 Floating-Point Result Flags (FPRF)
VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this field based
on the result placed into the target register
and on the target precision, except that if any
portion of the result is undefined then the
value placed into FPRF is undefined.

For VSX Scalar Convert Double-Precision to
Integer class instructions, the value placed
into FPRF is undefined.

Additional details are as follows.

47 Floating-Point Result Class
Descriptor (C)
VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set this bit with the
FPCC bits, to indicate the class of the result as
shown in Table 2, “Floating-Point Result
Flags,” on page 505.

48:51 Floating-Point Condition Code (FPCC)
VSX Scalar Compare Double-Precision
instruction sets one of the FPCC bits to 1 and
the other three FPCC bits to 0 based on the
relative values of the operands being
compared.

VSX Scalar Floating-Point Arithmetic, VSX
Scalar DP-SP Conversion, VSX Scalar
Convert Integer to Double-Precision, and
VSX Scalar Round to Double-Precision
Integer class instructions set the FPCC bits with

the C bit, to indicate the class of the result as
shown in Table 2, “Floating-Point Result
Flags,” on page 505. Note that in this case
the high-order three bits of the FPCC retain
their relational significance indicating that the
value is less than, greater than, or equal to
zero.

48 Floating-Point Less Than or Negative (FL)

49 Floating-Point Greater Than or
Positive (FG)

50 Floating-Point Equal or Zero (FE)

51 Floating-Point Unordered or NaN (FU)

52 Reserved

53 Floating-Point Invalid Operation Exception
(Software-Defined Condition) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1. See Section
7.4.1 , “Floating-Point Invalid Operation
Exception” on page 527.

54 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
This bit is set to 1 when a VSX Scalar
Floating-Point Arithmetic or VSX Vector
Floating-Point Arithmetic class instruction
causes a Invalid Square Root type Invalid
Operation exception. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

Result Flags
Result Value Class

C FL FG FE FU
1 0 0 0 1 Quiet NaN
0 1 0 0 1 - Infinity
0 1 0 0 0 - Normalized Number
1 1 0 0 0 - Denormalized Number
1 0 0 1 0 - Zero
0 0 0 1 0 + Zero
1 0 1 0 0 + Denormalized Number
0 0 1 0 0 + Normalized Number
0 0 1 0 1 + Infinity

Table 2.Floating-Point Result Flags

VXSOFT can be used by software to
indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation exception.
For example, the bit could be set by a
program that computes a base 10
logarithm if the supplied input is negative.

Programming Note
Chapter 7. Vector-Scalar Extension Facility 505

Version 3.1
Bit(s) Definition

55 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
This bit is set to 1 when a VSX Scalar
Convert Double-Precision to Integer, VSX
Vector Convert Double-Precision to Integer,
or VSX Vector Convert Single-Precision to
Integer class instruction causes a Invalid
Integer Convert type Invalid Operation
exception. See Section 7.4.1 , “Floating-Point
Invalid Operation Exception” on page 527.

This bit can be set to 0 or 1 by a Move To
FPSCR class instruction.

56 Floating-Point Invalid Operation Exception
Enable (VE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Invalid
Operation exceptions. See Section 7.4.1 ,
“Floating-Point Invalid Operation Exception”
on page 527.

57 Floating-Point Overflow Exception
Enable (OE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Overflow
exceptions. See Section 7.4.3 ,
“Floating-Point Overflow Exception” on page
542.

58 Floating-Point Underflow Exception
Enable (UE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Underflow
exceptions. See Section 7.4.4 ,
“Floating-Point Underflow Exception” on page
548.

59 Floating-Point Zero Divide Exception
Enable (ZE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Zero Divide
exceptions. See Section 7.4.2 ,
“Floating-Point Zero Divide Exception” on
page 539.

Bit(s) Definition

60 Floating-Point Inexact Exception
Enable (XE)
This bit is used by VSX Scalar Floating-Point
and VSX Vector Floating-Point class
instructions to enable trapping on Inexact
exceptions. See Section 7.4.5 ,
“Floating-Point Inexact Exception” on page
554.

61 Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not
implemented, this bit is treated as reserved,
and the remainder of the definition of this bit
does not apply.

If floating-point non-IEEE mode is
implemented, this bit has the following
meaning.

0 The processor is not in floating-point
non-IEEE mode (i.e., all floating-point
operations conform to the IEEE
standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits is
permitted to have meanings different from
those given in this document, and
floating-point operations need not conform to
the IEEE standard. The effects of executing a
given floating-point instruction with NI=1, and
any additional requirements for using
non-IEEE mode, are
implementation-dependent. The results of
executing a given instruction in non-IEEE
mode is permitted to vary between
implementations, and between different
executions on the same implementation.

When the processor is in floating-point
non-IEEE mode, the results of
floating-point operations is permitted to be
approximate, and performance for these
operations might be better, more
predictable, or less data-dependent than
when the processor is not in non-IEEE
mode. For example, in non-IEEE mode
an implementation is permitted to return 0
instead of a denormalized number and
return a large number instead of an
infinity.

Programming Note
Power ISA™ I506

Version 3.1
62:63 Floating-Point Rounding Control (RN)

This field is used by VSX Scalar
Floating-Point and VSX Vector Floating-Point
class instructions that round their result and
the rounding mode is not implied by the
opcode.

This bit can be explicitly set or reset by a new
Move To FPSCR class instruction.

See Section 7.3.2.6 , “Rounding” on page
518.

00 Round to Nearest Even
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity
Chapter 7. Vector-Scalar Extension Facility 507

Version 3.1
7.3 VSX Operations

7.3.1 VSX Floating-Point Arith-
metic Overview
This section describes the floating-point arithmetic and
exception model supported by Vector-Scalar
Extension. Except for extensions to support 32-bit
single-precision floating-point vector operations, the
models are identical to that described in Chapter 4.
Floating-Point Facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point
Arithmetic (hereafter referred to as the IEEE standard).
That standard defines certain required "operations"
(addition, subtraction, and so on). Herein, the term,
floating-point operation, is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which is permitted to
produce results not in strict compliance with the IEEE
standard, allows shorter latency.

Instructions are provided to perform arithmetic,
rounding, conversion, comparison, and other
operations in VSRs; to move floating-point data
between storage and these registers.

These instructions are divided into two categories.

– computational instructions

The computational instructions are those that
perform addition, subtraction, multiplication,
division, extracting the square root, rounding,
conversion, comparison, and combinations of
these operations. These instructions provide the
floating-point operations. There are two forms of
computational instructions, scalar, which perform
a single floating-point operation, and vector, which
perform either two double-precision floating-point
operations or four single-precision operations.
Computational instructions place status
information into the Floating-Point Status and
Control Register. They are the instructions
described in Sections 7.6.1.3 through 7.6.1.8.2.

– noncomputational instructions

The noncomputational instructions are those that
perform loads and stores, move the contents of a
VSR to another floating-point register possibly
altering the sign, and select the value from one of
two VSRs based on the value in a third VSR. The

operations performed by these instructions are not
considered floating-point operations. These
instructions do not alter the Floating-Point Status
and Control Register. They are the instructions
listed in Sections 7.6.1.1, 7.6.1.2.1, and 7.6.1.13
through .

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a
variable diagnostic information field. NaNs might be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to
Vector-Scalar Extension and Floating-Point: the
Floating-Point Exception. Floating-point exceptions are
signaled with bits set in the FPSCR. They can cause
the system floating-point enabled exception error
handler to be invoked, precisely or imprecisely, if the
proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

– Invalid Operation exception (VX)
SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

– Zero Divide exception (ZX)
– Overflow exception (OX)
– Underflow exception (UX)
– Inexact exception (XX)

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. See
Section 7.2.2, “Floating-Point Status and Control
Register” on page 503 for a description of these
exception and enable bits, and Section 7.3.3 , “VSX
Floating-Point Execution Models” on page 521 for a
detailed discussion of floating-point exceptions,
including the effects of the enable bits.
Power ISA™ I508

Version 3.1
7.3.2 VSX Floating-Point Data

7.3.2.1 Data Format
This architecture defines the representation of a
floating-point value in five different binary fixed-length
formats, 16-bit half-precision format, 16-bit bfloat16
format, 32-bit single-precision format, 64-bit
double-precision format, and 128-bit quad-precision
format. The half-precision format is used for
half-precision floating-point data in storage and
registers. The bfloat16 format is used for bfloat16
floating-point data in storage and registers. The
single-precision format is used for single-precision
floating-point data in storage and registers. The
double-precision format is used for double-precision
floating-point data in storage and registers. The
quad-precision format is used for quad-precision
floating-point data in storage and registers.

The lengths of the exponent and the fraction fields
differ between these five formats. The structure of the
half-precision, bfloat16, single-precision,
double-precision, and quad-precision formats is shown

Figure 109, Figure 111, Figure 112, Figure 113, and
Figure 113, respectively.

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the
significand. The significand consists of a leading
implied bit concatenated on the right with the FRACTION.
This leading implied bit is 1 for normalized numbers
and 0 for denormalized (subnormal) numbers or zero
and is located in the unit bit position (that is, the first bit
to the left of the binary point). Values representable
within the three floating-point formats can be specified
by the parameters listed in Table 3.

S EXP FRACTION

0 1 6 15

Figure 109. Binary floating-point half-precision format (binary16)

S EXP FRACTION

0 1 9 15

Figure 110. Binary floating-point bfloat16 format (bfloat16)

S EXP FRACTION

0 1 9 31

Figure 111. Binary floating-point single-precision format (binary32)

S EXP FRACTION

0 1 12 63

Figure 112. Binary floating-point double-precision format (binary64)

S EXP FRACTION

0 1 16 127

Figure 113. Binary floating-point quad-precision format (binary128)
Chapter 7. Vector-Scalar Extension Facility 509

Version 3.1
bfloat16 binary16 binary32 binary64 binary128

Exponent Bias +127 +15 +127 +1023 +16383

Maximum Exponent (Emax) +127 +15 +127 +1023 +16383

Minimum Exponent (Emin) -126 -14 -126 -1022 -16382

Widths (bits):
Format
Sign
Exponent
Fraction
Significand

16
1
8
7
8

16
1
5
10
11

32
1
8
23
24

64
1
11
52
53

128
1
15
112
113

Nmax (1-2-8) x 2128

3.4 x 1038
(1-2-11) × 216

6.6 × 104
(1-2-24) x 2128

3.4 x 1038
(1-2-53) x 21024

1.8 x 10308
(1-2-113) x 216384

1.2 x 104932

Nmin 1.0 x 2-126

1.2 x 10-38
1.0 × 2-14

6.1 × 10-5
1.0 x 2-126

1.2 x 10-38
1.0 x 2-1022

2.2 x 10-308
1.0 x 2-16382

3.4 x 10-4932

Dmin 1.0 x 2-133

9.2 x 10-41
1.0 × 2-24

6.0 × 2-8
1.0 x 2-149

1.4 x 10-45
1.0 x 2-1074

4.9 x 10-324
1.0 x 2-16494

6.5 x 10-4966

≈ Value is approximate
Dmin Smallest (in magnitude) representable denormalized number.
Nmax Largest (in magnitude) representable number.
Nmin Smallest (in magnitude) representable normalized number.

Table 3. Binary floating-point fields
Power ISA™ I510

Version 3.1
7.3.2.2 Value Representation
This architecture defines numeric and nonnumeric
values representable within each of the three
supported formats. The numeric values are
approximations to the real numbers and include the
normalized numbers, denormalized numbers, and zero
values. The nonnumeric values representable are the
infinities and the Not a Numbers (NaNs). The infinities
are adjoined to the real numbers, but are not numbers
themselves, and the standard rules of arithmetic do not
hold when they are used in an operation. They are
related to the real numbers by order alone. It is
possible however to define restricted operations
among numbers and infinities as defined below. The
relative location on the real number line for each of the
defined entities is shown in Figure 114.

Figure 114.Approximation to real numbers

The NaNs are not related to the numeric values or
infinities by order or value but are encodings used to
convey diagnostic information such as the
representation of uninitialized variables.

The following is a description of the different
floating-point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as
approximations to real numbers. Three categories
of numbers are supported: normalized numbers,
denormalized numbers, and zero values.

Normalized numbers (±NOR)
These are values that have a biased exponent
value in the range:

1 to 30 in half-precision format
1 to 254 in bfloat16 format
1 to 254 in single-precision format
1 to 2046 in double-precision format
1 to 32766 in quad-precision format

They are values in which the implied unit bit is 1.
Normalized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent,
and 1.fraction is the significand, which is
composed of a leading unit bit (implied bit) and a
fraction part.

Zero values (±0)
These are values that have a biased exponent
value of zero and a fraction value of zero. Zeros
can have a positive or negative sign. The sign of
zero is ignored by comparison operations (that is,
comparison regards +0 as equal to -0).

Denormalized numbers (±DEN)
These are values that have a biased exponent
value of zero and a nonzero fraction value. They
are nonzero numbers smaller in magnitude than
the representable normalized numbers. They are
values in which the implied unit bit is 0.
Denormalized numbers are interpreted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable
exponent value.

-14 for half-precision
-126 for bfloat16
-126 for single-precision
-1022 for double-precision
-16382 for quad-precision.

Infinities (±INF)
These are values that have the maximum biased
exponent value:

 31 in half-precision format
 255 in bfloat16 format
 255 in single-precision format
 2047 in double-precision format
32767 in quad-precision format

and a zero fraction value. They are used to
approximate values greater in magnitude than the
maximum normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the
real numbers can be related by ordering in the
affine sense:

-Infinity < every finite number < +Infinity

Arithmetic on infinities is always exact and does
not signal any exception, except when an
exception occurs due to the invalid operations as
described in Section 7.4.1 , “Floating-Point Invalid
Operation Exception” on page 527.

For comparison operations, +Infinity compares
equal to +Infinity and -Infinity compares equal to
-Infinity.

-NOR +0 +DEN-INF –0-DEN +NOR +INF
Chapter 7. Vector-Scalar Extension Facility 511

Version 3.1
Not a Numbers (NaNs)
These are values that have the maximum biased
exponent value and a nonzero fraction value. The
sign bit is ignored (that is, NaNs are neither
positive nor negative). If the high-order bit of the
fraction field is 0, the NaN is a Signaling NaN;
otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions
when they appear as operands of computational
instructions.

Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid
arithmetic operations on infinities or on NaNs,
when Invalid Operation exception is disabled
(VE=0). Quiet NaNs propagate through all
floating-point operations except ordered
comparison and conversion to integer. Quiet
NaNs do not signal exceptions, except for ordered
comparison and conversion to integer operations.
Specific encodings in QNaNs can thus be
preserved through a sequence of floating-point
operations, and used to convey diagnostic
information to help identify results from invalid
operations.

Assume the following generic arithmetic
templates.

 f(src1,src3,src2)

 ex: result = (src1 x src3) - src2

 f(src1,src2)

 ex: result = src1 x src2

 ex: result = src1 + src2

 f(src1)

 ex: result = f(src1)

When a QNaN is the result of a floating-point
operation because one of the operands is a NaN
or because a QNaN was generated due to a
trap-disabled Invalid Operation exception, the
following rule is applied to determine the NaN with
the high-order fraction bit set to 1 that is to be
stored as the result.

if src1 is a NaN

 then result = Quiet(src1)

 else if src2 is a NaN (if there is a src2)

 then result = Quiet(src2)

 else if src3 is a NaN (if there is a src3)

 then result = Quiet(src3)

 else if disabled invalid operation exception

 then result = generated QNaN

where Quiet(x) means x if x is a QNaN and x
converted to a QNaN if x is an SNaN. Any
instruction that generates a QNaN as the result of
a disabled Invalid Operation exception generates
the value,

0x7E00 for half-precision results,

0x7FC0 for bfloat16 results,

0x7FC0_0000 for single-precision results,

0x7FF8_0000_0000_0000 for double-precision
results,

0x7FFF_8000_0000_0000_0000_0000_0000_0000
for quad-precision results.

Note that the M-form multiply-add-type
instructions use the B source operand to specify
src3 and the T target operand to specify src2,
whereas A-form multiply-add-type instructions use
the B source operand to specify src2 and the T
target operand to specify src3.

A double-precision NaN is considered to be
representable in single-precision format if and only
if the low-order 29 bits of the double-precision
NaN’s fraction are zero.

7.3.2.3 Sign of Result
The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when
the operation does not yield an exception. They apply
even when the operands or results are zeros or
infinities.

– The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same signs, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).
Power ISA™ I512

Version 3.1
When the sum of two operands with opposite sign,
or the difference of two operands with the same
signs, is exactly zero, the sign of the result is
positive in all rounding modes except Round
toward -Infinity, in which mode the sign is
negative.

– The sign of the result of a multiply or divide
operation is the Exclusive OR of the signs of the
operands.

– The sign of the result of a Square Root or
Reciprocal Square Root Estimate operation is
always positive, except that the square root of -0
is -0 and the reciprocal square root of -0 is
-Infinity.

– The sign of the result of a Convert From Integer or
Round to Floating-Point Integer operation is the
sign of the operand being converted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

7.3.2.4 Normalization and
Denormalization
The intermediate result of an arithmetic instruction can
require normalization and/or denormalization as
described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces
an intermediate result which carries out of the
significand, or in which the significand is nonzero but
has a leading zero bit, it is not a normalized number
and must be normalized before it is stored. For the
carry-out case, the significand is shifted right one bit,
with a one shifted into the leading significand bit, and
the exponent is incremented by one. For the
leading-zero case, the significand is shifted left while
decrementing its exponent by one for each bit shifted,
until the leading significand bit becomes one. The
Guard bit and the Round bit (see Section 7.3.3.1, “VSX
Execution Model for IEEE Operations” on page 521)
participate in the shift with zeros shifted into the Round
bit. The exponent is regarded as if its range were
unlimited.

After normalization, or if normalization was not
required, the intermediate result can have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is
determined by the rules described in Section 7.4.4 ,

“Floating-Point Underflow Exception” on page 548.
These rules can require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s
minimum value. If any significant bits are lost in this
shifting process, “Loss of Accuracy” has occurred (See
Section 7.4.4 , “Floating-Point Underflow Exception”
on page 548) and Underflow exception is signaled.

7.3.2.5 Data Handling and Precision
Scalar double-precision floating-point data is
represented in double-precision format in VSRs and
storage.

Vector double-precision floating-point data is
represented in double-precision format in VSRs and
storage.

Scalar single-precision floating-point data is
represented in double-precision format in VSRs and in
single-precision format in storage.

Vector single-precision floating-point data is
represented in single-precision format in VSRs and
storage.

Double-precision operands may be used as input for
double-precision scalar arithmetic operations.

Double-precision operands may be used as input for
single-precision scalar arithmetic operations when
trapping on overflow and underflow exceptions is
disabled.

Single-precision operands may be used as input for
double-precision and single-precision scalar arithmetic
operations.

Double-precision operands may be used as input for
double-precision vector arithmetic operations.

Single-precision operands may be used as input for
single-precison vector arithmetic operations.

Instructions are also provided for manipulations which
do not require double-precision or single-precision. In
addition, instructions are provided to access an integer
representation in GPRs.

When denormalized numbers are operands of
multiply, divide, and square root operations, some
implementations might prenormalize the operands
internally before performing the operations.

Engineering Note
Chapter 7. Vector-Scalar Extension Facility 513

Version 3.1
Half-Precision Operands

Instructions are provided to convert between
half-precision and single-precision formats for vector
data in VSRs and between half-precision and
double-precision formats for scalar data. Note that
scalar double-precision format is identical to scalar
single-precision format.

An instruction is provided to explicitly convert
half-precision format operands in a VSR to
single-precision format. Scalar single-precision
floating-point is enabled with six types of instruction.

1. VSX Scalar Convert Half-Precision to
Double-Precision format XX2-form

The half-precision floating-point value in the
rightmost halfword in doubleword element 0 of the
source VSR is placed into the doubleword
element 0 of the target VSR in double-precision
format.

2. VSX Scalar Convert with round Double-Precision
to Half-Precision format XX2-form

The double-precision value in doubleword element
0 of the source VSR is rounded to to half-precision,
checking the exponent for half-precision range
and handling any exceptions according to
respective enable bits, and places the result into
the rightmost halfword of doubleword element 0 of
the target VSR in half-precision format.

Source operand values greater in magnitude than
239 when Overflow is enabled (OE=1) produce
undefined results because the value cannot be
scaled into the half-precision normalized range.

Source operand values smaller in magnitude than
2-38 when Underflow is enabled (UE=1) produce
undefined results because the value cannot be
scaled into the half-precision normalized range.

3. VSX Vector Convert bfloat16 to Single-Precision
format XX2-form

The half-precision floating-point value in the
rightmost halfword of each word element of the
source VSR is placed into the corresponding word
element of the target VSR in single-precision
format.

4. VSX Vector Convert with round Single-Precision
to bfloat16 format XX2-form

The single-precision floating-point value in each
word element i of the source VSR is rounded to
half-precision and placed into the rightmost

halfword of the corresponding word element of the
target VSR in half-precision format.

bfloat16 Operands

Instructions are provided to convert between bfloat16
and single-precision formats for vector data in VSRs.

An instruction is provided to explicitly convert bfloat16
format operands in a VSR to single-precision format.

1. VSX Vector Convert bfloat16 to Single-Precision
format XX2-form

The bfloat16 floating-point value in the rightmost
halfword of each word element of the source VSR
is placed into the corresponding word element of
the target VSR in single-precision format.

2. VSX Vector Convert with round Single-Precision
to bfloat16 format XX2-form

The single-precision floating-point value in each
word element i of the source VSR is rounded to
bfloat16 precision and placed into the rightmost
halfword of the corresponding word element of the
target VSR in bfloat16 format.

Single-Precision Operands

For single-precision scalar data, a conversion from
single-precision format to double-precision format is
performed when loading from storage into a VSR and
a conversion from double-precision format to
single-precision format is performed when storing from
a VSR to storage. No floating-point exceptions are
caused by these instructions.

Instructions are provided to convert between
single-precision and double-precision formats for
scalar and vector data in VSRs.

An instruction is provided to explicitly convert a double
format operand in a VSR to single-precision. Scalar
single-precision floating-point is enabled with six types
of instructions.

1. Load VSX Scalar Single-Precision

[p]lxssp and lxsspx access a floating-point
operand in single-precision format in storage,
converts it to double-precision format, and loads it
into a VSR. No floating-point exceptions are
caused by these instructions.

2. VSX Scalar Round to Single-Precision XX2-form

xsrsp rounds a double-precision operand to
single-precision, checking the exponent for
single-precision range and handling any
Power ISA™ I514

Version 3.1
exceptions according to respective enable bits,
and places that operand into a VSR in
double-precision format. For results produced by
single-precision arithmetic instructions,
single-precision loads, and other instances of
xsrsp, xsrsp does not alter the value. Values
greater in magnitude than 2319 when Overflow is
enabled (OE=1) produce undefined results because
the value cannot be scaled back into the
normalized range. Values smaller in magnitude
than 2-318 when Underflow is enabled (UE=1)
produce undefined results because the value
cannot be scaled back into the normalized range.

3. VSX Scalar Convert Single-Precision to
Double-Precision format

VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form (xscvspdp)
accesses a floating-point operand in
single-precision format from word element 0 of the
source VSR, converts it to double-precision format,
and places it into doubleword element 0 of the
target VSR.

VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling XX2-form
(xscvspdpn) accesses a floating-point operand in
single-precision format from word element 0 of the
source VSR, converts it to double-precision format,
and places it into doubleword element 0 of the
target VSR. xscvspdpn does not set any exception
status (i.e., VXSNAN).

4. VSX Scalar Convert Double-Precision to
Single-Precision format [Non-Signalling]

VSX Scalar Convert with round Double-Precision
to Single-Precision format XX2-form (xscvdpsp)
rounds the double-precision floating-point value in
doubleword element 0 of the source VSR to
single-precision, and places the result into word
elements 0 and 1 of the target VSR in
single-precision format. This function would be
used to port scalar floating-point data to a format
compatible for single-precision vector operations.
Values greater in magnitude than 2319 when
Overflow is enabled (OE=1) produce undefined
results because the value cannot be scaled back
into the normalized range. Values smaller in
magnitude than 2-318 when Underflow is enabled
(UE=1) produce undefined results because the
value cannot be scaled back into the normalized
range.

VSX Scalar Convert Scalar Single-Precision to
Vector Single-Precision format Non-signalling

XX2-form (xscvdpspn) directly converts the
single-precision floating-point value represented in
double-precision format in doubleword element 0
of the source VSR to single-precision format,
without rounding, and places the result into word
elements 0 and 1 of the target VSR in
single-precision format. xscvdpspn does not set
any exception status (i.e., VXSNAN).

5. VSX Scalar Single-Precision Arithmetic[1]

This form of instruction takes operands from the
VSRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in
single-precision format. Status bits, in the FPSCR
and optionally in the Condition Register, are set to
reflect the single-precision result. The result is
then placed into the target VSR in double-precision
format. The result lies in the range supported by
the single format.

If any input value is not representable in
single-precision format and either OE=1 or UE=1, the
result placed into the target VSR and the setting of
status bits in the FPSCR are undefined.

For xsresp or xsrsqrtesp, if the input value is
finite and has an unbiased exponent greater than
+127, the input value is interpreted as an Infinity.

6. Store VSX Scalar Single-Precision

Store VSX Scalar Single-Precision DS-form
(stxssp), Prefixed Store VSX Scalar
Single-Precision 8LS:D-form (pstxssp), and
Store VSX Scalar Single-Precision Indexed
X-form (stxsspx) convert a single-precision value
that is in double-precision format to
single-precision format and stores that operand
into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding five types.)

When the result of a Load VSX Scalar Single-Precision
(lxsspx), a VSX Scalar Round to Single-Precision
(xsrsp), or a VSX Scalar Single-Precision Arithmetic
instruction is stored in a VSR, the low-order 29 bits of
FRACTION are zero.

1. VSX Scalar Single-Precision Arithmetic instructions:
xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp, xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp, xsnmaddasp, xsnmaddmsp,
xsnmsubasp, xsnmsubmsp
Chapter 7. Vector-Scalar Extension Facility 515

Version 3.1

Integer-Valued Operands

Instructions are provided to round floating-point
operands to integer values in floating-point format. To
facilitate exchange of data between the floating-point
and integer processing, instructions are provided to
convert between floating-point double and
single-precision format and integer word and
doubleword format in a VSR. Computation on
integer-valued operands can be performed using
arithmetic instructions of the required precision. (The
results might not be integer values.) The three groups
of instructions provided specifically to support
integer-valued operands are described below.

1. Rounding to a floating-point integer

VSX Scalar Round to Double-Precision Integer[1]

instructions round a double-precision operand to
an integer value in double-precision format.
These instructions can also be used for
single-precision operands represented in
double-precision format.

VSX Scalar Round to Single-Precision (xsrsp) is
provided to allow value conversion from
double-precision to single-precision with
appropriate exception checking and rounding.
xsrsp should be used to convert double-precision
floating-point values to single-precision values
prior to storing them into single format storage
elements or using them as operands for
single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic
instructions are already single-precision values
and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without
preceding the store, or the arithmetic instruction,
by an xsrsp.

A single-precision value can be used in
double-precision scalar arithmetic operations.

Except for xsresp or xsrsqrtesp, any
double-precision value can be used in
single-precision scalar arithmetic operations when
OE=0 and UE=0. When OE=1 or UE=1, or if the
instruction is xsresp or xsrsqrtesp, source
operands must be respresentable in
single-precision format.

Some implementations may execute
single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore,
if double-precision accuracy is not required,
single-precision data and instructions should be
used.

Programming Note

Programming Note

Both single-precision and double-precision forms
are provided for most scalar floating-point
instructions. Some scalar floating-point instructions
are only provided in double-precision form since
their operation is identical to the equivalent scalar
single-precision operation.

Of the operations for which only a double-precision
form of the instruction is provided,

– instructions that return the absolute value, the
negative absolute value, or the negated value
(xsnabsdp, xsabsdp, xsnegdp) can be used
to perform these operations on scalar
single-precision operands,

– instructions that perform a comparison
(xscmpodp, xscmpudp) can be used to
perform these operations on scalar
single-precision operands,

– instructions that determine the maximum
(xsmaxdp) or minimum (xsmindp) can be
used to perform these operations on scalar
single-precision operands, and

– instructions that perform an extraction or
insertion of the exponent or significand
(xscmpexpdp, xsiexpdp, xststdcdp,
xststdcsp, xsxexpdp, xsxsigdp) can be
used to perform these operations on scalar
single-precision operands.

Programming Note
Power ISA™ I516

Version 3.1
VSX Vector Round to Double-Precision Integer[1]

instructions round each double-precision vector
operand element to an integer value in
double-precision format.

VSX Vector Round to Single-Precision Integer[2]

instructions round each single-precision vector
operand element to an integer value in
single-precision format.

Except for xsrdpic, xvrdpic, and xvrspic,
rounding is performed using the rounding mode
specified by the opcode. For xsrdpic, xvrdpic,
and xvrspic, rounding is performed using the
rounding mode specified by RN.

VSX Round to Floating-Point Integer[3]

instructions can cause Invalid Operation (VXSNAN)
exceptions.

xsrdpic, xvrdpic, and xvrspic can also cause
Inexact exception.

See Sections 7.3.2.6 and 7.3.3.1 for more
information about rounding.

2. Converting floating-point format to integer format

VSX Scalar Double-Precision to Integer Format
Conversion[4] instructions convert a
double-precision operand to 32-bit or 64-bit signed
or unsigned integer format. These instructions can
also be used for single-precision operands
represented in double-precision format.

VSX Vector Double-Precision to Integer Format
Conversion[5] instructions convert either
double-precision or single-precision vector
operand elements to 32-bit or 64-bit signed or
unsigned integer format.

VSX Vector Single-Precision to Integer
Doubleword Format Conversion[6] instructions
converts the single-precision value in each
odd-numbered word element of the source vector
operand to a 64-bit signed or unsigned integer
format.

VSX Vector Single-Precision to Integer Word
Format Conversion[7] instructions converts the
single-precision value in each word element of the
source vector operand to either a 32-bit signed or
unsigned integer format.

Rounding is performed using Round Towards
Zero rounding mode. These instructions can
cause Invalid Operation (VXSNAN, VXCVI) and
Inexact exceptions.

3. Converting integer format to floating-point format

VSX Scalar Integer Doubleword to
Double-Precision Format Conversion[8]

instructions convert a 64-bit signed or unsigned
integer to a double-precision floating-point value
and returns the result in double-precision format.

VSX Scalar Integer Doubleword to
Single-Precision Format Conversion[9] instructions
converts a 64-bit signed or unsigned integer to a
single-precision floating-point value and returns
the result in double-precision format.

VSX Vector Integer Doubleword to
Double-Precision Format Conversion[10]

instructions converts the 64-bit signed or unsigned
integer in each doubleword element in the source
vector operand to double-precision floating-point
format.

VSX Vector Integer Doubleword to
Single-Precision Format Conversion[11]

1. VSX Scalar Round to Double-Precision Integer instructions:
xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic

1. VSX Vector Round to Double-Precision Integer instructions:
xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic

2. VSX Vector Round to Single-Precision Integer instructions:
xvrspi, xvrspip, xvrspim, xvrspiz, xvrspic

3. VSX Round to Floating-Point Integer instructions:
xsrdpi, xsrdpip, xsrdpim, xsrdpiz, xsrdpic, xvrdpi, xvrdpip, xvrdpim, xvrdpiz, xvrdpic, xvrspi, xvrspip, xvrspim, xvrspiz, and xvrspic

4. VSX Scalar Double-Precision to Integer Format Conversion instructions:
xscvdpsxds, xscvdpsxws, xscvdpuxds, xscvdpuxws

5. VSX Vector Double-Precision to Integer Format Conversion instructions:
xvcvdpsxds, xvcvdpsxws, xvcvdpuxds, xvcvdpuxws

6. VSX Vector Single-Precision to Integer Doubleword Format Conversion instructions:
xvcvspsxds, xvcvspuxds

7. VSX Vector Single-Precision to Integer Word Format Conversion instructions:
xvcvspsxws, xvcvspuxws

8. VSX Scalar Integer Doubleword to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

9. VSX Scalar Integer Doubleword to Single-Precision Format Conversion instructions:
xscvsxdsp, xscvuxdsp

10. VSX Vector Integer Doubleword to Double-Precision Format Conversion instructions:
xscvsxddp, xscvuxddp

11. VSX Vector Integer Doubleword to Single-Precision Format Conversion instructions:
xscvsxdsp, xscvuxdsp
Chapter 7. Vector-Scalar Extension Facility 517

Version 3.1
instructions convert the 64-bit signed or unsigned
integer in each doubleword element in the source
vector operand to single-precision floating-point
format.

VSX Vector Integer Word to Single-Precision
Format Conversion[1] instructions convert the
32-bit signed or unsigned integer in each word
element in the source vector operand to
single-precision floating-point format.

Rounding is performed using the rounding mode
specificed in RN. Because of the limitations of the
source format, only an Inexact exception can be
generated.

7.3.2.6 Rounding
The material in this section applies to operations that
have numeric operands (that is, operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation can cause an Overflow exception,
an Underflow exception, or an Inexact exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 7.3.2.2, “Value Representation” and
Section 7.4, “VSX Floating-Point Exceptions” for the
cases not covered here.

The floating-point arithmetic, and rounding and
conversion instructions round their intermediate
results. With the exception of the estimate instructions,
these instructions produce an intermediate result that
can be regarded as having unbounded precision and
exponent range. All but two groups of these
instructions normalize or denormalize the intermediate
result prior to rounding and then place the final result
into the target element of the target VSR in either
double-precision, single-precision, or quad-precision
format.

The scalar round to double-precision integer, vector
round to double-precision integer, and convert
double-precision to integer instructions with biased
exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 1075.
(Intermediate results with biased exponents 1075 or
larger are already integers, and with biased exponents
1021 or less round to zero.) After rounding, the final
result for round to double-precision integer instructions
is normalized and put in double-precision format, and,
for the convert double-precision to integer instructions,
is converted to a signed or unsigned integer.

The vector round to single-precision integer and vector
convert single-precision to integer instructions with
biased exponents ranging from 126 through 178 are
prepared for rounding by repetitively shifting the
significand right one position and incrementing the
biased exponent until it reaches a value of 179.
(Intermediate results with biased exponents 179 or
larger are already integers, and with biased exponents
125 or less round to zero.) After rounding, the final
result for vector round to single-precision integer is
normalized and put in double-precision format, and for
vector convert single-precision to integer is converted
to a signed or unsigned integer.

FR and FI generally indicate the results of rounding.
Each of the scalar instructions which rounds its
intermediate result sets these bits. There are no vector
instructions that modify FR and FI. If the fraction is
incremented during rounding, FR is set to 1, otherwise
FR is set to 0. If the result is inexact, FI is set to 1,
otherwise FI is set to zero. The scalar round to
double-precision integer instructions are exceptions to
this rule, setting FR and FI to 0. The scalar
double-precision estimate instructions set FR and FI to
undefined values. The remaining scalar floating-point
instructions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in
the FPSCR. See Section 7.2.2, “Floating-Point Status
and Control Register” on page 503. These are
encoded as follows.

RN Rounding Mode
00 Round to Nearest Even
01 Round towards Zero
10 Round towards +Infinity
11 Round towards -Infinity

A fifth rounding mode is provided in the round to
floating-point integer instructions (Section 7.6.1.8.2 on
page 572), Round to Nearest Away.

A sixth rounding mode is provided in the
quad-precision floating-point instructions, Round to
Odd.

1. VSX Vector Integer Word to Single-Precision Format Conversion instructions:
xscvsxwsp, xscvuxwsp
Power ISA™ I518

Version 3.1
Let Z be the intermediate arithmetic result or the
operand of a convert operation. If Z can be represented
exactly in the target format, the result in all rounding
modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 115 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes.

See Section 7.3.3.1, “VSX Execution Model for IEEE
Operations” on page 521 for a detailed explanation of
rounding.

Figure 115 also summarizes the rounding actions for
floating-point intermediate result for all supported
rounding modes.

Round to Odd rounding mode is useful when the results of a Quad-Precision Arithmetic instruction are required
to be rounded to a shorter precision while avoiding a double rounding error. In this case, the rounding mode of
the Quad-Precision Arithmetic instruction is overridden as Round To Odd by setting the RO bit in the instruction
encoding to 1, then the result of that Quad-Precision Arithmetic instruction can be rounded to the desired shorter
precision using the rounding mode specified in RN by following with a VSX Scalar Round Quad-Precision to
Double-Extended-Precision for 15-bit exponent range and 64-bit significand precision, VSX Scalar Round
Quad-Precision to Double-Precision for 11-bit exponent range and 53-bit significand precision, or VSX Scalar
Round Quad-Precision to Single-Precision for 8-bit exponent range and 24-bit significand precision. For
example,

xsaddqpo Tx,A,B ; use Round to Odd override (RO=1)

xsrqpxp Tdxp,Tx ; final QP result rounded to DXP

To return a quad-precision result rounded to double-precision requires a 3-instruction sequence,

xsaddqpo Tx,A,B ; use Round to Odd override (RO=1)

xscvqpdp Temp,Tx ; QP result rounded & converted to DP

xscvdpqp Tdp,Temp ; final QP result rounded to DP

To return a quad-precision result rounded to single-precision requires a 4-instruction sequence,

xsaddqpo Tx,A,B ; use Round to Odd override (RO=1)

xscvqpdpo Temp,Tx ; QP result rounded to DP using Round to Odd & converted to DP format

xsrsp Temp,Temp ; DP result is rounded to SP

xscvdpqp Tsp,Temp ; final QP result rounded to SP

Programming Note
Chapter 7. Vector-Scalar Extension Facility 519

Version 3.1
Round to Nearest Away
Choose Z if Z is representable in the target precision.

Otherwise, choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the one that is furthest
away from 0.

Round to Nearest Even
Choose Z if Z is representable in the target precision.

Otherwise, choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the one that is even (least
significant bit is 0).

Round to Odd
Choose Z if Z is representable in the target precision.

Otherwise, choose the value (Z1 or Z2) that is odd (least significant bit is 1).

Round toward Zero
Choose Z if Z is representable in the target precision.

Otherwise, choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z if Z is representable in the target precision.

Otherwise, choose Z1.

Round toward -Infinity
Choose Z if Z is representable in the target precision.

Otherwise, choose Z2.
Figure 115.Selection of Z1 and Z2

0

Positive valuesNegative values

By Incrementing the least-significant bit of Z
Infinitely-Precise Value

By Truncating after the least-significant bit

Z2
Z
Z1 Z2

Z
Z1
Power ISA™ I520

Version 3.1
7.3.3 VSX Floating-Point Execution Models
All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the
computational instructions for the infinities,
denormalized numbers and NaNs. The material in the
remainder of this section applies to instructions that
have numeric operands and a numeric result (that is,
operands and result that are not infinities or NaNs),
and that cause no exceptions. See Section 7.3.2.2 and
Section 7.3.3 for the cases not covered here.

Although the double-precision format specifies an
11-bit exponent, exponent arithmetic makes use of two
additional bits to avoid potential transient overflow and
underflow conditions. One extra bit is required when
denormalized double-precision numbers are
prenormalized. The second bit is required to permit the
computation of the adjusted exponent value in the
following cases when the corresponding exception
enable bit is 1:

– Underflow during multiplication using a
denormalized operand.

– Overflow during division using a denormalized
divisor.

– Undeflow during division using denormalized
dividend and a large divisor.

The IEEE standard includes 32-bit and 64-bit
arithmetic. The standard requires that single-precision
arithmetic be provided for single-precision operands.

VSX defines both scalar and vector double-precision
floating-point operations to operate only on
double-precision operands. VSX also defines vector
single-precision floating-point operations to operate
only on single-precision operands.

7.3.3.1 VSX Execution Model for IEEE
Operations
IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator
having the following format, where bits 0:p-1 comprise
the significand of the intermediate result (where p is
the length of the significand).

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

For the quad-precision execution model, FRACTION is a
112-bit field that accepts the fraction of the operand.

For the double-extended-precision execution model,
FRACTION is a 63-bit field that accepts the fraction of the
operand. This model is used only by the VSX Scalar
Round to Double-Extended-Precision instruction.

For the double-precision execution model, FRACTION is
a 52-bit field that accepts the fraction of the operand.

For the single-precision execution model, FRACTION is a
23-bit field that accepts the fraction of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator to
provide the effect of an unbounded significand. The G
and R bits are required for postnormalization of the
result. The G, R, and X bits are required during rounding
to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves
as an extension to the G and R bits by representing the
logical OR of all bits that appear to the low-order side
of the R bit, resulting from either shifting the
accumulator right or to other generation of low-order
result bits. The G and R bits participate in the left shifts
with zeros being shifted into the R bit. Table 4 shows
the significance of the G, R, and X bits with respect to
the intermediate result (IR), the representable number

S C L FRACTION G R X

0 1 112
Figure 116.IEEE quad-precision (binary128)

floating-point execution model (p=113)

S C L FRACTION G R X

0 1 63
Figure 117.IEEE double-extended-precision

floating-point execution model (p=64)

S C L FRACTION G R X

0 1 52
Figure 118.IEEE double-precision (binary64)

floating-point execution model (p=53)

S C L FRACTION G R X

0 1 23
Figure 119.IEEE single-precision (binary32)

floating-point execution model (p=24)
Chapter 7. Vector-Scalar Extension Facility 521

Version 3.1
next lower in magnitude (NL), and the representable
number next higher in magnitude (NH).

Table 5 shows the positions of the Guard, Round, and
Sticky bits for quad-precision, double-extended
precision, double-precision and single-precision
floating-point numbers relative to the accumulator
illustrated in Figures 116, 117, 118, and 119.

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction.

Six rounding modes are provided as described in
Section 7.3.2.6, “Rounding” on page 518. The rules for
rounding in each mode are as follows.

– Round to Nearest Even
If IR is exact, choose IR.
Otherwise, if IR is closer to NL, choose NL.
Otherwise, if IR is closer to NH, choose NH.
Otherwise, if IR is midway between NL and NH,
choose whichever of NL and NH is even.

– Round towards Zero
If IR is exact, choose IR.
Otherwise, choose NL.

– Round towards +Infinity
If IR is exact, choose IR.
Otherwise, if positive, choose NH.
Otherwise, if negative, choose NL.

– Round towards -Infinity
If IR is exact, choose IR.
Otherwise, if positive, choose NL.
Otherwise, if negative, choose NH.

– Round to Nearest Away
If IR is exact, choose IR.
Otherwise, if G=0, choose NL.
Otherwise, if G=1, choose NH.

– Round to Odd
If IR is exact, choose IR.
Otherwise, choose NL, and if G=1, R=1, or X=1,
the least-significant bit of the result is set to 1.

Four of the rounding modes are user-selectable
through RN.

RN Rounding Mode
0b00 Round to Nearest Even
0b01 Round toward Zero
0b10 Round toward +Infinity
0b11 Round toward -Infinity

Round to Nearest Away is provided in the VSX Round
to Floating-Point Integer instructions (Section 7.6.1.8.2
on page 572).

Round to Odd is provided in the VSX Quad-Precision
Floating-Point Arithmetic instructions as an override to
the rounding mode selected by RN with the rules for
rounding as follows.

If G=1, R=1, or X=1, the result is inexact.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is
incremented by one. This yields an inexact result, and
possibly also exponent overflow. Fraction bits are
stored to the target VSR.

7.3.3.2 VSX Execution Model for
Multiply-Add Type Instructions
This architecture provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar, except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the

G R X Interpretation

0 0 0 IR is exact

0 0 1 IR closer to NL

0 1 0

0 1 1

1 0 0 IR midway between NL and NH

1 0 1 IR closer to NH

1 1 0

1 1 1

Table 4. Interpretation of G, R, and X bits

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of bits 26:52, G, R, X

Table 5. Location of the Guard, Round, and Sticky
bits in the IEEE execution model
Power ISA™ I522

Version 3.1
following format, where bits 0:106 comprise the
significand of the intermediate result.

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), the
significand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L bit.
All 106 bits (L bit, the FRACTION) of the product take part
in the add operation. If the exponents of the two inputs
to the adder are not equal, the significand of the
operand with the smaller exponent is aligned (shifted)
to the right by an amount that is added to that
exponent to make it equal to the other input’s
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X’ bit. The
add operation also produces a result conforming to the
above model with the X’ bit taking part in the add
operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit,
participating in the shift. The normalized result serves
as the intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and
Sticky bits are defined in terms of accumulator bits.
Figure 6 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision
floating-point numbers in the multiply-add execution
model.

The rules for rounding the intermediate result are the
same as those given in Section 7.3.3.1.

If the instruction is a negative multiply-add or negative
multiply-subtract type instruction, the final result is
negated.

S C L FRACTION X’
0 1 2 3 106

Figure 120.Multiply-add 64-bit execution model

Format Guard Round Sticky

Double 53 54 OR of 55:105, X’

Single 24 25 OR of 26:105, X’

Table 6. Location of the Guard, Round, and Sticky
bits in the multiply-add execution model
Chapter 7. Vector-Scalar Extension Facility 523

Version 3.1
7.4 VSX Floating-Point Exceptions

This architecture defines the following floating-point
exceptions under the IEEE-754 exception model:

– Invalid Operation exception

SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

– Zero Divide exception
– Overflow exception
– Underflow exception
– Inexact exception

These exceptions, other than Invalid Operation
exception resulting from a Software-Defined Condition,
can occur during execution of computational
instructions. An Invalid Operation exception resulting
from a Software-Defined Condition occurs when a
Move To FPSCR instruction sets VXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has
a corresponding enable bit in the FPSCR. The
exception bit indicates the occurrence of the
corresponding exception. If an exception occurs, the
corresponding enable bit governs the result produced
by the instruction and, in conjunction with the FE0 and
FE1 bits (see page 525), whether and how the system
floating-point enabled exception error handler is
invoked. In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurrence of
an exception depends only on the instruction and its
inputs, not on the setting of any control bits. The only
deviation from this general rule is that the occurrence
of an Underflow exception depends on the setting of
the enable bit.

A single instruction, other than mtfsfi or mtfsf, can set
more than one exception bit only in the following
cases:

– An Inexact exception can be set with an Overflow
exception.

– An Inexact exception can be set with an
Underflow exception.

– An Invalid Operation exception (SNaN) is set with
an Invalid Operation exception (Infinity×0) for
multiply-add class instructions for which the
values being multiplied are infinity and zero and
the value being added is an SNaN.

– An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Compare) for ordered comparison instructions.

– An Invalid Operation exception (SNaN) can be set
with an Invalid Operation exception (Invalid
Integer Convert) for convert to integer instructions.

When an exception occurs, the writing of a result to the
target register can be suppressed, or a result can be
delivered, depending on the exception.

The writing of a result to the target register is
suppressed for the certain kinds of exceptions, based
on whether the instruction is a vector or a scalar
instruction, so that there is no possibility that one of the
operands is lost. For other kinds of exceptions and
also depending on whether the instruction is a vector
or a scalar instruction, a result is generated and written
to the destination specified by the instruction causing
the exception. The result can be a different value for
the enabled and disabled conditions for some of these
exceptions. Table 7 lists the types of exceptions and
indicates whether a result is written to the target VSR
or suppressed.

On exception type...
Scalar

Instruction
Results

Vector
Instruction

Results
Enabled Invalid Operation suppressed suppressed

Enabled Zero Divide suppressed suppressed

Enabled Overflow written suppressed

Enabled Underflow written suppressed

Enabled Inexact written suppressed

Disabled Invalid Operation written written

Table 7. Exception Types Result Suppression
Power ISA™ I524

Version 3.1
The subsequent sections define each of the
floating-point exceptions and specify the action that is
taken when they are detected.

The IEEE standard specifies the handling of
exceptional conditions in terms of traps and trap
handlers. In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the trap enabled
case; the expectation is that the exception is detected
by software, which revises the result. An FPSCR
exception enable bit of 0 causes generation of the
default result value specified for the trap disabled (or
no trap occurs or trap is not implemented) case. The
expectation is that the exception is not detected by
software, which uses the default result. The result to
be delivered in each case for each exception is
described in the following sections.

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify
software. In this architecture, if the IEEE default
behavior when an exception occurs is required for all
exceptions, all FPSCR exception enable bits must be
set to 0, and Ignore Exceptions Mode (see below)
should be used. In this case, the system floating-point
enabled exception error handler is not invoked, even if
floating-point exceptions occur: software can inspect
the FPSCR exception bits, if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the
corresponding FPSCR exception enable bit must be
set to 1, and a mode other than Ignore Exceptions
Mode must be used. In this case, the system
floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The system floating-point enabled exception error
handler is also invoked if a Move To FPSCR instruction
causes an exception bit and the corresponding enable
bit both to be 1. The Move To FPSCR instruction is
considered to cause the enabled exception.

The FE0 and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled floating-point exception
occurs. The location of these bits and the requirements

for altering them are described in Book III. The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point exception.
The effects of the four possible settings of these bits
are as follows.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value
of the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system
floating-point enabled exception error handler is
invoked have been completed, and no instruction after
the instruction at which the system floating-point
enabled exception error handler is invoked has begun
execution. The instruction at which the system
floating-point enabled exception error handler is
invoked has completed if it is the excepting instruction,

Disabled Zero Divide written written

Disabled Overflow written written

Disabled Underflow written written

Disabled Inexact written written

On exception type...
Scalar

Instruction
Results

Vector
Instruction

Results

Table 7. Exception Types Result Suppression

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. It may not be possible
to identify the excepting instruction or the
data that caused the exception. Results
produced by the excepting instruction might
have been used by or might have affected
subsequent instructions that are executed
before the error handler is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler for it to identify
the excepting instruction, the operands, and
correct the result. No results produced by
the excepting instruction have been used
by or affected subsequent instructions that
are executed before the error handler is
invoked.

1 1 Precise Mode
The system floating-point enabled excep-
tion error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.
Chapter 7. Vector-Scalar Extension Facility 525

Version 3.1
and there is only one such instruction. Otherwise, it
has not begun execution, or has been partially
executed in some cases, as described in Book III.

To obtain the best performance across the widest
range of implementations, the programmer should
obey the following guidelines.

– If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

– If the IEEE default results are not acceptable to
the application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

– Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

– Precise Mode can degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

In any of the three non-Precise modes, a
Floating-Point Status and Control Register
instruction can be used to force any exceptions,
because of instructions initiated before the
Floating-Point Status and Control Register
instruction, to be recorded in the FPSCR. (This
forcing is superfluous for Precise Mode.)

In both Imprecise modes, a Floating-Point Status
and Control Register instruction can be used to
force any invocations of the system floating-point
enabled exception error handler that result from
instructions initiated before the Floating-Point
Status and Control Register instruction to occur.
This forcing has no effect in Ignore Exceptions
Mode, and is superfluous for Precise Mode.

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. It
always applies in the latter case.

Programming Note
Power ISA™ I526

Version 3.1
7.4.1 Floating-Point Invalid Operation Exception

7.4.1.1 Definition
An Invalid Operation exception occurs when an operand is invalid for the specified operation. The invalid operations
are:

SNaN
Any floating-point operation on a Signaling NaN.

Infinity–Infinity
Magnitude subtraction of infinities.

Infinity÷Infinity
Floating-point division of infinity by infinity.

Zero÷Zero
Floating-point division of zero by zero.

Infinity × Zero
Floating-point multiplication of infinity by zero.

Invalid Compare
Floating-point ordered comparison involving a
NaN.

Invalid Square Root
Floating-point square root or reciprocal square
root of a nonzero negative number.

Invalid Integer Convert
Floating-point-to-integer convert involving a
number too large in magnitude to be represented
in the target format, or involving an infinity or a
NaN.

An Invalid Operation exception also occurs when an
mtfsfi, mtfsf, or mtfsb1 instruction is executed that
sets VXSOFT to 1 (Software-Defined Condition).

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

7.4.1.2 Action for VE=1
When Invalid Operation exception is enabled (VE=1) and an Invalid Operation exception occurs, the following actions
are taken:

For any of the following instructions,

VSX Scalar Floating-Point Arithmetic instructions
VSX Scalar DP-SP Conversion instructions
VSX Scalar Convert Floating-Point to Integer instructions
VSX Scalar Round to Floating-Point Integer instructions

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity–Infinity)
VXIDI (if Infinity÷Infinity)
VXZDZ (if Zero÷Zero)
VXIMZ (if Infinity×Zero)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed.

3. FR and FI are set to zero.

4. FPRF is unchanged.
Chapter 7. Vector-Scalar Extension Facility 527

Version 3.1
For VSX Scalar Floating-Point Compare instructions:

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXVC (if Invalid Compare)

2. FR, FI, and C are unchanged.

3. FPCC is set to reflect unordered.

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions:
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssqrtqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Quad-Precision Convert to Integer instructions:
xscvqpsdz, xscvqpswz, xscvqpudz, xscvqpuwz

VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp)
VSX Scalar Round to Quad-Precision Integer (xsrqpi)
VSX Scalar Round to Quad-Precision Integer with Inexact (xsrqpix)
VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to Odd]
(xscvqpdp[o])

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity - Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. VSR[VRT+32] is not modified.
3. FR and FI are set to zero. FPRF is not modified.

For any of the following instructions,

VSX Scalar Compare Ordered Quad-Precision (xscmpoqp)
VSX Scalar Compare Unordered Quad-Precision (xscmpuqp)

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXVC (if Invalid Compare)

2. FR, FI, and C are not modified. FPCC is set to reflect unordered.
Power ISA™ I528

Version 3.1
For any of the following instructions,

VSX Scalar Convert Half-Precision to Double-Precision format (xscvhpdp)
VSX Scalar Convert with round Double-Precision to Half-Precision format (xscvdphp)

do the following.

1. VXSNAN is set to 1.
2. VSR[XT] is not modified.
3. FR and FI are set to 0. FPRF is not modified.

For any of the following instructions,

VSX Vector Convert Half-Precision to Single-Precision format (xvcvhpsp)
VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp)

do the following.

1. VXSNAN is set to 1.
2. VSR[XT] is not modified.
3. FR, FI, and FPRF are not modified.

For any of the following instructions,

VSX Vector Floating-Point Arithmetic instructions:
VSX Vector Floating-Point Compare instructions:
VSX Vector DP-SP Conversion instructions:
VSX Vector Convert Floating-Point to Integer instructions:
VSX Vector Round to Floating-Point Integer instructions:

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXVC (if Invalid Compare)
VXSQRT (if Invalid Square Root)
VXCVI (if Invalid Integer Convert)

2. Update of VSR[XT] is suppressed for all vector elements.

3. FR and FI are unchanged.

4. FPRF is unchanged.
Chapter 7. Vector-Scalar Extension Facility 529

Version 3.1
7.4.1.3 Action for VE=0
When Invalid Operation exception is disabled (VE=0) and an Invalid Operation exception occurs, the following actions
are taken:

For the VSX Scalar Convert with round Double-Precision to Single-Precision format (xscvdpsp) instruction:

1. VXSNAN is set to 1.

2. The single-precision representation of a Quiet NaN is placed into word elements 0 and 1 of VSR[XT].
The contents of word elements 2 and 3 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class of the result (Quiet NaN).

For the VSX Vector Single-Precision Arithmetic instructions, VSX Vector Single-Precision Maximum/Minimum
instructions, the VSX Vector Convert with round Double-Precision to Single-Precision format (xvcvdpsp)
instruction, and the VSX Vector Round to Single-Precision Integer instructions:

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The single-precision representation of a Quiet NaN is placed into its respective word element of
VSR[XT], and for xvcvdpsp, is also placed into bits 32:63 of its respective doubleword element of
VSR[XT].

3. FR, FI, and FPRF are not modified.

For the VSX Scalar Double-Precision Arithmetic instructions, VSX Scalar Double-Precision Maximum/Minimum
instructions, the VSX Scalar Convert Single-Precision to Double-Precision format (xscvspdp) instruction, and
the VSX Scalar Round to Double-Precision Integer instructions:

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The double-precision representation of a Quiet NaN is placed into doubleword element 0 of VSR[XT].
The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is set to indicate the class of the result (Quiet NaN).
Power ISA™ I530

Version 3.1
For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions:
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssqrtqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Quad-Precision Round to Integer (xsrqpi)
VSX Scalar Quad-Precision Round to Integer with Inexact (xsrqpix)

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity - Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The quad-precision representation of a Quiet NaN is placed into VSR[VRT+32].

3. FR and FI are set to 0. FPRF is set to indicate the class of the result (Quiet NaN).

For VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp), do the following.

1. VXSNAN is set to 1.

2. The Quiet NaN is placed into VSR[VRT+32] in quad-precision format.

3. FR and FI are set to 0. FPRF is set to indicate the class of the result (Quiet NaN).

For any of the following instructions,

VSX Scalar Compare Ordered Quad-Precision (xscmpoqp)
VSX Scalar Compare Unordered Quad-Precision (xscmpoqp)

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXVC (if Invalid Compare)

2. FR, FI and C are unchanged. FPCC is set to reflect unordered.

For VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to Odd]
(xscvqpdp[o]), do the following.

1. VXSNAN is set to 1.

2. The double-precision Quiet NaN result is placed into doubleword element 0 of VSR[VRT+32] in
double-precision format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR and FI are set to 0. FPRF is set to indicate the class of the result (Quiet NaN).
Chapter 7. Vector-Scalar Extension Facility 531

Version 3.1
For VSX Scalar Convert with round to zero Quad-Precision to Signed Doubleword format (xscvqpsdz), do the
following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into doubleword element 0 of VSR[VRT+32] if the quad-precision
operand in VSR[VRB+32] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into doubleword element 0 of VSR[VRT+32] if the quad-precision
operand in VSR[VRB+32] is a negative number, -Infinity, or NaN.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR and FI are set to 0. FPRF is undefined.

For VSX Scalar Convert with round to zero Quad-Precision to Signed Word format (xscvqpswz), do the
following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed into word element 1 of VSR[VRT+32] if the quad-precision operand in VSR[VRB+32]
is a positive number or +Infinity.

0x8000_0000 is placed into word element 1 of VSR[VRT+32] if the quad-precision operand in VSR[VRB+32]
is a negative number, -Infinity, or NaN.

0x0000_0000 is placed into word elements 0, 2, and 3 of VSR[VRT+32].

3. FR and FI are set to 0. FPRF is undefined.

For VSX Scalar Convert with round to zero Quad-Precision to Unsigned Doubleword format (xscvqpudz), do
the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into doubleword element 0 of VSR[VRT+32] if the quad-precision
operand in VSR[VRB+32] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into doubleword element 0 of VSR[VRT+32] if the quad-precision
operand in VSR[VRB+32] is a negative number, -Infinity, or NaN.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR and FI are set to 0. FPRF is undefined.
Power ISA™ I532

Version 3.1
For VSX Scalar Convert with round to zero Quad-Precision to Unsigned Word format (xscvqpuwz), do the
following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word element 1 of VSR[VRT+32] if the quad-precision operand in VSR[VRB+32]
is a positive number or +Infinity.

0x0000_0000 is placed into word element 1 of VSR[VRT+32] if the quad-precision operand in VSR[VRB+32]
is a negative number, -Infinity, or NaN.

0x0000_0000 is placed into word elements 0, 2, and 3 of VSR[VRT+32].

3. FR and FI are set to 0. FPRF is undefined.

For VSX Scalar Convert with round Double-Precision to Half-Precision format (xscvdphp), do the following.

1. VXSNAN is set to 1.

2. The half-precision representation of a Quiet NaN is placed into the rightmost halfword of doubleword
element 0 of VSR[XT]. The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are
set to 0. The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0. FPRF is set to indicate the class of the result (Quiet NaN).

For VSX Scalar Convert Half-Precision to Double-Precision format (xscvhpdp), do the following.

1. VXSNAN is set to 1.

2. The double-precision representation of a Quiet NaN is placed into doubleword element 0 of VSR[XT].
The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0. FPRF is set to indicate the class of the result (Quiet NaN).

For any of the following instructions,

VSX Vector Double-Precision Arithmetic instructions
VSX Vector Double-Precision Maximum/Minimum instructions
VSX Vector Convert Single-Precision to Double-Precision format (xvcvspdp)
VSX Vector Round to Double-Precision Integer instructions

do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXISI (if Infinity – Infinity)
VXIDI (if Infinity ÷ Infinity)
VXZDZ (if Zero ÷ Zero)
VXIMZ (if Infinity × Zero)
VXSQRT (if Invalid Square Root)

2. The double-precision representation of a Quiet NaN is placed into its respective doubleword element
of VSR[XT].

3. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 533

Version 3.1
For the VSX Scalar Convert with round to zero Double-Precision to Signed Doubleword format (xscvdpsxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into doubleword element 0 of VSR[XT] if the double-precision operand
in doubleword element 0 of VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into doubleword element 0 of VSR[XT] if the double-precision operand
in doubleword element 0 of VSR[XB] is a negative number, -Infinity, or NaN.

The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Scalar Convert with round to zero Double-Precision to Unsigned Doubleword format (xscvdpuxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into doubleword element 0 of VSR[XT] if the double-precision operand
in doubleword element 0 of VSR[XB] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into doubleword element 0 of VSR[XT] if the double-precision operand
in doubleword element 0 of VSR[XB] is a negative number, -Infinity, or NaN.

The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Scalar Convert with round to zero Double-Precision to Signed Word format (xscvdpsxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed into word elements 0 and 1 of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a positive number or +Infinity.

0x8000_0000 is placed into word elements 0 and 1 of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a negative number, -Infinity, or NaN.

The contents of word elements 2 and 3 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is undefined.
Power ISA™ I534

Version 3.1
For the VSX Scalar Convert with round to zero Double-Precision to Unsigned Word format (xscvdpuxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word elements 0 and 1 of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a positive number or +Infinity.

0x0000_0000 is placed into word elements 0 and 1 of VSR[XT] if the double-precision operand in
doubleword element 0 of VSR[XB] is a negative number, -Infinity, or NaN.

The contents of word elements 2 and 3 of VSR[XT] are set to 0.

3. FR and FI are set to 0.

4. FPRF is undefined.

For the VSX Vector Convert with round to zero Double-Precision to Signed Doubleword format (xvcvdpsxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into doubleword element i of VSR[XT] if the double-precision operand
in the corresponding doubleword element of VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into its respective doubleword element i of VSR[XT] if the
double-precision operand in the corresponding doubleword element of VSR[XB] is a negative number,
-Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round to zero Double-Precision to Unsigned Doubleword format (xvcvdpuxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into doubleword element i of VSR[XT] if the double-precision operand
in doubleword element i of VSR[XB] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into doubleword element i of VSR[XT] if the double-precision operand
in doubleword element i of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 535

Version 3.1
For the VSX Vector Convert with round to zero Double-Precision to Signed Word format (xvcvdpsxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed intoword elements i×2 and i×2+1 of VSR[XT] if the double-precision operand in
doubleword element i of VSR[XB] is a positive number or +Infinity.

0x8000_0000 is placed into word elements i×2 and i×2+1 of VSR[XT] if the double-precision operand in
doubleword element i of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round to zero Double-Precision to Unsigned Word format (xvcvdpuxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word elements i×2 and i×2+1 of VSR[XT] if the double-precision operand in
doubleword element i of VSR[XB] is a positive number or +Infinity.

0x0000_0000 is placed into word elements i×2 and i×2+1 of VSR[XT] if the double-precision operand in
doubleword element i of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round to zero Single-Precision to Signed Doubleword format (xvcvspsxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF_FFFF_FFFF is placed into doubleword element i of VSR[XT] if the single-precision operand
in word element i×2 of VSR[XB] is a positive number or +Infinity.

0x8000_0000_0000_0000 is placed into doubleword element i of VSR[XT] if the single-precision operand
in word element i×2 of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.
Power ISA™ I536

Version 3.1
For the VSX Vector Convert with round to zero Single-Precision to Unsigned Doubleword format (xvcvspuxd)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF_FFFF_FFFF is placed into doubleword element i of VSR[XT] if the single-precision operand
in word element i×2 of VSR[XB] is a positive number or +Infinity.

0x0000_0000_0000_0000 is placed into doubleword element i of VSR[XT] if the single-precision operand
in word element i×2 of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round to zero Single-Precision to Signed Word format (xvcvspsxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x7FFF_FFFF is placed into word element i of VSR[XT] if the single-precision operand in word element i
of VSR[XB] is a positive number or +Infinity.

0x8000_0000 is placed into word element i of VSR[XT] if the single-precision operand in word element i
of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round to zero Single-Precision to Unsigned Word format (xvcvspuxw)
instruction, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0xFFFF_FFFF is placed into word element i of VSR[XT] if the single-precision operand in the
corresponding word element 2×i of VSR[XB] is a positive number or +Infinity.

0x0000_0000 is placed into word element i of VSR[XT] if the single-precision operand in word element
2×i of VSR[XB] is a negative number, -Infinity, or NaN.

3. FR, FI, and FPRF are not modified.

For the VSX Scalar Floating-Point Compare instructions, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. FR, FI and C are unchanged.

3. FPCC is set to reflect unordered.
Chapter 7. Vector-Scalar Extension Facility 537

Version 3.1
For the VSX Vector Compare Single-Precision instructions, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x0000_0000 is placed into its respective word element of VSR[XT].

3. FR, FI, and FPRF are not modified.

For the Vector Double-Precision Compare instructions, do the following.

1. One or two of the following Invalid Operation exceptions are set to 1.

VXSNAN (if SNaN)
VXCVI (if Invalid Integer Convert)

2. 0x0000_0000_0000_0000 is placed into its respective doubleword element of VSR[XT].

3. FR, FI, and FPRF are not modified.

For VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp), do the following.

1. VXSNAN is set to 1.

2. The half-precision representation of a Quiet NaN is placed into the rightmost halfword of its respective
word element of VSR[XT]. The contents of the leftmost halfword of its respective word element of
VSR[XT] are set to 0.

3. FR, FI, and FPRF are not modified.

For VSX Vector Convert Half-Precision to Single-Precision format (xvcvhpsp), do the following.

1. VXSNAN is set to 1.

2. The half-precision representation of a Quiet NaN is placed into the rightmost halfword of its respective
word element of VSR[XT]. The contents of the leftmost halfword of its respective word element of
VSR[XT] are set to 0.

3. FR, FI, and FPRF are not modified.
Power ISA™ I538

Version 3.1
7.4.2 Floating-Point Zero Divide Exception

7.4.2.1 Definition
A Zero Divide exception occurs when a VSX Floating-Point Divide instruction is executed with a zero divisor value
and a finite nonzero dividend value.

A Zero Divide exception also occurs when a VSX Floating-Point Reciprocal Estimate instruction or a VSX
Floating-Point Reciprocal Square Root Estimate instruction is executed with an operand value of zero.

The action to be taken depends on the setting of the Zero Divide Exception Enable bit of the FPSCR.

7.4.2.2 Action for ZE=1
When Zero Divide exception is enabled (ZE=1) and a Zero Divide exception occurs, the following actions are taken:

For any of the following instructions,

VSX Scalar Divide Double-Precision (xsdivdp)
VSX Scalar Divide Single-Precision (xsdivsp)
VSX Scalar Divide Quad-Precision (xsdivqp)

VSX Scalar Reciprocal Estimate Double-Precision (xsredp)
VSX Scalar Reciprocal Estimate Single-Precision (xsresp)

VSX Scalar Reciprocal Square Root Estimate Double-Precision (xsrsqrtedp)
VSX Scalar Reciprocal Square Root Estimate Single-Precision (xsrsqrtesp)

do the following.

1. ZX is set to 1.

2. VSR[XT] is not modified.

3. FR and FI are set to 0. FPRF is unchanged.

For any of the following instructions,

VSX Vector Divide Double-Precision (xvdivdp)
VSX Vector Divide Single-Precision (xvdivsp)

VSX Vector Reciprocal Estimate Double-Precision (xvredp)
VSX Vector Reciprocal Estimate Single-Precision (xvresp)

VSX Vector Reciprocal Square Root Estimate Double-Precision (xvrsqrtedp)
VSX Vector Reciprocal Square Root Estimate Single-Precision (xvrsqrtesp)

do the following.

1. ZX is set to 1.

2. VSR[XT] is not modified.

3. FR and FI are unchanged. FPRF is unchanged.
Chapter 7. Vector-Scalar Extension Facility 539

Version 3.1
7.4.2.3 Action for ZE=0
When Zero Divide exception is disabled (ZE=0) and a Zero Divide exception occurs, the following actions are taken:

For any of the following instructions,

VSX Scalar Divide Double-Precision (xsdivdp)
VSX Scalar Divide Single-Precision (xsdivsp)

do the following.

1. ZX is set to 1.

2. An Infinity, having a sign determined by the XOR of the signs of the source operands, is placed into
doubleword element 0 of VSR[XT] in double-precision format. The contents of doubleword element 1 of
VSR[XT] are set to 0.

3. FR and FI are set to 0. FPRF is set to indicate the class and sign of the result (± Infinity).

For VSX Scalar Divide Quad-Precision (xsdivqp), do the following.

1. ZX is set to 1.

2. An Infinity, having a sign determined by the XOR of the signs of the source operands, is placed into
VSR[VRT+32] in quad-precision format.

3. FR and FI are set to 0. FPRF is set to indicate the class and sign of the result (± Infinity).

For VSX Vector Divide Double-Precision (xvdivdp), do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero Divide exception, an Infinity, having a sign determined by the
XOR of the signs of the source operands, is placed into its respective doubleword element of VSR[XT]
in double-precision format.

3. FR, FI, and FPRF are not modified.

For VSX Vector Divide Single-Precision (xvdivsp), do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero Divide exception, an Infinity, having a sign determined by the
XOR of the signs of the source operands, is placed into its respective word element of VSR[XT] in
single-precision format.

3. FR, FI, and FPRF are not modified.
Power ISA™ I540

Version 3.1
For any of the following instructions,

VSX Scalar Reciprocal Estimate Double-Precision (xsredp)
VSX Scalar Reciprocal Estimate Single-Precision (xsresp)

VSX Scalar Reciprocal Square Root Estimate Double-Precision (xsrsqrtedp)
VSX Scalar Reciprocal Square Root Estimate Single-Precision (xsrsqrtesp)

do the following.

1. ZX is set to 1.

2. An Infinity, having the sign of the source operand, is placed into doubleword element 0 of VSR[XT] in
double-precision format. The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR and FI are set to 0. FPRF is set to indicate the class and sign of the result (± Infinity).

For any of the following instructions,

VSX Vector Reciprocal Estimate Double-Precision (xsredp)

VSX Vector Reciprocal Square Root Estimate Double-Precision (xsrsqrtedp)

do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero Divide exception, an Infinity, having the sign of the source
operand, is placed into its respective doubleword element of VSR[XT] in double-precision format.

3. FR, FI, and FPRF are not modified.

For any of the following instructions,

VSX Vector Reciprocal Estimate Single-Precision (xsresp)

VSX Vector Reciprocal Square Root Estimate Single-Precision (xsrsqrtesp)

do the following.

1. ZX is set to 1.

2. For each vector element causing a Zero Divide exception, an Infinity, having the sign of the source
operand, is placed into its respective word element of VSR[XT] in single-precision format.

3. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 541

Version 3.1
7.4.3 Floating-Point Overflow Exception

7.4.3.1 Definition
An Overflow exception occurs when the magnitude of what would have been the rounded result if the exponent
range were unbounded exceeds that of the largest finite number of the specified result precision.

The action to be taken depends on the setting of the Overflow Exception Enable bit of the FPSCR.

7.4.3.2 Action for OE=1
When Overflow exception is enabled (OE=1) and an Overflow exception occurs, the following actions are taken:

For the VSX Vector round and Convert Double-Precision to Single-Precision format (xscvdpsp) instruction:

1. OX is set to 1.

2. If the unbiased exponent of the normalized intermediate result is less than or equal to 318 (Emax+192),
the exponent is adjusted by subtracting 192. Otherwise the result is undefined.

3. The adjusted rounded result is placed into word elements 0 and 1 of VSR[XT] in single-precision format.
The contents of word elements 2 and 3 of VSR[XT] are set to 0.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).

For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xsdivdp, xsmuldp, xssubdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Vector Reciprocal Estimate Double-Precision (xsredp)

do the following.

1. OX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by subtracting 1536.

3. The adjusted rounded result is placed into doubleword element 0 of VSR[XT] in double-precision
format. The contents of doubleword element 1 of VSR[XT] are set to 0.

4. FPRF is set to indicate the class and sign of the result (±Normal Number).
Power ISA™ I542

Version 3.1
For any of the following instructions,

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xsdivsp, xsmulsp, xssubsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Reciprocal Estimate Single-Precision (xsresp)

VSX Vector Reciprocal Square Root Estimate Single-Precision (xsrsqrtesp)

VSX Scalar Round to Single-Precision (xsrsp)

do the following.

1. OX is set to 1.

2. The exponent is adjusted by subtracting 192.

3. The adjusted and rounded result is placed into doubleword element 0 of VSR[XT] in double-precision
format. The contents of doubleword element 1 of VSR[XT] are set to 0.

4. FPRF is set to indicate the class and sign of the result (±Normal Number).

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssqrtqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp)

do the following.

1. OX is set to 1.

2. The exponent is adjusted by subtracting 24576.

3. The adjusted, rounded result is placed into VSR[VRT+32] in quad-precision format.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).

For VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to Odd]
(xscvqpdp), do the following.

1. OX is set to 1.

2. The exponent is adjusted by subtracting 1536. If the adjusted exponent is greater than +1023 (Emax), the
result is undefined.

3. The adjusted, rounded result is placed into doubleword element 0 of VSR[VRT+32] in double-precision
format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).
Chapter 7. Vector-Scalar Extension Facility 543

Version 3.1
For VSX Scalar Convert with round Double-Precision to Half-Precision format (xscvdphp), do the following.

1. OX is set to 1.

2. The exponent is adjusted by subtracting 24. If the adjusted exponent is greater than +15 (Emax), the
result is undefined.

3. The adjusted, rounded result is placed into rightmost halfword of doubleword element 0 of VSR[XT] in
half-precision format.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).

For any of the following instructions,

VSX Vector Double-Precision Arithmetic instructions
xvadddp, xvdivdp, xvmuldp, xvredp, xvsubdp,
xvmaddadp, xsmaddmdp, xvmsubadp, xvmsubmdp,
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp

VSX Vector Single-Precision Arithmetic instructions
xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp
xvmaddasp, xvmaddmsp, xvsmsubasp, xvmsubmsp
xvnmaddasp, xvnmaddmsp, xvnmsubasp, xvnmsubmsp

VSX Vector round and Convert Double-Precision to Single-Precision format (xvcvdpsp)

do the following.

1. OX is set to 1.

2. VSR[XT] is not modified.

3. FR, FI, and FPRF are not modified.

For VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp), do the following.

1. OX is set to 1.

2. VSR[XT] is not modified.

3. FR, FI, and FPRF are not modified.
Power ISA™ I544

Version 3.1
7.4.3.3 Action for OE=0
When Overflow exception is disabled (OE=0) and an Overflow exception occurs, the following actions are taken:

1. OX and XX are set to 1.

2. The result is determined by the rounding mode (RN) and the sign of the intermediate result as follows:

Round to Nearest Even
For negative overflow, the result is -Infinity.
For positive overflow, the result is +Infinity.

Round toward Zero
For negative overflow, the result is the format’s most negative finite number.
For positive overflow, the result is the format’s most positive finite number.

Round toward +Infinity
For negative overflow, the result is the format’s most negative finite number.
For positive overflow, the result is +Infinity.

Round toward -Infinity
For negative overflow, the result is -Infinity.
For positive overflow, the result is the format’s most positive finite number.

For VSX Scalar round and Convert Double-Precision to Single-Precision format (xscvdpsp):

3. The result is placed into word elements 0 and 1 of VSR[XT] as a single-precision value. The contents of
word elements 2 and 3 of VSR[XT] are set to 0.

4. FR is undefined. FI is set to 1. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xsdivdp, xsmuldp, xsredp, xssubdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xsdivsp, xsmulsp, xsresp, xssubsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

do the following.

3. The result is placed into doubleword element 0 of VSR[XT] as a double-precision value. The contents of
doubleword element 1 of VSR[XT] are set to 0.

4. FR is undefined. FI is set to 1. FPRF is set to indicate the class and sign of the result.
Chapter 7. Vector-Scalar Extension Facility 545

Version 3.1
For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Quad-Precision Round to Double-Extended-Precision (xsrqpxp)

do the following.

3. The result is placed into VSR[VRT+32] in quad-precision format.

4. FR is undefined. FI is set to 1. FPRF is set to indicate the class and sign of the result.

For VSX Scalar Convert with round Quad-Precision to Double-Precision format (xscvqpdp), do the following.

3. The result is placed into doubleword element 0 of VSR[VRT+32] as a double-precision value.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

4. FR is undefined. FI is set to 1. FPRF is set to indicate the class and sign of the result.

For VSX Scalar Convert with round Double-Precision to Half-Precision format (xscvdphp), do the following.

3. The result is placed into the rightmost halfword of doubleword element 0 of VSR[XT] as a half-precision
value.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

4. FR is undefined. FI is set to 1. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

For VSX Vector Double-Precision Arithmetic instructions
xvadddp, xvdivdp, xvmuldp, xvredp, xvsubdp
xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp

do the following.

3. For each vector element causing an Overflow exception, the result is placed into its respective
doubleword element of VSR[XT] in double-precision format.

4. FR, FI, and FPRF are not modified.
Power ISA™ I546

Version 3.1
For any of the following instructions,

VSX Vector Single-Precision Arithmetic instructions
xvaddsp, xvdivsp, xvmulsp, xvresp, xvsubsp
xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp
xvnmaddasp, xvnmaddmsp, xvnmsubasp, xvnmsubmsp

VSX Vector round and Convert Double-Precision to Single-Precision format (xvcvdpsp)

do the following.

3. For each vector element causing an Overflow exception, the result is placed into its respective word
element of VSR[XT] in single-precision format, and for xvcvdpsp, is also placed into bits 32:63 of its
respective doubleword element of VSX[XT].

4. FR, FI, and FPRF are not modified.

For VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp), do the following.

3. For each vector element causing an Overflow exception, the result is placed into the rightmost
halfword of its respective word element of VSR[XT] in half-precision format.

The contents of the leftmost halfword of its respective word element of VSR[XT] are set to 0.

4. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 547

Version 3.1
7.4.4 Floating-Point Underflow Exception

7.4.4.1 Definition
Underflow exception is defined separately for the enabled and disabled states:

Enabled:
Underflow occurs when the intermediate result is “Tiny”.

Disabled:
Underflow occurs when the intermediate result is “Tiny” and there is “Loss of Accuracy”.

A tiny result is detected before rounding, when a nonzero intermediate result computed as though both the precision
and the exponent range were unbounded would be less in magnitude than the smallest normalized number.

If the intermediate result is tiny and Underflow exception is disabled (UE=0), the intermediate result is denormalized
(see Section 7.3.2.4 , “Normalization and Denormalization” on page 513) and rounded (see Section 7.3.2.6 ,
“Rounding” on page 518) before being placed into the target VSR.

Loss of accuracy is detected when the delivered result value differs from what would have been computed were
both the precision and the exponent range unbounded.

The action to be taken depends on the setting of the Underflow Exception Enable bit of the FPSCR.

7.4.4.2 Action for UE=1
When Underflow exception is enabled (UE=1) and an Underflow exception occurs, the following actions are taken:

For VSX Scalar round and Convert Double-Precision to Single-Precision format (xscvdpsp), do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 192. If the adjusted unbiased
exponent is less than -126 (Emin), the result is undefined.

3. The adjusted rounded result is placed into word elements 0 and 1 of VSR[XT] in single-precision format.
The contents of word elements 2 and 3 of VSR[XT] are undefined.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).
Power ISA™ I548

Version 3.1
For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xsdivdp, xsmuldp, xssubdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Double-Precision Reciprocal Estimate (xsredp)

do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 1536.

3. The adjusted rounded result is placed into word elements 0 and 1 of VSR[XT] in single-precision format.
The contents of word elements 2 and 3 of VSR[XT] are set to 0

4. FPRF is set to indicate the class and sign of the result (±Normal Number).

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp)

do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 24576.

3. The adjusted, rounded result is placed into VSR[VRT+32] in quad-precision format.

4. FPRF is set to indicate the class and sign of the result (±Normal Number).

For VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to Odd]
(xscvqpdp[o]), do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 1536. If the adjusted
unbiased exponent is less than -1022 (Emin), the result is undefined.

3. The adjusted, rounded result is placed into doubleword element 0 of VSR[VRT+32] in double-precision
format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).
Chapter 7. Vector-Scalar Extension Facility 549

Version 3.1
For any of the following instructions,

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xsdivsp, xsmulsp, xssubsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Single-Precision Reciprocal Estimate (xsresp)

do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 192. If the adjusted unbiased
exponent is less than -126 (Emin), the result is undefined.

3. The adjusted rounded result is placed into doubleword element 0 of VSR[XT] in double-precision
format. The contents of doubleword element 1 of VSR[XT] are set to 0.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).

For VSX Scalar Convert with round Double-Precision to Half-Precision with round (xscvdphp), do the following.

1. UX is set to 1.

2. The exponent of the normalized intermediate result is adjusted by adding 24. If the adjusted unbiased
exponent is less than -14, the result is undefined.

3. The adjusted, rounded result is placed into rightmost halfword of doubleword element 0 of VSR[XT] in
half-precision format.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

4. Unless the result is undefined, FPRF is set to indicate the class and sign of the result (±Normal
Number).

The FR and FI bits are provided to allow the system floating-point enabled exception error handler, when
invoked because of an Underflow exception, to simulate a “trap disabled” environment. That is, the FR and FI
bits allow the system floating-point enabled exception error handler to unround the result, thus allowing the
result to be denormalized and correctly rounded.

Programming Note
Power ISA™ I550

Version 3.1
For any of the following instructions,

VSX Vector Double-Precision Arithmetic instructions
xvadddp, xvdivdp, xvmuldp, xvsubdp
xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp

VSX Vector Single-Precision Arithmetic instructions
xvaddsp, xvdivsp, xvmulsp, xvsubsp
xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp
xvnmaddasp, xvnmaddmsp, xvnmsubasp, xvnmsubmsp

VSX Vector Reciprocal Estimate Double-Precision (xvredp)
VSX Vector Reciprocal Estimate Single-Precision (xvresp)

VSX Vector round and Convert Double-Precision to Single-Precision format (xvcvdpsp)

VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp)

do the following.

1. UX is set to 1.

2. VSR[XT] is not modified.

3. FR, FI, and FPRF are not modified.

7.4.4.3 Action for UE=0
When Underflow exception is disabled (UE=0) and an Underflow exception occurs, the following actions are taken:

For VSX Scalar round and Convert Double-Precision to Single-Precision format (xscvdpsp), do the following.

1. UX is set to 1.

2. The result is placed into word elements 0 and 1 of VSR[XT] as a single-precision value. The contents of
word elements 2 and 3 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xsdivdp, xsmuldp, xssubdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xsdivsp, xsmulsp, xssubsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Reciprocal Estimate Double-Precision (xsredp)
VSX Scalar Reciprocal Estimate Single-Precision (xsresp)
Chapter 7. Vector-Scalar Extension Facility 551

Version 3.1
do the following.

1. UX is set to 1.

2. The result is placed into doubleword element 0 of VSR[XT] in double-precision format. The contents of
doubleword element 1 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp)

do the following.

1. UX is set to 1.

2. The result is placed into VSR[VRT+32] in quad-precision format.

3. FPRF is set to indicate the class and sign of the result.

For VSX Scalar Convert with round Quad-Precision to Double-Precision format (xscvqpdp), do the following.

1. UX is set to 1.

2. The result is placed into doubleword element 0 of VSR[VRT+32] in double-precision format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FPRF is set to indicate the class and sign of the result.

For VSX Scalar Convert with round Double-Precision to Half-Precision format (xscvdphp), do the following.

1. UX is set to 1.

2. The result is placed into the rightmost halfword of doubleword element 0 of VSR[XT] as a half-precision
value.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Vector Double-Precision Arithmetic instructions
xvadddp, xvdivdp, xvmuldp, xvsubdp
xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp

VSX Vector Reciprocal Estimate Double-Precision (xvredp)
Power ISA™ I552

Version 3.1
do the following.

1. UX is set to 1.

2. For each vector element causing an Underflow exception, the result is placed into its respective
doubleword element of VSR[XT] in double-precision format.

3. FR, FI, and FPRF are not modified.

For any of the following instructions,

VSX Vector Single-Precision Arithmetic instructions
xvaddsp, xvdivsp, xvmulsp, xvsubsp
xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp
xvnmaddasp, xvnmaddmsp, xvnmsubasp, xvnmsubmsp

VSX Vector Reciprocal Estimate Single-Precision (xvresp)

VSX Vector round and Convert Double-Precision to Single-Precision format (xvcvdpsp)

do the following.

1. UX is set to 1.

2. For each vector element causing an Underflow exception, the result is placed into its respective word
element of VSR[XT] in single-precision format, and for xvcvdpsp, is also placed into bits 32:63 of its
respective doubleword element of VSR[XT].

3. FR, FI, and FPRF are not modified.

For VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp), do the following.

1. UX is set to 1.

2. For each vector element causing an Underflow exception, the result is placed into the rightmost
halfword of its respective word element of VSR[XT] in half-precision format.

The contents of the leftmost halfword of its respective word element of VSR[XT] are set to 0.

3. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 553

Version 3.1
7.4.5 Floating-Point Inexact Exception

7.4.5.1 Definition
An Inexact exception occurs when one of two conditions occur during rounding:

1. The rounded result differs from the intermediate result assuming both the precision and the exponent range of
the intermediate result to be unbounded. In this case the result is said to be inexact. (If the rounding causes an
enabled Overflow exception or an enabled Underflow exception, an Inexact exception also occurs only if the
significands of the rounded result and the intermediate result differ.)

2. The rounded result overflows and Overflow exception is disabled.

The action to be taken depends on the setting of the Inexact Exception Enable bit of the FPSCR.

7.4.5.2 Action for XE=1

When Inexact exception is enabled (UE=1) and an Inexact exception occurs, the following actions are taken:

For the VSX Scalar round and Convert Double-Precision to Single-Precision format (xscvdpsp) instruction, do
the following.

1. XX is set to 1.

2. The result is placed into word elements 0 and 1 of VSR[XT] in single-precision format. The contents of
word elements 2-3 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xssubsp, xsmulsp, xsdivsp, xssqrtsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Reciprocal Estimate instructions
xsredp, xsrsqrtedp, xsresp, xsrsqrtesp

VSX Scalar Round to Single-Precision (xsrsp)

VSX Scalar Round to Double-Precision Integer Exact using Current rounding mode (xsrdpic)

VSX Scalar Convert with round Signed Doubleword to Double-Precision format (xscvsxddp)
VSX Scalar Convert with round Signed Doubleword to Single-Precision format (xscvsxdsp)

VSX Scalar Convert with round Unsigned Doubleword to Double-Precision format (xscvuxddp)
VSX Scalar Convert with round Unsigned Doubleword to Single-Precision format (xscvuxdsp)

In some implementations, enabling Inexact exceptions can degrade performance more than does enabling other
types of floating-point exception.

Programming Note
Power ISA™ I554

Version 3.1
do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[XT] in double-precision format. The contents of
doubleword element 1 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Convert with round to zero Double-Precision to Signed Word format (xscvdpsxws)
VSX Scalar Convert with round to zero Double-Precision to Unsigned Word format (xscvdpuxws)

do the following.

1. XX is set to 1.

2. The result is placed into word element 1 of VSR[XT]. The contents of word elements 0, 2, and 3 of
VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssqrtqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Round to Quad-Precision Integer with Inexact (xsrqpix)

VSX Scalar Round Quad-Precision to Double-Extended Precision (xsrqpxp)

do the following.

1. XX is set to 1.

2. The result is placed into VSR[VRT+32] in quad-precision format.

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.

For VSX Scalar Convert with round Quad-Precision to Double-Precision format (xscvqpdp), do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[VRT+32] in double-precision format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.
Chapter 7. Vector-Scalar Extension Facility 555

Version 3.1
For VSX Scalar truncate & Convert Quad-Precision to Signed Doubleword (xscvqpsdz), do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[XT] in signed integer format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For VSX Scalar truncate & Convert Quad-Precision to Signed Word (xscvqpswz), do the following.

1. XX is set to 1.

2. The result is placed into word element 1 of VSR[XT] in signed integer format.

0x0000_0000 is placed into word elements 0, 2, and 3 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For VSX Scalar truncate & Convert Quad-Precision to Unsigned Doubleword (xscvqpudz), do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[XT] in unsigned integer format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For VSX Scalar truncate & Convert Quad-Precision to Unsigned Word (xscvqpuwz), do the following.

1. XX is set to 1.

2. The result is placed into word element 1 of VSR[XT] in unsigned integer format.

0x0000_0000 is placed into word elements 0, 2, and 3 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For VSX Scalar Convert with round Double-Precision to Half-Precision truncate (xscvdphp), do the following.

1. XX is set to 1.

2. The result is placed into the rightmost halfword of doubleword element 0 of VSR[XT] as a half-precision
value.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.
Power ISA™ I556

Version 3.1
For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xssubsp, xsmulsp, xsdivsp, xssqrtsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Reciprocal Estimate instructions
xsredp, xsrsqrtedp, xsresp, xsrsqrtesp

VSX Scalar Round to Single-Precision (xsrsp)

VSX Scalar Round to Double-Precision Integer Exact using Current rounding mode (xsrdpic)

VSX Scalar Convert with round Signed Doubleword to Double-Precision format (xscvsxddp)
VSX Scalar Convert with round Unsigned Doubleword to Double-Precision format (xscvuxddp)

VSX Scalar Convert with round Signed Doubleword to Single-Precision format (xscvsxdsp)
VSX Scalar Convert with round Unsigned Doubleword to Single-Precision format (xscvuxdsp)

do the following.

1. XX is set to 1.

2. VSR[XT] is not modified.

3. FR, FI, and FPRF are not modified.

For the VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp) instruction, do the
following.

1. XX is set to 1.

2. VSR[XT] is not modified.

3. FR, FI, and FPRF are not modified.
Chapter 7. Vector-Scalar Extension Facility 557

Version 3.1
7.4.5.3 Action for XE=0
When Inexact exception is disabled (XE=0) and an Inexact exception occurs, the following actions are taken:

For VSX Scalar round and Convert Double-Precision to Single-Precision format (xscvdpsp), do the following.

1. XX is set to 1.

2. The result is placed into word elements 0 and 1 of VSR[XT] as a single-precision value. The contents of
word elements 2-3 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Double-Precision Arithmetic instructions
xsadddp, xssubdp, xsmuldp, xsdivdp, xssqrtdp
xsmaddadp, xsmaddmdp, xsmsubadp, xsmsubmdp
xsnmaddadp, xsnmaddmdp, xsnmsubadp, xsnmsubmdp

VSX Scalar Single-Precision Arithmetic instructions
xsaddsp, xssubsp, xsmulsp, xsdivsp, xssqrtsp
xsmaddasp, xsmaddmsp, xsmsubasp, xsmsubmsp
xsnmaddasp, xsnmaddmsp, xsnmsubasp, xsnmsubmsp

VSX Scalar Round to Single-Precision (xsrsp)

VSX Scalar Round to Double-Precision Integer Exact using Current rounding mode (xsrdpic)

VSX Scalar Convert with round Signed Doubleword to Double-Precision format (xscvsxddp)
VSX Scalar Convert with round Unsigned Doubleword to Double-Precision format (xscvuxddp)

do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[XT] as a double-precision value. The contents of
doubleword element 1 of VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.

For any of the following instructions,

VSX Scalar Convert with round to zero Double-Precision To Signed Word format (xscvdpsxws)
VSX Scalar Convert with round to zero Double-Precision To Unsigned Word format (xscvdpuxws)

do the following.

1. XX is set to 1.

2. The result is placed into word elements 0 and 1 of VSR[XT]. The contents of word elements 2 and 3 of
VSR[XT] are set to 0.

3. FPRF is set to indicate the class and sign of the result.
Power ISA™ I558

Version 3.1
For VSX Scalar Convert with round Quad-Precision to Double-Precision format (xscvqpdp), do the following.

1. XX is set to 1.

2. The result is placed into the rightmost halfword of doubleword element 0 of VSR[XT] as a half-precision
value.

The contents of the leftmost 3 halfwords of doubleword element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are set to 0.

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.

For any of the following instructions,

VSX Vector Double-Precision Arithmetic instructions
xvadddp, xvsubdp, xvmuldp, xvdivdp, xvsqrtdp
xvmaddadp, xvmaddmdp, xvmsubadp, xvmsubmdp
xvnmaddadp, xvnmaddmdp, xvnmsubadp, xvnmsubmdp

do the following.

1. XX is set to 1.

2. For each vector element causing an Inexact exception, the result is placed into its respective
doubleword element of VSR[XT] in double-precision format.

3. FR, FI, and FPRF are not modified.

For any of the following instructions,

VSX Scalar Quad-Precision Arithmetic instructions
xsaddqp[o], xsdivqp[o], xsmulqp[o], xssqrtqp[o], xssubqp[o]
xsmaddqp[o], xsmsubqp[o], xsnmaddqp[o], xsnmsubqp[o]

VSX Scalar Round Quad-Precision to Double-Extended-Precision (xsrqpxp)
VSX Scalar Round to Quad-Precision Integer with Inexact (xsrqpix)

do the following.

1. XX is set to 1.

2. The result is placed into VSR[VRT+32] in quad-precision format.

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.

For VSX Scalar round & Convert Quad-Precision to Double-Precision (xscvqpdp), do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[VRT+32] in double-precision format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to indicate if the rounded result was incremented. FI is set to 1. FPRF is set to indicate the
class and sign of the result.
Chapter 7. Vector-Scalar Extension Facility 559

Version 3.1
For any of the following instructions,

VSX Scalar truncate & Convert Quad-Precision to Signed Doubleword (xscvqpsdz)
VSX Scalar truncate & Convert Quad-Precision to Signed Word (xscvqpswz)

do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[VRT+32] in signed integer format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For any of the following instructions,

VSX Scalar truncate & Convert Quad-Precision to Unsigned Doubleword (xscvqpudz)
VSX Scalar truncate & Convert Quad-Precision to Unsigned Word (xscvqpuwz)

do the following.

1. XX is set to 1.

2. The result is placed into doubleword element 0 of VSR[VRT+32] in unsigned integer format.

0x0000_0000_0000_0000 is placed into doubleword element 1 of VSR[VRT+32].

3. FR is set to 0. FI is set to 1. FPRF is undefined.

For VSX Vector Convert with round Single-Precision to Half-Precision format (xvcvsphp), do the following.

1. XX is set to 1.

2. For each vector element causing an Underflow exception, the result is placed into the rightmost
halfword of its respective word element of VSR[XT] in half-precision format.

The contents of the leftmost halfword of its respective word element of VSR[XT] are set to 0.

3. FR, FI, and FPRF are not modified.

For any of the following instructions,

VSX Vector Single-Precision Arithmetic instructions
xvaddsp, xvsubsp, xvmulsp, xvdivsp, xvsqrtsp
xvmaddasp, xvmaddmsp, xvmsubasp, xvmsubmsp
xvnmaddasp, xvnmaddmsp, xvnmsubasp, xvnmsubmsp

do the following.

1. XX is set to 1.

2. For each vector element causing an Inexact exception, the result is placed into its respective word
element of VSR[XT] in single-precision format.

3. FR, FI, and FPRF are not modified.
Power ISA™ I560

Version 3.1
7.5 VSX Storage Access Operations

The VSX Storage Access instructions compute the
effective address (EA) of the storage to be accessed
as described in Power ISA Book I.

7.5.1 Accessing Aligned Storage Operands
The following quadword-aligned array, AH, consists of
8 halfwords.

short AW[4] = { 0x0001_0203,

 0x0405_0607,

 0x0809_0A0B,

 0x0C0D_0E0F };

Figure 121 illustrates the Big-Endian storage image of
array AW.

Figure 122 illustrates the Little-Endian storage image
of array AW.

Figure 123 shows the result of loading that quadword
into a VSR or, equivalently, shows the contents that
must be in a VSR if storing that VSR is to produce the
storage contents shown in Figure 121 for Big-Endian.
Note that Figure shows the effect of loading the
quadword from both Big-Endian storage and
Little-Endian storage.

0x0000: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0x0010:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 121.Big-Endian storage image of array AW

0x0000: 03 02 01 00 07 06 05 04 0B 0A 09 08 0F 0E 0D 0C

0x0010:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 122.Little-Endian storage image of array AW

VSR contents when accessing aligned quadword in
Big-Endian storage from Figure 121

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR contents when accessing aligned quadword in
Little-Endian storage from Figure 122

Vt,Vs 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 123.Vector-Scalar Register contents for
aligned quadword Load or Store VSX
Vector
Chapter 7. Vector-Scalar Extension Facility 561

Version 3.1
7.5.2 Accessing Unaligned Storage Operands
The following array, B, consists of 5 word elements.

int B[5];

B[0] = 0x01234567;

B[1] = 0x00112233;

B[2] = 0x44556677;

B[3] = 0x8899AABB;

B[4] = 0xCCDDEEFF;

Figure 124 illustrates both Big-Endian and
Little-Endian storage images of array B.

Though this example shows the array starting at a
quadword-aligned address, if the subject data of
interest are elements 1 through 4, accessing elements
1 through 4 of array B involves an unaligned quadword
storage access that spans two aligned quadwords.

Loading an Unaligned Quadword from Big-Endian
Storage

Loading elements from elements 1 through 4 of B (see
Figure 124) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Big-Endian byte ordering.

Loading an Unaligned Quadword from
Little-Endian Storage

Loading elements from elements 1 through 4 of B (see
Figure 124) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Little-Endian byte ordering.

Big-Endian storage image of array B
0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

0x0010: CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-Endian storage image of array B
0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BB AA 99 88

0x0010: FF EE DD CC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 124.Storage images of array B

Big-Endian storage image of array B
0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

0x0010: CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions
 GPR[Ra] = address of B
 GPR[Rb] = 4 (index to B[1])
lxvw4x Xt,Ra,Rb

Xt: 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 125.Process to load unaligned quadword
from Big-Endian storage using Load
VSX Vector Word*4 Indexed

Little-Endian storage image of array B
0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BB AA 99 88

0x0010: FF EE DD CC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions
 GPR[A] = address of B
 GPR[B] = 4 (index to B[1])
lxvw4x Xt,Ra,Rb

Xt: 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 126.Process to load unaligned quadword
from Little-Endian storage Load VSX
Vector Word*4 Indexed
Power ISA™ I562

Version 3.1
Storing an Unaligned Quadword to Big-Endian
Storage

Storing a VSR to elements 1 through 4 of B (see
Figure 124) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Big-Endian byte ordering.

Storing an Unaligned Quadword to Little-Endian
Storage

Storing a VSR to elements 1 through 4 of B (see
Figure 124) into VR[VT] involves an unaligned
quadword storage access.

VSX supports word-aligned vector and scalar storage
accesses using Little-Endian byte ordering.

7.5.3 Storage Access
Exceptions
Storage accesses cause the system data storage error
handler to be invoked if the program is not allowed to
modify the target storage (Store only), or if the
program attempts to access storage that is
unavailable.

Big-Endian storage image of array B
0x0000: 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

0x0010: CC DD EE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Xs: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions
 GPR[Ra] = address of B
 GPR[Rb] = 4 (index to B[1])

stxvw4x Xs,Ra,Rb

0x0000: 01 23 45 67 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB

0x0010: FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 127.Process to store unaligned quadword to
Big-Endian storage using Store VSX
Vector Word*4 Indexed

Little-Endian storage image of array B
0x0000: 67 45 23 01 33 22 11 00 77 66 55 44 BB AA 99 88

0x0010: FF EE DD CC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Xs: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA BB FC FD FE FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions
 GPR[A] = address of B
 GPR[B] = 4 (index to B[1])

stxvw4x Xs,Ra,Rb

0x0000: 67 45 23 01 F3 F2 F1 F0 F7 F6 F5 F4 FB FA F9 F8

0x0010: FF FE FD FC

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 128.Process to store unaligned quadword to
Little-Endian storage Store VSX Vector
Word*4 Indexed
Chapter 7. Vector-Scalar Extension Facility 563

Version 3.1
7.6 VSX Instruction Set

7.6.1 VSX Instruction Set Summary

7.6.1.1 VSX Storage Access Instructions

Load VSX Scalar instructions place a copy of the
contents of the addressed byte, halfword, word, or
doubleword in storage into the left-most doubleword
element of the target VSR. For integer byte, halfword,
and word forms, the data are placed into the rightmost
byte, halfword, or word of the doubleword, and the
leftmost bits of the doubleword are set to 0 (or set to
the copy of the sign bit for lxsiwax). For the
single-precision floating-point word form, the data is
converted to double-precision format and placed into
the doubleword. The contents of the right-most
doubleword element of the target VSR are set to 0.

Store VSX Scalar instructions place a copy of the
contents of the leftmost doubleword element (or
portions of) in the source VSR into the addressed byte,
halfword, word or doubleword in storage. For integer
byte, halfword, and word forms, the rightmost byte,
halfword, or word of the doubleword are stored.

Load VSX Vector instructions load a quadword from
storage as a vector of 16 byte elements, 8 halfword
elements, 4 word elements, 2 doubleword elements or
a quadword element into a VSR.

Load VSX Vector & Splat instructions load a word or
doubleword from storage and replicate the data into
the 4 words or 2 doublewords of a VSR.

Store VSX Vector instructions store a vector of 16 byte
elements, 8 halfword elements, 4 word elements, 2
doubleword elements or a quadword element from a
VSR into a quadword in storage.

Load VSX Vector with Length instruction loads from 0
to 16 bytes into a VSR.

Store VSX Vector with Length instruction stores from 0
to 16 bytes from a VSR.

Load VSX Vector Paired instructions load an octword
(32 bytes) from storage into two sequential VSRs (i.e.,
a vector of 32 byte elements, 16 halfword elements, 8
word elements, 4 doubleword elements or 2 quadword
elements).

VSX Vector Store Paired instructions store the
contents of two sequential VSRs into an octword (32
bytes) in storage (i.e., a vector of 32 byte elements, 16
halfword elements, 8 word elements, 4 doubleword
elements or 2 quadword elements).

7.6.1.1.1 VSX Scalar Storage Access Instructions

Mnemonic Instruction Name Page
lxsd Load VSX Scalar Doubleword 610
lxsdx Load VSX Scalar Doubleword Indexed 611
lxsibzx Load VSX Scalar as Integer Byte & Zero Indexed 612
lxsihzx Load VSX Scalar as Integer Halfword & Zero Indexed 612
lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed 613
lxsiwzx Load VSX Scalar as Integer Word & Zero Indexed 614
lxssp Load VSX Scalar Single-Precision 615
lxsspx Load VSX Scalar Single-Precision Indexed 616
plxsd Prefixed Load VSX Scalar Doubleword 610
plxssp Prefixed Load VSX Scalar Single-Precision 615
Table 8. VSX Scalar Load Instructions

Mnemonic Instruction Name Page
pstxsd Prefixed Store VSX Scalar Doubleword 638
pstxssp Prefixed Store VSX Scalar Single-Precision 642
stxsd Store VSX Scalar Doubleword 638
stxsdx Store VSX Scalar Doubleword Indexed 639
stxsibx Store VSX Scalar as Integer Byte Indexed 640
Table 9. VSX Scalar Store Instructions
Power ISA™ I564

Version 3.1
7.6.1.1.2 VSX Vector Storage Access Instructions

stxsihx Store VSX Scalar as Integer Halfword Indexed 640
stxsiwx Store VSX Scalar as Integer Word Indexed 641
stxssp Store VSX Scalar Single-Precision 642
stxsspx Store VSX Scalar Single-Precision Indexed 643

Mnemonic Instruction Name Page
lxv Load VSX Vector 617
lxvb16x Load VSX Vector Byte*16 Indexed 618
lxvd2x Load VSX Vector Doubleword*2 Indexed 619
lxvh8x Load VSX Vector Halfword*8 Indexed 634
lxvw4x Load VSX Vector Word*4 Indexed 635
lxvx Load VSX Vector Indexed 625
plxv Prefixed Load VSX Vector 617
Table 10.VSX Vector Load Instructions

Mnemonic Instruction Name Page
lxvdsx Load VSX Vector Doubleword & Splat Indexed 633
lxvwsx Load VSX Vector Word & Splat Indexed 636
Table 11.VSX Vector Load & Splat Instructions

Mnemonic Instruction Name Page
lxvrbx Load VSX Vector Rightmost Byte Indexed 627
lxvrdx Load VSX Vector Rightmost Doubleword Indexed 628
lxvrhx Load VSX Vector Rightmost Halfword Indexed 629
lxvrwx Load VSX Vector Rightmost Word Indexed 630
Table 12.VSX Vector Load Rightmost Element Instructions

Mnemonic Instruction Name Page
lxvl Load VSX Vector with Length 621
lxvll Load VSX Vector with Length Left-justified 623
Table 13.VSX Vector Load with Length Instructions

Mnemonic Instruction Name Page
pstxv Prefixed Store VSX Vector 644
stxv Store VSX Vector 644
stxvb16x Store VSX Vector Byte*16 Indexed 645
stxvd2x Store VSX Vector Doubleword*2 Indexed 646
stxvh8x Store VSX Vector Halfword*8 Indexed 647
stxvw4x Store VSX Vector Word*4 Indexed 653
stxvx Store VSX Vector Indexed 656
Table 14.VSX Vector Store Instructions

Mnemonic Instruction Name Page
stxvrbx Store VSX Vector Rightmost Byte Indexed 651
stxvrdx Store VSX Vector Rightmost Doubleword Indexed 651
stxvrhx Store VSX Vector Rightmost Halfword Indexed 652
Table 15.VSX Vector Store Rightmost Element Instructions

Mnemonic Instruction Name Page

Table 9. VSX Scalar Store Instructions
Chapter 7. Vector-Scalar Extension Facility 565

Version 3.1
7.6.1.1.3 VSX Vector Paired Storage Access Instructions

stxvrwx Store VSX Vector Rightmost Word Indexed 652

Mnemonic Instruction Name Page
stxvl Store VSX Vector with Length 648
stxvll Store VSX Vector with Length Left-justified 650
Table 16.VSX Vector Store with Length Instructions

Mnemonic Instruction Name Page
lxvp Load VSX Vector Paired 625
lxvpx Load VSX Vector Paired Indexed 626
plxvp Prefixed Load VSX Vector Paired 625
Table 17.VSX Vector Paired Load Instructions

Mnemonic Instruction Name Page
stxvp Store VSX Vector Paired 654
stxvpx Store VSX Vector Paired Indexed 655
pstxvp Prefixed Store VSX Vector Paired 654
Table 18.VSX Vector Paired Store Instructions

Mnemonic Instruction Name Page

Table 15.VSX Vector Store Rightmost Element Instructions
Power ISA™ I566

Version 3.1
7.6.1.2 VSX Binary Floating-Point Sign Manipulation Instructions

7.6.1.2.1 VSX Scalar Binary Floating-Point Sign Manipulation Instructions

7.6.1.2.2 VSX Vector Binary Floating-Point Sign Manipulation Instructions

7.6.1.3 VSX Binary Floating-Point Arithmetic Instructions

7.6.1.3.1 VSX Scalar Binary Floating-Point Arithmetic Instructions

Mnemonic Instruction Name Page
xsabsdp VSX Scalar Absolute Double-Precision 658
xsabsqp VSX Scalar Absolute Quad-Precision 658
xscpsgndp VSX Scalar Copy Sign Double-Precision 682
xscpsgnqp VSX Scalar Copy Sign Quad-Precision 682
xsnabsdp VSX Scalar Negative Absolute Double-Precision 763
xsnabsqp VSX Scalar Negative Absolute Quad-Precision 763
xsnegdp VSX Scalar Negate Double-Precision 764
xsnegqp VSX Scalar Negate Quad-Precision 764
Table 19.VSX Scalar BFP Sign Manipulation Instructions

Mnemonic Instruction Name Page
xvabsdp VSX Vector Absolute Double-Precision 820
xvabssp VSX Vector Absolute Single-Precision 820
xvcpsgndp VSX Vector Copy Sign Double-Precision 838
xvcpsgnsp VSX Vector Copy Sign Single-Precision 838
xvnabsdp VSX Vector Negative Absolute Double-Precision 921
xvnabssp VSX Vector Negative Absolute Single-Precision 921
xvnegdp VSX Vector Negate Double-Precision 922
xvnegsp VSX Vector Negate Single-Precision 922
Table 20.VSX Vector BFP Sign Manipulation Instructions

Mnemonic Instruction Name Page
xsadddp VSX Scalar Add Double-Precision 659
xsaddqp[o] VSX Scalar Add Quad-Precision [using round to Odd] 666
xsaddsp VSX Scalar Add Single-Precision 664
xsdivdp VSX Scalar Divide Double-Precision 717
xsdivqp[o] VSX Scalar Divide Quad-Precision [using round to Odd] 719
xsdivsp VSX Scalar Divide Single-Precision 721
xsmuldp VSX Scalar Multiply Double-Precision 757
xsmulqp[o] VSX Scalar Multiply Quad-Precision [using round to Odd] 759
xsmulsp VSX Scalar Multiply Single-Precision 761
xssqrtdp VSX Scalar Square Root Double-Precision 801
xssqrtqp[o] VSX Scalar Square Root Quad-Precision [using round to Odd] 803
xssqrtsp VSX Scalar Square Root Single-Precision 805
xssubdp VSX Scalar Subtract Double-Precision 807
xssubqp[o] VSX Scalar Subtract Quad-Precision [using round to Odd] 809
xssubsp VSX Scalar Subtract Single-Precision 811
Table 21.VSX Scalar BFP Elementary Arithmetic Instructions

Mnemonic Instruction Name Page
xsmaddadp VSX Scalar Multiply-Add Type-A Double-Precision 725
xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision 728
Table 22.VSX Scalar BFP Multiply-Add-class Instructions
Chapter 7. Vector-Scalar Extension Facility 567

Version 3.1
7.6.1.3.2 VSX Vector BFP Arithmetic Instructions

xsmaddmdp VSX Scalar Multiply-Add Type-M Double-Precision 725
xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision 728
xsmaddqp[o] VSX Scalar Multiply-Add Quad-Precision [using round to Odd] 731
xsmsubadp VSX Scalar Multiply-Subtract Type-A Double-Precision 748
xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision 751
xsmsubmdp VSX Scalar Multiply-Subtract Type-M Double-Precision 748
xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision 751
xsmsubqp[o] VSX Scalar Multiply-Subtract Quad-Precision [using round to Odd] 754
xsnmaddadp VSX Scalar Negative Multiply-Add Type-A Double-Precision 765
xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision 770
xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M Double-Precision 765
xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision 770
xsnmaddqp[o] VSX Scalar Negative Multiply-Add Quad-Precision [using round to Odd] 773
xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A Double-Precision 776
xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Precision 779
xsnmsubmdp VSX Scalar Negative Multiply-Subtract Type-M Double-Precision 776
xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Precision 779
xsnmsubqp[o] VSX Scalar Negative Multiply-Subtract Quad-Precision [using round to Odd] 782

Mnemonic Instruction Name Page
xsredp VSX Scalar Reciprocal Estimate Double-Precision 790
xsresp VSX Scalar Reciprocal Estimate Single-Precision 791
xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate Double-Precision 798
xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Precision 799
xstdivdp VSX Scalar Test for software Divide Double-Precision 813
xstsqrtdp VSX Scalar Test for software Square Root Double-Precision 814
Table 23.VSX Scalar Software BFP Divide/Square Root Instructions

Mnemonic Instruction Name Page
xvadddp VSX Vector Add Double-Precision 821
xvaddsp VSX Vector Add Single-Precision 825
xvdivdp VSX Vector Divide Double-Precision 867
xvdivsp VSX Vector Divide Single-Precision 869
xvmuldp VSX Vector Multiply Double-Precision 917
xvmulsp VSX Vector Multiply Single-Precision 919
xvsqrtdp VSX Vector Square Root Double-Precision 948
xvsqrtsp VSX Vector Square Root Single-Precision 949
xvsubdp VSX Vector Subtract Double-Precision 950
xvsubsp VSX Vector Subtract Single-Precision 952
Table 24.VSX Vector BFP Elementary Arithmetic Instructions

Mnemonic Instruction Name Page

Table 22.VSX Scalar BFP Multiply-Add-class Instructions
Power ISA™ I568

Version 3.1
Mnemonic Instruction Name Page
xvmaddadp VSX Vector Multiply-Add Type-A Double-Precision 897
xvmaddasp VSX Vector Multiply-Add Type-A Single-Precision 900
xvmaddmdp VSX Vector Multiply-Add Type-M Double-Precision 897
xvmaddmsp VSX Vector Multiply-Add Type-M Single-Precision 900
xvmsubadp VSX Vector Multiply-Subtract Type-A Double-Precision 911
xvmsubasp VSX Vector Multiply-Subtract Type-A Single-Precision 914
xvmsubmdp VSX Vector Multiply-Subtract Type-M Double-Precision 911
xvmsubmsp VSX Vector Multiply-Subtract Type-M Single-Precision 914
xvnmaddadp VSX Vector Negative Multiply-Add Type-A Double-Precision 923
xvnmaddasp VSX Vector Negative Multiply-Add Type-A Single-Precision 927
xvnmaddmdp VSX Vector Negative Multiply-Add Type-M Double-Precision 923
xvnmaddmsp VSX Vector Negative Multiply-Add Type-M Single-Precision 927
xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A Double-Precision 930
xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A Single-Precision 933
xvnmsubmdp VSX Vector Negative Multiply-Subtract Type-M Double-Precision 930
xvnmsubmsp VSX Vector Negative Multiply-Subtract Type-M Single-Precision 933
Table 25.VSX Vector BFP Multiply-Add-class Instructions

Mnemonic Instruction Name Page
xvredp VSX Vector Reciprocal Estimate Double-Precision 940
xvresp VSX Vector Reciprocal Estimate Single-Precision 941
xvrsqrtedp VSX Vector Reciprocal Square Root Estimate Double-Precision 946
xvrsqrtesp VSX Vector Reciprocal Square Root Estimate Single-Precision 947
xvtdivdp VSX Vector Test for software Divide Double-Precision 954
xvtdivsp VSX Vector Test for software Divide Single-Precision 955
xvtsqrtdp VSX Vector Test for software Square Root Double-Precision 956
xvtsqrtsp VSX Vector Test for software Square Root Single-Precision 956
Table 26.VSX Vector BFP Software Divide/Square Root Instructions
Chapter 7. Vector-Scalar Extension Facility 569

Version 3.1
7.6.1.4 VSX Binary Floating-Point Compare Instructions

7.6.1.4.1 VSX Scalar BFP Compare Instructions

7.6.1.4.2 VSX Vector BFP Compare Instructions

Mnemonic Instruction Name Page
xscmpodp VSX Scalar Compare Ordered Double-Precision 676
xscmpoqp VSX Scalar Compare Ordered Quad-Precision 678
xscmpudp VSX Scalar Compare Unordered Double-Precision 679
xscmpuqp VSX Scalar Compare Unordered Quad-Precision 681
Table 27.VSX Scalar BFP Compare Instructions

Mnemonic Instruction Name Page
xscmpeqdp VSX Scalar Compare Equal Double-Precision 670
xscmpeqqp VSX Scalar Compare Equal Quad-Precision 671
xscmpgedp VSX Scalar Compare Greater Than or Equal Double-Precision 672
xscmpgeqp VSX Scalar Compare Greater Than or Equal Quad-Precision 673
xscmpgtdp VSX Scalar Compare Greater Than Double-Precision 674
xscmpgtqp VSX Scalar Compare Greater Than Quad-Precision 675
Table 28.VSX Scalar BFP Predicate Compare Instructions

Mnemonic Instruction Name Page
xsmaxcdp VSX Scalar Maximum Type-C Double-Precision 736
xsmaxcqp VSX Scalar Maximum Type-C Quad-Precision 738
xsmaxdp VSX Scalar Maximum Double-Precision 734
xsmaxjdp VSX Scalar Maximum Type-J Double-Precision 739
xsmincdp VSX Scalar Minimum Type-C Double-Precision 743
xsmincqp VSX Scalar Minimum Type-C Quad-Precision 745
xsmindp VSX Scalar Minimum Double-Precision 741
xsminjdp VSX Scalar Minimum Type-J Double-Precision 746
Table 29.VSX Scalar BFP Maximum/Minimum Instructions

Mnemonic Instruction Name Page
xvcmpeqdp[.] VSX Vector Compare Equal To Double-Precision 832
xvcmpeqsp[.] VSX Vector Compare Equal To Single-Precision 833
xvcmpgedp[.] VSX Vector Compare Greater Than or Equal To Double-Precision 834
xvcmpgesp[.] VSX Vector Compare Greater Than or Equal To Single-Precision 835
xvcmpgtdp[.] VSX Vector Compare Greater Than Double-Precision 836
xvcmpgtsp[.] VSX Vector Compare Greater Than Single-Precision 837
Table 30.VSX Vector BFP Predicate Compare Instructions

Mnemonic Instruction Name Page
xvmaxdp VSX Vector Maximum Double-Precision 903
xvmaxsp VSX Vector Maximum Single-Precision 905
xvmindp VSX Vector Minimum Double-Precision 907
xvminsp VSX Vector Minimum Single-Precision 909
Table 31.VSX Vector BFP Maximum/Minimum Instructions
Power ISA™ I570

Version 3.1
7.6.1.5 VSX Binary Floating-Point Round to Shorter Precision Instructions

7.6.1.6 VSX Binary Floating-Point Convert to Shorter Precision Instructions

7.6.1.7 VSX Binary Floating-Point Convert to Longer Precision Instructions

Mnemonic Instruction Name Page
xsrqpxp VSX Scalar Round Quad-Precision to Double-Extended-Precision 795
xsrsp VSX Scalar Round to Single-Precision 797
Table 32.VSX Scalar BFP Round to Shorter Precision Instructions

Mnemonic Instruction Name Page
xscvdphp VSX Scalar Convert with round Double-Precision to Half-Precision format 683
xscvdpsp VSX Scalar Convert with round Double-Precision to Single-Precision format 685

xscvdpspn VSX Scalar Convert Scalar Single-Precision to Vector Single-Precision format
Non-signalling 686

xscvqpdp[o] VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to
Odd] 797

Table 33.VSX Scalar BFP Convert to Shorter Precision Instructions

Mnemonic Instruction Name Page
xvcvbf16sp VSX Vector Convert bfloat16 to Single-Precision format 839
xvcvdpsp VSX Vector Convert with round Double-Precision to Single-Precision format 840
xvcvsphp VSX Vector Convert with round Single-Precision to Half-Precision format 852
Table 34.VSX Vector BFP Convert to Shorter Precision Instructions

Mnemonic Instruction Name Page
xscvdpqp VSX Scalar Convert Double-Precision to Quad-Precision format 684
xscvhpdp VSX Scalar Convert Half-Precision to Double-Precision format 695
xscvspdp VSX Scalar Convert Single-Precision to Double-Precision format 709
xscvspdpn VSX Scalar Convert Single-Precision to Double-Precision format Non-signalling 710
Table 35.VSX Scalar BFP Convert to Longer Precision Instructions

Mnemonic Instruction Name Page
xvcvhpsp VSX Vector Convert Half-Precision to Single-Precision format 849
xvcvspbf16 VSX Vector Convert with round Single-Precision to bfloat16 format 850
xvcvspdp VSX Vector Convert Single-Precision to Double-Precision format 851
Table 36.VSX Vector BFP Convert to Longer Precision Instructions
Chapter 7. Vector-Scalar Extension Facility 571

Version 3.1
7.6.1.8 VSX Binary Floating-Point Round to Integral Instructions

7.6.1.8.1 VSX Scalar BFP Round to Integral Instructions

7.6.1.8.2 VSX Vector BFP Round to Integral Instructions

7.6.1.9 VSX Binary Floating-Point Convert To Integer Instructions

7.6.1.9.1 VSX Scalar BFP Convert To Integer Instructions

Mnemonic Instruction Name Page
xsrdpi VSX Scalar Round to Double-Precision Integer using round to Nearest Away 785
xsrdpic VSX Scalar Round to Double-Precision Integer exact using Current rounding mode 786
xsrdpim VSX Scalar Round to Double-Precision Integer using round toward -Infinity 787
xsrdpip VSX Scalar Round to Double-Precision Integer using round toward +Infinity 788
xsrdpiz VSX Scalar Round to Double-Precision Integer using round toward Zero 789
xsrqpi VSX Scalar Round to Quad-Precision Integer 793
xsrqpix VSX Scalar Round to Quad-Precision Integer with Inexact 793
xvrdpi VSX Vector Round to Double-Precision Integer using round to Nearest Away 936
xvrdpic VSX Vector Round to Double-Precision Integer Exact using Current rounding mode 937
xvrdpim VSX Vector Round to Double-Precision Integer using round toward -Infinity 938
xvrdpip VSX Vector Round to Double-Precision Integer using round toward +Infinity 939
xvrdpiz VSX Vector Round to Double-Precision Integer using round toward Zero 939
Table 37.VSX Scalar BFP Round to Integral Instructions

Mnemonic Instruction Name Page
xvrdpi VSX Vector Round to Double-Precision Integer using round to Nearest Away 936
xvrdpic VSX Vector Round to Double-Precision Integer Exact using Current rounding mode 937
xvrdpim VSX Vector Round to Double-Precision Integer using round toward -Infinity 938
xvrdpip VSX Vector Round to Double-Precision Integer using round toward +Infinity 939
xvrdpiz VSX Vector Round to Double-Precision Integer using round toward Zero 939
xvrspi VSX Vector Round to Single-Precision Integer using round to Nearest Away 942
xvrspic VSX Vector Round to Single-Precision Integer Exact using Current rounding mode 943
xvrspim VSX Vector Round to Single-Precision Integer using round toward -Infinity 944
xvrspip VSX Vector Round to Single-Precision Integer using round toward +Infinity 945
xvrspiz VSX Vector Round to Single-Precision Integer using round toward Zero 945
Table 38.VSX Vector BFP Round to Integral Instructions

Mnemonic Instruction Name Page
xscvdpsxds VSX Scalar Convert with round to zero Double-Precision to Signed Doubleword format 687
xscvdpsxws VSX Scalar Convert with round to zero Double-Precision to Signed Word format 689
xscvdpuxds VSX Scalar Convert with round to zero Double-Precision to Unsigned Doubleword format 691
xscvdpuxws VSX Scalar Convert with round to zero Double-Precision to Unsigned Word format 693
xscvqpsdz VSX Scalar Convert with round to zero Quad-Precision to Signed Doubleword format 697
xscvqpsqz VSX Scalar Convert with round to zero Quad-Precision to Signed Quadword 699
xscvqpswz VSX Scalar Convert with round to zero Quad-Precision to Signed Word format 701
xscvqpudz VSX Scalar Convert with round to zero Quad-Precision to Unsigned Doubleword format 703
xscvqpuqz VSX Scalar Convert with round to zero Quad-Precision to Unsigned Quadword 705
xscvqpuwz VSX Scalar Convert with round to zero Quad-Precision to Unsigned Word format 707
Table 39.VSX Scalar BFP Convert to Integer Instructions
Power ISA™ I572

Version 3.1
7.6.1.9.2 VSX Vector BFP Convert To Integer Instructions

7.6.1.10 VSX Binary Floating-Point Convert From Integer Instructions

7.6.1.10.1 VSX Scalar BFP Convert From Integer Instructions

7.6.1.10.2 VSX Vector BFP Convert From Integer Instructions

7.6.1.11 VSX Binary Floating-Point Math Support Instructions

7.6.1.11.1 VSX Scalar BFP Math Support Instructions

Mnemonic Instruction Name Page
xvcvdpsxds VSX Vector Convert with round to zero Double-Precision to Signed Doubleword format 841
xvcvdpsxws VSX Vector Convert with round to zero Double-Precision to Signed Word format 843
xvcvdpuxds VSX Vector Convert with round to zero Double-Precision to Unsigned Doubleword format 845
xvcvdpuxws VSX Vector Convert with round to zero Double-Precision to Unsigned Word format 847
xvcvspsxds VSX Vector Convert with round to zero Single-Precision to Signed Doubleword format 853
xvcvspsxws VSX Vector Convert with round to zero Single-Precision to Signed Word format 855
xvcvspuxds VSX Vector Convert with round to zero Single-Precision to Unsigned Doubleword format 857
xvcvspuxws VSX Vector Convert with round to zero Single-Precision to Unsigned Word format 859
Table 40.VSX Vector BFP Convert To Integer Instructions

Mnemonic Instruction Name Page
xscvsdqp VSX Scalar Convert Signed Doubleword to Quad-Precision format 714
xscvsqqp VSX Scalar Convert with round Signed Quadword to Quad-Precision 711
xscvsxddp VSX Scalar Convert with round Signed Doubleword to Double-Precision format 712
xscvsxdsp VSX Scalar Convert with round Signed Doubleword to Single-Precision format 713
xscvudqp VSX Scalar Convert Unsigned Doubleword to Quad-Precision format 714
xscvuqqp VSX Scalar Convert with round Unsigned Quadword to Quad-Precision format 715
xscvuxddp VSX Scalar Convert with round Unsigned Doubleword to Double-Precision format 715
xscvuxdsp VSX Scalar Convert with round Unsigned Doubleword to Single-Precision format 716
Table 41.VSX Scalar BFP Convert from Integer Instructions

Mnemonic Instruction Name Page
xvcvsxddp VSX Vector Convert with round Signed Doubleword to Double-Precision format 861
xvcvsxwdp VSX Vector Convert Signed Word to Double-Precision format 863
xvcvuxddp VSX Vector Convert with round Unsigned Doubleword to Double-Precision format 864
xvcvuxwdp VSX Vector Convert Unsigned Word to Double-Precision format 866
xvcvsxdsp VSX Vector Convert with round Signed Doubleword to Single-Precision format 862
xvcvsxwsp VSX Vector Convert with round Signed Word to Single-Precision format 863
xvcvuxdsp VSX Vector Convert with round Unsigned Doubleword to Single-Precision format 865
xvcvuxwsp VSX Vector Convert with round Unsigned Word to Single-Precision format 866
Table 42.VSX Vector BFP Convert From Integer Instructions

Mnemonic Instruction Name Page
xscmpexpdp VSX Scalar Compare Exponents Double-Precision 668
xscmpexpqp VSX Scalar Compare Exponents Quad-Precision 669
xsiexpdp VSX Scalar Insert Exponent Double-Precision 723
xsiexpqp VSX Scalar Insert Exponent Quad-Precision 724
xststdcdp VSX Scalar Test Data Class Double-Precision 815
xststdcqp VSX Scalar Test Data Class Quad-Precision 816
xststdcsp VSX Scalar Test Data Class Single-Precision 817
Table 43. VSX Scalar BFP Math Support Instructions
Chapter 7. Vector-Scalar Extension Facility 573

Version 3.1
7.6.1.11.2 VSX Vector BFP Math Support Instructions

7.6.1.12 VSX Matrix-Multiply Assist (MMA) Instructions

The MMA facility is optional. Software that uses this facility should test for its availability and provide an alternate
execution path.

7.6.1.12.1 VSX Accumulator Move Instructions

7.6.1.12.2 VSX Binary Integer Outer-Product Instructions

xsxexpdp VSX Scalar Extract Exponent Double-Precision 818
xsxexpqp VSX Scalar Extract Exponent Quad-Precision 818
xsxsigdp VSX Scalar Extract Significand Double-Precision 819
xsxsigqp VSX Scalar Extract Significand Quad-Precision 819

Mnemonic Instruction Name Page
xviexpdp VSX Vector Insert Exponent Double-Precision 896
xviexpsp VSX Vector Insert Exponent Single-Precision 896
xvtstdcdp VSX Vector Test Data Class Double-Precision 957
xvtstdcsp VSX Vector Test Data Class Single-Precision 958
xvxexpdp VSX Vector Extract Exponent Double-Precision 960
xvxexpsp VSX Vector Extract Exponent Single-Precision 960
xvxsigdp VSX Vector Extract Significand Double-Precision 961
xvxsigsp VSX Vector Extract Significand Single-Precision 961
Table 44. VSX Vector BFP Math Support Instructions

Mnemonic Instruction Name Page
xxmfacc VSX Move From Accumulator 983
xxmtacc VSX Move To Accumulator 984
xxsetaccz VSX Set Accumulator to Zero 989
Table 45.VSX Accumulator Move Instructions

Mnemonic Instruction Name Page
pmxvi16ger2 Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) 893

pmxvi16ger2pp Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply,
Positive accumulate 893

pmxvi16ger2s Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation 893

pmxvi16ger2spp Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation
Positive multiply, Positive accumulate 893

pmxvi4ger8 Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) 883

pmxvi4ger8pp Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply,
Positive accumulate 883

pmxvi8ger4 Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) 886

pmxvi8ger4pp Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive
multiply, Positive accumulate 886

xvi16ger2 VSX Vector 16-bit Signed Integer GER (rank-2 update) 891

xvi16ger2pp VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply, Positive
accumulate 891

xvi16ger2s VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation 893
Table 46.VSX Binary Integer Outer-Product Instructions

Mnemonic Instruction Name Page

Table 43. VSX Scalar BFP Math Support Instructions
Power ISA™ I574

Version 3.1
7.6.1.12.3 VSX Binary Floating-Point Outer-Product Instructions

xvi16ger2spp VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation Positive multiply,
Positive accumulate 893

xvi4ger8 VSX Vector 4-bit Signed Integer GER (rank-8 update) 883
xvi4ger8pp VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply, Positive accumulate 883
xvi8ger4 VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) 886

xvi8ger4pp VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive multiply, Positive
accumulate 886

Mnemonic Instruction Name Page
pmxvbf16ger2 Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) 827

pmxvbf16ger2nn Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Negative multiply,
Negative accumulate 827

pmxvbf16ger2np Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Negative multiply,
Positive accumulate 827

pmxvbf16ger2pn Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Positive multiply,
Negative accumulate 827

pmxvbf16ger2pp Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Positive multiply,
Positive accumulate 827

pmxvf16ger2 Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) 871

pmxvf16ger2nn Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply,
Negative accumulate 871

pmxvf16ger2np Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply,
Positive accumulate 871

pmxvf16ger2pn Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply,
Negative accumulate 871

pmxvf16ger2pp Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply,
Positive accumulate 871

pmxvf32ger Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) 875

pmxvf32gernn Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply,
Negative accumulate 875

pmxvf32gernp Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply,
Positive accumulate 875

pmxvf32gerpn Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply,
Negative accumulate 875

pmxvf32gerpp Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply,
Positive accumulate 875

pmxvf64ger Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) 879

pmxvf64gernn Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative
multiply, Negative accumulate 879

pmxvf64gernp Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative
multiply, Positive accumulate 879

pmxvf64gerpn Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive
multiply, Negative accumulate 879

pmxvf64gerpp Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive
multiply, Positive accumulate 879

xvbf16ger2 VSX Vector bfloat16 GER (rank-2 update) 827
xvbf16ger2nn VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Negative accumulate 827
xvbf16ger2np VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Positive accumulate 827
xvbf16ger2pn VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Negative accumulate 827
xvbf16ger2pp VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Positive accumulate 827
Table 47.VSX Binary Floating-Point Outer-Product Instructions

Mnemonic Instruction Name Page

Table 46.VSX Binary Integer Outer-Product Instructions (Continued)
Chapter 7. Vector-Scalar Extension Facility 575

Version 3.1
7.6.1.13 VSX Vector Logical Instructions

7.6.1.13.1 VSX Vector Logical Instructions

7.6.1.13.2 VSX Vector Select Instruction

7.6.1.13.3 VSX Vector Evaluate Instruction

xvf16ger2 VSX Vector 16-bit Floating-Point GER (rank-2 update) 871

xvf16ger2nn VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply,
Negative accumulate 871

xvf16ger2np VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply,
Positive accumulate 871

xvf16ger2pn VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply,
Negative accumulate 871

xvf16ger2pp VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply, Positive accumulate 871
xvf32ger VSX Vector 32-bit Floating-Point GER (rank-1 update) 875

xvf32gernn VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply,
Negative accumulate 875

xvf32gernp VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply,
Positive accumulate 875

xvf32gerpn VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply,
Negative accumulate 875

xvf32gerpp VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate 875
xvf64ger VSX Vector 64-bit Floating-Point GER (rank-1 update) 879

xvf64gernn VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative
multiply, Negative accumulate 879

xvf64gernp VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative
multiply, Positive accumulate 879

xvf64gerpn VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive
multiply, Negative accumulate 879

xvf64gerpp VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate 879

Mnemonic Instruction Name Page
xxland VSX Vector Logical AND 978
xxlandc VSX Vector Logical AND with Complement 978
xxleqv VSX Vector Logical Equivalence 979
xxlnand VSX Vector Logical NAND 979
xxlnor VSX Vector Logical NOR 980
xxlor VSX Vector Logical OR 981
xxlorc VSX Vector Logical OR with Complement 980
xxlxor VSX Vector Logical XOR 981
Table 48.VSX Logical Instructions

Mnemonic Instruction Name Page
xxsel VSX Vector Select 988
Table 49.VSX Vector Select Instruction

Mnemonic Instruction Name Page
xxeval VSX Vector Evaluate 967
Table 50.VSX Vector Select Instruction

Mnemonic Instruction Name Page

Table 47.VSX Binary Floating-Point Outer-Product Instructions (Continued)
Power ISA™ I576

Version 3.1
7.6.1.13.4 VSX Vector Blend Instructions

7.6.1.14 VSX Vector Permute-class Instructions

7.6.1.14.1 VSX Vector Byte-Reverse Instructions

7.6.1.14.2 VSX Vector Insert/Extract Instructions

7.6.1.14.3 VSX Vector Merge Instructions

7.6.1.14.4 VSX Vector Splat Instructions

7.6.1.14.5 VSX Vector Permute Instructions

Mnemonic Instruction Name Page
xxblendvb VSX Vector Blend Variable Byte 962
xxblendvd VSX Vector Blend Variable Doubleword 963
xxblendvh VSX Vector Blend Variable Halfword 962
xxblendvw VSX Vector Blend Variable Word 963
Table 51.VSX Vector Select Instruction

Mnemonic Instruction Name Page
xxbrd VSX Vector Byte-Reverse Doubleword 964
xxbrh VSX Vector Byte-Reverse Halfword 965
xxbrq VSX Vector Byte-Reverse Quadword 966
xxbrw VSX Vector Byte-Reverse Word 967
Table 52.VSX Vector Byte-Reverse Instructions

Mnemonic Instruction Name Page
xxextractuw VSX Vector Extract Unsigned Word 969
xxinsertw VSX Vector Insert Word 969
Table 53.VSX Vector Insert/Extract Instructions

Mnemonic Instruction Name Page
xxmrghw VSX Vector Merge High Word 982
xxmrglw VSX Vector Merge Low Word 982
Table 54.VSX Vector Merge Instructions

Mnemonic Instruction Name Page
xxsplti32dx VSX Vector Splat Immediate32 Doubleword Indexed 992
xxspltib VSX Vector Splat Immediate Byte 991
xxspltidp VSX Vector Splat Immediate Double-Precision 991
xxspltiw VSX Vector Splat Immediate Word 992
xxspltw VSX Vector Splat Word 993
Table 55.VSX Vector Splat Instructions

Mnemonic Instruction Name Page
xxpermdi VSX Vector Permute Doubleword Immediate 986
xxperm VSX Vector Permute 985
xxpermr VSX Vector Permute Right-indexed 985
xxpermx VSX Vector Permute Extended 987
Table 56.VSX Vector Permute Instruction
Chapter 7. Vector-Scalar Extension Facility 577

Version 3.1
7.6.1.14.6 VSX Vector Shift Left Double Instructions

7.6.1.14.7 VSX Vector Generate Permute Control Vector Instructions

7.6.1.15 VSX Vector Load Special Value Instruction

7.6.1.16 VSX Vector Test Least-Significant Bit by Byte Instruction

Mnemonic Instruction Name Page
xxsldwi VSX Vector Shift Left Double by Word Immediate 990
Table 57.VSX Vector Shift Left Double Instruction

Mnemonic Instruction Name Page
xxgenpcvbm VSX Vector Generate PCV from Byte Mask 970
xxgenpcvdm VSX Vector Generate PCV from Doubleword Mask 976
xxgenpcvhm VSX Vector Generate PCV from Halfword Mask 972
xxgenpcvwm VSX Vector Generate PCV from Word Mask 974
Table 58.VSX Vector Permute Control Vector Generate Instruction

Mnemonic Instruction Name Page
lxvkq VSX Vector Load Special Value Quadword 620
Table 59.VSX Vector Load Special Value Instruction

Mnemonic Instruction Name Page
xvtlsbb VSX Vector Test Least-Significant Bit by Byte 959
Table 60.VSX Vector Load Special Value Instruction
Power ISA™ I578

Version 3.1
7.6.2 VSX Instruction Description Conventions

7.6.2.1 VSX Instruction RTL Operators
x.bit[y]

Return the contents of bit y of x.

x.bit[y:z]
Return the contents of bits y:z of x.

x.word[y]
Return the contents of word element y of x.

x.word[y:z]
Return the contents of word elements y:z of x.

x.dword[y]
Return the contents of doubleword element y of x.

x.dword[y:z]
Return the contents of doubleword elements y:z
of x.

x = y
The value of y is placed into x.

x |= y
The value of y is ORed with the value x and
placed into x.

~x
Return the one’s complement of x.

!x
Return 1 if the contents of x are equal to 0,
otherwise return 0.

x || y
Return the value of x concatenated with the value
of y. For example, 0b010 || 0b111 is the same as
0b010111.

x ^ y
Return the value of x exclusive ORed with the
value of y.

x ? y : z
If the value of x is true, return the value of y,
otherwise return the value z.

x+y
x and y are integer values.

Return the sum of x and y.

x–y
x and y are integer values.

Return the difference of x and y.

x!=y
x and y are integer values.

Return 1 if x is not equal to y, otherwise return 0.

x<=y
x and y are integer values.

Return 1 if x is less than or equal to y, otherwise
return 0.

x>=y
x and y are integer values.

Return 1 if x is greater than or equal to y,
otherwise return 0.
Chapter 7. Vector-Scalar Extension Facility 579

Version 3.1
7.6.2.2 VSX Instruction RTL Function Calls

bfloat16_CONVERT_FROM_BFP(x)
x is a floating-point value represented in the working format.

If x.class.SNaN=1 or x.class.QNaN=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:8 of result are set to the value 0b1111111.
Bits 9:15 of result are set to the value of bits 1:8 of x.significand.

Otherwise, if x.class.Infinity=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:8 of result are set to the value 0b1111111.
Bits 9:15 of result are set to 0.

Otherwise, if x.class.Zero=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 9:15 of result are set to 0.

Otherwise, if x.exponent is less than -126, do the following.
Bit 0 of result is set to the value of x.sign.
sh_cnt is set to the difference, -126 - x.exponent.
Bits 1:8 of result are set to 0b0000000.
Bits 9:15 of result are set to bits 1:8 of x.significand shifted right by sh_cnt bits.

Otherwise, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:8 of result are set to the sum, x.exponent + 127.
Bits 9:15 of result are set to bits 1:8 of x.significand.

Return result (bfloat16 format).

bfp_ABSOLUTE(x)
x is a binary floating-point value represented in the binary floating-point working format.

Return x with sign set to 0.

bfp_ADD(x, y)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is an infinity and y is an infinity of the opposite sign, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x and y are infinities of opposite sign, return the standard QNaN.
Otherwise, return the normalized sum of x and y, having unbounded range and precision.

bfp_COMPARE_EQ(x, y)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.

Return 0b0 if x is NaN or y is a NaN.
Otherwise, return 0b1 if x is a Zero and y is a Zero.
Otherwise, return 0b1 if x is equal to y.
Otherwise, return 0b0.
Power ISA™ I580

Version 3.1
bfp_COMPARE_GT(x, y)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.

Return 0b0 if x is NaN or y is a NaN.
Otherwise, return 0b0 if x is a Zero and y is a Zero.
Otherwise, return 0b1 if x is greater than y.
Otherwise, return 0b0.

bfp_COMPARE_LT(x, y)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.

Return 0b0 if x is NaN or y is a NaN.
Otherwise, return 0b0 if x is a Zero and y is a Zero.
Otherwise, return 0b1 if x is less than y.
Otherwise, return 0b0.

bfp_CONVERT_FROM_BFLOAT16(x)
x is a floating-point value represented in bfloat16 format.

Let sign be the contents of bit 0 of x.
Let exponent be the contents of bits 1:8 of x.
Let fraction be the contents of bits 9:15 of x.

Let result.sign be set to 0.
Let result.exponent be set to 0.
Let result.significand be set to 0.
Let result.class.SNaN be set to 0.
Let result.class.QNaN be set to 0.
Let result.class.Infinity be set to 0.
Let result.class.Zero be set to 0.
Let result.class.Denormal be set to 0.
Let result.class.Normal be set to 0.

If x is an SNaN, do the following.
result.class.SNaN is set to 1.
result.sign is set to the value of sign.

The contents of result.significand are set to 0.
The contents of bits 1:8 of result.significand are set to the value of fraction.

Otherwise, if x is a QNaN, do the following.
result.class.QNaN is set to 1.
result.sign is set to the value of sign.

The contents of result.significand are set to 0.
The contents of bits 1:8 of result.significand are set to the value of fraction.

Otherwise, if x is an Infinity value, do the following.
result.class.Infinity is set to 1.
result.sign is set to the value of sign.

Otherwise, if x is a Zero value, do the following.
result.class.Zero is set to 1.
result.sign is set to the value of sign.

Otherwise, if x is a Denormal value, do the following.
result.class.Denormal is set to 1.
result.sign is set to the value of sign.
Chapter 7. Vector-Scalar Extension Facility 581

Version 3.1
result.exponent is set to the value -126.

The contents of bits 1:8 of result.significand are set to the value of fraction.

result.significand is shifted left until the contents bit 0 of result.significand are equal to 1.
result.exponent is decremented by the number of bits result.significand was shifted.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the value of sign.
result.exponent is set to the value of exponent subtracted by 127.

The contents of bit 0 of result.significand are set to 1.
The contents of bits 1:8 of result.significand are set to the value of fraction.

Return result (binary floating-point working format).

bfp_CONVERT_FROM_BFP16(x)
x is a floating-point value represented in half-precision format.

Let exponent be the contents of bits 1:5 of x.
Let fraction be the contents of bits 6:15 of x.

Let result.sign be set to 0.
Let result.exponent be set to 0.
Let result.significand be set to 0.
Let result.class.SNaN be set to 0.
Let result.class.QNaN be set to 0.
Let result.class.Infinity be set to 0.
Let result.class.Zero be set to 0.
Let result.class.Denormal be set to 0.
Let result.class.Normal be set to 0.

If x is a SNaN, do the following.
result.class.SNaN is set to 1.
result.sign is set to the contents of bit 0 of x.

The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:10 of result.significand are set to the value of fraction.

Otherwise, if x is a QNaN, do the following.
result.class.QNaN is set to 1.
result.sign is set to the contents of bit 0 of x.

The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:10 of result.significand are set to the value of fraction.

Otherwise, if x is an Infinity value, do the following.
result.class.Infinity is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Zero value, do the following.
result.class.Zero is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Denormal value, do the following.
result.class.Denormal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value -14.
Power ISA™ I582

Version 3.1
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:10 of result.significand are set to the value of fraction.

result.significand is shifted left until the contents bit 0 of result.significand are equal to 1.
result.exponent is decremented by the the number of bits result.significand was shifted.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value of exponent subtracted by 15.

The contents of bit 0 of result.significand are set to 1.
The contents of bits 1:10 of result.significand are set to the value of fraction.

Return result.

bfp_CONVERT_FROM_BFP32(x)
x is a floating-point value represented in single-precision format.

Let exponent be the contents of bits 1:8 of x.
Let fraction be the contents of bits 9:31 of x.

Let result.sign be initialized to 0.
Let result.exponent be initialized to 0.
Let result.significand be initialized to 0.
Let result.class.SNaN be initialized to 0.
Let result.class.QNaN be initialized to 0.
Let result.class.Infinity be initialized to 0.
Let result.class.Zero be initialized to 0.
Let result.class.Denormal be initialized to 0.
Let result.class.Normal be initialized to 0.

If x is a SNaN, do the following.
result.class.SNaN is set to 1.
result.sign is set to the contents of bit 0 of x.

The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:23 of result.significand are set to the value of fraction.

Otherwise, if x is a QNaN, do the following.
result.class.QNaN is set to 1.
result.sign is set to the contents of bit 0 of x.

The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:23 of result.significand are set to the value of fraction.

Otherwise, if x is an Infinity value, do the following.
result.class.Infinity is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Zero value, do the following.
result.class.Zero is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Denormal value, do the following.
result.class.Denormal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exponent is set to the value -126.

The contents of bit 0 of result.significand are set to 0.
Chapter 7. Vector-Scalar Extension Facility 583

Version 3.1
The contents of bits 1:23 of result.significand are set to the value of fraction.

result.significand is shifted left until the contents bit 0 of result.significand are equal to 1.
result.exponent is decremented by the the number of bits result.significand was shifted.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exponent is set to the value of exponent subtracted by 127.

The contents of bit 0 of result.significand are set to 1.
The contents of bits 1:23 of result.significand are set to the value of fraction.

Return result.

bfp_CONVERT_FROM_BFP64(x)
x is a binary floating-point value represented in double-precision format.

Let exponent be the contents of bits 1:11 of x.
Let fraction be the contents of bits 12:63 of x.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
result.class.Normal is initialized to 0.

If x is a SNaN, do the following.
result.class.SNaN is set to 1.
result.sign is set to the contents of bit 0 of x.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:52 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Otherwise, if x is a QNaN, do the following.
result.class.QNaN is set to 1.
result.sign is set to the contents of bit 0 of x.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:52 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Otherwise, if x is an Infinity, do the following.
result.class.Infinity is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Zero, do the following.
result.class.Zero is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Denormal, do the following.
result.class.Denormal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value -1022.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:52 of result.significand are set to the value of fraction.
Power ISA™ I584

Version 3.1
The contents of the rest of result.significand are set to 0.
result.significand is shifted left until the contents bit 0 of result.significand are equal to 1.
result.exponent is decremented by the the number of bits result.significand was shifted.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value of exponent subtracted by 1023.
The contents of bit 0 of result.significand are set to 1.
The contents of bits 1:52 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Return result (i.e., the value x in the binary floating-point working format).

bfp_CONVERT_FROM_BFP128(x)
x is a binary floating-point value represented in quad-precision format.

Let exponent be the contents of bits 1:15 of x.
Let fraction be the contents of bits 16:127 of x.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
result.class.Normal is initialized to 0.

If x is a SNaN, do the following.
result.class.SNaN is set to 1.
result.sign is set to the contents of bit 0 of x.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:112 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Otherwise, if x is a QNaN, do the following.
result.class.QNaN is set to 1.
result.sign is set to the contents of bit 0 of x.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:112 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Otherwise, if x is an Infinity, do the following.
result.class.Infinity is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Zero, do the following.
result.class.Zero is set to 1.
result.sign is set to the contents of bit 0 of x.

Otherwise, if x is a Denormal, do the following.
result.class.Denormal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value -16382.
The contents of bit 0 of result.significand are set to 0.
The contents of bits 1:112 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.
Chapter 7. Vector-Scalar Extension Facility 585

Version 3.1
result.significand is shifted left until the contents bit 0 of result.significand are equal to 1.
result.exponent is decremented by the the number of bits result.significand was shifted.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exp is set to the value of exponent subtracted by 16383.
The contents of bit 0 of result.significand are set to 1.
The contents of bits 1:112 of result.significand are set to the value of fraction.
The contents of the rest of result.significand are set to 0.

Return result (i.e., the value x in the binary floating-point working format).

bfp_CONVERT_FROM_SI64(x)
x is an integer value represented in signed doubleword integer format.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
result.class.Normal is initialized to 0.

If x is equal to 0x0000_0000_0000_0000,
result.class.Zero is set to 1.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exponent is set to the value 64.
Bits 0:64 of result.significand are set to the value of x sign-extended to 65 bits.

If bit 0 of result.significand is equal to 1,
result.sign is set to 1, and
result.significand is set to the value of the two’s complement of result.significand.

If bit 0 of result.significand is equal to 0,
result.significand is shifted left until bit 0 of result.significand is equal to 1, and
result.exponent is decremented by the number of bits result.significand is shifted.

Return result (i.e., the value x in the binary floating-point working format).

bfp_CONVERT_FROM_SI128(x)
x is a 128-bit signed integer value.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
result.class.Normal is initialized to 0.

If x is equal to 0x0000_0000_0000_0000_0000_0000_0000_0000,
Power ISA™ I586

Version 3.1
result.class.Zero is set to 1.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to the contents of bit 0 of x.
result.exponent is set to the value 128.
Bits 0:128 of result.significand are set to the value of x sign-extended to 129 bits.

If bit 0 of result.significand is equal to 1,
result.sign is set to 1, and
result.significand is set to the value of the two’s complement of result.significand.

If bit 0 of result.significand is equal to 0,
result.significand is shifted left until bit 0 of result.significand is equal to 1, and
result.exponent is decremented by the number of bits result.significand is shifted.

Return result (i.e., the value x in the binary floating-point working format).

bfp_CONVERT_FROM_UI64(x)
x is an integer value represented in unsigned doubleword integer format.

Return x in the binary floating-point working format.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
result.class.Normal is initialized to 0.

If x is equal to 0x0000_0000_0000_0000, do the following.
result.class.Zero is set to 1.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to 0.
result.exponent is set to the value 64.
Bits 0:64 of result.significand is set to the value of x zero-extended to 65 bits.

If bit 0 of result.significand is equal to 0, result.significand is shifted left until bit 0 of
result.significand is equal to 1 and result.exponent is decremented by the number of bits
result.significand is shifted.

Return result (i.e., the value x in the binary floating-point working format).

bfp_CONVERT_FROM_UI128(x)
x is a 128-bit unsigned integer value.

result.sign is initialized to 0.
result.exponent is initialized to 0.
result.significand is initialized to 0.
result.class.SNaN is initialized to 0.
result.class.QNaN is initialized to 0.
result.class.Infinity is initialized to 0.
result.class.Zero is initialized to 0.
result.class.Denormal is initialized to 0.
Chapter 7. Vector-Scalar Extension Facility 587

Version 3.1
result.class.Normal is initialized to 0.

If x is equal to 0x0000_0000_0000_0000_0000_0000_0000_0000, do the following.
result.class.Zero is set to 1.

Otherwise, do the following.
result.class.Normal is set to 1.
result.sign is set to 0.
result.exponent is set to the value 128.
Bits 0:128 of result.significand are set to the value of x zero-extended to 129 bits.

If bit 0 of result.significand is equal to 0,
result.significand is shifted left until bit 0 of result.significand is equal to 1 and result.exponent is
decremented by the number of bits result.significand is shifted.

Return result (i.e., the value x in the binary floating-point working format).

bfp_DENORM(x, y)
x is an integer value specifying the target format’s Emin value.
y is a binary floating-point value that is represented in the binary floating-point working format.

If y.exponent is less than Emin, let sh_cnt be the value Emin - y.exponent.
Otherwise, let sh_cnt be the value 0.

y.significand, having unbounded precision, is shifted right by sh_cnt bits.
y.exponent is incremented by sh_cnt.

Return y in the binary floating-point working format.

bfp_DIVIDE(x, y)
x is a binary floating-point value that is represented in the binary floating-point working format.
y is a binary floating-point value that is represented in the binary floating-point working format.

If x or y is an SNaN, vxsnan_flag is set to 1.
Otherwise, if x and y are infinities, vxidi_flag is set to 1.
Otherwise, if x and y are zeros, vxzdz_flag is set to 1.
Otherwise, if x is a finite value and y is a zero, zx_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x and y are infinities, return the standard QNaN.
Otherwise, if x and y are zeros, return the standard QNaN.
Otherwise, if y is a zero, return infinity, having the sign of the exclusive-OR of the signs of x and y.
Otherwise, return the normalized quotient of x ÷ y, having unbounded range and precision.

bfp_INFINITY
The value +Infinity represented in the binary floating-point working format.

bfp_INITIALIZE(x)

Let x.sign be set to 0.
Let x.exponent be set to 0.
Let x.significand be set to 0.
Let x.class.SNaN be set to 0.
Let x.class.QNaN be set to 0.
Let x.class.Infinity be set to 0.
Let x.class.Zero be set to 0.
Let x.class.Denormal be set to 0.
Power ISA™ I588

Version 3.1
Let x.class.Normal be set to 0.

Return x.

bfp_MULTIPLY(x, y)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.

If x or y is an SNaN, vxsnan_flag is set to 1.
Otherwise, if x is an infinity and y is a zero, vximz_flag is set to 1.
Otherwise, if x is a zero and y is an infinity, vximz_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is an infinity and y is a zero, return the standard QNaN.
Otherwise, if x is a zero and y is an infinity, return the standard QNaN.
Otherwise, return the normalized product of x × y, having unbounded range and precision.

bfp_MULTIPLY_ADD(x, y, z)
x is a binary floating-point value represented in the binary floating-point working format.
y is a binary floating-point value represented in the binary floating-point working format.
z is a binary floating-point value represented in the binary floating-point working format.

If x, y, or z is an SNaN, vxsnan_flag is set to 1.
Otherwise, if x is an infinity and y is a zero, vximz_flag is set to 1.
Otherwise, if x is a zero and y is an infinity, vximz_flag is set to 1.
Otherwise, if z and the product of x × y are Infinity values having opposite signs, vxisi_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if z is a QNaN, return z.
Otherwise, if z is an SNaN, return z represented as a QNaN.
Otherwise, if y is a QNaN, return y.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, if x is an infinity and y is a zero, return the standard QNaN.
Otherwise, if x is a zero and y is an infinity, return the standard QNaN.
Otherwise, if z and the product of x × y are Infinity values having opposite signs, return the standard QNaN.
Otherwise, return the sum of z and the normalized product of x × y, having unbounded range and precision.

bfp_NEGATE(x)
x is a binary floating-point value that is represented in the binary floating-point working format.

If x is not a NaN, return x with its sign complemented. Otherwise, return x.

bfp_NMAX_BFLOAT16
Return the largest positive normalized bfloat16 floating-point value (i.e., 2128-2128-8) represented in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFLOAT16(0x7F7F)

bfp_NMAX_BFP16
Return the largest positive normalized half-precision floating-point value (i.e., 216-216-11), represented in the
binary floating-point working format.

return bfp_CONVERT_FROM_BFP16(0x7BFF)
Chapter 7. Vector-Scalar Extension Facility 589

Version 3.1
bfp_NMAX_BFP64
Return the largest finite double-precision floating-point value (i.e., 21024-21024-53) in the binary floating-point
working format.

return bfp_CONVERT_FROM_BFP64(0x7FEF_FFFF_FFFF_FFFF)

bfp_NMAX_BFP80
Return the largest finite double-extended-precision floating-point value (i.e., 216384-216384-65) in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFP80(0x7FFE_FFFF_FFFF_FFFF_FFFF)

bfp_NMAX_BFP128
Return the largest finite quad-precision value (i.e., 216384-216384-113) in the binary floating-point working format.

return bfp_CONVERT_FROM_BFP128(0x7FFE_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF)

bfp_NMIN_BFLOAT16
Return the smallest positive normalized bfloat16 floating-point value (i.e., 2-126), represented in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFLOAT16(0x0080)

bfp_NMIN_BFP16
Return the smallest positive normalized half-precision floating-point value, 2-14, represented in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFP16(0x0400)

bfp_NMIN_BFP64
Return the smallest positive normalized double-precision floating-point value, 2-1022, represented in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFP64(0x0010_0000_0000_0000)

bfp_NMIN_BFP80
Return the smallest positive normalized double-extended-precision floating-point value, 2-16382, represented in
the binary floating-point working format.

return bfp_CONVERT_FROM_BFP80(0x0001_0000_0000_0000_0000)

bfp_NMIN_BFP128
Return the smallest, positive, normalized quad-precision floating-point value, 2-16382, represented in the binary
floating-point working format.

return bfp_CONVERT_FROM_BFP128(0x0001_0000_0000_0000_0000_0000_0000_0000)

bfp_QUIET(x)
x is a Signalling NaN.

Return x converted to a Quiet NaN with x.class.QNaN set to 1 and x.class.SNaN set to 0.

bfp_ROUND_CEIL(p, x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision. x must be rounded as presented, without
prenormalization.

p is an integer value specifying the precision (i.e., number of bits) the significand is rounded to.

Return the smallest floating-point number having unbounded exponent range and a significand with a width of p
bits that is greater or equal in value to x.
Power ISA™ I590

Version 3.1
inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.

bfp_ROUND_FLOOR(p, x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision. The value must be rounded as presented, without
prenormalization.

p is an integer value specifying the precision (i.e., number of bits) the significand is rounded to.

Return the largest floating-point number having unbounded exponent range and a significand with a width of p
bits that is lesser or equal in value to x.

inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.

bfp_ROUND_TO_BFLOAT16_NO_TRAP(x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

Return the value x, rounded to bfloat16 significand precision and exponent range under control of the rounding
mode specified in RN, and represented in the binary floating-point working format.

With respect to this rounding function, OE and UE are ignored (treated as if OE=0 and UE=0).

rmode ← FPSCR.RN

if x.class.SNaN then do
vxsnan_flag ← 1
return bfp_QUIET(x)

end

if x.class.QNaN then return x
if x.class.Infinity then return x
if x.class.Zero then return x

if bfp_ABSOLUTE(x)<bfp_NMIN_BFLOAT16 then do
x ← bfp_DENORM(-126,x)

if rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(8,x)
if rmode=0b01 then r ← bfp_ROUND_TRUNC(8,x)
if rmode=0b10 then r ← bfp_ROUND_CEIL(8,x)
if rmode=0b11 then r ← bfp_ROUND_FLOOR(8,x)

ux_flag ← xx_flag

return r
end

if rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(8,x)
if rmode=0b01 then r ← bfp_ROUND_TRUNC(8,x)
if rmode=0b10 then r ← bfp_ROUND_CEIL(8,x)
if rmode=0b11 then r ← bfp_ROUND_FLOOR(8,x)

if bfp_ABSOLUTE(r)>bfp_NMAX_BFLOAT16 then do
if rmode=0b00 then r ← x.sign ? bfp_INFINITY : bfp_INFINITY
if rmode=0b01 then r ← x.sign ? bfp_NMAX_BFLOAT16 : bfp_NMAX_BFLOAT16
if rmode=0b10 then r ← x.sign ? bfp_NMAX_BFLOAT16 : bfp_INFINITY
if rmode=0b11 then r ← x.sign ? bfp_INFINITY : bfp_NMAX_BFLOAT16
Chapter 7. Vector-Scalar Extension Facility 591

Version 3.1
r.sign ← x.sign

ox_flag ← 0b1
xx_flag ← 0b1
inc_flag ← 0bU

end

return r

bfp_ROUND_TO_BFP16(x,y)
y is a normalized floating-point value represented in the binary floating-point working format, having unbounded
exponent range and significand precision.

x is a 2-bit integer value specifying one of four rounding modes.

0b00 Round to Nearest Even
0b01 Round towards Zero
0b10 Round towards +Infinity
0b11 Round towards - Infinity

If y is an QNaN, Infinity, or Zero, return y. Otherwise, if y is an SNaN, set vxsnan_flag to 1 and return the
corresponding QNaN representation of y. Otherwise, return the value y rounded to half-precision format’s
exponent range and significand precision using the rounding mode specified by x.

if y.class.Zero | y.class.Infinity then return(y)

if y.class.QNaN | y.class.SNaN then do
 result ← y
 result.significand.bit[1] ← 1
 result.significand.bit[11:inf] ← 0
 result.class.SNaN ← 0
 result.class.QNaN ← 1
 vxsnan_flag ← y.class.SNaN
 return(result)
end

if bfp_COMPARE_LT(y,bfp_NMIN_BFP16) then do
 if FPSCR.UE=0 then do
 do while y.exponent < -14 // denormalize y
 y.significand ← y.significand >> 1
 y.exponent ← y.exponent + 1
 end
 if x=0b00 then result ← bfp_ROUND_TO_BFP16_NEAR_EVEN(y)
 if x=0b01 then result ← bfp_ROUND_TO_BFP16_TRUNC(y)
 if x=0b10 then result ← bfp_ROUND_TO_BFP16_CEIL(y)
 if x=0b11 then result ← bfp_ROUND_TO_BFP16_FLOOR(y)
 do while result.significand.bit[0] = 0 // normalize result
 result.significand ← result.significand << 1
 result.exponent ← result.exponent - 1
 end
 ux_flag ← xx_flag
 return(result)
 end
 else do
 y.exponent ← y.exponent + 24
 ux_flag ← 1
 end
end

if x=0b00 then result ← bfp_ROUND_TO_BFP16_NEAR_EVEN(y)
Power ISA™ I592

Version 3.1
if x=0b01 then result ← bfp_ROUND_TO_BFP16_TRUNC(y)
if x=0b10 then result ← bfp_ROUND_TO_BFP16_CEIL(y)
if x=0b11 then result ← bfp_ROUND_TO_BFP16_FLOOR(y)

if bfp_COMPARE_GT(result, bfp_NMAX_BFP16) then do
 if OE=0 then do
 if x=0b00 then result ← sign ? bfp_NEGATE(bfp_INFINITY) : bfp_INFINITY
 if x=0b01 then result ← sign ? bfp_NEGATE(bfp_NMAX_BFP16) : bfp_NMAX_BFP16
 if x=0b10 then result ← sign ? bfp_NEGATE(bfp_NMAX_BFP16) : bfp_INFINITY
 if x=0b11 then result ← sign ? bfp_NEGATE(bfp_INFINITY) : bfp_NMAX_BFP16
 ox_flag ← 0b1
 xx_flag ← 0b1
 inc_flag ← 0bU
 return(result)
 end
 else do
 result.exponent ← result.exponent - 24
 ox_flag ← 1
 end
end

return(result)

bfp_ROUND_TO_BFP16_CEIL(x)
x is a normalized floating-point value represented in the binary floating-point working format, having unbounded
exponent range and significand precision.

Return the smallest floating-point number having unbounded exponent range but half-precision significand
precision that is greater or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

bfp_ROUND_TO_BFP16_FLOOR(x)
x is a normalized floating-point value represented in the binary floating-point working format, having unbounded
exponent range and significand precision.

Return the largest floating-point number having unbounded exponent range but half-precision significand
precision that is lesser or equal in value to x.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

bfp_ROUND_TO_BFP16_NEAR_EVEN(x)
x is a normalized floating-point value represented in the binary floating-point working format, having unbounded
exponent range and significand precision.

Return the floating-point number having unbounded exponent range but half-precision significand precision that
is nearest in value to x (in case of a tie, the floating-point number having unbounded exponent range but
half-precision significand precision with the least-significant bit equal to 0 is used).

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

bfp_ROUND_TO_BFP16_TRUNC(x)
x is a normalized floating-point value represented in the binary floating-point working format, having unbounded
exponent range and significand precision.
Chapter 7. Vector-Scalar Extension Facility 593

Version 3.1
Return the largest floating-point number having unbounded exponent range but half-precision significand
precision that is lesser or equal in value to x if x>0, or the smallest floating-point number having unbounded
exponent range but half0-precision significand precision that is greater or equal in value to x if x<0.

If the magnitude of the value returned is greater than x, inc_flag is set to 1.

If the value returned is not equal to x, xx_flag is set to 1.

bfp_ROUND_TO_BFP32_SIGNIFICAND(x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

Return the value x rounded to 24-bit significand precision under control of the rounding mode specified in RN,
retaining unbounded exponent range, represented in the binary floating-point working format.

rmode ← FPSCR.RN

if x.class.QNaN | x.class.Infinity | x.class.Zero then return x

if rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(24,x)
if rmode=0b01 then r ← bfp_ROUND_TRUNC(24,x)
if rmode=0b10 then r ← bfp_ROUND_CEIL(24,x)
if rmode=0b11 then r ← bfp_ROUND_FLOOR(24,x)

return r (binary floating-point working format)

bfp_ROUND_TO_BFP32_NO_TRAP(x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

Return the value x rounded to single-precision under control of the rounding mode specified in RN, represented
in double-precision format.

Note that OE and UE are ignored, results are returned as if OE=0 and UE=0.

rmode = FPSCR.RN

if x.class.QNaN | x.class.Infinity | x.class.Zero then return x

if bfp_ABSOLUTE(x)<bfp_NMIN_BFP32 then do
 x = bfp_DENORM(-126,x)
 if rmode=0b00 then r = bfp_ROUND_NEAR_EVEN(24,x)
 if rmode=0b01 then r = bfp_ROUND_TRUNC(24,x)
 if rmode=0b10 then r = bfp_ROUND_CEIL(24,x)
 if rmode=0b11 then r = bfp_ROUND_FLOOR(24,x)
 ux_flag = xx_flag
 return r
end

if rmode=0b00 then r = bfp_ROUND_NEAR_EVEN(24,x)
if rmode=0b01 then r = bfp_ROUND_TRUNC(24,x)
if rmode=0b10 then r = bfp_ROUND_CEIL(24,x)
if rmode=0b11 then r = bfp_ROUND_FLOOR(24,x)

if bfp_ABSOLUTE(r)>bfp_NMAX_BFP32 then do
 if rmode=0b00 then r = x.sign ? bfp_INFINITY : bfp_INFINITY
 if rmode=0b01 then r = x.sign ? bfp_NMAX_BFP32 : bfp_NMAX_BFP32
 if rmode=0b10 then r = x.sign ? bfp_NMAX_BFP32 : bfp_INFINITY
 if rmode=0b11 then r = x.sign ? bfp_INFINITY : bfp_NMAX_BFP32
 r.sign = x.sign
Power ISA™ I594

Version 3.1
 ox_flag = 0b1
 xx_flag = 0b1
 inc_flag = 0bU
end
return r (binary floating-point working format)

bfp_ROUND_TO_BFP64(ro,rmode,x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

ro is a 1-bit unsigned integer and rmode is a 2-bit unsigned integer, together specifying one of five rounding
modes to be used in rounding z.

ro=0 rmode=0b00 Round to Nearest Even
ro=0 rmode=0b01 Round towards Zero
ro=0 rmode=0b10 Round towards +Infinity
ro=0 rmode=0b11 Round towards -Infinity
ro=1 Round to Odd

Return the value x rounded to double-precision under control of the specified rounding mode.

if x.class.QNaN then return x
if x.class.Infinity then return x
if x.class.Zero then return x
if bfp_ABSOLUTE(x)<bfp_NMIN_BFP64 then do
 if FPSCR.UE=0 then do
 x ← bfp_DENORM(-1022,x)
 if ro=0 & rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(53,x)
 if ro=0 & rmode=0b01 then r ← bfp_ROUND_TRUNC(53,x)
 if ro=0 & rmode=0b10 then r ← bfp_ROUND_CEIL(53,x)
 if ro=0 & rmode=0b11 then r ← bfp_ROUND_FLOOR(53,x)
 if ro=1 then r ← bfp_ROUND_ODD(53,x)
 ux_flag ← xx_flag
 return(r)
 end
 else do
 x.exponent ← x.exponent + 1536
 ux_flag ← 1
 end
end
if ro=0 & rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(53,x)
if ro=0 & rmode=0b01 then r ← bfp_ROUND_TRUNC(53,x)
if ro=0 & rmode=0b10 then r ← bfp_ROUND_CEIL(53,x)
if ro=0 & rmode=0b11 then r ← bfp_ROUND_FLOOR(53,x)
if ro=1 then r ← bfp_ROUND_ODD(53,x)
if bfp_ABSOLUTE(r)>bfp_NMAX_BFP64 then do
 if FPSCR.OE=0 then do
 if ro=0 & rmode=0b00 then r ← x.sign ? bfp_INFINITY : bfp_INFINITY
 if ro=0 & rmode=0b01 then r ← x.sign ? bfp_NMAX_BFP64 : bfp_NMAX_BFP64
 if ro=0 & rmode=0b10 then r ← x.sign ? bfp_NMAX_BFP64 : bfp_INFINITY
 if ro=0 & rmode=0b11 then r ← x.sign ? bfp_INFINITY : bfp_NMAX_BFP64
 if ro=1 then r ← x.sign ? bfp_NMAX_BFP64 : bfp_NMAX_BFP64
 r.sign ← x.sign
 ox_flag ← 0b1
 xx_flag ← 0b1
 inc_flag ← 0bU
 return(r)
 end
 else do
Chapter 7. Vector-Scalar Extension Facility 595

Version 3.1
 r.exponent ← r.exponent - 1536
 ox_flag ← 1
 end
end
return r (binary floating-point working format)

bfp_ROUND_TO_BFP64_NO_TRAP(x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

Return the value x rounded to double-precision under control of the rounding mode specified in RN, represented
in double-precision format.

Note that OE and UE are ignored, results are returned as if OE=0 and UE=0.

rmode = FPSCR.RN

if x.class.QNaN | x.class.Infinity | x.class.Zero then return x

if bfp_ABSOLUTE(x)<bfp_NMIN_BFP64 then do
 x = bfp_DENORM(-1022,x)
 if rmode=0b00 then r = bfp_ROUND_NEAR_EVEN(53,x)
 if rmode=0b01 then r = bfp_ROUND_TRUNC(53,x)
 if rmode=0b10 then r = bfp_ROUND_CEIL(53,x)
 if rmode=0b11 then r = bfp_ROUND_FLOOR(53,x)
 ux_flag = xx_flag
 return r
end

if rmode=0b00 then r = bfp_ROUND_NEAR_EVEN(53,x)
if rmode=0b01 then r = bfp_ROUND_TRUNC(53,x)
if rmode=0b10 then r = bfp_ROUND_CEIL(53,x)
if rmode=0b11 then r = bfp_ROUND_FLOOR(53,x)

if bfp_ABSOLUTE(r)>bfp_NMAX_BFP64 then do
 if rmode=0b00 then r = x.sign ? bfp_INFINITY : bfp_INFINITY
 if rmode=0b01 then r = x.sign ? bfp_NMAX_BFP64 : bfp_NMAX_BFP64
 if rmode=0b10 then r = x.sign ? bfp_NMAX_BFP64 : bfp_INFINITY
 if rmode=0b11 then r = x.sign ? bfp_INFINITY : bfp_NMAX_BFP64
 r.sign = x.sign
 ox_flag = 0b1
 xx_flag = 0b1
 inc_flag = 0bU
end
return r (binary floating-point working format)

bfp_ROUND_TO_BFP80(rmode,x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

rmode is a 2-bit unsigned integer, together specifying one of four rounding modes to be used in rounding x.

rmode=0b00 Round to Nearest Even
rmode=0b01 Round towards Zero
rmode=0b10 Round towards +Infinity
rmode=0b11 Round towards -Infinity

Return the value x rounded to double-extended-precision under control of the specified rounding mode.

if x.class.QNaN then return x
Power ISA™ I596

Version 3.1
if x.class.Infinity then return x
if x.class.Zero then return x
if bfp_ABSOLUTE(x)<bfp_NMIN_BFP80 then do
 if FPSCR.UE=0 then do
 x ← bfp_DENORM(-16382,x)
 if rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(64,x)
 if rmode=0b01 then r ← bfp_ROUND_TRUNC(64,x)
 if rmode=0b10 then r ← bfp_ROUND_CEIL(64,x)
 if rmode=0b11 then r ← bfp_ROUND_FLOOR(64,x)
 ux_flag ← xx_flag
 return(r)
 end
 else do
 x.exponent ← x.exponent + 24576
 ux_flag ← 1
 end
end
if rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(64,x)
if rmode=0b01 then r ← bfp_ROUND_TRUNC(64,x)
if rmode=0b10 then r ← bfp_ROUND_CEIL(64,x)
if rmode=0b11 then r ← bfp_ROUND_FLOOR(64,x)
if bfp_ABSOLUTE(r)>bfp_NMAX_BFP80 then do
 if FPSCR.OE=0 then do
 if rmode=0b00 then r ← x.sign ? bfp_INFINITY : bfp_INFINITY
 if rmode=0b01 then r ← x.sign ? bfp_NMAX_BFP80 : bfp_NMAX_BFP80
 if rmode=0b10 then r ← x.sign ? bfp_NMAX_BFP80 : bfp_INFINITY
 if rmode=0b11 then r ← x.sign ? bfp_INFINITY : bfp_NMAX_BFP80
 r.sign ← x.sign
 ox_flag ← 0b1
 xx_flag ← 0b1
 inc_flag ← 0bU
 return(r)
 end
 else do
 r.exponent ← r.exponent - 24576
 ox_flag ← 1
 end
end
return r (binary floating-point working format)

bfp_ROUND_TO_BFP128(ro,rmode,x)
x is a normalized binary floating-point value that is represented in the binary floating-point working format and
has unbounded exponent range and significand precision.

ro is a 1-bit unsigned integer and rmode is a 2-bit unsigned integer, together specifying one of five rounding
modes to be used in rounding z.

ro=0 rmode=0b00 Round to Nearest Even
ro=0 rmode=0b01 Round towards Zero
ro=0 rmode=0b10 Round towards +Infinity
ro=0 rmode=0b11 Round towards -Infinity
ro=1 Round to Odd

Return the value x rounded to quad-precision under control of the specified rounding mode.

if x.class.QNaN then return x
if x.class.Infinity then return x
if x.class.Zero then return x
if bfp_ABSOLUTE(x)<bfp_NMIN_BFP128 then do
Chapter 7. Vector-Scalar Extension Facility 597

Version 3.1
 if FPSCR.UE=0 then do
 x ← bfp_DENORM(-16382,x)
 if ro=0 & rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(113,x)
 if ro=0 & rmode=0b01 then r ← bfp_ROUND_TRUNC(113,x)
 if ro=0 & rmode=0b10 then r ← bfp_ROUND_CEIL(113,x)
 if ro=0 & rmode=0b11 then r ← bfp_ROUND_FLOOR(113,x)
 if ro=1 then r ← bfp_ROUND_ODD(113,x)
 ux_flag ← xx_flag
 return(r)
 end
 else do
 x.exponent ← x.exponent + 24576
 ux_flag ← 1
 end
end
if ro=0 & rmode=0b00 then r ← bfp_ROUND_NEAR_EVEN(113,x)
if ro=0 & rmode=0b01 then r ← bfp_ROUND_TRUNC(113,x)
if ro=0 & rmode=0b10 then r ← bfp_ROUND_CEIL(113,x)
if ro=0 & rmode=0b11 then r ← bfp_ROUND_FLOOR(113,x)
if ro=1 then r ← bfp_ROUND_ODD(113,x)
if bfp_ABSOLUTE(r)>bfp_NMAX_BFP128 then do
 if FPSCR.OE=0 then do
 if ro=0 & rmode=0b00 then r ← x.sign ? bfp_INFINITY : bfp_INFINITY
 if ro=0 & rmode=0b01 then r ← x.sign ? bfp_NMAX_BFP128 : bfp_NMAX_BFP128
 if ro=0 & rmode=0b10 then r ← x.sign ? bfp_NMAX_BFP128 : bfp_INFINITY
 if ro=0 & rmode=0b11 then r ← x.sign ? bfp_INFINITY : bfp_NMAX_BFP128
 if ro=1 then r ← x.sign ? bfp_NMAX_BFP128 : bfp_NMAX_BFP128
 r.sign ← x.sign
 ox_flag ← 0b1
 xx_flag ← 0b1
 inc_flag ← 0bU
 return(r)
 end
 else do
 r.exponent ← r.exponent - 24576
 ox_flag ← 1
 end
end
return r (binary floating-point working format)

bfp_ROUND_TO_INTEGER(rmode,x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision.

If x is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, return x represented as a QNaN.

Otherwise, if x is an Infinity, return x.

Otherwise, do the following.

If rmode=0b000 (Round to Nearest Even),
return the double-precision floating-point integer value that is nearest in value to x (in case of a tie, the
double-precision floating-point integer value with the least-significant bit equal to 0 is used).

If rmode=0b001 (Round towards Zero),
Power ISA™ I598

Version 3.1
return the largest double-precision floating-point integer value that is lesser or equal in value to x if x>0,
or the smallest double-precision floating-point integer value that is greater or equal in value to x if x<0.

If rmode=0b010 (Round towards +Infinity),
return the smallest double-precision floating-point integer value that is greater or equal in value to x.

If rmode=0b011 (Round towards -Infinity),
return the largest double-precision floating-point integer value that is lesser or equal in value to x.

If rmode=0b100 (Round to Nearest Away),
return the double-precision floating-point integer value that is nearest in value to x (in case of a tie, the
double-precision floating-point integer value that is furthest away from 0 is used).

inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.

bfp_ROUND_ODD(p, x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision. x must be rounded as presented, without
prenormalization.

p is an integer value specifying the precision (i.e., number of bits) the significand is rounded to.

Return x with bit p-1 of the significand set to 1 if any of the bits to the right of bit p-1 of the significand of x are
equal to 1, and all bits to the right of bit p-1 of the significand of the value returned are set to 0. Otherwise return
x with all bits to the right of bit p-1 of the significand set to 0.

inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.

bfp_ROUND_NEAR_EVEN(p, x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision. x must be rounded as presented, without
prenormalization.

p is an integer value specifying the precision (i.e., number of bits) the significand is rounded to.

Return the floating-point number having unbounded exponent range and a significand with a width of p bits that
is nearest in value to x (in case of a tie, the floating-point number having unbounded exponent range and a
p-bit significand with the least-significant bit equal to 0 is used).

inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.

bfp_ROUND_TRUNC(p,x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision. x must be rounded as presented, without
prenormalization.

p is an integer value specifying the precision (i.e., number of bits) the significand is rounded to.

Return the largest floating-point number having unbounded exponent range and a significand with a width of p
bits that is lesser or equal in value to x if x>0, or the smallest floating-point number having unbounded exponent
range but double-precision significand precision that is greater or equal in value to x if x<0.

inc_flag is set to 1 if the magnitude of the value returned is greater than x.
xx_flag is set to 1 if the value returned is not equal to x.
Chapter 7. Vector-Scalar Extension Facility 599

Version 3.1
bfp_SQUARE_ROOT(x)
x is a binary floating-point value that is represented in the binary floating-point working format and has
unbounded exponent range and significand precision.

If x is an SNaN, vxsnan_flag is set to 1.
Otherwise, if x is negative and non-zero, vxsqrt_flag is set to 1.

If x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if x is -Zero, return -Zero.
Otherwise, if x is negative, return the standard QNaN.
Otherwise, return the normalized square root of x, represented in the binary floating-point working format,
having unbounded range and precision.

bfp16_CONVERT_FROM_BFP(x)
x is a floating-point value represented in the binary floating-point working format.

If x.class.QNaN=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:5 of result are set to the value 0b11111.
Bits 6:15 of result are set to the value of bits 1:10 of x.significand.

Otherwise, if x.class.Infinity=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:5 of result are set to the value 0b11111.
Bits 6:15 of result are set to 0.

Otherwise, if x.class.Zero=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:15 of result are set to 0.

Otherwise, if x.exponent is less than -14 and UE=0, do the following.
Bit 0 of result is set to the value of x.sign.
sh_cnt is set to the difference, -14 - x.exponent.
Bits 1:5 of result are set to 0b00000.
Bits 6:15 of result are set to bits 1:10 of x.significand shifted right by sh_cnt bits.

Otherwise, if x.exponent is less than -14 and UE=1, result is undefined.
Otherwise, if x.exponent is greater than 15 and OE=1, result is undefined.

Otherwise, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:5 of result are set to the sum, x.exponent + 15.
Bits 6:15 of result are set to bits 1:10 of x.significand.

Return result.

bfp32_ABSOLUTE(x)
x is a floating-point value represented in single-precision format.

Return x with its sign set to 0.

bfp32_CONVERT_FROM_BFP(x)
x is a floating-point value represented in the binary floating-point working format.

If x.class.QNaN=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:8 of result are set to the value 0b1111_1111.
Bits 9:31 of result are set to the value of bits 1:23 of x.significand.
Power ISA™ I600

Version 3.1
Otherwise, if x.class.Infinity=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:9 of result are set to the value 0b1111_1111.
Bits 9:31 of result are set to 0.

Otherwise, if x.class.Zero=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:31 of result are set to 0.

Otherwise, if x.exponent is less than -126 and UE=0, do the following.
Bit 0 of result is set to the value of x.sign.
sh_cnt is set to the difference, -126 - x.exponent.
Bits 1:8 of result are set to 0b0000_0000.
Bits 9:31 of result are set to bits 1:23 of x.significand shifted right by sh_cnt bits.

Otherwise, if x.exponent is less than -126 and UE=1, result is undefined.
Otherwise, if x.exponent is greater than 127 and OE=1, result is undefined.

Otherwise, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:8 of result are set to the sum, x.exponent + 127.
Bits 9:31 of result are set to bits 1:23 of x.significand.

Return result.

bfp32_CONVERT_FROM_BFP64(x)
x is a single-precision floating-point value in double-precision format.

Returns the value x in single-precision format. x must be representable in single-precision, or else result returned
is undefined. x may require denormalization. No rounding is performed. If x is a SNaN, it is converted to a sin-
gle-precision SNaN having the same payload as x.

sign ← x.bit[0]
exp ← x.bit[1:11] - 1023
frac ← x.bit[12:63]

if (exp = -1023) & (frac = 0) & (sign=0) then return(0x0000_0000) // +Zero
else if (exp = -1023) & (frac = 0) & (sign=1) then return(0x8000_0000) // -Zero
else if (exp = -1023) & (frac != 0) then return(0xUUUU_UUUU) // DP denorm
else if (exp < -126) then do // denormalization required
 msb = 1
 do while (exp < -126) // denormalize operand until exp=Emin
 frac.bit[1:51] ← frac.bit[0:50]
 frac.bit[0] ← msb
 msb ← 0
 exp ← exp + 1
 end
 if (frac = 0) then return(0xUUUU_UUUU) // value not representable in SP format
 else do // return denormal SP
 result.bit[0] ← sign
 result.bit[1:8] ← 0
 result.bit[9:31] ← frac.bit[0:22]
 return(result)
 end
end
else if (exp = +1024) & (frac = 0) & (sign=0) then return(0x7F80_0000) // +Infinity
else if (exp = +1024) & (frac = 0) & (sign=1) then return(0xFF80_0000) // -Infinity
else if (exp = +1024) & (frac != 0) then do // QNaN or SNaN
 result.bit[0] ← sign
 result.bit[1:8] ← 255
Chapter 7. Vector-Scalar Extension Facility 601

Version 3.1
 result.bit[9:31] ← frac.bit[0:22]
 return(result)
end
else if (exp < +1024) & (exp > +126) then return(0xUUUU_UUUU) // overflow
else do // normal value
 result.bit[0] ← sign
 result.bit[1:8] ← exp.bit[4:11] + 127
 result.bit[9:31] ← frac.bit[0:22]
 return(result)
end

bfp32_MAXIMUM(x,y)
x is a binary floating-point value that is represented in single-precision format.
y is a binary floating-point value that is represented in single-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the greater of x and y, where +0 is considered greater than -0.

bfp32_MINIMUM(x,y)
x is a binary floating-point value that is represented in single-precision format.
y is a binary floating-point value that is represented in single-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the lesser of x and y, where -0 is considered less than +0.

bfp32_NEGATE(x)
x is a floating-point value represented in single-precision format.

Return x with its sign complemented.

bfp32_NEGATIVE_ABSOLUTE(x)
x is a floating-point value represented in single-precision format.

Return x with its sign set to 1.

bfp64_ABSOLUTE(x)
x is a floating-point value represented in double-precision format.

Return x with its sign set to 0.

bfp64_CONVERT_FROM_BFP(x)
x is a floating-point value represented in the binary floating-point working format.

If x.class.QNaN=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:11 of result are set to the value 0b111_1111_1111.
Bits 12:63 of result are set to the value of bits 1:52 of x.significand.
Power ISA™ I602

Version 3.1
Otherwise, if x.class.Infinity=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:11 of result are set to the value 0b111_1111_1111.
Bits 12:63 of result are set to 0.

Otherwise, if x.class.Zero=1, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:63 of result are set to 0.

Otherwise, if x.exponent is less than -1022 and UE=0, do the following.
Bit 0 of result is set to the value of x.sign.
sh_cnt is set to the difference, -1022 - x.exponent.
Bits 1:11 of result are set to 0b000_0000_0000.
Bits 12:63 of result are set to bits 1:52 of x.significand shifted right by sh_cnt bits.

Otherwise, if x.exponent is less than -1022 and UE=1, result is undefined.
Otherwise, if x.exponent is greater than 1023 and OE=1, result is undefined.

Otherwise, do the following.
Bit 0 of result is set to the value of x.sign.
Bits 1:11 of result are set to the sum, x.exponent + 1023.
Bits 12:63 of result are set to bits 1:52 of x.significand.

Return result.

bfp64_NEGATE(x)
x is a floating-point value represented in double-precision format.

Return x with its sign complemented.

bfp64_NEGATIVE_ABSOLUTE(x)
x is a floating-point value represented in double-precision format.

Return x with its sign set to 1.

bfp64_MAXIMUM(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the greater of x and y, where +0 is considered greater than -0.

bfp64_MAXIMUM_TYPE_C(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x or y is a NaN, return y.
Otherwise, if x is greater than y, return x.
Otherwise, return y.
Chapter 7. Vector-Scalar Extension Facility 603

Version 3.1
bfp64_MAXIMUM_TYPE_J(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a NaN, return x.
Otherwise, if y is a NaN, return y.
Otherwise, if both x and y are Zero and either x or y is a +Zero, return +Zero.
Otherwise, if both x and y are Zero and both x and y are -Zero, return -Zero.
Otherwise, if x is greater than y, return x.
Otherwise, return y.

bfp64_MINIMUM(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a QNaN and y is not a NaN, return y.
Otherwise, if x is a QNaN, return x.
Otherwise, if x is an SNaN, return x represented as a QNaN.
Otherwise, if y is a QNaN, return x.
Otherwise, if y is an SNaN, return y represented as a QNaN.
Otherwise, return the lesser of x and y, where -0 is considered less than +0.

bfp64_MINIMUM_TYPE_C(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x or y is a NaN, return y.
Otherwise, if x is less than y, return x.
Otherwise, return y.

bfp64_MINIMUM_TYPE_J(x,y)
x is a binary floating-point value that is represented in double-precision format.
y is a binary floating-point value that is represented in double-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a NaN, return x.
Otherwise, if y is a NaN, return y.
Otherwise, if both x and y are Zero and either x or y is a -Zero, return -Zero.
Otherwise, if both x and y are Zero and both x and y are +Zero, return +Zero.
Otherwise, if x is less than y, return x.
Otherwise, return y.

bfp128_ABSOLUTE(x)
x is a floating-point value represented in quad-precision format.

Return x with its sign set to 0.
Power ISA™ I604

Version 3.1
bfp128_CONVERT_FROM_BFP(x)
x is a quad-precision floating-point value that is represented in the binary floating-point working format.

If x is a QNaN,
the contents of bit 0 of result are set to the value of x.sign,
the contents of bits 1:15 of result are set to the value 0b111_1111_1111_1111, and
the contents of bits 16:127 of result are set to the value of bits 1:112 of x.significand.

Otherwise, if x is a Zero,
the contents of bit 0 of result are set to the value of x.sign, and
the contents of bits 1:15 of result are set to the value 0b000_0000_0000_0000, and
the contents of bits 16:127 of result are set to the value 0x0000_0000_0000_0000_0000_0000_0000.

Otherwise, if x is an Infinity,
the contents of bit 0 of result are set to the value of x.sign,
the contents of bits 1:15 of result are set to the value 0b111_1111_1111_1111, and
the contents of bits 16:127 of result are set to the value 0x0000_0000_0000_0000_0000_0000_0000.

Otherwise, do the following.
If the exponent of x is less than -16382,

the contents of bit 0 of result are set to the value of x.sign,
the contents of bits 1:15 of result are set to the value 0b000_0000_0000_0000, and
the contents of bits 16:127 of result are set to the value of bits 1:112 of the significand of x shifted
right by N bits, where N is the value -16382 subtracted by the value of the exponent of x.

Otherwise,
the contents of bit 0 of result are set to the value of x.sign,
the contents of bits 1:15 of result are set to the sum of the exponent of x and 16383, and
the contents of bits 16:127 of result are set to the value of bits 1:112 of the significand of x.

Return result (i.e., x in quad-precision format).

bfp128_NEGATE(x)
x is a floating-point value represented in quad-precision format.

Return x with its sign complemented.

bfp128_NEGATIVE_ABSOLUTE(x)
x is a floating-point value represented in quad-precision format.

Return x with its sign set to 1.

si64_CONVERT_FROM_BFP(x)
x is an integer value represented in the binary floating-point working format.

Return the value x in signed doubleword integer format.

ui64_CONVERT_FROM_BFP(x)
x is an integer value represented in the binary floating-point working format.

Return the value x in 64-bit unsigned integer format.

bfp128_MAXIMUM_TYPE_C(x,y)
x is a binary floating-point value that is represented in quad-precision format.
y is a binary floating-point value that is represented in quad-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x or y is a NaN, return y.
Otherwise, if x is greater than y, return x.
Otherwise, return y.
Chapter 7. Vector-Scalar Extension Facility 605

Version 3.1
bfp128_MAXIMUM_TYPE_J(x,y)
x is a binary floating-point value that is represented in quad-precision format.
y is a binary floating-point value that is represented in quad-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a NaN, return x.
Otherwise, if y is a NaN, return y.
Otherwise, if both x and y are Zero and either x or y is a +Zero, return +Zero.
Otherwise, if both x and y are Zero and both x and y are -Zero, return -Zero.
Otherwise, if x is greater than y, return x.
Otherwise, return y.

bfp128_MINIMUM_TYPE_C(x,y)
x is a binary floating-point value that is represented in quad-precision format.
y is a binary floating-point value that is represented in quad-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x or y is a NaN, return y.
Otherwise, if x is less than y, return x.
Otherwise, return y.

bfp128_MINIMUM_TYPE_J(x,y)
x is a binary floating-point value that is represented in quad-precision format.
y is a binary floating-point value that is represented in quad-precision format.

If x or y is an SNaN, vxsnan_flag is set to 1.

If x is a NaN, return x.
Otherwise, if y is a NaN, return y.
Otherwise, if both x and y are Zero and either x or y is a -Zero, return -Zero.
Otherwise, if both x and y are Zero and both x and y are +Zero, return +Zero.
Otherwise, if x is less than y, return x.
Otherwise, return y.

EXTZ32(x)
Result of extending the b-bit value x on the left with 32-b zeros, forming a 32-bit value.

b ← LENGTH(x)
result.bit[0:31-b] ← 0
result.bit[32-b:31] ← x

EXTZ64(x)
Result of extending the b-bit value x on the left with 64-b zeros, forming a 64-bit value.

b ← LENGTH(x)
result.bit[0:63-b] ← 0
result.bit[64-b:63] ← x

EXTZ128(x)
Result of extending the b-bit value x on the left with 128-b zeros, forming a 128-bit value.

b ← LENGTH(x)
result.bit[0:127-b] ← 0
result.bit[128-b:127] ← x
Power ISA™ I606

Version 3.1
fprf_CLASS_BFP16(x)
x is a floating-point value represented in half-precision format.

Return the 5-bit code that specifies the sign and class of x.

Return 0b10001 if x is a Quiet NaN.
Return 0b01001 if x is a negative infinity.
Return 0b00101 if x is a positive infinity.
Return 0b10010 if x is a negative zero.
Return 0b00010 if x is a positive zero.
Return 0b11000 if x is a negative denormal value as represented in half-precision format.
Return 0b10100 if x is a positive denormal value as represented in half-precision format.
Return 0b01000 if x is a negative normal value as represented in half-precision format.
Return 0b00100 if x is a positive normal value as represented in half-precision format.

fprf_CLASS_BFP32(x)
x is a floating-point value represented in single-precision format.

Return the 5-bit code that specifies the sign and class of x.

Return 0b10001 if x is a Quiet NaN.
Return 0b01001 if x is a negative infinity.
Return 0b00101 if x is a positive infinity.
Return 0b10010 if x is a negative zero.
Return 0b00010 if x is a positive zero.
Return 0b11000 if x is a negative denormal value as represented in single-precision format.
Return 0b10100 if x is a positive denormal value as represented in single-precision format.
Return 0b01000 if x is a negative normal value as represented in single-precision format.
Return 0b00100 if x is a positive normal value as represented in single-precision format.

fprf_CLASS_BFP64(x)
x is a floating-point value represented in double-precision format.

Return the 5-bit code that specifies the sign and class of x.

Return 0b10001 if x is a Quiet NaN.
Return 0b01001 if x is a negative infinity.
Return 0b00101 if x is a positive infinity.
Return 0b10010 if x is a negative zero.
Return 0b00010 if x is a positive zero.
Return 0b11000 if x is a negative denormal value as represented in double-precision format.
Return 0b10100 if x is a positive denormal value as represented in double-precision format.
Return 0b01000 if x is a negative normal value as represented in double-precision format.
Return 0b00100 if x is a positive normal value as represented in double-precision format.

fprf_CLASS_BFP128(x)
x is binary floating-point value that is represented in quad-precision format.

Return the 5-bit characterization of the sign and class of x.

Return 0b10001 if x is a Quiet NaN.
Return 0b01001 if x is negative and an infinity.
Return 0b01000 if x is negative and a normal number.
Return 0b11000 if x is negative and a denormal number.
Return 0b10010 if x is negative and a zero.
Return 0b00010 if x is positive and a zero.
Return 0b10100 if x is positive and a denormal number.
Return 0b00100 if x is positive and a normal number.
Return 0b00101 if x is positive and an infinity.
Chapter 7. Vector-Scalar Extension Facility 607

Version 3.1
IsInf(x)
Return 1 if x is an Infinity, otherwise return 0.

IsNaN(x)
Return 1 if x is either an SNaN or a QNaN, otherwise return 0.

IsNeg(x)
Return 1 if x is a negative, nonzero value, otherwise return 0.

IsSNaN(x)
Return 1 if x is an SNaN, otherwise return 0.

IsZero(x)
Return 1 if x is a Zero, otherwise return 0.

reset_xflags()
vxsnan_flag is set to 0.
vximz_flag is set to 0.
vxidi_flag is set to 0.
vxisi_flag is set to 0.
vxzdz_flag is set to 0.
vxsqrt_flag is set to 0.
vxcvi_flag is set to 0.
vxvc_flag is set to 0.
ox_flag is set to 0.
ux_flag is set to 0.
xx_flag is set to 0.
zx_flag is set to 0.

SetFX(x)
x is one of the exception flags in the FPSCR.

If the contents of x is 0, FX and x are set to 1.

si128_CONVERT_FROM_BFP(x)
x is an integer value represented in the binary floating-point working format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x8000_0000_0000_0000_0000_0000_0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

Let exponent be the unbiased exponent of rnd.
Let significand be the significand of rnd.

If rnd is greater than 2127-1,
vxcvi_flag is set to 1, and
return 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than -2127,
vxcvi_flag is set to 1, and
return 0x8000_0000_0000_0000_0000_0000_0000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact,
inc_flag is set to 0,
Power ISA™ I608

Version 3.1
significand is shifted right by the difference 127-exponent with 0s shifted in,
if rnd is negative, significand is negated, and
return bits 0:127 of significand.

si32_CHOP(x)
x is a signed integer value.

Return the rightmost 32 bits of x in 32-bit signed integer format.

si32_CLAMP(x)
x is a signed integer value.

If x is greater than 231-1, result is the value 231-1, and SAT is set to 1.

Otherwise, if x is less than -231, result is the value -231, and SAT is set to 1.

Otherwise, result is x.

Return x in 32-bit signed integer format.

ui128_CONVERT_FROM_BFP(x)
x is an integer value represented in the binary floating-point working format.

If x is a NaN,
vxcvi_flag is set to 1,
vxsnan_flag is set to 1 if x is an SNaN, and
return 0x0000_0000_0000_0000_0000_0000_0000_0000,

Otherwise, do the following.
Let rnd be the value x truncated to an integral value.

Let exponent be the unbiased exponent of rnd.
Let significand be the significand of rnd.

If rnd is greater than 2128-1,
vxcvi_flag is set to 1, and
return 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than 0,
vxcvi_flag is set to 1, and
return 0x0000_0000_0000_0000_0000_0000_0000_0000.

Otherwise,
xx_flag is set to 1 if rnd is inexact,
inc_flag is set to 0,
significand is shifted right by the difference 127-exponent with 0s shifted in, and
return bits 0:127 of significand.
Chapter 7. Vector-Scalar Extension Facility 609

Version 3.1
7.6.3 VSX Instruction Descriptions
Load VSX Scalar Doubleword DS-form

lxsd VRT,DS(RA)

Prefixed Load VSX Scalar Doubleword
8LS:D-form

plxsd VRT,D(RA),R
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “lxsd” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “plxsd” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plxsd” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

VSR[VRT+32].dword[0] ← MEM(EA,8)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value VRT + 32.

For lxsd, let the effective address (EA) be the sum of
the contents of register RA, or the value 0 if RA=0, and
the value DS||0b00, sign-extended to 64 bits.

For plxsd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plxsd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

When Big-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 7 of load_data.

When Little-Endian byte ordering is employed, let
load_data be the contents of the doubleword in storage
at address EA such that;

– the contents of the byte in storage at address EA
are placed into byte 7 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 6 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 0 of load_data.

load_data is placed into doubleword element 0 of
VSR[VRT+32].

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

For plxsd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load VSX Scalar
Doubleword:

57 VRT RA DS 2
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

42 VRT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plxsd Vx,value(Ry) plxsd Vx,value(Ry),0
plxsd Vx,value plxsd Vx,value(0),1

VSR Data Layout for lxsd

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I610

Version 3.1
Load VSX Scalar Doubleword Indexed X-form

lxsdx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← MEM(EA,8)

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 7 of load_data.

When Little-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 7 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 6 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 0 of load_data.

load_data is placed into doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

31 T RA RB 588 TX
0 6 11 16 21 31

VSR Data Layout for lxsdx

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Chapter 7. Vector-Scalar Extension Facility 611

Version 3.1
Load VSX Scalar as Integer Byte & Zero
Indexed X-form

lxsibzx XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← EXTZ64(MEM(EA,1))

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let the effective address (EA) be sum of the contents of
GPR[RA], or 0 if RA is equal to 0, and the contents of
GPR[RB].

The unsigned integer in the byte in storage addressed
by EA is placed in doubleword element 0 of VSR[XT].
The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered:
None

Load VSX Scalar as Integer Halfword & Zero
Indexed X-form

lxsihzx XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← EXTZ64(MEM(EA,2))

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let the effective address (EA) be sum of the contents of
GPR[RA], or 0 if RA is equal to 0, and the contents of
GPR[RB].

The unsigned integer in the halfword in storage
addressed by EA is placed in doubleword element 0 of
VSR[XT]. The contents of doubleword element 1 of
VSR[XT] are set to 0.

Special Registers Altered:
None

31 T RA RB 781 TX
0 6 11 16 21 31

31 T RA RB 813 TX
0 6 11 16 21 31

VSR Data Layout for lxsibzx

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127

VSR Data Layout for lxsihzx

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 32 64 96 127
Power ISA™ I612

Version 3.1
Load VSX Scalar as Integer Word Algebraic
Indexed X-form

lxsiwax XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← EXTS64(MEM(EA,4))

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 2 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 3 of load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 0 of load_data.

load_data is sign-extended to a doubleword and
placed in doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

31 T RA RB 76 TX
0 6 11 16 21 31

VSR Data Layout for lxsiwax

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Chapter 7. Vector-Scalar Extension Facility 613

Version 3.1
Load VSX Scalar as Integer Word & Zero
Indexed X-form

lxsiwzx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← ExtendZero(MEM(EA,4))

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 2 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 3 of load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 0 of load_data.

load_data is zero-extended and placed in doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

31 T RA RB 12 TX
0 6 11 16 21 31

VSR Data Layout for lxsiwzx

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I614

Version 3.1
Load VSX Scalar Single-Precision DS-form

lxssp VRT,DS(RA)

Prefixed Load VSX Scalar Single-Precision
8LS:D-form

plxssp VRT,D(RA),R
Prefix:

Suffix:

if MSR.VEC=0 then Vector_Unavailable()

if “lxssp” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “plxssp” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plxssp” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

load_data ← MEM(EA,4)

result ← bfp_CONVERT_FROM_BFP32(MEM(EA,4))

VSR[VRT+32].dword[0] ← bfp64_CONVERT_FROM_BFP(result)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value VRT + 32.

For lxssp, let the effective address (EA) be the sum of
the contents of register RA, or the value 0 if RA=0, and
the value DS||0b00, sign-extended to 64 bits.

For plxssp with R=0, let the effective address (EA) be
the sum of the contents of register RA, or the value 0 if
RA=0, and the value d0||d1, sign-extended to 64 bits.

For plxssp with R=1, let the effective address (EA) be
the sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 2 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 3 of load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 0 of load_data.

load_data, interpreted as a single-precision
floating-point value, is placed into doubleword element
0 of VSR[VRT+32] in double-precision format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

For plxssp, if R is equal to 1 and RA is not equal to 0,
the instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load VSX Scalar
Single:

57 VRT RA DS 3
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

43 VRT RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
plxssp Vx,value(Ry) plxssp Vx,value(Ry),0
plxssp Vx,value plxssp Vx,value(0),1
Chapter 7. Vector-Scalar Extension Facility 615

Version 3.1
Load VSX Scalar Single-Precision Indexed
X-form

lxsspx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

load_data ← MEM(EA,4)

result ← bfp_CONVERT_FROM_BFP32(MEM(EA,4))

VSR[VRT+32].dword[0] ← bfp64_CONVERT_FROM_BFP(result)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 2 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 3 of load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 0 of load_data.

load_data, interpreted as a single-precision
floating-point value, is placed in doubleword element 0
of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

31 T RA RB 524 TX
0 6 11 16 21 31

VSR Data Layout for lxssp

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127

VSR Data Layout for lxsspx

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I616

Version 3.1
Load VSX Vector DQ-form

lxv XT,DQ(RA)

Prefixed Load VSX Vector 8LS:D-form

plxv XT,D(RA),R
Prefix:

Suffix:

if “lxv” & TX=0 & MSR.VSX=0 then VSX_Unavailable()

if “lxv” & TX=1 & MSR.VEC=0 then Vector_Unavailable()

if “plxv” & MSR.VSX=0 then VSX_Unavailable()

if “lxv” then

 EA ← (RA|0) + EXTS64(DQ||0b0000)
if “plxv” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “plxv” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

VSR[32×TX+T] ← MEM(EA,16)

Let XT be the value 32×TX + T.

For lxv, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DQ||0b0000, sign-extended to 64 bits.

For plxv with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plxv with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

When Big-Endian byte ordering is employed, the
contents of the quadword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 1 of load_data, and
so forth until

– the contents of the byte in storage at address
EA+15 are placed into byte element 15 of
load_data.

When Little-Endian byte ordering is employed, the
contents of the quadword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 15 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 14 of load_data, and
so forth until

– the contents of the byte in storage at address
EA+15 are placed into byte element 0 of load_data.

load_data is placed into VSR[XT].

For plxv, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load VSX Vector:

61 T RA DQ TX 1
0 6 11 16 28 29 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

25 TX T RA d1
0 5 6 11 16 31

Extended mnemonic: Equivalent to:
plxv Vx,value(Ry) plxv Vx,value(Ry),0
plxv Vx,value plxv Vx,value(0),1

VSR Data Layout for lxv

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 617

Version 3.1
Load VSX Vector Byte*16 Indexed X-form

lxvb16x XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

do i = 0 to 15

 VSR[32×TX+T].byte[i] ← MEM(EA+i, 1)

end

Let XT be the value 32×TX + T.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

For each integer value from 0 to 15, do the following.
The contents of the byte in storage at address
EA+i are placed into byte element i of VSR[XT],

Special Registers Altered:
None

Example: Loading data using Load VSX Vector
Byte*16 Indexed

Loading a vector of 16 byte elements from Big-Endian
storage in VSR[XT] using lxvb16x, retaining left-to-right
element ordering.

Loading a vector of 16 byte elements from
Little-Endian storage in VSR[XT] using lxvb16x,
retaining left-to-right element ordering.

31 T RA RB 876 TX
0 6 11 16 21 31

lxvd2x, lxvw4x, lxvh8x, lxvb16x, and lxvx exhibit
identical behavior in Big-Endian mode.

Programming Note

char X[] = { 0xF0, 0xF1, 0xF2, 0xF3,

 0xF4, 0xF5, 0xF6, 0xF7,

 0xE0, 0xE1, 0xE2, 0xE3,

 0xE4, 0xE5, 0xE6, 0xE7 };

Big-endian storage image of X

addr(X): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-endian storage image of X

addr(X): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvb16x xX,r0,rPX

VSR[W]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvb16x xX,r0,rPX

VSR[X]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR Data Layout for lxvb16x

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I618

Version 3.1
Load VSX Vector Doubleword*2 Indexed
X-form

lxvd2x XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].dword[0] ← MEM(EA, 8)

VSR[32×TX+T].dword[1] ← MEM(EA+8, 8)

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

For each integer value i from 0 to 1, do the following.
When Big-Endian byte ordering is employed, the
contents of the doubleword in storage at address
EA+8×i are placed into load_data in such an order
that;

– the contents of the byte in storage at address
EA+8×i are placed into byte element 0 of
load_data,

– the contents of the byte in storage at address
EA+8×i+1 are placed into byte element 1 of
load_data, and so forth until

– the contents of the byte in storage at address
EA+8×i+7 are placed into byte element 7 of
load_data.

When Little-Endian byte ordering is employed, the
contents of the doubleword in storage at address
EA+8×i are placed into load_data in such an order
that;

– the contents of the byte in storage at address
EA+8×i are placed into byte element 7 of
load_data,

– the contents of the byte in storage at address
EA+8×i+1 are placed into byte element 6 of
load_data, and so forth until

– the contents of the byte in storage at address
EA+8×i+7 are placed into byte element 0 of
load_data.

load_data is placed into doubleword element i of
VSR[XT].

Special Registers Altered
None

31 T RA RB 844 TX
0 6 11 16 21 31

lxvd2x, lxvw4x, lxvh8x, lxvb16x, and lxvx exhibit
identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for lxvd2x

tgt VSR[XT].dword[0] VSR[XT].dword[0]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 619

Version 3.1
Load VSX Vector Special Value Quadword X-form

lxvkq XT,UIM

if MSR.VSX=0 then VSX_Unavailable()

if UIM=0b00001 then VSR[32×TX+T] ← 0x3FFF_0000_0000_0000_0000_0000_0000_0000 /* QP +1.0 */

if UIM=0b00010 then VSR[32×TX+T] ← 0x4000_0000_0000_0000_0000_0000_0000_0000 /* QP +2.0 */

if UIM=0b00011 then VSR[32×TX+T] ← 0x4000_8000_0000_0000_0000_0000_0000_0000 /* QP +3.0 */

if UIM=0b00100 then VSR[32×TX+T] ← 0x4001_0000_0000_0000_0000_0000_0000_0000 /* QP +4.0 */

if UIM=0b00101 then VSR[32×TX+T] ← 0x4001_4000_0000_0000_0000_0000_0000_0000 /* QP +5.0 */

if UIM=0b00110 then VSR[32×TX+T] ← 0x4001_8000_0000_0000_0000_0000_0000_0000 /* QP +6.0 */

if UIM=0b00111 then VSR[32×TX+T] ← 0x4001_C000_0000_0000_0000_0000_0000_0000 /* QP +7.0 */

if UIM=0b01000 then VSR[32×TX+T] ← 0x7FFF_0000_0000_0000_0000_0000_0000_0000 /* QP +Inf */

if UIM=0b01001 then VSR[32×TX+T] ← 0x7FFF_8000_0000_0000_0000_0000_0000_0000 /* QP dQNaN */

if UIM=0b10000 then VSR[32×TX+T] ← 0x8000_0000_0000_0000_0000_0000_0000_0000 /* QP -0.0 */

if UIM=0b10001 then VSR[32×TX+T] ← 0xBFFF_0000_0000_0000_0000_0000_0000_0000 /* QP -1.0 */

if UIM=0b10010 then VSR[32×TX+T] ← 0xC000_0000_0000_0000_0000_0000_0000_0000 /* QP -2.0 */

if UIM=0b10011 then VSR[32×TX+T] ← 0xC000_8000_0000_0000_0000_0000_0000_0000 /* QP -3.0 */

if UIM=0b10100 then VSR[32×TX+T] ← 0xC001_0000_0000_0000_0000_0000_0000_0000 /* QP -4.0 */

if UIM=0b10101 then VSR[32×TX+T] ← 0xC001_4000_0000_0000_0000_0000_0000_0000 /* QP -5.0 */

if UIM=0b10110 then VSR[32×TX+T] ← 0xC001_8000_0000_0000_0000_0000_0000_0000 /* QP -6.0 */

if UIM=0b10111 then VSR[32×TX+T] ← 0xC001_C000_0000_0000_0000_0000_0000_0000 /* QP -7.0 */

if UIM=0b11000 then VSR[32×TX+T] ← 0xFFFF_0000_0000_0000_0000_0000_0000_0000 /* QP -Inf */

Let XT be the value 32×TX + T.

UIM specifies one of a set of common values that is placed into VSR[XT]. Unspecified values of UIM are reserved.

Special Registers Altered:
None

60 T 31 UIM 360 TX
0 6 11 16 21 31

VSR Data Layout for lxvkq

tgt VSR[XT]

0 127
Power ISA™ I620

Version 3.1
Load VSX Vector with Length X-form

lxvl XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← (RA=0) ? 0 : GPR[RA]

nb ← EXTZ(GPR[RB].bit[0:7])

if nb>16 then nb ← 16

load_data ← 0x0000_0000_0000_0000_0000_0000_0000_0000

if MSR.LE = 0 then // Big-Endian byte-ordering

 load_data.byte[0:nb-1] ← MEM(EA,nb)

else // Little-Endian byte-ordering

 load_data.byte[16-nb:15] ← MEM(EA,nb)

VSR[32×TX+T] ← load_data

Let XT be the value 32×TX + T.

Let the effective address (EA) be the contents of
GPR[RA], or 0 if RA is equal to 0.

Let nb be the unsigned integer value in bits 0:7 of
GPR[RB].

If nb is equal to 0, the storage access is not performed
and the contents of VSR[XT] are set to 0.

Otherwise, when Big-Endian byte-ordering is
employed, do the following.

If nb less than 16, the contents of the nb bytes in
storage starting at address EA are placed into the
leftmost nb bytes of VSR[XT], and the contents of
the rightmost 16-nb bytes of VSR[XT] are set to
0x00.

Otherwise, the contents of the quadword in
storage at address EA are placed into VSR[XT].

Otherwise, when Little-Endian byte ordering is
employed, do the following.

If nb less than 16, the contents of the nb bytes in
storage starting at address EA are placed into the
rightmost nb bytes of VSR[XT] in byte-reversed
order, and the contents of the leftmost 16-nb bytes
of VSR[XT] are set to 0x00.

Otherwise, the contents of the quadword in
storage at address EA are placed into VSR[XT] in
byte-reversed order.

If the contents of bits 8:63 of GPR[RB] are not equal to
0, the results are boundedly undefined.

Special Registers Altered:
None

31 T RA RB 269 TX
0 6 11 16 21 31

VSR Data Layout for lxvl

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 621

Version 3.1
Example: Loading less than 16-byte data into VSR using lxvl

Loading less than 16-byte data from Big-Endian
storage in VSR[XT] using lxvl.

Loading less than 16-byte data from Little-Endian
storage in VSR[XT] using lxvl.

char S[14] = “This is a TEST”;

short X[6] = { 0xE0E1, 0xE2E3, 0xE4E5, 0xE6E7, 0xE8E9, 0xEAEB };

binary80 Z = 0xF0F1F2F3F4F5F6F7F8F9

Big-endian storage image of S, X, & Z

addr(S)+0x0000: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” E0E1

addr(S)+0x0010: E2 E3 E4 E5 E6 E7 E8 E9 EA EB F0 F1 F2 F3 F4 F5

addr(S)+0x0020: F6 F7 F8 F9 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[NS] = 14 (length of S in # of bytes)

GPR[NX] = 12 (length of X in # of bytes)

GPR[NZ] = 10 (length of Z in # of bytes)

GPR[PS] = address of S

add rPX,rPS,rNS # address of X

add rPZ,rPX,rNX # address of Z

sldi rLS,rNS,56

sldi rLX,rNX,56

sldi rLZ,rNZ,56

lxvl xS,rPS,rLS

lxvl xX,rPX,rLX

lxvl xZ,rPZ,rLZ

VSR register image of S, X, & Z

VSR[S]: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” 00 00

VSR[X]: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB 00 00 00 00

VSR[Z]: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-endian storage image of S, X, & Z

addr(S)+0x0000: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” E1 E0

addr(S)+0x0010: E3 E2 E5 E4 E7 E6 E9 E8 EB EA F9 F8 F7 F6 F5 F4

addr(S)+0x0020: F3 F2 F1 F0 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[NS] = 14 (length of S in # of bytes)

GPR[NX] = 12 (length of X in # of bytes)

GPR[NZ] = 10 (length of Z in # of bytes)

GPR[PS] = address of S

add rPX,rPS,rNS # address of X

add rPZ,rPX,rNX # address of Z

sldi rLS,rNS,56

sldi rLX,rNX,56

sldi rLZ,rNZ,56

lxvl xS,rPS,rLS

lxvl xX,rPX,rLX

lxvl xZ,rPZ,rLZ

VSR register image of S, X, & Z

VSR[S]: 00 00 “T” “S” “E” “T” “ ” “a” “ ” “ s” “i” “ ” “s” “i” “h” “T”

VSR[X]: 00 00 00 00 EA EB E8 E9 E6 E7 E4 E5 E2 E3 E0 E1

VSR[Z]: 00 00 00 00 00 00 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0 1 2 3 4 5 6 7 8 9 A B C D E F
Power ISA™ I622

Version 3.1
Load VSX Vector with Length Left-justified
X-form

lxvll XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← (RA=0) ? 0 : GPR[RA]

nb ← EXTZ(GPR[RB].bit[0:7])

if nb>16 then nb ← 16

if nb>0 then do i = 0 to nb-1

 VSR[32×TX+T].byte[i] ← MEM(EA+i,1)

end

if nb<16 then do i = nb to 15

 VSR[32×TX+T].byte[i] ← 0x00

end

Let XT be the value 32×TX + T.

Let the effective address (EA) be the contents of
GPR[RA], or 0 if RA is equal to 0.

Let nb be the unsigned integer value in bits 0:7 of
GPR[RB].

If nb is equal to 0, the storage access is not performed
and the contents of VSR[XT] are set to 0.

Otherwise, do the following.
If nb less than 16, the contents of the nb bytes in
storage starting at address EA are placed into the
lefttmost nb bytes of VSR[XT], and the contents of
the rightmost 16-nb bytes of VSR[XT] are set to
0x00.

Otherwise, the contents of the quadword in
storage at address EA are placed into VSR[XT].

Data is loaded from storage into VSR[XT] in
Big-Endian byte ordering (i.e., the byte in storage
at address EA is placed into byte element 0 of
VSR[XT], the byte in storage at address EA+1 is
placed in byte element 1 of VSR[XT], and so forth).

If the contents of bits 8:63 of GPR[RB] are not equal to
0, the results are boundedly undefined.

Special Registers Altered:
None

31 T RA RB 301 TX
0 6 11 16 21 31

VSR Data Layout for lxvll

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 623

Version 3.1
Example: Loading less than 16-byte left-justified
data

Loading less than 16-byte data from storage in
VSR[XT], left-justified, using lxvll.

decimal X = +1234567890123456789;

decimal Y = -123456;

decimal Z = +1004966723510220;

Initial state of VSRs X, Y, & Z

VSR[X]: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

VSR[Y]: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

VSR[Z]: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

Big-endian & Little-Endian storage image of X, Y, & Z

X+0x0000: 12 34 56 78 90 12 34 56 78 9C 01 23 45 6D 01 00

X+0x0010: 49 66 72 35 10 22 0C 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[NX] = 10 (length of X)

GPR[NY] = 4 (length of Y)

GPR[NZ] = 9 (length of Z)

GPR[PX] = address of X

GPR[PY] = address of Y = address of X + 10

GPR[PZ] = address of Z = address of X + 10 + 4

lxvll xX,rPX,rNX

lxvll xY,rPY,rNY

lxvll xZ,rPZ,rNZ

Final state of VSRs X, Y, & Z

VSR[X]: 01 34 67 78 90 12 34 56 78 9C 00 00 00 00 00 00

VSR[Y]: 01 23 45 6D 00 00 00 00 00 00 00 00 00 00 00 00

VSR[Z]: 01 00 49 66 72 35 10 22 0C 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F
Power ISA™ I624

Version 3.1
Load VSX Vector Paired DQ-form

lxvp XTp,DQ(RA)

Prefixed Load VSX Vector Paired 8LS:D-form

plxvp XTp,D(RA),R
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

EAbase ← (RA=0) ? 0 : GPR[RA]

if “lxvp” then

 EAdisp ← EXTS64(DQ || 0b0000)
if “plxvp” then

 EAdisp ← EXTS64(d0 || d1)

if “lxvp” then EA ← EAbase + EAdisp

if “plxvp” & R=0 then EA ← EAbase + EAdisp

if “plxvp” & R=1 then EA ← CIA + EAdisp

load_data ← MEM(EA, 32)

VSR[32×TX+2×Tp] ← load_data.bit[0:127]

VSR[32×TX+2×Tp+1] ← load_data.bit[128:255]

Let XTp be the value 32×TX + 2×Tp (i.e., only even
values of XTp can be encoded in the instruction).

Let EAbase be the contents of GPR[RA], or 0 if RA=0.

For lxvp, let the effective address (EA) be the sum of
the integer value in GPR[RA], or 0 if RA=0, and the value
DQ||0b0000, sign-extended to 64 bits.

For plxvp, if R=0, let the effective address (EA) be the
sum of the integer value in GPR[RA], or 0 if RA=0, and
the value d0||d1, sign-extended to 64 bits.

For plxvp, if R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

When Big-Endian byte ordering is employed, the
contents of the octword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data, and so forth
until

– the contents of the byte in storage at address
EA+31 are placed into byte 31 of load_data.

When Little-Endian byte ordering is employed, the
contents of the octword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 31 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 30 of load_data, and so forth
until

– the contents of the byte in storage at address
EA+31 are placed into byte 0 of load_data.

Bits 0-127 of load_data are placed into VSR[XTp].
Bits 128-255 of load_data is placed into VSR[XTp+1].

For plxvp, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonics for Load VSX Vector Paired Pre-
fixed:

6 Tp TX RA DQ 0
0 6 10 11 16 28 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

58 Tp TX RA d1
0 6 10 11 16 31

Extended mnemonic: Equivalent to:
plxvp Rx,value(Ry) plxvp Rx,value(Ry),0
plxvp Rx,value plxvp Rx,value(0),1

For best performance, EA should be word-aligned.
Programming Note

VSR Data Layout for [p]lxvp

tgt VSR[XTp]

VSR[XTp+1]

0 127
Chapter 7. Vector-Scalar Extension Facility 625

Version 3.1
Load VSX Vector Paired Indexed X-form

lxvpx XTp,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

load_data ← MEM(EA,32)

VSR[32×TX+2×Tp] ← load_data.bit[0:127]

VSR[32×TX+2×Tp+1] ← load_data.bit[128:255]

Let XTp be the value 32×TX + 2×Tp (i.e., only even
values of XTp can be encoded in the instruction).

Let the effective address (EA) be the sum of the integer
value in GPR[RA], or 0 if RA=0, and the integer value in
GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the octword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data, and so forth
until

– the contents of the byte in storage at address
EA+31 are placed into byte 31 of load_data.

When Little-Endian byte ordering is employed, the
contents of the octword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 31 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 30 of load_data, and so forth
until

– the contents of the byte in storage at address
EA+31 are placed into byte 0 of load_data.

Bits 0-127 of load_data are placed into VSR[XTp].
Bits 128-255 of load_data is placed into VSR[XTp+1].

Special Registers Altered:
None

31 Tp TX RA RB 333 /
0 6 10 11 16 21 31

For best performance, EA should be word-aligned.
Programming Note

VSR Data Layout for lxvpx

tgt VSR[XTp]

VSR[XTp+1]

0 127
Power ISA™ I626

Version 3.1
Load VSX Vector Rightmost Byte Indexed X-form

lxvrbx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T] = EXTZ128(MEM(EA,1))

Let XT be the value of 32×TX + T.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

Load the contents of the byte in storage at address EA
into byte element 15 of VSR[XT]. The contents of byte
elements 0-14 of VSR[XT] are set to 0.

Special Registers Altered
None

31 T RA RB 13 TX
0 6 11 16 21 31

VSR Data Layout for lxvrwx

tgt 0x00_0000_0000_0000_0000_0000_0000_0000 .byte[15]

0 120 127
Chapter 7. Vector-Scalar Extension Facility 627

Version 3.1
Load VSX Vector Rightmost Doubleword Indexed X-form

lxvrdx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T] = EXTZ128(MEM(EA,8))

Let XT be the value of 32×TX + T.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

Load the contents of the doubleword in storage at
address EA into doubleword element 1 of VSR[XT]. The
contents of doubleword element 0 of VSR[XT] are set to
0.

When Big-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 7 of load_data.

When Little-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 7 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 6 of load_data, and so forth
until

– the contents of the byte in storage at address EA+7
are placed into byte 0 of load_data.

load_data is placed into doubleword element 1 of
VSR[XT]. The contents of doubleword element 0 of
VSR[XT] are set to 0.

Special Registers Altered
None

31 T RA RB 109 TX
0 6 11 16 21 31

VSR Data Layout for lxvrdx

tgt 0x0000_0000_0000_0000 VSR[XT].dword[1]

0 64 127
Power ISA™ I628

Version 3.1
Load VSX Vector Rightmost Halfword Indexed X-form

lxvrhx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T] = EXTZ128(MEM(EA,2))

Let XT be the value of 32×TX + T.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the halfword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data, and

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data.

When Little-Endian byte ordering is employed, the
contents of the halfword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+1
are placed into byte 0 of load_data.

load_data is placed into halfword element 7 of VSR[XT].
The contents of halfword elements 0-6 of VSR[XT] are
set to 0.

Special Registers Altered
None

31 T RA RB 45 TX
0 6 11 16 21 31

VSR Data Layout for lxvrwx

tgt 0x0000_0000_0000_0000_0000_0000_0000 VSR[XT].hword[7]

0 112 127
Chapter 7. Vector-Scalar Extension Facility 629

Version 3.1
Load VSX Vector Rightmost Word Indexed X-form

lxvrwx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T] = EXTZ128(MEM(EA,4))

Let XT be the value of 32×TX + T.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+3
are placed into byte 3 of load_data, and

– the contents of the byte in storage at address EA+4
are placed into byte 4 of load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte 0 of load_data.

load_data is placed into word element 3 of VSR[XT].
The contents of word elements 0-2 of VSR[XT] are set
to 0.

Special Registers Altered
None

31 T RA RB 77 TX
0 6 11 16 21 31

VSR Data Layout for lxvrwx

tgt 0x0000_0000_0000_0000_0000_0000 VSR[XT].word[3]

0 96 127
Power ISA™ I630

Version 3.1
Load VSX Vector Indexed X-form

lxvx XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T] ← MEM(EA,16)

Let XT be the value 32×TX + T.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the quadword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 1 of load_data, and
so forth until

– the contents of the byte in storage at address
EA+15 are placed into byte element 15 of
load_data.

When Little-Endian byte ordering is employed, the
contents of the quadword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 15 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 14 of load_data, and
so forth until

– the contents of the byte in storage at address
EA+15 are placed into byte element 0 of load_data.

load_data is placed into VSR[XT].

Special Registers Altered:
None

31 T RA RB 4 / 12 TX
0 6 11 16 21 25 26 31

VSR Data Layout for lxvx

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 631

Version 3.1
Example: Loading data using Load VSX Vector Indexed

Loading 16 bytes of data from Big-Endian storage in
VSR[XT] using lxvx.

Loading 16 bytes of data from Little-Endian storage in
VSR[XT] using lxvx.

char W[16] = { 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7 };

short X[8] = { 0xF0F1, 0xF2F3, 0xF4F5, 0xF6F7, 0xE0E1, 0xE2E3, 0xE4E5, 0xE6E7 };

float Y[4] = { 0xF0F1_F2F3, 0xF4F5_F6F7, 0xE0E1_E2E3, 0xE4E5_E6E7 };

double Z[2] = { 0xF0F1_F2F3_F4F5_F6F7, 0xE0E1_E2E3_E4E5_E6E7 };

Big-endian storage image of W, X, Y, & Z

addr(W+0x0000): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0010): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0020): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0030): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PW] = address of W

GPR[PX] = address of X = GPR[PW] + 16

GPR[PY] = address of Y = GPR[PW] + 32

GPR[PZ] = address of Z = GPR[PW] + 48

lxvx xW,r0,rPW

lxvx xX,r0,rPX

lxvx xY,r0,rPY

lxvx xZ,r0,rPZ

Final state of VSRs W, X, Y, & Z

VSR[W]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[X]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[Y]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[Z]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-endian storage image of W, X, Y, & Z

addr(W+0x0000): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0010): F1 F0 F3 F2 F5 F4 F7 F6 E1 E0 E3 E2 E5 E4 E7 E6

addr(W+0x0020): F3 F2 F1 F0 F7 F6 F5 F4 E3 E2 E1 E0 E7 E6 E5 E4

addr(W+0x0030): F7 F6 F5 F4 F3 F2 F1 F0 E7 E6 E5 E4 E3 E2 E1 E0

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PW] = address of W

GPR[PX] = address of X = GPR[PW] + 16

GPR[PY] = address of Y = GPR[PW] + 32

GPR[PZ] = address of Z = GPR[PW] + 48

lxvx xW,r0,rPW

lxvx xX,r0,rPX

lxvx xY,r0,rPY

lxvx xZ,r0,rPZ

Final state of VSRs W, X, Y, & Z

VSR[W]: E7 E6 E5 E4 E3 E2 E1 E0 F7 F6 F5 F4 F3 F2 F1 F0

VSR[X]: E6 E7 E4 E5 E2 E3 E0 E1 F6 F7 F4 F5 F2 F3 F0 F1

VSR[Y]: E4 E5 E6 E7 E0 E1 E2 E3 F4 F5 F6 F7 F0 F1 F2 F3

VSR[Z]: E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7

0 1 2 3 4 5 6 7 8 9 A B C D E F
Power ISA™ I632

Version 3.1
Load VSX Vector Doubleword & Splat Indexed
X-form

lxvdsx XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

load_data ← MEM(EA, 8)

VSR[32×TX+T].dword[0] ← load_data

VSR[32×TX+T].dword[1] ← load_data

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 1 of load_data, and
so forth until

– the contents of the byte in storage at address EA+7
are placed into byte element 7 of load_data.

When Little-Endian byte ordering is employed, the
contents of the doubleword in storage at address EA
are placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 7 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 6 of load_data, and
so forth until

– the contents of the byte in storage at address EA+7
are placed into byte element 0 of load_data.

load_data is copied into each doubleword element of
VSR[XT].

Special Registers Altered
None

31 T RA RB 332 TX
0 6 11 16 21 31

VSR Data Layout for lxvdsx

tgt VSR[XT].dword[0] VSR[XT].dword[0]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 633

Version 3.1
Load VSX Vector Halfword*8 Indexed X-form

lxvh8x XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

do i = 0 to 7

 VSR[32×TX+T].hword[i] ← MEM(EA+2×i, 2)

end

Let XT be the value 32×TX + T.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

For each integer value from 0 to 7, do the following.
When Big-Endian byte ordering is employed, the
contents of the halfword in storage at address
EA+2×i are placed into load_data in such an order
that;

– the contents of the byte in storage at address
EA+2×i are placed into byte element 0 of
load_data,

– the contents of the byte in storage at address
EA+2×i+1 are placed into byte element 1 of
load_data.

When Little-Endian byte ordering is employed, the
contents of the quadword in storage at address EA
are placed into VSR[XT] in such an order that;

– the contents of the byte in storage at address
EA+2×i are placed into byte element 1 of
load_data,

– the contents of the byte in storage at address
EA+2×i+1 are placed into byte element 0 of
load_data.

load_data is placed into halfword element i of
VSR[XT].

Special Registers Altered:
None

Example: Loading data using Load VSX Vector
Halfword*8 Indexed

Loading a vector of 8 halfword elements from
Big-Endian storage in VSR[XT] using lxvh8x, retaining
left-to-right element ordering.

Loading a vector of 8 halfword elements from
Little-Endian storage in VSR[XT] using lxvh8x, retaining
left-to-right element ordering.

31 T RA RB 812 TX
0 6 11 16 21 31

lxvd2x, lxvw4x, lxvh8x, lxvb16x, and lxvx exhibit
identical behavior in Big-Endian mode.

short X[] = { 0x0001, 0x1011, 0x2021, 0x3031,

 0x4041, 0x5051, 0x6061, 0x7071 };

Big-endian storage image of X

addr(X): 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-endian storage image of X

addr(X): 01 00 11 10 21 20 31 30 41 40 51 50 61 60 71 70

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvh8x xX,r0,rPX

VSR[X]: 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvh8x xX,r0,rPX

VSR[X]: 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71

0 1 2 3 4 5 6 7 8 9 A B C D E F

Programming Note

VSR Data Layout for lxvh8x

tgt VSR[XT].hword[0] VSR[XT].hword[1] VSR[XT].hword[2] VSR[XT].hword[3] VSR[XT].hword[4] VSR[XT].hword[5] VSR[XT].hword[6] VSR[XT].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I634

Version 3.1
Load VSX Vector Word*4 Indexed X-form

lxvw4x XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

VSR[32×TX+T].word[0] ← MEM(EA, 4)

VSR[32×TX+T].word[1] ← MEM(EA+4, 4)

VSR[32×TX+T].word[2] ← MEM(EA+8, 4)

VSR[32×TX+T].word[3] ← MEM(EA+12, 4)

Let XT be the value 32×TX + T.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

For each integer value i from 0 to 3, do the following.
When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA+4×i
are placed into load_data in such an order that;

– the contents of the byte in storage at address
EA+4×i are placed into byte element 0 of
load_data,

– the contents of the byte in storage at address
EA+4×i+1 are placed into byte element 1 of
load_data,

– the contents of the byte in storage at address
EA+4×i+2 are placed into byte element 2 of
load_data, and

– the contents of the byte in storage at address
EA+4×i+3 are placed into byte element 3 of
load_data.

When Little-Endian byte ordering is employed, the
contents of the word in storage at address EA+4×i
are placed into word element i of VSR[XT] in such
an order that;

– the contents of the byte in storage at address
EA+4×i are placed into byte element 3 of
load_data,

– the contents of the byte in storage at address
EA+4×i+1 are placed into byte element 2 of
load_data,

– the contents of the byte in storage at address
EA+4×i+2 are placed into byte element 1 of
load_data, and

– the contents of the byte in storage at address
EA+4×i+3 are placed into byte element 0 of
load_data.

load_data is placed into word element i of
VSR[XT].

Special Registers Altered
None

31 T RA RB 780 TX
0 6 11 16 21 31

lxvd2x, lxvw4x, lxvh8x, lxvb16x, and lxvx exhibit
identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for lxvw4x

tgt VSX[XT].word[0] VSX[XT].word[1] VSX[XT].word[2] VSX[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 635

Version 3.1
Load VSX Vector Word & Splat Indexed X-form

lxvwsx XT,RA,RB

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

load_data ← MEM(EA,4)

do i = 0 to 3

 VSR[32×TX+T].word[i] ← load_data

end

Let XT be the value 32×TX + T.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

When Big-Endian byte ordering is employed, the
contents of the word in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 0 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 1 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte element 2 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte element 3 of load_data.

When Little-Endian byte ordering is employed, the
contents of the quadword in storage at address EA are
placed into load_data in such an order that;

– the contents of the byte in storage at address EA
are placed into byte element 3 of load_data,

– the contents of the byte in storage at address EA+1
are placed into byte element 2 of load_data,

– the contents of the byte in storage at address EA+2
are placed into byte element 1 of load_data, and

– the contents of the byte in storage at address EA+3
are placed into byte element 0 of load_data.

load_data is copied into each word element of VSR[XT].

Special Registers Altered:
None

Example: Loading data using Load VSX Vector
Word & Splat Indexed

Loading scalar word data from Big-Endian storage in
VSR[XT] using lxvwsx.

Loading scalar word data from Little-Endian storage in
VSR[XT] using lxvwsx.

31 T RA RB 364 TX
0 6 11 16 21 31

int X = 0xF0F1_F2F3;

Big-endian storage image of X

addr(X): F0 F1 F2 F3 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Little-endian storage image of X

addr(X): F3 F2 F1 F0 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvwsx xX,r0,rPX

Final state of VSR X

VSR[X]: F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

lxvwsx xX,r0,rPX

Final state of VSR X

VSR[X]: F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3 F0 F1 F2 F3

0 1 2 3 4 5 6 7 8 9 A B C D E F
Power ISA™ I636

Version 3.1
VSR Data Layout for lxvwsx

tgt VSX[XT].word[0] VSX[XT].word[1] VSX[XT].word[2] VSX[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 637

Version 3.1
Store VSX Scalar Doubleword DS-form

stxsd VRS,DS(RA)

Prefixed Store VSX Scalar Doubleword
8LS:D-form

pstxsd VRS,D(RA),R
Prefix:

Suffix:

if MSR.VEC=0 then Vector_Unavailable()

if “stxsd” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “pstxsd” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstxsd” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA,8) ← VSR[VRS+32].dword[0]

Let XS be the value VRS + 32.

For stxsd, let the effective address (EA) be the sum of
the contents of register RA, or the value 0 if RA=0, and
the value DS||0b00, sign-extended to 64 bits.

For pstxsd with R=0, let the effective address (EA) be
the sum of the contents of register RA, or the value 0 if
RA=0, and the value d0||d1, sign-extended to 64 bits.

For pstxsd with R=1, let the effective address (EA) be
the sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

Let store_data be the contents of doubleword element
0 of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed in the doubleword in storage at
address EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA+7.

When Little-Endian byte ordering is employed,
store_data is placed in the doubleword in storage at
address EA in such order that;

– the contents of byte 7 of doubleword element 0 of
VSR[VRS+32] are placed into the byte in storage at
address EA,

– the contents of byte 6 of doubleword element 0 of
VSR[VRS+32] are placed into the byte in storage at
address EA+1, and so forth until

– the contents of byte 0 of doubleword element 0 of
VSR[VRS+32] are placed into the byte in storage at
address EA+7.

For pstxsd, if R is equal to 1 and RA is not equal to 0,
the instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store VSX Scalar
Doubleword:

61 VRS RA DS 2
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

46 VRS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstxsd Vx,value(Ry) pstxsd Vx,value(Ry),0
pstxsd Vx,value pstxsd Vx,value(0),1

VSR Data Layout for stxsd

src VSX[XS].dword[0] unused
0 64 127
Power ISA™ I638

Version 3.1
Store VSX Scalar Doubleword Indexed X-form

stxsdx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,8) ← VSR[XS].dword[0]

Let XS be the value 32×SX + S.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

Let store_data be the contents of doubleword element
0 of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed in the doubleword in storage at
address EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA+7.

When Little-Endian byte ordering is employed,
store_data is placed in the doubleword in storage at
address EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+7,

– byte 1 of store_data is placed into the byte in
storage at address EA+6, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA.

Special Registers Altered
None

31 S RA RB 716 SX
0 6 11 16 21 31

VSR Data Layout for stxsdx

src VSX[XS].dword[0] unused
0 64 127
Chapter 7. Vector-Scalar Extension Facility 639

Version 3.1
Store VSX Scalar as Integer Byte Indexed
X-form

stxsibx XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,1) ← VSR[32×SX+S].byte[7]

Let XS be the value 32×SX + S.

Let the effective address (EA) be sum of the contents of
GPR[RA], or 0 if RA is equal to 0, and the contents of
GPR[RB].

The contents of byte element 7 of VSR[XS] are placed
into the byte in storage addressed by EA.

Special Registers Altered:
None

Store VSX Scalar as Integer Halfword Indexed
X-form

stxsihx XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,2) ← VSR[32×SX+S].hword[3]

Let XS be the value 32×SX + S.

Let the effective address (EA) be sum of the contents of
GPR[RA], or 0 if RA is equal to 0, and the contents of
GPR[RB].

The contents of halfword element 3 of VSR[XS] are
placed into the halfword in storage addressed by EA.

Special Registers Altered:
None

31 S RA RB 909 SX
0 6 11 16 21 31

31 S RA RB 941 SX
0 6 11 16 21 31

VSR Data Layout for stxsibx

src unused .byte[7] unused

0 56 64 127

VSR Data Layout for stxsihx

src unused VSR[XS].hword[3] unused
0 48 64 127
Power ISA™ I640

Version 3.1
Store VSX Scalar as Integer Word Indexed
X-form

stxsiwx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,4) ← VSR[32×SX+S].word[1]

Let XS be the value 32×SX + S.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

Let store_data be the contents of word element 1 of
VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1,

– byte 2 of store_data is placed into the byte in
storage at address EA+2, and

– byte 3 of store_data is placed into the byte in
storage at address EA+3.

When Little-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+3,

– byte 1 of store_data is placed into the byte in
storage at address EA+2,

– byte 2 of store_data is placed into the byte in
storage at address EA+1, and

– byte 3 of store_data is placed into the byte in
storage at address EA.

Special Registers Altered
None

31 S RA RB 140 SX
0 6 11 16 21 31

VSR Data Layout for stxsiwx

src unused VSR[XS].word[1] unused
0 32 64 127
Chapter 7. Vector-Scalar Extension Facility 641

Version 3.1
Store VSX Scalar Single-Precision DS-form

stxssp VRS,DS(RA)

Prefixed Store VSX Scalar Single-Precision
8LS:D-form

pstxssp VRS,D(RA),R
Prefix:

Suffix:

if MSR.VEC=0 then Vector_Unavailable()

if “stxsso” then

 EA ← (RA|0) + EXTS64(DS||0b00)
if “pstxssp” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstxssp” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA,4) ← bfp32_CONVERT_FROM_BFP64(VSR[VRS+32].dword[0])

Let XS be the value VRS + 32.

For stxssp, let the effective address (EA) be the sum of
the contents of register RA, or the value 0 if RA=0, and
the value DS||0b00, sign-extended to 64 bits.

For pstxssp with R=0, let the effective address (EA) be
the sum of the contents of register RA, or the value 0 if
RA=0, and the value d0||d1, sign-extended to 64 bits.

For pstxssp with R=1, let the effective address (EA) be
the sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

Let store_data be the double-precision floating-point
value in doubleword element 0 of VSR[XS] converted to
single-precision format

When Big-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1,

– byte 2 of store_data is placed into the byte in
storage at address EA+2, and

– byte 3 of store_data is placed into the byte in
storage at address EA+3.

When Little-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+3,

– byte 1 of store_data is placed into the byte in
storage at address EA+2,

– byte 2 of store_data is placed into the byte in
storage at address EA+1, and

– byte 3 of store_data is placed into the byte in
storage at address EA.

For pstxssp, if R is equal to 1 and RA is not equal to 0,
the instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store VSX Scalar
Single-Precision:

61 VRS RA DS 3
0 6 11 16 30 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

47 VRS RA d1
0 6 11 16 31

Extended mnemonic: Equivalent to:
pstxssp Vx,value(Ry) pstxssp Vx,value(Ry),0
pstxssp Vx,value pstxssp Vx,value(0),1

VSR Data Layout for stxssp

src VSR[XS].dword[0] unused
0 64 127
Power ISA™ I642

Version 3.1
Store VSX Scalar Single-Precision Indexed
X-form

stxsspx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,4) ← bfp32_CONVERT_FROM_BFP64(VSR[32×SX+S].dword[0])

Let XS be the value 32×SX + S.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

Let store_data be the double-precision floating-point
value in doubleword element 0 of VSR[XS] converted to
single-precision format

When Big-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1,

– byte 2 of store_data is placed into the byte in
storage at address EA+2, and

– byte 3 of store_data is placed into the byte in
storage at address EA+3.

When Little-Endian byte ordering is employed,
store_data is placed in the word in storage at address
EA in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+3,

– byte 1 of store_data is placed into the byte in
storage at address EA+2,

– byte 2 of store_data is placed into the byte in
storage at address EA+1, and

– byte 3 of store_data is placed into the byte in
storage at address EA.

Special Registers Altered
None

31 S RA RB 652 SX
0 6 11 16 21 31

VSR Data Layout for stxsspx

src VSR[XS].dword[0] unused
0 64 127
Chapter 7. Vector-Scalar Extension Facility 643

Version 3.1
Store VSX Vector DQ-form

stxv XS,DQ(RA)

Prefixed Store VSX Vector 8LS:D-form

pstxv XS,D(RA),R
Prefix:

Suffix:

if stxv” & SX=0 & MSR.VSX=0 then VSX_Unavailable()

if stxv” & SX=1 & MSR.VEC=0 then Vector_Unavailable()

if “pstxv” & MSR.VSX=0 then VSX_Unavailable()

if “stxv” then

 EA ← (RA|0) + EXTS64(DQ||0b0000)
if “pstxv” & R=0 then

 EA ← (RA|0) + EXTS64(d0||d1)
if “pstxv” & R=1 then

 EA ← CIA + EXTS64(d0||d1)

MEM(EA,16) ← VSR[32×SX+S]

Let XS be the value 32×SX + S.

For stxv, let the effective address (EA) be the sum of
the contents of GPR[RA], or the value 0 if RA=0, and the
value DQ||0b0000, sign-extended to 64 bits.

For pstxv with R=0, let the effective address (EA) be the
sum of the contents of GPR[RA], or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstxv with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

Let store_data be the contents of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed into the quadword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 15 of store_data is placed into the byte in
storage at address EA+15.

When Little-Endian byte ordering is employed,
store_data is placed into the quadword in storage at
address EA in such an order that;

– byte 15 of store_data is placed into the byte in
storage at address EA,

– byte 14 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 0 of store_data is placed into the byte in
storage at address EA+15.

For pstxv, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonics for Prefixed Store VSX Vector:

61 S RA DQ SX 5
0 6 11 16 28 29 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

27 SX S RA d1
0 5 6 11 16 31

Extended mnemonic: Equivalent to:
pstxv Vx,value(Ry) pstxv Vx,value(Ry),0
pstxv Vx,value pstxv Vx,value(0),1

VSR Data Layout for stxv

src VSR[XS]

0 127
Power ISA™ I644

Version 3.1
Store VSX Vector Byte*16 Indexed X-form

stxvb16x XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

do i = 0 to 15

 MEM(EA+i,1) ← VSR[32×SX+S].byte[i]

end

Let XS be the value 32×SX + S.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

For each integer value from 0 to 15, do the following.
The contents of byte element i of VSR[XS] are
placed into the byte in storage at address EA+i.

Special Registers Altered:
None

Example: Storing data using Store VSX Vector
Byte*16 Indexed

Storing a vector of 16 byte elements from VSR[XS] into
Big-Endian storage using sxvb16x, retaining
left-to-right element ordering.

Loading a vector of 16 byte elements from
Little-Endian storage in VSR[XT] using lxvb16x,
retaining left-to-right element ordering.

31 S RA RB 1004 SX
0 6 11 16 21 31

stxvd2x, stxvw4x, stxvh8x, stxvb16x, and stxvx
exhibit identical behavior in Big-Endian mode.

Programming Note

char X[16];

VSR[X]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

stxvb16x xX,r0,rPX

Big-endian storage image of X

addr(X): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

stxvb16x xX,r0,rPX

Little-endian storage image of X

addr(X): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR Data Layout for stxvb16x

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 645

Version 3.1
Store VSX Vector Doubleword*2 Indexed
X-form

stxvd2x XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,8) ← VSR[32×SX+S].dword[0]

MEM(EA+8,8) ← VSR[32×SX+S].dword[1]

Let XS be the value 32×SX + S.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

For each integer value i from 0 to 1, do the following.
Let store_data be the contents of doubleword
element i of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed in the doubleword in storage
at address EA+8×i in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+8×i,

– byte 1 of store_data is placed into the byte in
storage at address EA+8×i+1, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA+8×i+7.

When Little-Endian byte ordering is employed,
store_data is placed in the doubleword in storage
at address EA+8×i in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+8×i+7,

– byte 1 of store_data is placed into the byte in
storage at address EA+8×i+6, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA+8×i.

Special Registers Altered
None

31 S RA RB 972 SX
0 6 11 16 21 31

stxvd2x, stxvw4x, stxvh8x, stxvb16x, and stxvx
exhibit identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for stxvd2x

src VSR[XS].dword[0] VSR[XS].dword[1]

0 64 127
Power ISA™ I646

Version 3.1
Store VSX Vector Halfword*8 Indexed X-form

stxvh8x XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

do i = 0 to 7

 MEM(EA+2×i,2) ← VSR[32×SX+S].hword[i]

end

Let XS be the value 32×SX + S.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

For each integer value from 0 to 7, do the following.
The contents of byte element i of VSR[XS] are
placed into the byte in storage at address EA+i.

For each integer value from 0 to 7, do the following.
When Big-Endian byte ordering is employed, the
contents of halfword element i of VSR[XS] are
placed into the halfword in storage at address
EA+2×i in such an order that;

– the contents of byte sub-element 0 of
halfword element i of VSR[XS] are placed into
the byte in storage at address EA+2×i, and

– the contents of byte sub-element 1 of
halfword element i of VSR[XS] are placed into
the byte in storage at address EA+2×i+1.

When Little-Endian byte ordering is employed, the
contents of halfword element i of VSR[XS] are
placed into the halfword in storage at address
EA+2×i in such an order that;

– the contents of byte sub-element 1 of
halfword element i of VSR[XS] are placed into
the byte in storage at address EA+2×i, and

– the contents of byte sub-element 0 of
halfword element i of VSR[XS] are placed into
the byte in storage at address EA+2×i+1.

Special Registers Altered:
None

Example: Storing data using Store VSX Vector
Halfword*8 Indexed

Storing a vector of 8 halfword elements from VSR[X]
into Big-Endian storage using stxvh8x, retaining
left-to-right element ordering.

Storing a vector of 8 halfword elements from VSR[X]
into Little-Endian storage using stxvh8x, retaining
left-to-right element ordering.

31 S RA RB 940 SX
0 6 11 16 21 31

short X[8];

VSR[X]: 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

stxvh8x xX,r0,rPX

Big-endian storage image of X

addr(X): 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PX] = address of X

stxvh8x xX,r0,rPX

Little-endian storage image of X

addr(X): 01 00 11 10 21 20 31 30 41 40 51 50 61 60 71 70

0 1 2 3 4 5 6 7 8 9 A B C D E F

stxvd2x, stxvw4x, stxvh8x, stxvb16x, and stxvx
exhibit identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for stxvh8x

src VSR[XT].hword[0] VSR[XT].hword[1] VSR[XT].hword[2] VSR[XT].hword[3] VSR[XT].hword[4] VSR[XT].hword[5] VSR[XT].hword[6] VSR[XT].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 7. Vector-Scalar Extension Facility 647

Version 3.1
Store VSX Vector with Length X-form

stxvl XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← (RA=0) ? 0 : GPR[RA]

nb ← EXTZ(GPR[RB].bit[0:7])

if nb>16 then nb ← 16

if MSR.LE = 0 then // Big-Endian byte-ordering

 store_data ← VSR[32×SX+S].byte[0:nb-1]

else // Little-Endian byte ordering

 store_data ← VSR[32×SX+S].byte[16-nb:15]

MEM(EA,nb) ← store_data

Let XS be the value 32×SX + S.

Let the effective address (EA) be the contents of
GPR[RA], or 0 if RA is equal to 0.

Let nb be the unsigned integer value in bits 0:7 of
GPR[RB].

If nb is equal to 0, the storage access is not performed.

Otherwise, when Big-Endian byte-ordering is
employed, do the following.

If nb less than 16, the contents of the leftmost nb
bytes of VSR[XS] are placed in storage starting at
address EA.

Otherwise, the contents of VSR[XS] are placed into
the quadword in storage at address EA.

Otherwise, when Little-Endian byte ordering is
employed, do the following.

If nb less than 16, the contents of the rightmost nb
bytes of VSR[XS] are placed in storage starting at
address EA in byte-reversed order.

Otherwise, the contents of VSR[XS] are placed into
the quadword in storage at address EA in
byte-reversed order.

If the contents of bits 8:63 of GPR[RB] are not equal to
0, the results are boundedly undefined.

Special Registers Altered:
None

31 S RA RB 397 SX
0 6 11 16 21 31

VSR Data Layout for stxvl

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I648

Version 3.1
Example: Storing less than 16-byte data from VSR using stxvl

Storing less than 16-byte data in VSR[XS] into
Big-Endian storage using stxvl.

Storing less than 16-byte data in VSR[XS] into
Little-Endian storage using stxvl.

char S[14] = “This is a TEST”;

short X[6] = { 0xE0E1, 0xE2E3, 0xE4E5, 0xE6E7, 0xE8E9, 0xEAEB };

binary80 Z = 0xF0F1F2F3F4F5F6F7F8F9

Assumptions

GPR[NS] = 14 (length of S in # of bytes)

GPR[NX] = 12 (length of X in # of bytes)

GPR[NZ] = 10 (length of Z in # of bytes)

GPR[PS] = address of S

VSR register image of S, X, & Z

VSR[S]: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” 00 00

VSR[X]: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB 00 00 00 00

VSR[Z]: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

add rPX,rPS,rNS # address of X

add rPZ,rPX,rNX # address of Z

sldi rLS,rNS,56

sldi rLX,rNX,56

sldi rLZ,rNZ,56

stxvl xS,rPS,rLS

stxvl xX,rPX,rLX

stxvl xZ,rPZ,rLZ

Final state of Big-Endian storage image of S, X, & Z

addr(S)+0x0000: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” E0E1

addr(S)+0x0010: E2 E3 E4 E5 E6 E7 E8 E9 EA EB F0 F1 F2 F3 F4 F5

addr(S)+0x0020: F6 F7 F8 F9 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[NS] = 14 (length of S in # of bytes)

GPR[NX] = 12 (length of X in # of bytes)

GPR[NZ] = 10 (length of Z in # of bytes)

GPR[PS] = address of S

VSR register image of S, X, & Z

VSR[S]: 00 00 “T” “S” “E” “T” “ ” “a” “ ” “ s” “i” “ ” “s” “i” “h” “T”

VSR[X]: 00 00 00 00 EA EB E8 E9 E6 E7 E4 E5 E2 E3 E0 E1

VSR[Z]: 00 00 00 00 00 00 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

0 1 2 3 4 5 6 7 8 9 A B C D E F

add rPX,rPS,rNS # address of X

add rPZ,rPX,rNX # address of Z

sldi rLS,rNS,56

sldi rLX,rNX,56

sldi rLZ,rNZ,56

stxvl xS,rPS,rLS

stxvl xX,rPX,rLX

stxvl xZ,rPZ,rLZ

Final state of Little-Endian storage image of S, X, & Z

addr(S)+0x0000: “T” “h” “i” “s” “ ” “i” “s” “ ” “a” “ ” “T” “E” “S” “T” E1 E0

addr(S)+0x0010: E3 E2 E5 E4 E7 E6 E9 E8 EB EA F9 F8 F7 F6 F5 F4

addr(S)+0x0020: F3 F2 F1 F0 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F
Chapter 7. Vector-Scalar Extension Facility 649

Version 3.1
Store VSX Vector with Length Left-justified
X-form

stxvll XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← (RA=0) ? 0 : GPR[RA]

nb ← EXTZ(GPR[RB].bit[0:7])

if nb>16 then nb ← 16

if nb>0 then do i = 0 to nb-1

 MEM(EA+i,1) ← VSR[32×SX+S].byte[i]

end

Let XS be the value 32×SX + S.

Let the effective address (EA) be the contents of
GPR[RA], or 0 if RA is equal to 0.

Let nb be the unsigned integer value in bits 0:7 of
GPR[RB].

If nb is equal to 0, the storage access is not performed.

Otherwise, do the following.
If nb less than 16, the contents of the leftmost nb
bytes of VSR[XS] are placed in storage starting at
address EA.

Otherwise, the contents of VSR[XS] are placed into
the quadword in storage at address EA.

Data is stored from VSR[XS] into storage in
Big-Endian byte ordering (i.e., the contents of byte
element 0 of VSR[XS] are placed into the byte in
storage at address EA, the contents of byte
element 1 of VSR[XS] are placed into the byte in
storage at address EA+1, and so forth).

If the contents of bits 8:63 of GPR[RB] are not equal to
0, the results are boundedly undefined.

Special Registers Altered:
None

Example: Storing less than 16-byte left-justified
data

Storing less than 16-byte data, left-justified in VSR[XS],
into storage using stxvll.

31 S RA RB 429 SX
0 6 11 16 21 31

decimal X = +1234567890123456789;

decimal Y = -123456;

decimal Z = +1004966723510220;

Assumptions

GPR[NX] = 10 (length of X)

GPR[NY] = 4 (length of Y)

GPR[NZ] = 9 (length of Z)

GPR[PX] = address of X

GPR[PY] = address of Y = address of X + 10

GPR[PZ] = address of Z = address of X + 10 + 4

VSRs X, Y, & Z

VSR[X]: 01 34 67 78 90 12 34 56 78 9C 00 00 00 00 00 00

VSR[Y]: 01 23 45 6D 00 00 00 00 00 00 00 00 00 00 00 00

VSR[Z]: 01 00 49 66 72 35 10 22 0C 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

Initial state of Big-endian & Little-Endian storage image of X, Y, & Z

X+0x0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

X+0x0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

stxvll xX,rPX,rNX

stxvll xY,rPY,rNY

stxvll xZ,rPZ,rNZ

Final state of Big-endian & Little-Endian storage image of X, Y, & Z

X+0x0000: 01 34 67 78 90 12 34 56 78 9C 01 23 45 6D 01 00

X+0x0010: 49 66 72 35 10 22 0C 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR Data Layout for stxvll

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Power ISA™ I650

Version 3.1
Store VSX Vector Rightmost Byte Indexed
X-form

stxvrbx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB];

MEM(EA,1) = VSR[32×SX+S].byte[15];

Let XS be the value of 32×SX + S.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

The contents of byte element 15 of VSR[XS] are placed
into storage at address EA.

Special Registers Altered
None

Store VSX Vector Rightmost Doubleword
Indexed X-form

stxvrdx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,8) = VSR[32×SX+S].dword[1]

Let XS be the value of 32×SX + S.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

Let store_data be the contents of doubleword element
1 of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed into the doubleword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 7 of store_data is placed into the byte in
storage at address EA+7.

When Little-Endian byte ordering is employed,
store_data is placed into the doubleword in storage at
address EA in such an order that;

– byte 7 of store_data is placed into the byte in
storage at address EA,

– byte 6 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 0 of store_data is placed into the byte in
storage at address EA+7.

Special Registers Altered
None

31 S RA RB 141 SX
0 6 11 16 21 31

31 S RA RB 237 SX
0 6 11 16 21 31

VSR Data Layout for stxvrwx

src unused .byte[15]

0 120 127

VSR Data Layout for stxvrdx

src unused VSR[XS].dword[3]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 651

Version 3.1
Store VSX Vector Rightmost Halfword Indexed
X-form

stxvrhx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,2) = VSR[32×SX+S].hword[7]

Let XS be the value of 32×SX + S.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

Let store_data be the contents of halfword element 7
of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed into the halfword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1.

When Little-Endian byte ordering is employed,
store_data is placed into the halfword in storage at
address EA in such an order that;

– byte 1 of store_data is placed into the byte in
storage at address EA,

– byte 0 of store_data is placed into the byte in
storage at address EA+1.

Special Registers Altered
None

Store VSX Vector Rightmost Word Indexed
X-form

stxvrwx XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA = ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,4) = VSR[32×SX+S].word[3]

Let XS be the value of 32×SX + S.

Let EA be the sum of GPR[RA], or 0 if RA=0, and GPR[RB].

Let store_data be the contents of word element 3 of
VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed into the word in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 3 of store_data is placed into the byte in
storage at address EA+3.

When Little-Endian byte ordering is employed,
store_data is placed into the word in storage at
address EA in such an order that;

– byte 3 of store_data is placed into the byte in
storage at address EA,

– byte 2 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 0 of store_data is placed into the byte in
storage at address EA+3.

Special Registers Altered
None

31 S RA RB 173 SX
0 6 11 16 21 31

31 S RA RB 205 SX
0 6 11 16 21 31

VSR Data Layout for stxvrhx

src unused VSR[XS].hword[7]

0 112 127

VSR Data Layout for stxvrwx

src unused VSR[XS].word[3]

0 96 127
Power ISA™ I652

Version 3.1
Store VSX Vector Word*4 Indexed X-form

stxvw4x XS,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,4) ← VSR[32×SX+S].word[0]

MEM(EA+4,4) ← VSR[32×SX+S].word[1]

MEM(EA+8,4) ← VSR[32×SX+S].word[2]

MEM(EA+12,4) ← VSR[32×SX+S].word[3]

Let XS be the value 32×SX + S.

Let EA be the sum of the contents of GPR[RA], or 0 if RA
is equal to 0, and the contents of GPR[RB].

For each integer value i from 0 to 3, do the following.
Let store_data be the contents of word element i
of VSR[XS].

When Big-Endian byte ordering is employed,
store_data is placed in the word in storage at
address EA+4×i in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+4×i,

– byte 1 of store_data is placed into the byte in
storage at address EA+4×i+1, and so forth until

– byte 3 of store_data is placed into the byte in
storage at address EA+4×i+3.

When Little-Endian byte ordering is employed,
store_data is placed in the word in storage at
address EA+4×i in such order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+4×i+3,

– byte 1 of store_data is placed into the byte in
storage at address EA+4×i+2, and so forth until

– byte 3 of store_data is placed into the byte in
storage at address EA+4×i.

Special Registers Altered
None

31 S RA RB 908 SX
0 6 11 16 21 31

stxvd2x, stxvw4x, stxvh8x, stxvb16x, and stxvx
exhibit identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for stxvw4x

src VSR[XS].word[0] VSR[XS].word[1] VSR[XS].word[2] VSR[XS].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 653

Version 3.1
Store VSX Vector Paired DQ-form

stxvp XSp,DQ(RA)

Prefixed Store VSX Vector Paired 8LS:D-form

pstxvp XSp,D(RA),R
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

EAbase ← (RA=0) ? 0 : GPR[RA]

if “stxvp” then

 EAdisp ← EXTS64(DQ || 0b0000)
if “pstxvp” then

 EAdisp ← EXTS64(d0 || d1)

if “stxvp” then EA ← EAbase + EAdisp

if “pstxvp” & R=0 then EA ← EAbase + EAdisp

if “pstxvp” & R=1 then EA ← CIA + EAdisp

store_data.bit[0:127] ← VSR[32×SX+2×Sp]

store_data.bit[128:255] ← VSR[32×SX+2×Sp+1]

MEM(EA,32) ← store_data

Let XSp be the value 32×SX + 2×Sp (i.e., only even
values of XSp can be encoded in the instruction).

For stxvp, let the effective address (EA) be the sum of
the integer value in GPR[RA], or 0 if RA=0 and the value
DQ||0b0000, sign-extended to 64 bits.

For pstxvp, if R=0, let the effective address (EA) be the
sum of the integer value in GPR[RA], or 0 if RA=0, and
the value d0||d1, sign-extended to 64 bits.

For pstxvp, if R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

Let store_data be the contents of VSR[XSp]
concatenated with VSR[XSp+1].

When Big-Endian byte ordering is employed,
store_data is placed into the octword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 31 of store_data is placed into the byte in
storage at address EA+31.

When Little-Endian byte ordering is employed,
store_data is placed into the octword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+31,

– byte 1 of store_data is placed into the byte in
storage at address EA+30, and so forth until

– byte 31 of store_data is placed into the byte in
storage at address EA.

For pstxvp, if R is equal to 1 and RA is not equal to 0,
the instruction form is invalid.

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonics for Store VSX Vector Paired Pre-
fixed:

6 Sp SX RA DQ 1
0 6 10 11 16 28 31

1 0 0 // R // d0
0 6 8 9 11 12 14 31

62 Sp SX RA d1
0 6 10 11 16 31

Extended mnemonic: Equivalent to:
pstxvp Rx,value(Ry) pstxvp Rx,value(Ry),0
pstxvp Rx,value pstxvp Rx,value(0),1

For best performance, EA should be word-aligned.
Programming Note

VSR Data Layout for [p]stxvp

src VSR[XSp]

VSR[XSp+1]

0 127
Power ISA™ I654

Version 3.1
Store VSX Vector Paired Indexed X-form

stxvpx XSp,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

store_data.bit[0:127] ← VSR[32×SX+2×Sp]

store_data.bit[128:255] ← VSR[32×SX+2×Sp+1]

MEM(EA,32) ← store_data

Let XSp be the value 32×SX + 2×Sp (i.e., only even
values of XSp can be encoded in the instruction).

Let the effective address (EA) be the sum of the integer
value in GPR[RA], or 0 if RA=0, and the integer value in
GPR[RB].

Let store_data be the contents of VSR[XSp]
concatenated with VSR[XSp+1].

When Big-Endian byte ordering is employed,
store_data is placed into the octword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 31 of store_data is placed into the byte in
storage at address EA+31.

When Little-Endian byte ordering is employed,
store_data is placed into the octword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA+31,

– byte 1 of store_data is placed into the byte in
storage at address EA+30, and so forth until

– byte 31 of store_data is placed into the byte in
storage at address EA.

Special Registers Altered:
None

31 Sp SX RA RB 461 /
0 6 10 11 16 21 31

For best performance, EA should be word-aligned.
Programming Note

VSR Data Layout for stxvpx

src VSR[XSp]

VSR[XSp+1]

0 127
Chapter 7. Vector-Scalar Extension Facility 655

Version 3.1
Store VSX Vector Indexed X-form

stxvx XS,RA,RB

if SX=0 & MSR.VSX=0 then VSX_Unavailable()

if SX=1 & MSR.VEC=0 then Vector_Unavailable()

EA ← ((RA=0) ? 0 : GPR[RA]) + GPR[RB]

MEM(EA,16) ← VSR[32×SX+S]

Let XS be the value 32×SX + S.

Let the effective address (EA) be the sum of the
contents of GPR[RA], or 0 if RA is equal to 0, and the
contents of GPR[RB].

When Big-Endian byte ordering is employed,
store_data is placed into the quadword in storage at
address EA in such an order that;

– byte 0 of store_data is placed into the byte in
storage at address EA,

– byte 1 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 15 of store_data is placed into the byte in
storage at address EA+15.

When Little-Endian byte ordering is employed,
store_data is placed into the quadword in storage at
address EA in such an order that;

– byte 15 of store_data is placed into the byte in
storage at address EA,

– byte 14 of store_data is placed into the byte in
storage at address EA+1, and so forth until

– byte 0 of store_data is placed into the byte in
storage at address EA+15.

Special Registers Altered:
None

31 S RA RB 396 SX
0 6 11 16 21 31

stxvd2x, stxvw4x, stxvh8x, stxvb16x, and stxvx
exhibit identical behavior in Big-Endian mode.

Programming Note

VSR Data Layout for stxvx

src VSR[XS]

0 127
Power ISA™ I656

Version 3.1
Example: Storing data using Store VSX Vector Indexed

Storing 16 bytes of data into Big-Endian storage from
VSR[XS] using stxvx.

Storing 16 bytes of data into Little-Endian storage from
VSR[XS] using stxvx.

char W[16] = { 0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xE0, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7 };

short X[8] = { 0xF0F1, 0xF2F3, 0xF4F5, 0xF6F7, 0xE0E1, 0xE2E3, 0xE4E5, 0xE6E7 };

float Y[4] = { 0xF0F1_F2F3, 0xF4F5_F6F7, 0xE0E1_E2E3, 0xE4E5_E6E7 };

double Z[2] = { 0xF0F1_F2F3_F4F5_F6F7, 0xE0E1_E2E3_E4E5_E6E7 };

VSR[W]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[X]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[Y]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

VSR[Z]: F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PW] = address of W

GPR[PX] = address of X = GPR[PW] + 16

GPR[PY] = address of Y = GPR[PW] + 32

GPR[PZ] = address of Z = GPR[PW] + 48

stxvx xW,r0,rPW

stxvx xX,r0,rPX

stxvx xY,r0,rPY

stxvx xZ,r0,rPZ

Big-endian storage image of W, X, Y, & Z

addr(W+0x0000): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0010): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0020): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0030): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

0 1 2 3 4 5 6 7 8 9 A B C D E F

VSR[W]: E7 E6 E5 E4 E3 E2 E1 E0 F7 F6 F5 F4 F3 F2 F1 F0

VSR[X]: E6 E7 E4 E5 E2 E3 E0 E1 F6 F7 F4 F5 F2 F3 F0 F1

VSR[Y]: E4 E5 E6 E7 E0 E1 E2 E3 F4 F5 F6 F7 F0 F1 F2 F3

VSR[Z]: E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Assumptions

GPR[PW] = address of W

GPR[PX] = address of X = GPR[PW] + 16

GPR[PY] = address of Y = GPR[PW] + 32

GPR[PZ] = address of Z = GPR[PW] + 48

stxvx xW,r0,rPW

stxvx xX,r0,rPX

stxvx xY,r0,rPY

stxvx xZ,r0,rPZ

Little-endian storage image of W, X, Y, & Z

addr(W+0x0000): F0 F1 F2 F3 F4 F5 F6 F7 E0 E1 E2 E3 E4 E5 E6 E7

addr(W+0x0010): F1 F0 F3 F2 F5 F4 F7 F6 E1 E0 E3 E2 E5 E4 E7 E6

addr(W+0x0020): F3 F2 F1 F0 F7 F6 F5 F4 E3 E2 E1 E0 E7 E6 E5 E4

addr(W+0x0030): F7 F6 F5 F4 F3 F2 F1 F0 E7 E6 E5 E4 E3 E2 E1 E0

0 1 2 3 4 5 6 7 8 9 A B C D E F
Chapter 7. Vector-Scalar Extension Facility 657

Version 3.1
VSX Scalar Absolute Double-Precision
XX2-form

xsabsdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

VSR[32×TX+T].dword[0] ← bfp64_NEGATIVE_ABSOLUTE(src)

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The absolute value of the double-precision
floating-point operand in doubleword element 0 of
VSR[XB] is placed into doubleword element 0 of VSR[XT]
in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

VSX Scalar Absolute Quad-Precision X-form

xsabsqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

VSR[VRT+32] ← bfp128_NEGATIVE_ABSOLUTE(VSR[VRB+32])

Let XT be the value VRT + 32.
Let XB be the value VRB + 32.

The absolute value of the quad-precision floating-point
value in VSR[XB] is placed into VSR[XT].

Special Registers Altered:
None

60 T /// B 345 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

63 VRT 0 VRB 804 /
0 6 11 16 21 31

VSR Data Layout for xsabsdp

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127

VSR Data Layout for xsabsqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I658

Version 3.1
VSX Scalar Add Double-Precision XX3-form

xsadddp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[VRA+32].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

v ← bfp_ADD(src1, src2)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN, v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 61, “Actions for xsadddp,” on page 660.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI

60 T A B 32 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsadddp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Chapter 7. Vector-Scalar Extension Facility 659

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 61.Actions for xsadddp
Power ISA™ I660

Version 3.1
Range of v Case
Rounding Mode

Round To
Nearest (RTN)

Round Towards
Zero (RTZ)

Round Towards
+Infinity (RTP)

Round Towards
–Infinity (RTM)

Round To
Odd (RTO)

v is a QNaN Special r ← v r ← v r ← v r ← v r ← v

v = -Infinity Special r ← v r ← v r ← v r ← v r ← v

-Infinity < v [-(Nmax + 1ulp) Overflow q ← rnd(v)
r ← -Infinity

q ← rnd(v)
r ← -Nmax

q ← rnd(v)
r ← -Nmax

q ← rnd(v)
r ← -Infinity

q ← rnd(v)
r ← -Nmax

-(Nmax + 1ulp) < v [-(Nmax + ½ulp)
Overflow q ← rnd(v)

r ← -Infinity
— —

q ← rnd(v)
r ← -Infinity

–

Normal — r ← -Nmax r ← -Nmax — r ← -Nmax

-(Nmax + ½ulp) < v < -Nmax
Overflow — — —

q ← rnd(v)
r ← -Infinity

–

Normal r ← -Nmax r ← -Nmax r ← -Nmax — r ← -Nmax

-Nmax [v [-Nmin Normal r ← rnd(v) r ← rnd(v) r ← rnd(v) r ← rnd(v) r ← rnd(v)

-Nmin < v < -Zero Tiny q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

v = -Zero Special r ← v r ← v r ← v r ← v r ← v

v = Rezd Special r ← +Zero r ← +Zero r ← +Zero r ← -Zero

r ← +Zero (RN=RTN)
r ← +Zero (RN=RTZ)
r ← +Zero (RN=RTP)
r ← -Zero (RN=RTM)

v = +Zero Special r ← v r ← v r ← v r ← v r ← v

+Zero < v < +Nmin Tiny q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

q ← rnd(v)
r ← rnd(den(v))

+Nmin [v [+Nmax Normal r ← rnd(v) r ← rnd(v) r ← rnd(v) r ← rnd(v) r ← rnd(v)

+Nmax < v < +(Nmax + ½ulp)
Overflow — —

q ← rnd(v)
r ← +Infinity

— –

Normal r ← +Nmax r ← +Nmax — r ← +Nmax r ← +Nmax

+(Nmax + ½ulp) [v < +(Nmax + 1ulp)
Overflow q ← rnd(v)

r ← +Infinity
—

q ← rnd(v)
r ← +Infinity

— –

Normal — r ← +Nmax — r ← +Nmax r ← +Nmax

+(Nmax + 1ulp) [v < +Infinity Overflow q ← rnd(v)
r ← +Infinity

q ← rnd(v)
r ← +Nmax

q ← rnd(v)
r ← +Infinity

q ← rnd(v)
r ← +Nmax

q ← rnd(v)
r ← +Nmax

v = +Infinity Special r ← v r ← v r ← v r ← v r ← v

Explanation:
– This situation cannot occur.
v The precise intermediate result defined in the instruction having unbounded range and precision.
den(x) The significand of x is shifted right by the amount of the difference between the target rounding precision Emin and the unbiased

exponent of x. The unbiased exponent of the denormalized value is Emin. The significand of the denormalized value has
unbounded significand precision.
 Emin = -16382 (quad-precision)
 Emin = -16382 (double-extended-precision)
 Emin = -1022 (double-precision)
 Emin = -126 (single-precision)

Rezd Exact-zero-difference result. Applies only to add operations involving source operands having the same magnitude and different
signs or subtract operations involving source operands having the same magnitude and same signs. Whether +Zero or -Zero is
returned is controlled by the setting of the rounding mode in RN, even when the rounding mode is overridden to Round to Odd.

rnd(x) The significand of x is rounded to the target rounding precision according to the rounding mode specified in FPSCR.RN. Exponent
range of the rounded result is unbounded. See Section 7.3.2.6.

Nmax Largest (in magnitude) representable normalized number in the target rounding precision format.
 Nmax = ± 2+16383 × 1.FFFFFFFFFFFFFFFFFFFFFFFFFFFF (quad-precision)
 Nmax = ± 2+16383 × 1.FFFFFFFFFFFFFFFF000000000000 (double-extended-precision)
 Nmax = ± 2+1023 × 1.FFFFFFFFFFFFF000000000000000 (double-precision)
 Nmax = ± 2+127 × 1.FFFFFF0000000000000000000000 (single-precision)

Nmin Smallest (in magnitude) representable normalized number in the target rounding precision format.
 Nmin = ± 2-16382 × 1.0000000000000000000000000000 (quad-precision)
 Nmin = ± 2-16382 × 1.0000000000000000000000000000 (double-extended-precision)
 Nmin = ± 2-1022 × 1.0000000000000000000000000000 (double-precision)
 Nmin = ± 2-126 × 1.0000000000000000000000000000 (single-precision)

ulp Least significant bit in the target precision format’s significand (Unit in the Last Position).

Table 62.Scalar Floating-Point Intermediate Result Handling
Chapter 7. Vector-Scalar Extension Facility 661

Version 3.1
Case F
P
S
C
R
.
V
E

F
P
S
C
R
.
O
E

F
P
S
C
R
.
U
E

F
P
S
C
R
.
Z
E

F
P
S
C
R
.
X
E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

v
x
i
d
i
_
f
l
a
g

v
x
z
d
z
_
f
l
a
g

v
x
s
q
r
t
_
f
l
a
g

z
x
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠

 v
)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠

 v
)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Special

– – – 0 – – – – – – – 1 – – – – T(r), class_bfp(r), fi(0), fr(0), fx(ZX)

– – – 1 – – – – – – – 1 – – – – fx(ZX), error()

0 – – – – – – – – – 1 – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXSQRT)

0 – – – – – – – – 1 – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXZDZ)

0 – – – – – – – 1 – – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXIDI)

0 – – – – – – 1 – – – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXISI)

0 – – – – 0 1 – – – – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXIMZ)

0 – – – – 1 0 – – – – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXSNAN)

0 – – – – 1 0 – – – – – – – – – T(r), class_bfp(r), fi(0), fr(0), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – – – – 1 – – – – – fx(VXSQRT), error()

1 – – – – – – – – 1 – – – – – – fx(VXZDZ), error()

1 – – – – – – – 1 – – – – – – – fx(VXIDI), error()

1 – – – – – – 1 – – – – – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – – – – – fx(VXSNAN), fx(VXIMZ), error()

Explanation:
– The results do not depend on this condition.
T(x) Places the result into the target VSR.

For scalar single-precision and double-precision results
VSR[XT].dword[0] ← bfp64_CONVERT_FROM_BFP(r)
VSR[XT].dword[1] ← 0x0000_0000_0000_0000

For scalar quad-precision results
VSR[VRT+32] ← bfp128_CONVERT_FROM_BFP(r)

class_bfp(x) Sets FPSCR.FPRF to the sign and class of x.
FPSCR.FPRF ← fprf_CLASS_BFP32(x) (single-precision)
FPSCR.FPRF ← fprf_CLASS_BFP64(x) (double-precision)
FPSCR.FPRF ← fprf_CLASS_BFP128(x) (quad-precision)

fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
β Wrap adjust

β = 2192 (single-precision)
β = 21536 (double-precision)
β = 224576 (quad-precision)

See Table 7.4.3.2, “Action for OE=1,” on page 542 for trap-enabled Overflow exceptions.
See Table 7.4.4.2, “Action for UE=1,” on page 548 for trap-enabled Underflow exceptions.

q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, significand rounded to the
target rounding precision, unbounded exponent range.

r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, significand rounded to the
target rounding precision, exponent bounded to the target rounding precision format exponent range.

error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the
ignore-exception mode.

Table 63.VSX Scalar Floating-Point Final Result
Power ISA™ I662

Version 3.1
Normal

– – – – – 0 0 0 0 0 0 0 no – – – T(r), class_bfp(r), fi(0), fr(0)

– – – – 0 0 0 0 0 0 0 0 yes no – – T(r), class_bfp(r), fi(1), fr(0), fx(XX)

– – – – 0 0 0 0 0 0 0 0 yes yes – – T(r), class_bfp(r), fi(1), fr(1), fx(XX)

– – – – 1 0 0 0 0 0 0 0 yes no – – T(r), class_bfp(r), fi(1), fr(0), fx(XX), error()

– – – – 1 0 0 0 0 0 0 0 yes yes – – T(r), class_bfp(r), fi(1), fr(1), fx(XX), error()

Overflow

– 0 – – 0 0 0 0 0 0 0 0 – – – – T(r), class_bfp(r), fi(1), fr(?), fx(OX), fx(XX)

– 0 – – 1 0 0 0 0 0 0 0 – – – – T(r), class_bfp(r), fi(1), fr(?), fx(OX), fx(XX), error()

– 1 – – – 0 0 0 0 0 0 0 – – no – T(q÷β), class_bfp(q÷β), fi(0), fr(0), fx(OX), error()
– 1 – – – 0 0 0 0 0 0 0 – – yes no T(q÷β), class_bfp(q÷β), fi(1), fr(0), fx(OX), fx(XX), error()
– 1 – – – 0 0 0 0 0 0 0 – – yes yes T(q÷β), class_bfp(q÷β), fi(1), fr(1), fx(OX), fx(XX), error()

Tiny

– – 0 – – 0 0 0 0 0 0 0 no – – – T(r), class_bfp(r), fi(0), fr(0)

– – 0 – 0 0 0 0 0 0 0 0 yes no – – T(r), class_bfp(r), fi(1), fr(0), fx(UX), fx(XX)

– – 0 – 0 0 0 0 0 0 0 0 yes yes – – T(r), class_bfp(r), fi(1), fr(1), fx(UX), fx(XX)

– – 0 – 1 0 0 0 0 0 0 0 yes no – – T(r), class_bfp(r), fi(1), fr(0), fx(UX), fx(XX), error()

– – 0 – 1 0 0 0 0 0 0 0 yes yes – – T(r), class_bfp(r), fi(1), fr(1), fx(UX), fx(XX), error()

– – 1 – – 0 0 0 0 0 0 0 – – no – T(q×β), class_bfp(q×β), fi(0), fr(0), fx(UX), error()
– – 1 – – 0 0 0 0 0 0 0 – – yes no T(q×β), class_bfp(q×β), fi(1), fr(0), fx(UX), fx(XX), error()
– – 1 – – 0 0 0 0 0 0 0 – – yes yes T(q×β), class_bfp(q×β), fi(1), fr(1), fx(UX), fx(XX), error()

Case F
P
S
C
R
.
V
E

F
P
S
C
R
.
O
E

F
P
S
C
R
.
U
E

F
P
S
C
R
.
Z
E

F
P
S
C
R
.
X
E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

v
x
i
d
i
_
f
l
a
g

v
x
z
d
z
_
f
l
a
g

v
x
s
q
r
t
_
f
l
a
g

z
x
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠
v

)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.
T(x) Places the result into the target VSR.

For scalar single-precision and double-precision results
VSR[XT].dword[0] ← bfp64_CONVERT_FROM_BFP(r)
VSR[XT].dword[1] ← 0x0000_0000_0000_0000

For scalar quad-precision results
VSR[VRT+32] ← bfp128_CONVERT_FROM_BFP(r)

class_bfp(x) Sets FPSCR.FPRF to the sign and class of x.
FPSCR.FPRF ← fprf_CLASS_BFP32(x) (single-precision)
FPSCR.FPRF ← fprf_CLASS_BFP64(x) (double-precision)
FPSCR.FPRF ← fprf_CLASS_BFP128(x) (quad-precision)

fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
β Wrap adjust

β = 2192 (single-precision)
β = 21536 (double-precision)
β = 224576 (quad-precision)

See Table 7.4.3.2, “Action for OE=1,” on page 542 for trap-enabled Overflow exceptions.
See Table 7.4.4.2, “Action for UE=1,” on page 548 for trap-enabled Underflow exceptions.

q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, significand rounded to the
target rounding precision, unbounded exponent range.

r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, significand rounded to the
target rounding precision, exponent bounded to the target rounding precision format exponent range.

error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the
ignore-exception mode.

Table 63.VSX Scalar Floating-Point Final Result (Continued)
Chapter 7. Vector-Scalar Extension Facility 663

Version 3.1
VSX Scalar Add Single-Precision XX3-form

xsaddsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[VRA+32].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

v ← bfp_ADD(src1, src2)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN, v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 64, “Actions for xsaddsp,” on page 665.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI

60 T A B 0 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

VSR Data Layout for xsaddsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127

Programming Note
Power ISA™ I664

Version 3.1
src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 64.Actions for xsaddsp
Chapter 7. Vector-Scalar Extension Facility 665

Version 3.1
VSX Scalar Add Quad-Precision [using round
to Odd] X-form

xsaddqp VRT,VRA,VRB (RO=0)
xsaddqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_ADD(src1, src2)

rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1 or src2 is a Signalling NaN, an Invalid
Operation exception occurs and VXSNAN is set to 1.

If src1 and src2 are Infinity values having opposite
signs, an Invalid Operation exception occurs and VXISI
is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src1 and src2 are Infinity values having
opposite signs, the result is the default Quiet NaN[1].

Otherwise, do the following.
The normalized sum of src2 added to src1 is
produced with unbounded significand precision
and exponent range.

See Table 65, “Actions for xsaddqp[o],” on
page 667.

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. The intermediate result is rounded to
quad-precision using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN VXISI OX UX XX

63 VRT VRA VRB 4 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Power ISA™ I666

Version 3.1
VSR Data Layout for xsaddqp[o]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

tgt VSR[VRT+32]

0 127

src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity
v ← dQNaN

vxisi_flag ← 1

v ← src2

-NZF v ← add(src1,src2) v ← src1 v ← add(src1,src2)

-Zero
v ← src2

v ← -Zero v ←Rezd

v ← src2

+Zero v ← Rezd v ← +Zero
v ← quiet(src2)
vxsnan_flag ← 1

+NZF v ← add(src1,src2) v ← src1 v ← add(src1,src2)

+Infinity v ← dQNaN
vxisi_flag ← 1

v ← +Infinity

QNaN v ← src1
v ← src1

vxsnan_flag ← 1

SNaN v ← quiet(src1)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude and opposite signs).
add(x,y) The floating-point value y is added1 to the floating-point value x. Return the normalized2 sum, having unbounded significand

precision and exponent range.
When x = -y, v is considered to be an exact-zero-difference result (Rezd).

quiet(x) Convert x to the corresponding Quiet NaN by setting the most significant fraction bit to 1.
v The intermediate result having unbounded significand precision and unbounded exponent range.

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are com-
pared, and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the
two exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate difference.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

Table 65. Actions for xsaddqp[o]
Chapter 7. Vector-Scalar Extension Facility 667

Version 3.1
VSX Scalar Compare Exponents
Double-Precision XX3-form

xscmpexpdp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

src1.exponent ← EXTZ(src1.bit[1:11])

src2.exponent ← EXTZ(src2.bit[1:11])

src1.fraction ← EXTZ(src1.bit[12:63])

src2.fraction ← EXTZ(src2.bit[12:63])

src1.class.NaN ← (src1.exponent = 2047) & (src1.fraction != 0)

src2.class.NaN ← (src2.exponent = 2047) & (src2.fraction != 0)

lt_flag ← (src1.exponent < src2.exponent)

gt_flag ← (src1.exponent > src2.exponent)

eq_flag ← (src1.exponent = src2.exponent)

uo_flag ← src1.class.NaN | src2.class.NaN

CR.bit[4×BF+32] ← FPSCR.FL ← !uo_flag & lt_flag

CR.bit[4×BF+33] ← FPSCR.FG ← !uo_flag & gt_flag

CR.bit[4×BF+34] ← FPSCR.FE ← !uo_flag & eq_flag

CR.bit[4×BF+35] ← FPSCR.FU ← uo_flag

Let XA be the sum 32×AX + A.
Let XB be the sum 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The exponent of src1 is compared with the exponent of
src2. The result of the compare is placed into FPCC and
CR field BF.

Special Registers Altered:
CR field BF
FPCC

60 BF // A B 59 AX BX /
0 6 9 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Programming Note

VSR Data Layout for xscmpexpdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

0 64 127
Power ISA™ I668

Version 3.1
VSX Scalar Compare Exponents
Quad-Precision X-form

xscmpexpqp BF,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

src1 ← VSR[VRA+32]

src2 ← VSR[VRB+32]

src1.exponent ← EXTZ(src1.bit[1:15])

src2.exponent ← EXTZ(src2.bit[1:15])

src1.fraction ← EXTZ(src1.bit[16:127])

src2.fraction ← EXTZ(src2.bit[16:127])

src1.class.NaN ← (src1.exponent = 32767) &

 (src1.fraction != 0)

src2.class.NaN ← (src2.exponent = 32767) &

 (src2.fraction != 0)

lt_flag ← (src1.exponent < src2.exponent)

gt_flag ← (src1.exponent > src2.exponent)

eq_flag ← (src1.exponent = src2.exponent)

uo_flag ← src1.class.NaN | src2.class.NaN

CR.bit[4×BF+32] ← FPSCR.FL ← !uo_flag & lt_flag

CR.bit[4×BF+33] ← FPSCR.FG ← !uo_flag & gt_flag

CR.bit[4×BF+34] ← FPSCR.FE ← !uo_flag & eq_flag

CR.bit[4×BF+35] ← FPSCR.FU ← uo_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

The exponent of src1 is compared with the exponent of
src2 as unsigned integer values. The result of the
compare is placed into FPCC and CR field BF.

Special Registers Altered:
CR field BF
FPCC

63 BF // VRA VRB 164 /
0 6 9 11 16 21 31

VSR Data Layout for xscmpexpqp

src1 VSR[VRA+32]

src2 VSR[VRB+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 669

Version 3.1
VSX Scalar Compare Equal Double-Precision XX3-form

xscmpeqdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

vxsnan_flag ← src1.class.SNaN | src2.class.SNaN

vex_flag ← FPSCR.VE & vxsnan_flag

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if vex_flag=0 then do

 if src1=src2 then

 VSR[32×TX+T].dword[0] ← 0xFFFF_FFFF_FFFF_FFFF

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

 else do

 VSR[32×TX+T].dword[0] ← 0x0000_0000_0000_0000

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, equal.

The contents of doubleword 0 of VSR[XT] are set to
0xFFFF_FFFF_FFFF_FFFF if src1 is equal to src2, and are
set to 0x0000_0000_0000_0000 otherwise.

The contents of doubleword 1 of VSR[XT] are set to
0x0000_0000_0000_0000.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN

60 T A B 3 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xscmpeqdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I670

Version 3.1
VSX Scalar Compare Equal Quad-Precision X-form

xscmpeqqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

vxsnan_flag ← src1.class.SNaN | src2.class.SNaN

vex_flag ← FPSCR.VE & vxsnan_flag

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if vex_flag=0 then do

 if bfp_COMPARE_EQ(src1, src2)=1 then

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 else

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

end

Let src1 be the quad-precision floating-point value in
VSR[VRA+32].

Let src2 be the quad-precision floating-point value in
VSR[VRB+32].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, equal.

The contents of VSR[VRT+32] are set to all 1s if src1 is
equal to src2, and are set to all 0s otherwise.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN

63 VRT VRA VRB 68 /
0 6 11 16 21 31

VSR Data Layout for xscmpeqqp

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 671

Version 3.1
VSX Scalar Compare Greater Than or Equal Double-Precision XX3-form

xscmpgedp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN)

vex_flag ← FPSCR.VE & (vxsnan_flag | vxvc_flag)

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if vxvc_flag=1 SetFX(FPSCR.VXVC)

if vex_flag=0 then do

 if src1 >= src2 then

 VSR[32×TX+T].dword[0] ← 0xFFFF_FFFF_FFFF_FFFF

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

 else do

 VSR[32×TX+T].dword[0] ← 0x0000_0000_0000_0000

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, greater than or
equal.

The contents of doubleword 0 of VSR[XT] are set to
0xFFFF_FFFF_FFFF_FFFF if src1 is greater than or equal
to src2, and are set to 0x0000_0000_0000_0000
otherwise.

The contents of doubleword 1 of VSR[XT] are set to
0x0000_0000_0000_0000.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN VXVC

60 T A B 19 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xscmpgedp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I672

Version 3.1
VSX Scalar Compare Greater Than or Equal Quad-Precision X-form

xscmpgeqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

vex_flag ← FPSCR.VE & (vxsnan_flag | vxvc_flag)

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if (vxvc_flag=1) SetFX(FPSCR.VXVC)

if vex_flag=0 then do

 if bfp_COMPARE_GE(src1, src2)=1 then

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 else

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

end

Let src1 be the quad-precision floating-point value in
VSR[VRA+32].

Let src2 be the quad-precision floating-point value in
VSR[VRB+32].

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, greater than or
equal.

The contents of VSR[VRT+32] are set to all 1s if src1 is
greater than or equal to src2, and are set to all 0s
otherwise.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN VXVC

63 VRT VRA VRB 196 /
0 6 11 16 21 31

VSR Data Layout for xscmpgeqp

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 673

Version 3.1
VSX Scalar Compare Greater Than
Double-Precision XX3-form

xscmpgtdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

vex_flag ← FPSCR.VE & (vxsnan_flag | vxvc_flag)

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if vxvc_flag=1 SetFX(FPSCR.VXVC)

if vex_flag=0 then do

 if src1 > src2 then

 VSR[32×TX+T].dword[0] ← 0xFFFF_FFFF_FFFF_FFFF

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

 else do

 VSR[32×TX+T].dword[0] ← 0x0000_0000_0000_0000

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 end

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, greater than.

The contents of doubleword 0 of VSR[VRT] are set to
0xFFFF_FFFF_FFFF_FFFF if src1 is greater than src2, and
are set to 0x0000_0000_0000_0000 otherwise.

The contents of doubleword 1 of VSR[VRT] are set to
0x0000_0000_0000_0000.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN VXVC

60 T A B 11 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xscmpgtdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127
Power ISA™ I674

Version 3.1
VSX Scalar Compare Greater Than Quad-Precision X-form

xscmpgtqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

vex_flag ← FPSCR.VE & (vxsnan_flag | vxvc_flag)

if vxsnan_flag=1 SetFX(FPSCR.VXSNAN)

if (vxvc_flag=1) SetFX(FPSCR.VXVC)

if vex_flag=0 then do

 if bfp_COMPARE_GT(src1, src2)=1 then

 VSR[VRT+32] ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 else

 VSR[VRT+32] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

end

Let src1 be the quad-precision floating-point value in
VSR[VRA+32].

Let src2 be the quad-precision floating-point value in
VSR[VRB+32].

src1 is compared to src2.

A NaN compared to any value, including itself,
compares false for the predicate, greater than.

The contents of VSR[VRT+32] are set to all 1s if src1 is
greater than src2, and are set to all 0s otherwise.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN VXVC

63 VRT VRA VRB 228 /
0 6 11 16 21 31

VSR Data Layout for xscmpgtqp

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 675

Version 3.1
VSX Scalar Compare Ordered
Double-Precision XX3-form

xscmpodp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxvc_flag=1 then SetFX(FPSCR.VXVC)

CR.bit[4×BF+32] ← FPSCR.FL ← src1 < src2

CR.bit[4×BF+33] ← FPSCR.FG ← src1 > src2

CR.bit[4×BF+34] ← FPSCR.FE ← src1 = src2

CR.bit[4×BF+35] ← FPSCR.FU ← src1.class.SNaN |

 src1.class.QNaN |

 src2.class.SNaN |

 src2.class.QNaN

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is compared to src2.

Zeros of same or opposite signs compare equal.

Infinities of same signs compare equal.

See Table 66, “Actions for xscmpodp - Part 1:
Compare Ordered,” on page 677.

The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or
signaling, CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling
NaN, VXSNAN is set, and Invalid Operation is disabled
(VE=0), VXVC is set. If neither operand is a Signaling
NaN but at least one operand is a Quiet NaN, VXVC is
set.

See Table 67, “Actions for xscmpodp - Part 2: Result,”
on page 677.

Special Registers Altered
CR field BF
FPCC FX VXSNAN VXVC

60 BF // A B 43 AX BX /
0 6 9 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Programming Note

VSR Data Layout for xscmpodp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused
0 64 127
Power ISA™ I676

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity cc←0b0010 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

–NZF cc←0b0100 cc←C(src1,src2) cc←0b1000 cc←0b1000 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

–Zero cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0010 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+Zero cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0010 cc←0b1000 cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+NZF cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←C(src1,src2) cc←0b1000 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

+Infinity cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0100 cc←0b0010 cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

QNaN cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxvc_flag←1

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

SNaN
cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

cc←0b0001
vxsnan_flag←1
vxvc_flag←(VE=0)

Explanation:
src1 The double-precision floating-po int value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
NZF Nonzero finite number.
C(x,y) The floating-point value x is compared to the floating-point value y, returning one of three 4-bit results.

0b1000 when x is greater than y
0b0100 when x is less than y
0b0010 when x is equal to y

cc The 4-bit result compare code.

Table 66.Actions for xscmpodp - Part 1: Compare Ordered

VE vx
sn

an
_f

la
g

vx
vc

_f
la

g

Returned Results and Status Setting

– 0 0 FPCC←cc, CR[BF]←cc

0 0 1 FPCC←cc, CR[BF]←cc, fx(VXVC)

0 1 0 FPCC←cc, CR[BF]←cc, fx(VXSNAN)

0 1 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN), fx(VXVC)

1 0 1 FPCC←cc, CR[BF]←cc, fx(VXVC), error()

1 1 – FPCC←cc, CR[BF]←cc, fx(VXSNAN), error()

Explanation:
– The results do not depend on this condition.
cc The 4-bit result as defined in Table 66.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.

Table 67.Actions for xscmpodp - Part 2: Result
Chapter 7. Vector-Scalar Extension Facility 677

Version 3.1
VSX Scalar Compare Ordered Quad-Precision
X-form

xscmpoqp BF,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src1.class.SNaN=1 | src2.class.SNaN=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

end

else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxvc_flag=1 then SetFX(FPSCR.VXVC)

CR.bit[4×BF+32] ← FPSCR.FL ← src1 < src2

CR.bit[4×BF+33] ← FPSCR.FG ← src1 > src2

CR.bit[4×BF+34] ← FPSCR.FE ← src1 = src2

CR.bit[4×BF+35] ← FPSCR.FU ← src1.class.SNaN |

 src1.class.QNaN |

 src2.class.SNaN |

 src2.class.QNaN

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

src1 is compared to src2.

Zeros of same or opposite signs compare equal.
Infinities of same signs compare equal.

Bit 0 of CR field BF and FL are set to indicate if src1 is
less than src2.

Bit 1 of CR field BF and FG are set to indicate if src1 is
greater than src2.

Bit 2 of CR field BF and FE are set to indicate if src1 is
equal to src2.

Bit 3 of CR field BF and FU are set to indicate unordered
(i.e., src1 or src2 is a NaN).

If either of the operands is a NaN, either quiet or
signaling, CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling
NaN, an Invalid Operation exception occurs and
VXSNAN is set, and if Invalid Operation exceptions are
disabled (VE=0), VXVC is set. If neither operand is a
Signaling NaN but at least one operand is a Quiet
NaN, an Invalid Operation exception occurs and VXVC
is set.

Special Registers Altered:
CR field BF
FPCC FX VXSNAN VXVC

63 BF // VRA VRB 132 /
0 6 9 11 16 21 31

VSR Data Layout for xscmpoqp

src1 VSR[VRA+32]

src2 VSR[VRB+32]

0 127
Power ISA™ I678

Version 3.1
VSX Scalar Compare Unordered
Double-Precision XX3-form

xscmpudp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

vxsnan_flag ← src1.class.SNaN | src2.class.SNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

CR.bit[4×BF+32] ← FPSCR.FL ← src1 < src2

CR.bit[4×BF+33] ← FPSCR.FG ← src1 > src2

CR.bit[4×BF+34] ← FPSCR.FE ← src1 = src2

CR.bit[4×BF+35] ← FPSCR.FU ← src1.class.SNaN |

 src1.class.QNaN |

 src2.class.SNaN |

 src2.class.QNaN

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is compared to src2.

Zeros of same or opposite signs compare equal equal.

Infinities of same signs compare equal.

See Table 68, “Actions for xscmpudp - Part 1:
Compare Unordered,” on page 680.

The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or
signaling, CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling
NaN, VXSNAN is set.

See Table 69, “Actions for xscmpudp - Part 2: Result,”
on page 680.

Special Registers Altered
CR field BF
FPCC FX VXSNAN

60 BF // A B 35 AX BX /
0 6 9 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xscmpudp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused
0 64 127
Chapter 7. Vector-Scalar Extension Facility 679

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity cc ← 0b0010 cc ← 0b1000 cc ← 0b1000 cc ← 0b1000 cc ← 0b1000 cc ← 0b1000 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

–NZF cc ← 0b0100 cc ← C(src1,src2) cc ← 0b1000 cc ← 0b1000 cc ← 0b1000 cc ← 0b1000 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

–Zero cc ← 0b0100 cc ← 0b0100 cc ← 0b0010 cc ← 0b0010 cc ← 0b1000 cc ← 0b1000 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

+Zero cc ← 0b0100 cc ← 0b0100 cc ← 0b0010 cc ← 0b0010 cc ← 0b1000 cc ← 0b1000 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

+NZF cc ← 0b0100 cc ← 0b0100 cc ← 0b0100 cc ← 0b0100 cc ← C(src1,src2) cc ← 0b1000 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

+Infinity cc ← 0b0100 cc ← 0b0100 cc ← 0b0100 cc ← 0b0100 cc ← 0b0100 cc ← 0b0010 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

QNaN cc ← 0b0001 cc ← 0b0001 cc ← 0b0001 cc ← 0b0001 cc ← 0b0001 cc ← 0b0001 cc ← 0b0001 cc ← 0b0001
vxsnan_flag ← 1

SNaN cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

cc ← 0b0001
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
NZF Nonzero finite number.
C(x,y) The floating-point value x is compared to the floating-point value y, returning one of three 4-bit results.

0b1000 when x is greater than y
0b0100 when x is less than y
0b0010 when x is equal to y

cc The 4-bit result compare code.

Table 68.Actions for xscmpudp - Part 1: Compare Unordered

VE vx
sn

an
_f

la
g

Returned Results and Status Setting

– 0 FPCC←cc, CR[BF]←cc

0 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN)

1 1 FPCC←cc, CR[BF]←cc, fx(VXSNAN), error()

Explanation:
– The results do not depend on this condition.
cc The 4-bit result as defined in Table 68.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.

Table 69.Actions for xscmpudp - Part 2: Result
Power ISA™ I680

Version 3.1
VSX Scalar Compare Unordered
Quad-Precision X-form

xscmpuqp BF,VRA,VRB

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

src1 is compared to src2.

Zeros of same or opposite signs compare equal.
Infinities of same signs compare equal.

Bit 0 of CR field BF and FL are set to indicate if src1 is
less than src2.

Bit 1 of CR field BF and FG are set to indicate if src1 is
greater than src2.

Bit 2 of CR field BF and FE are set to indicate if src1 is
equal to src2.

Bit 3 of CR field BF and FU are set to indicate unordered
(i.e., src1 or src2 is a NaN).

If either of the operands is a Signaling NaN, an Invalid
Operation exception occurs and VXSNAN is set to 1.

Special Registers Altered:
CR field BF
FPCC FX VXSNAN

63 BF // VRA VRB 644 /
0 6 9 11 16 21 31

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

vxsnan_flag ← src1.class.SNaN | src2.class.SNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

CR.bit[4×BF+32] ← FPSCR.FL ← src1 < src2

CR.bit[4×BF+33] ← FPSCR.FG ← src1 > src2

CR.bit[4×BF+34] ← FPSCR.FE ← src1 = src2

CR.bit[4×BF+35] ← FPSCR.FU ← src1.class.SNaN |

 src1.class.QNaN |

 src2.class.SNaN |

 src2.class.QNaN

VSR Data Layout for xscmpuqp

src1 VSR[VRA+32]

src2 VSR[VRB+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 681

Version 3.1
VSX Scalar Copy Sign Double-Precision
XX3-form

xscpsgndp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[32×AX+A].dword[0] & 0x8000_0000_0000_0000

src2 ← VSR[32×BX+B].dword[0] & 0x7FFF_FFFF_FFFF_FFFF

VSR[32×TX+T].dword[0] ← src1 | src2

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Bit 0 of VSR[XT] is set to the contents of bit 0 of
VSR[XA].

Bits 1:63 of VSR[XT] are set to the contents of bits 1:63
of VSR[XB].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

VSX Scalar Copy Sign Quad-Precision X-form

xscpsgnqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[VRA+32] & 0x8000_0000_0000_0000_0000_0000_0000_0000

src2 ← VSR[VRB+32] & 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

VSR[VRT+32] ← src1 | src2

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

src2 is placed into VSR[VRT+32] with the sign of src1.

Special Registers Altered:
None

60 T A B 176 AX BX TX
0 6 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

63 VRT VRA VRB 100 /
0 6 11 16 21 31

VSR Data Layout for xscpsgndp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000
0 64 127

VSR Data Layout for xscpsgnqp

src1 VSR[VRA+32]

src2 VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I682

Version 3.1
VSX Scalar Convert with round
Double-Precision to Half-Precision format
XX2-form

xscvdphp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

src ← bfp_CONVERT_FROM_BFP64(VSR[BX×32+B].dword[0])

rnd ← bfp_ROUND_TO_BFP16(FPSCR.RN,src)

result ← bfp16_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[TX×32+T].hword[0:2] ← 0x0000_0000_0000

 VSR[TX×32+T].hword[3] ← result

 VSR[TX×32+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP16(result)

end

FPSCR.FR ← (vex_flag=0) & inc_flag

FPSCR.FI ← (vex_flag=0) & xx_flag

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is an SNaN, the result is the half-precision
representation of that SNaN converted to a QNaN.

Otherwise, if src is a QNaN, the result is the
half-precision representation of that QNaN.

Otherwise, if src is an Infinity, the result is the
half-precision representation of Infinity with the same
sign as src.

Otherwise, if src is a Zero, the result is the
half-precision representation of Zero with the same
sign as src.

Otherwise, the result is the half-precision
representation of src rounded to half-precision using
the rounding mode specified by RN.

The result is zero-extended and placed into
doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in half-precision. FR is set to indicate if the
result was incremented when rounded. FI is set to
indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered:
FPRF FR FI
FX VXSNAN OX UX XX

60 T 17 B 347 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xscvdphp

src VSR[XB].dword[0] unused

tgt 0x0000 0x0000 0x0000 VSR[XT].hword[3] 0x0000_0000_0000_0000

0 16 32 48 64 127
Chapter 7. Vector-Scalar Extension Facility 683

Version 3.1
VSX Scalar Convert Double-Precision to
Quad-Precision format X-form

xscvdpqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

if src.class.SNaN then

 result ← bfp128_CONVERT_FROM_BFP(bfp_QUIET(src))

else

 result ← bfp128_CONVERT_FROM_BFP(src)

vxsnan_flag ← src.class.SNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← 0

FPSCR.FI ← 0

Let src be the floating-point value in doubleword
element 0 of VSR[VRB+32] represented in
double-precision format.

src is placed into VSR[VRT+32] in quad-precision
format.

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN is set to 1.

FPRF is set to the class and sign of the result.

FR is set to 0. FI is set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[XT] and FPRF are not modified.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX VXSNAN

63 VRT 22 VRB 836 /
0 6 11 16 21 31

VSR Data Layout for xscvdpqp

src VSR[VRB+32].dword[0] unused

tgt VSR[VRT+32]

0 64 127
Power ISA™ I684

Version 3.1
VSX Scalar Convert with round
Double-Precision to Single-Precision format
XX2-form

xscvdpsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,src)

result ← bfp32_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if xx_flag=1 then SetFX(FPSCR.XX)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].word[0] ← result

 VSR[32×TX+T].word[1] ← result

 VSR[32×TX+T].word[2] ← 0x0000_0000

 VSR[32×TX+T].word[3] ← 0x0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a SNaN, the result is src converted to a QNaN
(i.e., bit 12 of src is set to 1). VXSNAN is set to 1.

Otherwise, if src is a QNaN, an Infinity, or a Zero, the
result is src.

Otherwise, the result is src rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word elements 0 and 1 of
VSR[XT] in single-precision format.

The contents of word elements 2 and 3 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI FX OX UX XX VXSNAN

60 T /// B 265 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xscvdpsp

src VSR[VRB+32].dword[0] unused

tgt VSR[VRT+32].word[0] VSR[VRT+32].word[1] 0x0000_0000_0000_0000
0 64 127

This instruction can be used to operate on a single-precision source operand.

Previous versions of the architecture allowed the contents of words 1, 2, and 3 of the result register to be unde-
fined, however, all processors that support this instruction write the result into both words 0 and 1 of the result
register, as is required by this version of the architecture.

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

Programming Note

Programming Note
Chapter 7. Vector-Scalar Extension Facility 685

Version 3.1
VSX Scalar Convert Scalar Single-Precision to
Vector Single-Precision format Non-signalling
XX2-form

xscvdpspn XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

result ← bfp32_CONVERT_FROM_BFP(src)

VSR[32×TX+T].word[0] ← result

VSR[32×TX+T].word[1] ← result

VSR[32×TX+T].word[2] ← 0x0000_0000

VSR[32×TX+T].word[3] ← 0x0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the single-precision floating-point value in
doubleword element 0 of VSR[XB] represented in
double-precision format.

src is placed into word elements 0 and 1 of VSR[XT] in
single-precision format.

The contents of word elements 2 and 3 of VSR[XT] are
set to 0.

Special Registers Altered
None

60 T /// B 267 BXTX
0 6 11 16 21 30 31

If x is not representable in single-precision, some
exponent and/or significand bits will be discarded,
likely producing undesirable results. The low-order
29 bits of the significand of x are discarded, more if
the unbiased exponent of x is less than -126 (i.e.,
denormal). Finite values of x having an unbiased
exponent less than -150 will return a result of Zero.
Finite values of x having an unbiased exponent
greater than +127 will result in discarding significant
bits of the exponent. SNaN inputs having no
significant bits in the upper 23 bits of the signifcand
will return Infinity as the result. No status is set for
any of these cases.

xscvdpsp should be used to convert a scalar
double-precision value to vector single-precision
format.
xscvdpspn should be used to convert a scalar
single-precision value to vector single-precision
format.

See the Programming Note for the xscvdpsp
instruction.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

Programming Note

Programming Note

VSR Data Layout for xscvdpspn

src VSR[XB].dword[0] unused

tgt VSR[XT].word[0] VSR[XT].word[1] 0x0000_0000_0000_0000

0 32 64 127
Power ISA™ I686

Version 3.1
VSX Scalar Convert with round to zero
Double-Precision to Signed Doubleword
format XX2-form

xscvdpsxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

result ← si64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxcvi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[1] ← result

 VSR[32×TX+T].dword[2] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← 0bUUUUU

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If src is
an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 263-1, the result is
0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -263, the
result is 0x8000_0000_0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and if the result is inexact
(i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,
– VSR[XT] and FPRF are not modified
– FR and FI are set to 0.

Otherwise,
– The result is placed into doubleword element 0 of

VSR[XT]. The contents of doubleword element 1 of
VSR[XT] are set to 0.

– FPRF is set to an undefined value.
– FR is set to indicate if the result was incremented

when rounded.
– FI is set to indicate the result is inexact.

See Table 70.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

60 T /// B 344 BXTX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

xscvdpsxds rounds using Round towards Zero
rounding mode. For other rounding modes, software
must use a Round to Double-Precision Integer
instruction that corresponds to the desired rounding
mode, including xsrdpic which uses the rounding
mode specified by RN.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

Programming Note

VSR Data Layout for xscvdpspn

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 687

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

Ine
xa

ct?
 (t

r
un
c(
0
b0
01
,s
rc
)

≠
sr
c)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fr(0), fi(1), fx(XX)

1 yes T(Nmin), fr(0), fi(1), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0)

Nmin < src < Nmax –
– no T(f2i(trunc(src))), fr(0), fi(0)

0 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX)

1 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fr(0), fi(1), fx(XX)

1 yes T(Nmax), fr(0), fi(1), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 bits are set to any mode other than the

ignore-exception mode.
f2i(x) The double-precision floating-point integer value x is converted to 64-bit signed integer format.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).
Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.
T(x) The signed integer doubleword value x is placed in doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are set to 0.

Table 70.Actions for xscvdpsxds
Power ISA™ I688

Version 3.1
VSX Scalar Convert with round to zero
Double-Precision to Signed Word format
XX2-form

xscvdpsxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

result ← si32_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxcvi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].word[0] ← result

 VSR[32×TX+T].word[1] ← result

 VSR[32×TX+T].word[2] ← 0x0000_0000

 VSR[32×TX+T].word[3] ← 0x0000_0000

 FPSCR.FPRF ← 0bUUUUU

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000 and
VXCVI is set to 1. If src is an SNaN, VXSNAN is also set
to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 231-1, the result is
0x7FFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, the
result is 0x8000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and if the result is inexact
(i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified

– FR and FI are set to 0.

Otherwise,

– The result is placed into word elements 0 and 1 of
VSR[XT]. The contents of word elements 2 and 3 of
VSR[XT] are set to 0.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 71.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

60 T /// B 88 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of word 0 of the result register to be unde-
fined. However, all processors that support this
instruction write the result into words 0 and 1 of the
result register, as is required by this version of the
architecture.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

This instruction can be used to operate on a
single-precision source operand.

xscvdpsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.

Programming Note

Programming Note

Programming Note

Programming Note
Chapter 7. Vector-Scalar Extension Facility 689

Version 3.1
VSR Data Layout for xscvdpsxws

src VSR[XB].dword[0] unused

tgt VSR[XT].word[0] VSR[XT].word[1] 0x0000_0000_0000_0000

0 32 64 127

FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fr(0), fi(1), fx(XX)

1 yes T(Nmin), fr(0), fi(1), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0)

Nmin < src < Nmax –
– no T(f2i(trunc(src))), fr(0), fi(0)

0 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX)

1 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fr(0), fi(1), fx(XX)

1 yes T(Nmax), fr(0), fi(1), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
f2i(x) The double-precision floating-point integer value x is converted to 32-bit signed integer format.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer word value, -231(0x8000_0000).
Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.
T(x) The signed integer word value x is placed in word elements 0 and 1 of VSR[XT].

The contents of word elements 2 and 3 of VSR[XT] are set to 0.

Table 71.Actions for xscvdpsxws
Power ISA™ I690

Version 3.1
VSX Scalar Convert with round to zero
Double-Precision to Unsigned Doubleword
format XX2-form

xscvdpuxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

result ← ui64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxcvi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[1] ← result

 VSR[32×TX+T].dword[2] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← 0bUUUUU

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If src is
an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 264-1, the result is
0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and if the result is
inexact (i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified
– FR and FI are set to 0.

Otherwise,

– The result is placed into doubleword element 0 of
VSR[XT]. The contents of doubleword element 1 of
VSR[XT] are set to 0.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 72.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

60 T /// B 328 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

This instruction can be used to operate on a
single-precision source operand.

xscvdpuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.

Programming Note

Programming Note

Programming Note

VSR Data Layout for xscvdpuxds

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 691

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

Ine
xa

ct?
 (t

r
un
c(
0
b0
01
,s
rc
)

≠
sr
c)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fr(0), fr(1), fx(XX)

1 yes T(Nmin), fr(0), fr(1), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0)

Nmin < src < Nmax –
– no T(f2i(trunc(src))), fr(0), fi(0)

0 yes T(f2i(trunc(src))), fr(0), fr(1), fx(XX)

1 yes T(f2i(trunc(src))), fr(0), fr(1), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fr(0), fr(1), fx(XX)

1 yes T(Nmax), fr(0), fr(1), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
f2i(x) The double-precision floating-point integer value x is converted to 64-bit unsigned integer format.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).
Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.
T(x) The unsigned integer doubleword value x is placed in doubleword element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are set to 0.

Table 72.Actions for xscvdpuxds
Power ISA™ I692

Version 3.1
VSX Scalar Convert with round to zero
Double-Precision to Unsigned Word format
XX2-form

xscvdpuxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

result ← ui32_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxcvi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].word[0] ← result

 VSR[32×TX+T].word[1] ← result

 VSR[32×TX+T].word[2] ← 0x0000_0000

 VSR[32×TX+T].word[3] ← 0x0000_0000

 FPSCR.FPRF ← 0bUUUUU

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src is a NaN, the result is the value 0x0000_0000 and
VXCVI is set to 1. If src is an SNaN, VXSNAN is also set
to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round Toward Zero.

If the rounded value is greater than 232-1, the result is
0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and if the result is
inexact (i.e., not equal to src), XX is set to 1.

If a trap-enabled invalid operation exception occurs,

– VSR[XT] and FPRF are not modified

– FR and FI are set to 0.

Otherwise,

– The result is placed into word elements 0 and 1 of
VSR[XT]. The contents of word elements 2 and 3 of
VSR[XT] are set to 0.

– FPRF is set to an undefined value.

– FR is set to indicate if the result was incremented
when rounded.

– FI is set to indicate the result is inexact.

See Table 73.

Special Registers Altered
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCVI

60 T /// B 72 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of word 0 of the result register to be unde-
fined. However, all processors that support this
instruction write the result into words 0 and 1 of the
result register, as is required by this version of the
architecture.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

This instruction can be used to operate on a
single-precision source operand.

xscvdpuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xsrdpic which uses the
rounding mode specified by RN.

Programming Note

Programming Note

Programming Note

Programming Note
Chapter 7. Vector-Scalar Extension Facility 693

Version 3.1
VSR Data Layout for xscvdpuxws

src VSR[XB].dword[0] unused

tgt VSR[XT].word[0] VSR[XT].word[1] 0x0000_0000_0000_0000

0 32 64 127

FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fr(0), fi(1), fx(XX)

1 yes T(Nmin), fr(0), fi(1), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0)

Nmin < src < Nmax –
– no T(f2i(trunc(src))), fr(0), fi(0)

0 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX)

1 yes T(f2i(trunc(src))), fr(0), fi(1), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fr(0), fi(1), fx(XX)

1 yes T(Nmax), fr(0), fi(1), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0, fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
f2i(x) The double-precision floating-point integer value x is converted to 32-bit unsigned integer format.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer word value, 0 (0x0000_0000).
Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.
T(x) The unsigned integer word value x is placed in word elements 0 and 1 of VSR[XT].

The contents of word elements 2 and 3 of VSR[XT] are set to 0.

Table 73.Actions for xscvdpuxws
Power ISA™ I694

Version 3.1
VSX Scalar Convert Half-Precision to
Double-Precision format XX2-form

xscvhpdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

src ← bfp_CONVERT_FROM_BFP16(VSR[BX×32+B].hword[3])

if src.class.SNaN=1 then

 result ← bfp64_CONVERT_FROM_BFP(bfp_QUIET(src))

else

 result ← bfp64_CONVERT_FROM_BFP(src)

vxsnan_flag ← src.class.SNaN

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[TX×32+T].dword[0] ← result

 VSR[TX×32+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← 0

FPSCR.FI ← 0

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the half-precision floating-point value in the
rightmost halfword of doubleword element 0 of VSR[XB].

If src is an SNaN, the result is the double-precision
representation of that SNaN converted to a QNaN.

Otherwise, if src is a QNaN, the result is the
double-precision representation of that QNaN.

Otherwise, if src is an Infinity, the result is the
double-precision representation of Infinity with the
same sign as src.

Otherwise, if src is a Zero, the result is the
double-precision representation of Zero with the same
sign as src.

Otherwise, if src is a denormal value, the result is the
normalized double-precision representation of src.

Otherwise, the result is the double-precision
representation of src.

The result is placed into doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in double-precision format.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified.

FR is set to 0. FI is set to 0.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX VXSNAN

60 T 16 B 347 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xscvhpdp

src unused VSR[XT].hword[3] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 48 64 127
Chapter 7. Vector-Scalar Extension Facility 695

Version 3.1
VSX Scalar Convert with round
Quad-Precision to Double-Precision format
[using round to Odd] X-form

xscvqpdp VRT,VRB (RO=0)
xscvqpdpo VRT,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

rnd ← bfp_ROUND_TO_BFP64(RO,FPSCR.RN,src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[VRT+32].dword[0] ← result

 VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← (vxsnan_flag=0) & inc_flag

FPSCR.FI ← (vxsnan_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN is set to 1.

If src is a Signalling NaN, the result is the Quiet NaN
corresponding to the Signalling NaN, with the
significand truncated to the rounding precision.

Otherwise, if src is a Quiet NaN, then the result is src
with the significand truncated to double-precision.

Otherwise, if src is an Infinity or a Zero, the result is
src.

Otherwise, do the following.
If src is Tiny (i.e., the unbiased exponent is less
than -1022) and UE=0, the significand is shifted
right N bits, where N is the difference between
-1022 and the unbiased exponent of src. The
exponent of src is set to the value -1022.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to double-precision
(i.e., 11-bit exponent range and 53-bit significand
precision) using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[VRT+32] in double-precision format. The contents
of doubleword element 1 of VSR[VRT+32] are set to 0.

FPRF is set to the class and sign of the result as
represented in double-precision format. FR is set to
indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN OX UX XX

63 VRT 20 VRB 836 RO
0 6 11 16 21 31

VSR Data Layout for xscvqpdp[o]

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I696

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Signed Doubleword format
X-form

xscvqpsdz VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN | src.class.SNaN then do

 result ← 0x8000_0000_0000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity then do

 vxcvi_flag ← 1

 if src.sign = 0 then

 result ← 0x7FFF_FFFF_FFFF_FFFF

 else

 result ← 0x8000_0000_0000_0000

end

else if src.class.Zero then

 result ← 0x0000_0000_0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +263-1) then do

 result ← 0x7FFF_FFFF_FFFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, -263) then do

 result ← 0x8000_0000_0000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← si64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32].dword[0] ← result

 VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is 0x8000_0000_0000_0000.

Otherwise, if src is a Zero, the result is
0x0000_0000_0000_0000.

Otherwise, if src is +Infinity, the result is
0x7FFF_FFFF_FFFF_FFFF.

Otherwise, if src is -Infinity, the result is
0x8000_0000_0000_0000.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +263-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is 0x7FFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than -263, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is 0x8000_0000_0000_0000.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into doubleword element 0 of
VSR[VRT+32] in signed integer format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 70, “Actions for xscvdpsxds,” on page 688.

Special Registers Altered:
FPRF (undefined) FR FI FX VXSNAN VXCVI XX

63 VRT 25 VRB 836 /
0 6 11 16 21 31
Chapter 7. Vector-Scalar Extension Facility 697

Version 3.1
VSR Data Layout for xscvqpsdz

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127

FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.

VSR[VRT+32].dword[0] ← x
VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).
Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 64-bit signed integer format.
fi(x) FPSCR.FI is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the quad-precision floating-point value x truncated to a floating-point integer.

Table 74. Actions for xscvqpsdz
Power ISA™ I698

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Signed Quadword X-form

xscvqpsqz VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN=1 | src.class.SNaN=1 then do

 result ← 0x8000_0000_0000_0000_0000_0000_0000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity=1 then do

 vxcvi_flag ← 1

 if src.sign = 0 then

 result ← 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 else

 result ← 0x8000_0000_0000_0000_0000_0000_0000_0000

end

else if src.class.Zero=1 then

 result ← 0x0000_0000_0000_0000_0000_0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +2127-1) then do

 result ← 0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, -2127) then do

 result ← 0x8000_0000_0000_0000_0000_0000_0000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← si128_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← 0bUUUUU

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is -2127.

Otherwise, if src is a Zero, the result is 0.

Otherwise, if src is +Infinity, the result is 2127-1.

Otherwise, if src is -Infinity, the result is -2127.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +2127-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is 2127.

Otherwise, if rnd is less than -2127, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is -2127.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into doubleword element 0 of
VSR[VRT+32] in signed integer format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 75, “Actions for xscvqpsqz,” on page 700.

Special Registers Altered:
FPRF (undefined) FR (set to 0) FI
FX VXSNAN VXCVI XX

63 VRT 8 VRB 836 /
0 6 11 16 21 31

VSR Data Layout for xscvqpsqz

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 699

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)
Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.
Nmin The smallest signed integer doubleword value, -2127 (0x8000_0000_0000_0000_0000_0000_0000_0000).
Nmax The largest signed integer doubleword value, 2127-1 (0x7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 128-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the floating-point value x truncated to a floating-point integer.

Table 75. Actions for xscvqpsqz
Power ISA™ I700

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Signed Word format X-form

xscvqpswz VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN=1 | src.class.SNaN=1 then do

 result ← 0xFFFF_FFFF_8000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity=1 then do

 vxcvi_flag ← 1

 if src.sign=0 then

 result ← 0x0000_0000_7FFF_FFFF

 else

 result ← 0xFFFF_FFFF_8000_0000

end

else if src.class.Zero=1 then

 result ← 0x0000_0000_0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +231-1) then do

 result ← 0x0000_0000_7FFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, -231) then do

 result ← 0xFFFF_FFFF_8000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← si64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32].dword[0] ← result

 VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← 0bUUUUU

end

FPSCR.FR ← 0

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is 0xFFFF_FFFF_8000_0000.

Otherwise, if src is a Zero, the result is
0x0000_0000_0000_0000.

Otherwise, if src is a +Infinity, the result is
0x0000_0000_7FFF_FFFF.

Otherwise, if src is a -Infinity, the result is
0xFFFF_FFFF_8000_0000.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +231-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is 0x0000_0000_7FFF_FFFF.

Otherwise, if rnd is less than -231, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is 0xFFFF_FFFF_8000_0000.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into doubleword element 0 of
VSR[VRT+32] in signed integer format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 76, “Actions for xscvqpswz,” on page 702.

Special Registers Altered:
FPRF (undefined) FR (set to 0) FI
FX VXSNAN VXCVI XX

63 VRT 9 VRB 836 /
0 6 11 16 21 31
Chapter 7. Vector-Scalar Extension Facility 701

Version 3.1
VSR Data Layout for xscvqpswz

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127

FP
SC

R.
VE

FP
SC

R.
XE

Ine
xa

ct?
 (t

r
un
c(
0
b0
01
,s
rc
)

≠
sr
c)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.

VSR[VRT+32].dword[0] ← x
VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Nmin The smallest signed integer word value, -231 (0xFFFF_FFFF_8000_0000).
Nmax The largest signed integer word value, 231-1 (0x0000_0000_7FFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 32-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the floating-point value x truncated to a floating-point integer.

Table 76. Actions for xscvqpswz
Power ISA™ I702

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Unsigned Doubleword
format X-form

xscvqpudz VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN=1 | src.class.SNaN=1 then do

 result ← 0x0000_0000_0000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity=1 then do

 vxcvi_flag ← 1

 if src.sign=0 then

 result ← 0xFFFF_FFFF_FFFF_FFFF

 else

 result ← 0x0000_0000_0000_0000

end

else if src.class.Zero then result ← 0x0000_0000_0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +264-1) then do

 result ← 0xFFFF_FFFF_FFFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, 0) then do

 result ← 0x0000_0000_0000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← ui64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32].dword[0] ← result

 VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← 0bUUUUU

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is 0x0000_0000_0000_0000.

Otherwise, if src is a Zero, the result is
0x0000_0000_0000_0000.

Otherwise, if src is a positive Infinity, the result is
0xFFFF_FFFF_FFFF_FFFF.

Otherwise, if src is a negative Infinity, the result is
0x0000_0000_0000_0000.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +264-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is 0xFFFF_FFFF_FFFF_FFFF.

Otherwise, if rnd is less than 0, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is 0x0000_0000_0000_0000.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into doubleword element 0 of
VSR[VRT+32] in unsigned integer format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 77, “Actions for xscvqpudz,” on page 704.

Special Registers Altered:
FPRF (undefined) FR (set to 0) FI
FX VXSNAN VXCVI XX

63 VRT 17 VRB 836 /
0 6 11 16 21 31
Chapter 7. Vector-Scalar Extension Facility 703

Version 3.1
VSR Data Layout for xscvqpudz

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127

FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.

VSR[VRT+32].dword[0] ← x
VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).
Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 64-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the quad-precision floating-point value x truncated to a floating-point integer.

Table 77. Actions for xscvqpudz
Power ISA™ I704

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Unsigned Quadword
X-form

xscvqpuqz VRT,VRB

if MSR.VSX=0 then VSypX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN=1 | src.class.SNaN=1 then do

 result ← 0x0000_0000_0000_0000_0000_0000_0000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity=1 then do

 vxcvi_flag ← 1

 if src.sign=0 then

 result ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 else

 result ← 0x0000_0000_0000_0000_0000_0000_0000_0000

end

else if src.class.Zero=1 then

 result ← 0x0000_0000_0000_0000_0000_0000_0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +2128-1) then do

 result ← 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, 0) then do

 result ← 0x0000_0000_0000_0000_0000_0000_0000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← si128_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← 0bUUUUU

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is 0.

Otherwise, if src is a Zero, the result is 0.
Otherwise, if src is +Infinity, the result is 2128-1.
Otherwise, if src is -Infinity, the result is 0.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +2128-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is +2128-1.

Otherwise, if rnd is less than 0, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is 0.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into VSR[VRT+32] in unsigned
integer format.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 77, “Actions for xscvqpudz,” on page 704.

Special Registers Altered:
FPRF (undefined) FR (set to 0) FI
FX VXSNAN VXCVI XX

63 VRT 0 VRB 836 /
0 6 11 16 21 31

VSR Data Layout for xscvqpuqz

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 705

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

Ine
xa

ct
? (

 t
ru
nc
(0
b0
01
,s
rc
)

≠
sr
c)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.
Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000_0000_0000_0000_0000).
Nmax The largest unsigned integer doubleword value, 2128-1 (0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 128-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the floating-point value x truncated to a floating-point integer.

Table 78. Actions for xscvqpuqz
Power ISA™ I706

Version 3.1
VSX Scalar Convert with round to zero
Quad-Precision to Unsigned Word format
X-form

xscvqpuwz VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.QNaN=1 | src.class.SNaN=1 then do

 result ← 0x0000_0000

 vxsnan_flag ← src.class.SNaN

 vxcvi_flag ← 1

end

else if src.class.Infinity=1 then do

 vxcvi_flag ← 1

 if src.sign=0 then

 result ← 0x0000_0000_FFFF_FFFF

 else

 result ← 0x0000_0000_0000_0000

end

else if src.class.Zero=1 then

 result ← 0x0000_0000

else do

 rnd ← bfp_ROUND_TO_INTEGER(0b001,src)

 if bfp_COMPARE_GT(rnd, +232-1) then do

 result ← 0x0000_0000_FFFF_FFFF

 vxcvi_flag ← 1

 end

 else if bfp_COMPARE_LT(rnd, bfp_ZERO) then do

 result ← 0x0000_0000_0000_0000

 vxcvi_flag ← 1

 end

 else do

 result ← ui64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

vx_flag ← vxsnan_flag | vxcvi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32].dword[0] ← result

 VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← 0bUUUUU

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the quad-precision floating-point value in
VSR[VRB+32].

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN and VXCVI are set to 1.

If src is a Quiet NaN or an Infinity, an Invalid Operation
exception occurs and VXCVI is set to 1.

If src is a NaN, the result is 0x0000_0000_0000_0000.

Otherwise, if src is a Zero, the result is
0x0000_0000_0000_0000.

Otherwise, if src is a positive Infinity, the result is
0x0000_0000_FFFF_FFFF.

Otherwise, do the following.
Let rnd be the value src truncated to a
floating-point integer.

If rnd is greater than +232-1, an Invalid Operation
exception occurs, VXCVI is set to 1, and the result
is 0x0000_0000_FFFF_FFFF.

Otherwise, if rnd is less than 0, an Invalid
Operation exception occurs, VXCVI is set to 1, and
the result is 0x0000_0000_0000_0000.

Otherwise, the result is the value rnd, and an
Inexact exception occurs if rnd is inexact (i.e., rnd
is not equal to src).

The result is placed into doubleword element 0 of
VSR[VRT+32] in unsigned integer format.

The contents of doubleword element 1 of VSR[VRT+32]
are set to 0.

FPRF is set to undefined. FR is set to 0. FI is set to
indicate if the rounded result is inexact.

If an Invalid Operation exception occurs, FR and FI are
set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

See Table 79, “Actions for xscvqpuwz,” on page 708.

Special Registers Altered:
FPRF (undefined) FR (set to 0) FI
FX VXSNAN VXCVI XX

63 VRT 1 VRB 836 /
0 6 11 16 21 31
Chapter 7. Vector-Scalar Extension Facility 707

Version 3.1
VSR Data Layout for xscvqpuwz

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127

FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (t
ru
n
c(
0b
0
01
,s
rc
)

≠
s
rc

)

Returned Results and Status Setting

src ≤ Nmin-1
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

Nmin-1 < src < Nmin
– 0 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

– 1 yes T(Nmin), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmin – – no T(Nmin), fr(0), fi(0), fprf(0bUUUUU)

Nmin < src < Nmax

– – no T(f2i(trunc(src))), fr(0), fi(0), fprf(0bUUUUU)

– 0 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(f2i(trunc(src))), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src = Nmax – – no T(Nmax), fr(0), fi(0), fprf(0bUUUUU)

Nmax < src < Nmax+1
– 0 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX)

– 1 yes T(Nmax), fr(0), fi(1), fprf(0bUUUUU), fx(XX), error()

src ≥ Nmax+1
0 – – T(Nmax), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI)

1 – – fr(0), fi(0), fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fr(0), fi(0), fprf(0bUUUUU), fx(VXCVI), fx(VXSNAN)

1 – – fr(0), fi(0), fx(VXCVI), fx(VXSNAN), error()

Explanation:
T(x) Places the value x into the target VSR.

VSR[VRT+32].dword[0] ← x
VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Nmin The smallest unsigned integer word value, 0 (0x0000_0000_0000_0000).
Nmax The largest unsigned integer word value, 232-1 (0x0000_0000_FFFF_FFFF).
src The quad-precision floating-point value in VSR[VRB+32].
f2i(x) The quad-precision floating-point integer value x is converted to 32-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
fi(x) FPSCR.FI is set to the value x.
fr(x) FPSCR.FR is set to the value x.
fprf(x) FPSCR.FPRF is set to the value x.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
trunc(x) Return the floating-point value x truncated to a floating-point integer.

Table 79. Actions for xscvqpuwz
Power ISA™ I708

Version 3.1
VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form

xscvspdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[0])

vxsnan_flag ← src.class.SNaN

result ← bfp64_CONVERT_FROM_BFP(src)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

FPSCR.FR ← 0b0

FPSCR.FI ← 0b0

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the single-precision floating-point value in
word element 0 of VSR[XB].

If src is a SNaN, the result is src, converted to a
QNaN (i.e., bit 9 of src set to 1). VXSNAN is set to 1.

Otherwise, the result is src.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified, FPRF is not modified, FR is set
to 0, and FI is set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 329 BX TX
0 6 11 16 21 30 31

xscvspdp can be used to convert a
single-precision value in single-precision format to
double-precision format for use by Floating-Point
scalar single-precision operations.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xscvspdp

src VSR[XB].word[0] unused unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 32 64 127
Chapter 7. Vector-Scalar Extension Facility 709

Version 3.1
VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling
XX2-form

xscvspdpn XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[0])

result ← bfp64_CONVERT_FROM_BFP(src)

VSR[32×TX+T].dword[0] ← result

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the single-precision floating-point value in
word element 0 of VSR[XB].

src is placed into doubleword element 0 of VSR[XT] in
double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

60 T /// B 331 BXTX
0 6 11 16 21 30 31

xscvspdp should be used to convert a vector
single-precision floating-point value to scalar
double-precision format.

xscvspdpn should be used to convert a vector
single-precision floating-point value to scalar
single-precision format.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xscvspdpn

src VSR[XB].word[0] unused unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 32 64 127
Power ISA™ I710

Version 3.1
VSX Scalar Convert with round Signed
Quadword to Quad-Precision X-form

xscvsqqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_SI128(VSR[VRB+32])

rnd ← bfp_ROUND_TO_BFP128(0,FPSCR.RN,src)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(XX)

VSR[VRT+32] ← result

FPSCR.FPRF ← fprf_CLASS_BFP128(result)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let src be the 128-bit signed integer value in
VSR[VRB+32].

src is converted to an unbounded-precision
floating-point value and rounded to quad-precision
using the rounding mode specified by RN.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered:
FPRF FR FI FX XX

63 VRT 11 VRB 836 /
0 6 11 16 21 31

VSR Data Layout for xscvsqqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 711

Version 3.1
VSX Scalar Convert with round Signed
Doubleword to Double-Precision format
XX2-form

xscvsxddp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_SI64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(FPSCR.XX)

VSR[32×TX+T].dword[0] ← result

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

FPSCR.FPRF ← fprf_CLASS_BFP64(result)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the signed integer value in doubleword
element 0 of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to double-precision
using the rounding mode specified by RN.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

60 T /// B 376 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xscvsxddp

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I712

Version 3.1
VSX Scalar Convert with round Signed
Doubleword to Single-Precision format
XX2-form

xscvsxdsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_SI64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(FPSCR.XX)

VSR[32×TX+T].dword[0] ← result64

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the two’s-complement integer value in
doubleword element 0 of VSR[XB].

src is converted to floating-point format, and rounded
to single-precision using the rounding mode specified
by RN.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

60 T /// B 312 BXTX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xscvsxdsp

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 713

Version 3.1
VSX Scalar Convert Signed Doubleword to
Quad-Precision format X-form

xscvsdqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

src ← bfp_CONVERT_FROM_SI64(VSR[VRB+32].dword[0])

result ← bfp128_CONVERT_FROM_BFP(src)

VSR[VRT+32] ← result

FPSCR.FPRF ← fprf_CLASS_BFP128(result)

FPSCR.FR ← 0

FPSCR.FI ← 0

Let src be the signed integer value in doubleword
element 0 of VSR[VRB+32].

src is placed into VSR[VRT+32] in quad-precision
floating-point format.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)

VSX Scalar Convert Unsigned Doubleword to
Quad-Precision format X-form

xscvudqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

src ← bfp_CONVERT_FROM_UI64(VSR[VRB+32].dword[0])

result ← bfp128_CONVERT_FROM_BFP(src)

VSR[VRT+32] ← result

FPSCR.FPRF ← fprf_CLASS_BFP128(result)

FPSCR.FR ← 0

FPSCR.FI ← 0

Let src be the unsigned integer value in doubleword
element 0 of VSR[VRB+32].

src is placed into VSR[VRT+32] in quad-precision
floating-point format.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)

63 VRT 10 VRB 836 /
0 6 11 16 21 31

63 VRT 2 VRB 836 /
0 6 11 16 21 31

VSR Data Layout for xscvsdqp & xscvudqp

src VSR[VRB+32].dword[0] unused

tgt VSR[VRT+32]

0 64 127
Power ISA™ I714

Version 3.1
VSX Scalar Convert with round Unsigned
Quadword to Quad-Precision format X-form

xscvuqqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_UI128(VSR[VRB+32])

rnd ← bfp_ROUND_TO_BFP128(0b0,FPSCR.RN,src)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(XX)

VSR[VRT+32] ← result

FPSCR.FPRF ← fprf_CLASS_BFP128(result)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let src be the 128-bit unsigned integer value in
VSR[VRB+32].

src is converted to an unbounded-precision
floating-point value and rounded to quad-precision
using the rounding mode specified by RN.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered:
FPRF FR FI FX XX

VSX Scalar Convert with round Unsigned
Doubleword to Double-Precision format
XX2-form

xscvuxddp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_UI64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(FPSCR.XX)

VSR[32×TX+T].dword[0] ← result

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

FPSCR.FPRF ← fprf_CLASS_BFP64(result)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the unsigned integer value in doubleword
element 0 of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to double-precision
using the rounding mode specified by RN.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

63 VRT 3 VRB 836 /
0 6 11 16 21 31 60 T /// B 360 BX TX

0 6 11 16 21 30 31

VSR Data Layout for xscvuqqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127

VSR Data Layout for xscvuxddp

src VSR[VRB+32].dword[0] unused

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 715

Version 3.1
VSX Scalar Convert with round Unsigned
Doubleword to Single-Precision format
XX2-form

xscvuxdsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_UI64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if xx_flag=1 then SetFX(FPSCR.XX)

VSR[32×TX+T].dword[0] ← result64

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

FPSCR.FR ← inc_flag

FPSCR.FI ← xx_flag

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the unsigned-integer value in doubleword
element 0 of VSR[XB].

src is converted to floating-point format, and rounded
to single-precision using the rounding mode specified
by RN.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

Special Registers Altered
FPRF FR FI FX XX

60 T /// B 296 BXTX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xscvuxdsp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I716

Version 3.1
VSX Scalar Divide Double-Precision XX3-form

xsdivdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_DIVIDE(src1,src2)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxidi_flag=1 then SetFX(FPSCR.VXIDI)

if vxzdz_flag=1 then SetFX(FPSCR.VXZDZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

if zx_flag=1 then SetFX(FPSCR.ZX)

vx_flag ← vxsnan_flag | vxidi_flag | vxzdz_flag

vex_flag ← FPSCR.VE & vx_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is divided[1] by src2, producing a quotient having
unbounded range and precision.

The quotient is normalized[2].

See Actions for xsdivdp (p. 718).

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified, and FR and FI are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX ZX XX VXSNAN VXIDI VXZDZ

60 T A B 56 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xsdivdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 717

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 80.Actions for xsdivdp
Power ISA™ I718

Version 3.1
VSX Scalar Divide Quad-Precision [using
round to Odd] X-form

xsdivqp VRT,VRA,VRB (RO=0)
xsdivqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_DIVIDE(src1, src2)

rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxidi_flag=1 then SetFX(FPSCR.VXIDI)

if vxzdz_flag=1 then SetFX(FPSCR.VXZDZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if zx_flag=1 then SetFX(FPSCR.ZX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxidi_flag | vxzdz_flag

vex_flag ← FPSCR.VE & vx_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & (zx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & (zx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1 or src2 is a Signalling NaN, an Invalid
Operation exception occurs and VXSNAN is set to 1

If src1 and src2 are Infinity values, an Invalid
Operation exception occurs and VXIDI is set to 1.

If src1 and src2 are Zero values, an Invalid Operation
exception occurs and VXZDZ is set to 1.

If src1 is a finite value and src2 is a Zero value, an
Zero Divide exception occurs and ZX is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src1 and src2 are Infinity values, or if
src1 and src2 are Zero values, the result is the default
Quiet NaN[1].

Otherwise, if src1 is a non-zero value and src2 is a
Zero value, the result is an Infinity.

Otherwise, do the following.
The normalized quotient of src1 divided by src2 is
produced with unbounded significand precision
and exponent range.

See Table 81, “Actions for xsdivqp[o],” on
page 720.

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-disabled Zero Divide exception occurs, FR and
FI are set to 0.

If a trap-enabled Invalid Operation exception or a
trap-enabled Zero Divide exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

63 VRT VRA VRB 548 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Chapter 7. Vector-Scalar Extension Facility 719

Version 3.1
Special Registers Altered:
FPRF FR FI
FX VXSNAN VXIDI VXZDZ OX UX ZX XX

VSR Data Layout for xsdivqp[o]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

tgt VSR[VRT+32]

0 127

src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1

v ← +Infinity v ← +Infinity v ← -Infinity v ← -Infinity
v ← dQNaN

vxidi_flag ← 1

v ← src2

-NZF v ← Div(src1,src2)
v ← +Infinity
zx_flag ← 1

v ← -Infinity
zx_flag ← 1

v ← Div(src1,src2)

-Zero v ← +Zero
v ← dQNaN

vxzdz_flag ← 1

v ← -Zero

+Zero v ← -Zero v ← +Zero
v ← quiet(src2)
vxsnan_flag ← 1

+NZF v ← Div(src1,src2)
v ← -Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1

v ← Div(src1,src2)

+Infinity v ← dQNaN
vxidi_flag ← 1

v ← -Infinity v ← -Infinity v ← +Infinity v ← +Infinity
v ← dQNaN

vxidi_flag ← 1

QNaN v ← src1
v ← src1

vxsnan_flag ← 1

SNaN v ← quiet(src1)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Div(x,y) The floating-point value x is divided1 by floating-point value y. Return the normalized2 quotient, having unbounded range and

precision.
quiet(x) Convert x to the corresponding Quiet NaN.
v The intermediate result having unbounded significand precision and unbounded exponent range.

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are com-
pared, and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the
two exponents are equal. The two significands are then subtracted or added as appropriate, depending on the signs of the operands, to form an
intermediate difference. All 64 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

Table 81. Actions for xsdivqp[o]
Power ISA™ I720

Version 3.1
VSX Scalar Divide Single-Precision XX3-form

xsdivsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_DIVIDE(src1,src2)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxidi_flag=1 then SetFX(FPSCR.VXIDI)

if vxzdz_flag=1 then SetFX(FPSCR.VXZDZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

if zx_flag=1 then SetFX(FPSCR.ZX)

vx_flag ← vxsnan_flag | vxidi_flag | vxzdz_flag

vex_flag ← FPSCR.VE & vx_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is divided[1] by src2, producing a quotient having
unbounded range and precision.

The quotient is normalized[2].

See Table 82, “Actions for xsdivsp,” on page 722.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified, and FR and FI are set to 0.
See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX ZX XX VXSNAN VXIDI VXZDZ

60 T A B 24 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number

of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsdivsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 721

Version 3.1
src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 82.Actions for xsdivsp
Power ISA™ I722

Version 3.1
VSX Scalar Insert Exponent Double-Precision
X-form

xsiexpdp XT,RA,RB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← GPR[RA]

src2 ← GPR[RB]

VSR[32×TX+T].dword[0].bit[0] ← src1.bit[0]

VSR[32×TX+T].dword[0].bit[1:11] ← src2.bit[53:63]

VSR[32×TX+T].dword[0].bit[12:63] ← src1.bit[12:63]

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the sum 32×TX + T.

Let src1 be the unsigned integer value in GPR[RA].
Let src2 be the unsigned integer value in GPR[RB].

The contents of bit 0 of src1 are placed into bit 0 of
VSR[XT].

The contents of bits 53:63 of src2 are placed into bits
1:11 of VSR[XT].

The contents of bits 12:63 of src1 are placed into bits
12:63 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered:
None

60 T RA RB 918 TX
0 6 11 16 21 31

This instruction can be used to produce a
single-precision result.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsiexpdp

src1 GPR[RA]

src2 GPR[RB]

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 723

Version 3.1
VSX Scalar Insert Exponent Quad-Precision
X-form

xsiexpqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

VSR[VRT+32].bit[0] ← VSR[VRA+32].bit[0]

VSR[VRT+32].bit[1:15] ← VSR[VRB+32].dword[0].bit[49:63]

VSR[VRT+32].bit[16:127] ← VSR[VRA+32].bit[16:127]

The contents of bit 0 of VSR[VRA+32] are placed into bit
0 of VSR[VRT+32].

The contents of bit 49:63 of doubleword element 0 of
VSR[VRB+32] are placed into bits 1:15 of VSR[VRT+32].

The contents of bit 16:127 of VSR[VRA+32] are placed
into bits 16:127 of VSR[VRT+32].

Special Registers Altered:
None

63 VRT VRA VRB 868 /
0 6 11 16 21 31

VSR Data Layout for xsiexpqp

src1 VSR[VRA+32]

src2 VSR[VRB+32].dword[0] unused

tgt VSR[VRT+32]

0 64 127
Power ISA™ I724

Version 3.1
VSX Scalar Multiply-Add Type-A
Double-Precision XX3-form

xsmaddadp XT,XA,XB

VSX Scalar Multiply-Add Type-M
Double-Precision XX3-form

xsmaddmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsmaddadp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsmaddmdp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, src2)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN, v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

For xsmaddadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmaddmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 83.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 83.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI

60 T A B 33 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 41 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 725

Version 3.1
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

VSR Data Layout for xsmaddadp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsmaddmdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

Programming Note
Power ISA™ I726

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 83.Actions for xsmadd(a|m)dp
Chapter 7. Vector-Scalar Extension Facility 727

Version 3.1
VSX Scalar Multiply-Add Type-A
Single-Precision XX3-form

xsmaddasp XT,XA,XB

VSX Scalar Multiply-Add Type-M
Single-Precision XX3-form

xsmaddmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsmaddasp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsmaddmsp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, src2)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN, v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For xsmaddasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmaddmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 84, “Actions for xsmadd(a|m)sp,”
on page 730.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 84, “Actions for xsmadd(a|m)sp,”
on page 730.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 1 AXBXTX
0 6 11 16 21 29 30 31

60 T A B 9 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.
Power ISA™ I728

Version 3.1
See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

VSR Data Layout for xsmaddasp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsmaddmsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

Programming Note
Chapter 7. Vector-Scalar Extension Facility 729

Version 3.1
Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 84.Actions for xsmadd(a|m)sp
Power ISA™ I730

Version 3.1
VSX Scalar Multiply-Add Quad-Precision
[using round to Odd] X-form

xsmaddqp VRT,VRA,VRB (RO=0)
xsmaddqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRT+32])

src3 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_MULTIPLY_ADD(src1, src3, src2)

rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRT+32]
represented in quad-precision format.

Let src3 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1, src2, or src3 is a Signalling NaN, an
Invalid Operation exception occurs and VXSNAN is set to
1.

If src1 is an Infinity value and src3 is a Zero value, or if
src1 is a Zero value and src3 is an Infinity value, an
Invalid Operation exception occurs and VXIMZ is set to
1.

If src2 and the product of src1 and src3 are Infinity
values having opposite signs, an Invalid Operation
exception occurs and VXISI is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src3 is a Signalling NaN, the result is the
Quiet NaN corresponding to src3.

Otherwise, if src3 is a Quiet NaN, the result is src3.

Otherwise, if src1 is an Infinity value and src3 is a Zero
value, or if src1 is a Zero value and src3 is an Infinity
value, the result is the default Quiet NaN[1].

Otherwise, if the product of src1 and src3, and src2
are Infinity values having opposite signs, the result is
the default Quiet NaN.

Otherwise, do the following.
src1 is multiplied by src3, producing a product
having unbounded significand precision and
exponent range.

See part 1 of Table 83. "Actions for
xsmadd(a|m)dp".

src2 is added to the product, producing a sum
having unbounded range and precision.

See part 2 of Table 83. "Actions for
xsmadd(a|m)dp".

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

63 VRT VRA VRB 388 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Chapter 7. Vector-Scalar Extension Facility 731

Version 3.1
If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN VXIMZ VXISI OX UX XX

VSR Data Layout for xsmaddqp[o]

src1 VSR[VRA+32]

src2 VSR[VRT+32]

src3 VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I732

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity
p ← dQNaN

vximz_flag ← 1
p ← –Infinity

p ← src3
p ← quiet(src3)
vxsnan_flag ← 1

–NZF p ←
mul(src1,src3)

p ←
mul(src1,src3)

–Zero
p ← dQNaN

vximz_flag ← 1

p ← +Zero p ← –Zero
p ← dQNaN

vximz_flag ← 1
+Zero p ← –Zero p ← +Zero

+NZF p ←
mul(src1,src3)

p ←
mul(src1,src3)

+Infinity p ← –Infinity
p ← dQNaN

vximz_flag ← 1
p ← +Infinity

QNaN p ← src1
p ← src1

vxsnan_flag ← 1

SNaN p ← quiet(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity
v ← dQNaN

vxisi_flag ← 1

v ← src2
v ← quiet(src2)
vxsnan_flag ← 1

–NZF v ← add(p,src2) v ← p v ← add(p,src2)

–Zero
v ← src2

v ← –Zero v ← Rezd
v ← src2

+Zero v ← Rezd v ← +Zero

+NZF v ← add(p,src2) v ← p v ← add(p,src2)

+Infinity v ← dQNaN
vxisi_flag ← 1

v ← +Infinity

QNaN &
src1 is a NaN

v ← p

v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← src2

v ← quiet(src2)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRT+32].
src3 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
quiet(x) Return a QNaN with the payload of x.
add(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
mul(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 85.Actions for xsmaddqp[o]
Chapter 7. Vector-Scalar Extension Facility 733

Version 3.1
VSX Scalar Maximum Double-Precision
XX3-form

xsmaxdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MAXIMUM(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src1 is greater than src2, src1 is placed into
doubleword element 0 of VSR[XT]. Otherwise, src2 is
placed into doubleword element 0 of VSR[XT] in
double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

The maximum of +0 and -0 is +0. The maximum of a
QNaN and any value is that value. The maximum of
any value and an SNaN is that SNaN converted to a
QNaN.

FPRF, FR and FI are not modified.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified.

See Table 86.

Special Registers Altered
FX VXSNAN

60 T A B 160 AX BX TX
0 6 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsmaxdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I734

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 86.Actions for xsmaxdp
Chapter 7. Vector-Scalar Extension Facility 735

Version 3.1
VSX Scalar Maximum Type-C
Double-Precision XX3-form

xsmaxcdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MAXIMUM_TYPE_C(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If either src1 or src2 is a NaN, result is src2.

Otherwise, if src1 is greater than src2, result is src1.

Otherwise, result is src2.

The contents of doubleword 0 of VSR[XT] are set to the
value result.

The contents of doubleword 1 of VSR[XT] are set to 0.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN

60 T A B 128 AXBXTX
0 6 11 16 21 29 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsmaxcdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I736

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src1) T(src1) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src1) T(src1) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src2) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

SNaN T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 87.Actions for xsmaxcdp
Chapter 7. Vector-Scalar Extension Facility 737

Version 3.1
VSX Scalar Maximum Type-C Quad-Precision
X-form

xsmaxcqp VRT,VRA,VRB

Let src1 be the quad-precision floating-point value in
VSR[VRA+32].

Let src2 be the quad-precision floating-point value in
VSR[VRB+32].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If either src1 or src2 is a NaN, result is src2.

Otherwise, if src1 is greater than src2, result is src1.

Otherwise, result is src2.

The contents of VSR[VRT+32] are set to the value
result.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN

63 VRT VRA VRB 676 /
0 6 11 16 21 31

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

vxsnan_flag ← (src1.class.SNaN=1) | (src2.class.SNaN=1)

if (src1.class.SNaN=1) | (src1.class.QNaN=1) |

 (src2.class.SNaN=1) | (src2.class.QNaN=1) then

 result ← VSR[VRB+32]

else if bfp_COMPARE_GT(src1,src2) then

 result ← VSR[VRA+32]

else

 result ← VSR[VRB+32]

vex_flag ← FPSCR.VE & vxsnan_flag

if vxsnan_flag=1 then SetFX(VXSNAN)

if vex_flag=0 then

 VSR[VRT+32] ← result

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src1) T(src1) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src1) T(src1) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src2) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

SNaN T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
NZF Nonzero finite number.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in VSR[XT] in quad-precision format.

FPRF, FR and FI are not modified.
fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[VRT+32] is suppressed.

Table 88.Actions for xsmaxcqp
Power ISA™ I738

Version 3.1
VSX Scalar Maximum Type-J
Double-Precision XX3-form

xsmaxjdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MAXIMUM_TYPE_J(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If src1 is a NaN, result is src1.

Otherwise, if src2 is a NaN, result is src2.

Otherwise, if src1 is a Zero and src2 is a Zero and
either src1 or src2 is a +Zero, the result is +Zero.

Otherwise, if src1 is a -Zero and src2 is a -Zero, the
result is -Zero.

Otherwise, if src1 is greater than src2, result is src1.

Otherwise, result is src2.

The contents of doubleword 0 of VSR[XT] are set to the
value result.

The contents of doubleword 1 of VSR[XT] are set to 0.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN

60 T A B 144 AXBXTX
0 6 11 16 21 29 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsmaxjdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 739

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(-INF) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src1) T(M(src1,src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src1) T(src1) T(-Zero) T(+Zero) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src1) T(src1) T(+Zero) T(+Zero) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(+INF) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(src1)

fx(VXSNAN)

SNaN T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 89.Actions for xsmaxjdp
Power ISA™ I740

Version 3.1
VSX Scalar Minimum Double-Precision
XX3-form

xsmindp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MINIMUM(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

If src1 is less than src2, src1 is placed into doubleword
element 0 of VSR[XT] in double-precision format.

Otherwise, src2 is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

The minimum of +0 and –0 is –0. The minimum of a
QNaN and any value is that value. The minimum of
any value and an SNaN is that SNaN converted to a
QNaN.

FPRF, FR and FI are not modified.

If a trap-enabled invalid operation exception occurs,
VSR[XT] is not modified.

See Table 90.

Special Registers Altered
FX VXSNAN

60 T A B 168 AX BX TX
0 6 11 16 21 29 30 31

This instruction can be used to operate on
single-precision source operands.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsmindp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 741

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the lesser of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element i (i∈{0,1}) of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, FPSCRVXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 90.Actions for xsmindp
Power ISA™ I742

Version 3.1
VSX Scalar Minimum Type-C
Double-Precision XX3-form

xsmincdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MINIMUM_TYPE_C(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If either src1 or src2 is a NaN, result is src2.

Otherwise, if src1 is less than src2, result is src1.

Otherwise, result is src2.

The contents of doubleword 0 of VSR[XT] are set to the
value result.

The contents of doubleword 1 of VSR[XT] are set to 0.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN

60 T A B 136 AXBXTX
0 6 11 16 21 29 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsmincdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 743

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src2) T(src1) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

SNaN T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
M(x,y) Return the lesser of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 91.Actions for xsmincdp
Power ISA™ I744

Version 3.1
VSX Scalar Minimum Type-C Quad-Precision
X-form

xsmincqp VRT,VRA,VRB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

vxsnan_flag ← (src1.class.SNaN=1) | (src2.class.SNaN=1)

if (src1.class.SNaN=1) | (src1.class.QNaN=1) |

 (src2.class.SNaN=1) | (src2.class.QNaN=1) then

 result ← VSR[VRB+32]

else if bfp_COMPARE_LT(src1,src2) then

 result ← VSR[VRA+32]

else

 result ← VSR[VRB+32]

vex_flag ← FPSCR.VE & vxsnan_flag

if vxsnan_flag=1 then SetFX(VXSNAN)

if vex_flag=0 then

 VSR[VRT+32] ← result

Let src1 be the quad-precision floating-point value in
VSR[VRA+32].

Let src2 be the quad-precision floating-point value in
VSR[VRB+32].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If either src1 or src2 is a NaN, result is src2.

Otherwise, if src1 is less than src2, result is src1.

Otherwise, result is src2.

The contents of VSR[VRT+32] are set to the value
result.

If a trap-enabled Invalid Operation occurs, VSR[VRT+32]
is not modified.

Special Registers Altered:
FX VXSNAN

63 VRT VRA VRB 740 /
0 6 11 16 21 31

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src2) T(src1) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src2)
T(src2)

fx(VXSNAN)

SNaN T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

T(src2)

fx(VXSNAN)

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
NZF Nonzero finite number.
M(x,y) Return the lesser of floating-point value x and floating-point value y.
T(x) The value x is placed in VSR[VRT+32] in quad-precision format.

FPRF, FR and FI are not modified.
fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[VRT+32] is suppressed.

Table 92.Actions for xsmincqp
Chapter 7. Vector-Scalar Extension Facility 745

Version 3.1
VSX Scalar Minimum Type-J Double-Precision
XX3-form

xsminjdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

result ← bfp64_MINIMUM_TYPE_J(src1,src2)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword 0 of VSR[XB].

If src1 or src2 is a SNaN, an Invalid Operation
exception occurs.

If src1 is a NaN, result is src1.

Otherwise, if src2 is a NaN, result is src2.

Otherwise, if src1 is a Zero and src2 is a Zero and
either src1 or src2 is a -Zero, the result is -Zero.

Otherwise, if src1 is a +Zero and src2 is a +Zero, the
result is +Zero.

Otherwise, if src1 is less than src2, result is src1.

Otherwise, result is src2.

The contents of doubleword 0 of VSR[XT] are set to the
value result.

The contents of doubleword 1 of VSR[XT] are set to 0.

If a trap-enabled Invalid Operation occurs, VSR[XT] is
not modified.

Special Registers Altered:
FX VXSNAN

60 T A B 152 AXBXTX
0 6 11 16 21 29 30 31

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

VSR Data Layout for xsminjdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

Programming Note
Power ISA™ I746

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(-INF) T(src1) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–NZF T(src2) T(M(src1,src2) T(src1) T(src1) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

–Zero T(src2) T(src2) T(-Zero) T(-Zero) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Zero T(src2) T(src2) T(-Zero) T(+Zero) T(src1) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2) T(src1) T(src2)
T(src2)

fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(+INF) T(src2)
T(src2)

fx(VXSNAN)

QNaN T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1)
T(src1)

fx(VXSNAN)

SNaN T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

T(src1)

fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XT].
NZF Nonzero finite number.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are set to 0.
FPRF, FR and FI are not modified.

fx(x) If x is equal to 0, FX is set to 1. x is set to 1.
VXSNAN Floating-Point Invalid Operation Exception (SNaN) status flag, VXSNAN. If VE=1, update of VSR[XT] is suppressed.

Table 93.Actions for xsminjdp
Chapter 7. Vector-Scalar Extension Facility 747

Version 3.1
VSX Scalar Multiply-Subtract Type-A
Double-Precision XX3-form

xsmsubadp XT,XA,XB

VSX Scalar Multiply-Subtract Type-M
Double-Precision XX3-form

xsmsubmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsmsubadp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsmsubmdp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN, v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For xsmsubadp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmsubmdp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 94.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision.

The result, having unbounded range and precision, is
normalized[3].

See part 2 of Table 94.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is
set to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 49 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 57 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Power ISA™ I748

Version 3.1
See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

VSR Data Layout for xsmsubadp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsmsubmdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

Programming Note
Chapter 7. Vector-Scalar Extension Facility 749

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 94.Actions for xsmsub(a|m)dp
Power ISA™ I750

Version 3.1
VSX Scalar Multiply-Subtract Type-A
Single-Precision XX3-form

xsmsubasp XT,XA,XB

VSX Scalar Multiply-Subtract Type-M
Single-Precision XX3-form

xsmsubmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsmsubasp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsmsubmsp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN, v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For xsmsubasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsmsubmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 95, “Actions for xsmsub(a|m)sp”.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision.

The result, having unbounded range and precision, is
normalized[3].

See part 2 of Table 95, “Actions for xsmsub(a|m)sp”.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 17 AXBXTX
0 6 11 16 21 29 30 31

60 T A B 25 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 751

Version 3.1
See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xsmsubasp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsmsubmsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I752

Version 3.1
Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN
sr

c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsmsubasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsmsubmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsmsubasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsmsubmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 95.Actions for xsmsub(a|m)sp
Chapter 7. Vector-Scalar Extension Facility 753

Version 3.1
VSX Scalar Multiply-Subtract Quad-Precision
[using round to Odd] X-form

xsmsubqp VRT,VRA,VRB (RO=0)
xsmsubqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRT+32])

src3 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRT+32]
represented in quad-precision format.

Let src3 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1, src2, or src3 is a Signalling NaN, an
Invalid Operation exception occurs and VXSNAN is set to
1.

If src1 is an Infinity value and src3 is a Zero value, or if
src1 is a Zero value and src3 is an Infinity value, an
Invalid Operation exception occurs and VXIMZ is set to
1.

If src2 and the product of src1 and src3 are Infinity
values having same signs, an Invalid Operation
exception occurs and VXISI is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src3 is a Signalling NaN, the result is the
Quiet NaN corresponding to src3.

Otherwise, if src3 is a Quiet NaN, the result is src3.

Otherwise, if src1 is an Infinity value and src3 is a Zero
value, or if src1 is a Zero value and src3 is an Infinity
value, the result is the default Quiet NaN[1].

Otherwise, if the product of src1 and src3, and src2
are Infinity values having same signs, the result is the
default Quiet NaN.

Otherwise, do the following.
src1 is multiplied by src3, producing a product
having unbounded significand precision and
exponent range.

See part 1 of Table 96. "Actions for xsmsubqp[o]".

src2 is negated and added to the product,
producing a sum having unbounded range and
precision.

See part 2 of Table 96. "Actions for xsmsubqp[o]".

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

63 VRT VRA VRB 420 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Power ISA™ I754

Version 3.1
If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN VXIMZ VXISI OX UX XX

VSR Data Layout for xsmsubqp[o]

src1 VSR[VRA+32]

src2 VSR[VRT+32]

src3 VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 755

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity
p ← dQNaN

vximz_flag ← 1
p ← –Infinity

p ← src3
p ← quiet(src3)
vxsnan_flag ← 1

–NZF p ←
mul(src1,src3)

p ←
mul(src1,src3)

–Zero
p ← dQNaN

vximz_flag ← 1

p ← +Zero p ← –Zero
p ← dQNaN

vximz_flag ← 1
+Zero p ← –Zero p ← +Zero

+NZF p ←
mul(src1,src3)

p ←
mul(src1,src3)

+Infinity p ← –Infinity
p ← dQNaN

vximz_flag ← 1
p ← +Infinity

QNaN p ← src1
p ← src1

vxsnan_flag ← 1

SNaN p ← quiet(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity

v ← src2 v ← quiet(src2)
vxsnan_flag ← 1

–NZF v ← sub(p,src2) v ← p v ← sub(p,src2)

–Zero
v ← –src2

v ← Rezd v ← –Zero
v ← –src2

+Zero v ← +Zero v ← Rezd

+NZF v ← sub(p,src2) v ← p v ← sub(p,src2)

+Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1

QNaN &
src1 is a NaN

v ← p

v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← src2 v ← quiet(src2)

vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRT+32].
src3 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
quiet(x) Return a QNaN with the payload of x.
sub(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
mul(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 96.Actions for xsmsubqp[o]
Power ISA™ I756

Version 3.1
VSX Scalar Multiply Double-Precision
XX3-form

xsmuldp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_MULTIPLY(src1,src2)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 97.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXIMZ

60 T A B 48 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsmuldp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 757

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity p ← –Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 97.Actions for xsmuldp
Power ISA™ I758

Version 3.1
VSX Scalar Multiply Quad-Precision [using
round to Odd] X-form

xsmulqp VRT,VRA,VRB (RO=0)
xsmulqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_MULTIPLY(src1, src2)

rnd ← bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1 or src2 is a Signalling NaN, an Invalid
Operation exception occurs and VXSNAN is set to 1.

If src1 is an Infinity value and src2 is a Zero value, or if
src1 is a Zero value and src2 is an Infinity value, an
Invalid Operation exception occurs and VXIMZ is set to
1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src1 is an Infinity value and src2 is a Zero
value, or if src1 is a Zero value and src2 is an Infinity
value, the result is the default Quiet NaN[1].

Otherwise, do the following.
The normalized product of src1 multiplied by src2
is produced with unbounded significand precision
and exponent range.

See Table 98. "Actions for xsmulqp[o]".

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI FX VXSNAN VXIMZ OX UX XX

63 VRT VRA VRB 36 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Chapter 7. Vector-Scalar Extension Facility 759

Version 3.1
VSR Data Layout for xsmulqp[o]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

tgt VSR[VRT+32]

0 127

src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1 v ← –Infinity

v ← src2 v ← quiet(src2)
vxsnan_flag ← 1

-NZF v ← mul(src1,src2) v ← mul(src1,src2)

-Zero
v ← dQNaN

vximz_flag ← 1

v ← +Zero v ← –Zero
v ← dQNaN

vximz_flag ← 1
+Zero v ← –Zero v ← +Zero

+NZF v ← mul(src1,src2) v ← mul(src1,src2)

+Infinity v ← –Infinity v ← dQNaN
vximz_flag ← 1 v ← +Infinity

QNaN v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← quiet(src1)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
mul(x,y) The floating-point value x is multiplied1 by the floating-point value y. Return the normalized product, having unbounded significand

precision and exponent range.
quiet(x) Convert x to the corresponding Quiet NaN.
v The intermediate result having unbounded significand precision and unbounded exponent range.

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.

Table 98. Actions for xsmulqp[o]
Power ISA™ I760

Version 3.1
VSX Scalar Multiply Single-Precision
XX3-form

xsmulsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_MULTIPLY(src1,src2)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 99, “Actions for xsmulsp,” on page 762.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXIMZ

60 T A B 16 AXBXTX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number

of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsmulsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 761

Version 3.1
src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity p ← –Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 99.Actions for xsmulsp
Power ISA™ I762

Version 3.1
VSX Scalar Negative Absolute
Double-Precision XX2-form

xsnabsdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

VSR[32×TX+T].dword[0] ← bfp64_NEGATIVE_ABSOLUTE(src)

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The contents of doubleword element 0 of VSR[XB], with
bit 0 set to 1, is placed into doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

VSX Scalar Negative Absolute Quad-Precision
X-form

xsnabsqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

VSR[VRT+32] ← bfp128_NEGATIVE_ABSOLUTE(VSR[VRB+32])

Let src be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

The negative absolute value of src is placed into
VSR[VRT+32] in quad-precision format.

Special Registers Altered:
None

60 T /// B 361 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

63 VRT 8 VRB 804 TX
0 6 11 16 21 31

VSR Data Layout for xsnabsdp

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnabsqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 763

Version 3.1
VSX Scalar Negate Double-Precision
XX2-form

xsnegdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

VSR[32×TX+T].dword[0] ← bfp64_NEGATE(src)

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The contents of doubleword element 0 of VSR[XB], with
bit 0 complemented, is placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

Special Registers Altered
None

VSX Scalar Negate Quad-Precision X-form

xsnegqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

VSR[VRT+32] ← bfp128_NEGATE(VSR[VRB+32])

Let src be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

src is negated and placed into VSR[VRT+32] in
quad-precision format.

Special Registers Altered:
None

60 T /// B 377 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

63 VRT 16 VRB 804 /
0 6 11 16 21 31

VSR Data Layout for xsnegdp

src VSR[XB].dword[0] unused

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnegqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I764

Version 3.1
VSX Scalar Negative Multiply-Add Type-A
Double-Precision XX3-form

xsnmaddadp XT,XA,XB

VSX Scalar Negative Multiply-Add Type-M
Double-Precision XX3-form

xsnmaddmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsnmaddadp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsnmaddmdp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, src2)

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP64(0b0,FPSCR.RN, v))

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

For xsnmaddadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmaddmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 100.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 100.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 161 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 169 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 765

Version 3.1
See Table 101, “Scalar Floating-Point Final Result with
Negation,” on page 768.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xsnmaddadp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnmaddmdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I766

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsnmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsnmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsnmaddadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsnmaddmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 100.Actions for xsnmadd(a|m)dp
Chapter 7. Vector-Scalar Extension Facility 767

Version 3.1
Case FP
SC

R
.V

E

FP
SC

R
.O

E

FP
SC

R
.U

E

FP
SC

R
.Z

E

FP
SC

R
.X

E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠
v

)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Special

– – – – – 0 0 0 – – – – T(n(r)), fprf(class(r)), fi(0), fr(0)

0 – – – – – – 1 – – – – T(r), fprf(class(r)), fi(0), fr(0), fx(VXISI)

0 – – – – 0 1 – – – – – T(r), fprf(class(r)), fi(0), fr(0), fx(VXIMZ)

0 – – – – 1 0 – – – – – T(r), fprf(class(r)), fi(0), fr(0), fx(VXSNAN)

0 – – – – 1 1 – – – – – T(r), fprf(class(r)), fi(0), fr(0), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – 1 – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – no – – – T(n(r)), fprf(class(n(r))), fi(0), fr(0)

– – – – 0 – – – yes no – – T(n(r)), fprf(class(n(r))), fi(1), fr(0), fx(XX)

– – – – 0 – – – yes yes – – T(n(r)), fprf(class(n(r))), fi(1), fr(1), fx(XX)

– – – – 1 – – – yes no – – T(n(r)), fprf(class(n(r))), fi(1), fr(0), fx(XX), error()

– – – – 1 – – – yes yes – – T(n(r)), fprf(class(n(r))), fi(1), fr(1), fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – T(n(r)), fprf(class(n(r))), fi(1), fr(?), fx(OX), fx(XX)

– 0 – – 1 – – – – – – – T(n(r)), fprf(class(n(r))), fi(1), fr(?), fx(OX), fx(XX), error()

– 1 – – – – – – – – no – T(n(q)÷β), fprf(class(n(q)÷β)), fi(0), fr(0), fx(OX), error()
– 1 – – – – – – – – yes no T(n(q)÷β), fprf(class(n(q)÷β)), fi(1), fr(0), fx(OX), fx(XX), error()
– 1 – – – – – – – – yes yes T(n(q)÷β), fprf(class(n(q)÷β)), fi(1), fr(1), fx(OX), fx(XX), error()

Explanation:
– The results do not depend on this condition.
class(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 505.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
fi(x) FPSCR.FI is set to the value x.
fprf(x) FPSCR.FPRF is set to the 5-bit value x..
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
β Wrap adjust, where β = 21536 for double-precision and β = 2192 for single-precision.
q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, unbounded exponent range.
r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, bounded exponent range.
v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.
n(x) The value x is is negated by complementing the sign bit of x.
T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.

The contents of the remaining element(s) of VSR[XT] are set to 0.

Table 101.Scalar Floating-Point Final Result with Negation
Power ISA™ I768

Version 3.1
Tiny

– – 0 – – – – – no – – – T(n(r)), fprf(class(n(r))), fi(0), fr(0)

– – 0 – 0 – – – yes no – – T(n(r)), fprf(class(n(r))), fi(1), fr(0), fx(UX), fx(XX)

– – 0 – 0 – – – yes yes – – T(n(r)), fprf(class(n(r))), fi(1), fr(1), fx(UX), fx(XX)

– – 0 – 1 – – – yes no – – T(n(r)), fprf(class(n(r))), fi(1), fr(0), fx(UX), fx(XX), error()

– – 0 – 1 – – – yes yes – – T(n(r)), fprf(class(n(r))), fi(1), fr(1), fx(UX), fx(XX), error()

– – 1 – – – – – yes – no – T(n(q)×β), fprf(class(n(q)×β)), fi(0), fr(0), fx(UX), error()
– – 1 – – – – – yes – yes no T(n(q)×β), fprf(class(n(q)×β)), fi(1), fr(0), fx(UX), fx(XX), error()
– – 1 – – – – – yes – yes yes T(n(q)×β), fprf(class(n(q)×β)), fi(1), fr(1), fx(UX), fx(XX), error()

Case FP
SC

R
.V

E

FP
SC

R
.O

E

FP
SC

R
.U

E

FP
SC

R
.Z

E

FP
SC

R
.X

E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠
v

)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.
class(x) Classifies the floating-point value x as defined in Table 2, “Floating-Point Result Flags,” on page 505.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
fi(x) FPSCR.FI is set to the value x.
fprf(x) FPSCR.FPRF is set to the 5-bit value x..
fr(x) FPSCR.FR is set to the value x.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
β Wrap adjust, where β = 21536 for double-precision and β = 2192 for single-precision.
q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, unbounded exponent range.
r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, bounded exponent range.
v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.
n(x) The value x is is negated by complementing the sign bit of x.
T(x) The value x is placed in element 0 of VSR[XT] in the target precision format.

The contents of the remaining element(s) of VSR[XT] are set to 0.

Table 101.Scalar Floating-Point Final Result with Negation (Continued)
Chapter 7. Vector-Scalar Extension Facility 769

Version 3.1
VSX Scalar Negative Multiply-Add Type-A
Single-Precision XX3-form

xsnmaddasp XT,XA,XB

VSX Scalar Negative Multiply-Add Type-M
Single-Precision XX3-form

xsnmaddmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsnmaddasp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsnmaddmsp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, src2)

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP32(FPSCR.RN, v))

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For xsnmaddasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmaddmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 102, “Actions for xsnmadd(a|m)sp,”
on page 772.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 102, “Actions for xsnmadd(a|m)sp,”
on page 772.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 129 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 137 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.
Power ISA™ I770

Version 3.1
See Table 101, “Scalar Floating-Point Final Result with
Negation,” on page 768.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xsnmaddasp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnmaddmsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 771

Version 3.1
Part 1:
Multiply

src3

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2

–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a

NaN
v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsnmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsnmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsnmaddasp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsnmaddmsp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 102.Actions for xsnmadd(a|m)sp
Power ISA™ I772

Version 3.1
VSX Scalar Negative Multiply-Add
Quad-Precision [using round to Odd] X-form

xsnmaddqp VRT,VRA,VRB (RO=0)
xsnmaddqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRT+32])

src3 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_MULTIPLY_ADD(src1,src3,src2)

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRT+32]
represented in quad-precision format.

Let src3 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1, src2, or src3 is a Signalling NaN, an
Invalid Operation exception occurs and VXSNAN is set to
1.

If src1 is an Infinity value and src3 is a Zero value, or if
src1 is a Zero value and src3 is an Infinity value, an
Invalid Operation exception occurs and VXIMZ is set to
1.

If src2 and the product of src1 and src3 are Infinity
values having opposite signs, an Invalid Operation
exception occurs and VXISI is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src3 is a Signalling NaN, the result is the
Quiet NaN corresponding to src3.

Otherwise, if src3 is a Quiet NaN, the result is src3.

Otherwise, if src1 is an Infinity value and src3 is a Zero
value, or if src1 is a Zero value and src3 is an Infinity
value, the result is the default Quiet NaN[1].

Otherwise, if the product of src1 and src3, and src2
are Infinity values having opposite signs, the result is
the default Quiet NaN.

Otherwise, do the following.
src1 is multiplied by src3, producing a product
having unbounded significand precision and
exponent range.

See part 1 of Table 83. "Actions for
xsmadd(a|m)dp".

src2 is added to the product, producing a sum
having unbounded range and precision.

See part 2 of Table 83. "Actions for
xsmadd(a|m)dp".

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into VSR[VRT+32] in
quad-precision format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

63 VRT VRA VRB 452 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Chapter 7. Vector-Scalar Extension Facility 773

Version 3.1
If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN VXIMZ VXISI OX UX XX

VSR Data Layout for xsnmaddqp[o]

src1 VSR[VRA+32]

src2 VSR[VRT+32]

src3 VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I774

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity
p ← dQNaN

vximz_flag ← 1
p ← –Infinity

p ← src3
p ← quiet(src3)
vxsnan_flag ← 1

–NZF p ←
Mul(src1,src3)

p ←
Mul(src1,src3)

–Zero
p ← dQNaN

vximz_flag ← 1

p ← +Zero p ← -Zero
p ← dQNaN

vximz_flag ← 1
+Zero p ← –Zero p ← +Zero

+NZF p ←
Mul(src1,src3)

p ←
Mul(src1,src3)

+Infinity p ← –Infinity
p ← dQNaN

vximz_flag ← 1
p ← +Infinity

QNaN p ← src1
p ← src1

vxsnan_flag ← 1

SNaN p ← quiet(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity
v ← dQNaN

vxisi_flag ← 1

v ← src2
v ← quiet(src2)
vxsnan_flag ← 1

–NZF v ← Add(p,src2) v ← p v ← Add(p,src2)

–Zero
v ← src2

v ← –Zero v ← Rezd

v ← src2

+Zero v ← Rezd v ← +Zero

+NZF v ← Add(p,src2) v ← p v ← Add(p,src2)

+Infinity v ← dQNaN
vxisi_flag ← 1

v ← +Infinity

QNaN &
src1 is a NaN

v ← p

v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← src2

v ← quiet(src2)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRT+32].
src3 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
quiet(x) Return a QNaN with the payload of x.
Add(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Mul(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 103.Actions for xsnmaddqp[o]
Chapter 7. Vector-Scalar Extension Facility 775

Version 3.1
VSX Scalar Negative Multiply-Subtract Type-A
Double-Precision XX3-form

xsnmsubadp XT,XA,XB

VSX Scalar Negative Multiply-Subtract Type-M
Double-Precision XX3-form

xsnmsubmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsnmsubadp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsnmsubmdp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v))

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

For xsnmsubadp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmsubmdp, do the following.
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 104.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 104.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 101, “Scalar Floating-Point Final Result with
Negation,” on page 768.

60 T A B 177 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 185 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Power ISA™ I776

Version 3.1
Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xsnmsubadp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnmsubmdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 777

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 For xsnmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XT].

For xsnmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XB].
src3 For xsnmsubadp, the double-precision floating-point value in doubleword element 0 of VSR[XB].

For xsnmsubmdp, the double-precision floating-point value in doubleword element 0 of VSR[XT].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 104.Actions for xsnmsub(a|m)dp
Power ISA™ I778

Version 3.1
VSX Scalar Negative Multiply-Subtract Type-A
Single-Precision XX3-form

xsnmsubasp XT,XA,XB

VSX Scalar Negative Multiply-Subtract Type-M
Single-Precision XX3-form

xsnmsubmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if “xsnmsubasp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

end

if “xsnmsubmsp” then do

 src1 ← bfp_CONVERT_FROM_BFP128(VSR[32×AX+A].dword[0])

 src2 ← bfp_CONVERT_FROM_BFP128(VSR[32×BX+B].dword[0])

 src3 ← bfp_CONVERT_FROM_BFP128(VSR[32×TX+T].dword[0])

end

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP32(FPSCR.RN, v))

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For xsnmsubasp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].

For xsnmsubmsp, do the following.
– Let src1 be the double-precision floating-point

value in doubleword element 0 of VSR[XA].
– Let src2 be the double-precision floating-point

value in doubleword element 0 of VSR[XB].
– Let src3 be the double-precision floating-point

value in doubleword element 0 of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 105, “Actions for xsnmsub(a|m)sp,”
on page 781.

src2 is negated and added[2] to the product, producing
a sum having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 105, “Actions for xsnmsub(a|m)sp,”
on page 781.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element 0 of VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

60 T A B 145 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 153 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 779

Version 3.1
See Table 101, “Scalar Floating-Point Final Result with
Negation,” on page 768.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI VXIMZ

Previous versions of the architecture allowed the contents of doubleword 1 of the result register to be undefined.
However, all processors that support this instruction write 0s into doubleword 1 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xsnmsubasp

src1 VSR[XA].dword[0] unused

src2 VSR[XT].dword[0] unused

src3 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127

VSR Data Layout for xsnmsubmsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

src3 VSR[XT].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I780

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← Rezd v ← –Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← +Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in VSR[XA].dword[0].
src2 For xsnmsubasp, the double-precision floating-point value in VSR[XT].dword[0].

For xsnmsubmsp, the double-precision floating-point value in VSR[XB].dword[0].
src3 For xsnmsubasp, the double-precision floating-point value in VSR[XB].dword[0].

For xsnmsubmsp, the double-precision floating-point value in VSR[XT].dword[0].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 105.Actions for xsnmsub(a|m)sp
Chapter 7. Vector-Scalar Extension Facility 781

Version 3.1
VSX Scalar Negative Multiply-Subtract
Quad-Precision [using round to Odd] X-form

xsnmsubqp VRT,VRA,VRB (RO=0)
xsnmsubqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRT+32])

src3 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))

rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vximz_flag | vxisi_flag

ex_flag ← FPSCR.VE & vx_flag

if ex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRT+32]
represented in quad-precision format.

Let src3 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1, src2, or src3 is a Signalling NaN, an
Invalid Operation exception occurs and VXSNAN is set to
1.

If src1 is an Infinity value and src3 is a Zero value, or if
src1 is a Zero value and src3 is an Infinity value, an
Invalid Operation exception occurs and VXIMZ is set to
1.

If src2 and the product of src1 and src3 are Infinity
values having same signs, an Invalid Operation
exception occurs and VXISI is set to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src3 is a Signalling NaN, the result is the
Quiet NaN corresponding to src3.

Otherwise, if src3 is a Quiet NaN, the result is src3.

Otherwise, if src1 is an Infinity value and src3 is a Zero
value, or if src1 is a Zero value and src3 is an Infinity
value, the result is the default Quiet NaN[1].

Otherwise, if the product of src1 and src3, and src2
are Infinity values having same signs, the result is the
default Quiet NaN.

Otherwise, do the following.
src1 is multiplied by src3, producing a product
having unbounded significand precision and
exponent range.

See part 1 of Table 96. "Actions for xsmsubqp[o]".

src2 is negated and added to the product,
producing a sum having unbounded range and
precision.

See part 2 of Table 96. "Actions for xsmsubqp[o]".

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into VSR[VRT+32] in
quad-precision format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FR and FI are set to 0.

63 VRT VRA VRB 484 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Power ISA™ I782

Version 3.1
If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI
FX VXSNAN VXIMZ VXISI OX UX XX

VSR Data Layout for xsnmsubqp[o]

src1 VSR[VRA+32]

src2 VSR[VRT+32]

src3 VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 783

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity
p ← dQNaN

vximz_flag ← 1
p ← –Infinity

p ← src3
p ← quiet(src3)
vxsnan_flag ← 1

–NZF p ←
Mul(src1,src3)

p ← +Zero p ← –Zero

p ←
Mul(src1,src3)

–Zero
p ← dQNaN

vximz_flag ← 1

p ← +Zero p ← –Zero
p ← dQNaN

vximz_flag ← 1
+Zero p ← –Zero

p ← –Zero p ← +Zero

p ← +Zero

+NZF p ←
Mul(src1,src3)

p ←
Mul(src1,src3)

+Infinity p ← –Infinity
p ← dQNaN

vximz_flag ← 1
p ← +Infinity

QNaN p ← src1
p ← src1

vxsnan_flag ← 1

SNaN p ← quiet(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1

v ← –Infinity

v ← src2
v ← quiet(src2)
vxsnan_flag ← 1

–NZF v ← sub(p,src2) v ← p v ← sub(p,src2)

–Zero
v ← –src2

v ← Rezd v ← –Zero

v ← –src2

+Zero v ← +Zero v ← Rezd

+NZF v ← sub(p,src2) v ← p v ← sub(p,src2)

+Infinity v ← +Infinity
v ← dQNaN

vxisi_flag ← 1

QNaN &
src1 is a NaN

v ← p

v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← src2

v ← quiet(src2)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRT+32].
src3 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
quiet(x) Return a QNaN with the payload of x.
sub(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
Mul(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 106.Actions for xsnmsubqp[o]
Power ISA™ I784

Version 3.1
VSX Scalar Round to Double-Precision Integer
using round to Nearest Away XX2-form

xsrdpi XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_NEAR_AWAY(src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← 0b0

FPSCR.FI ← 0b0

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round to Nearest Away.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 73 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsrdpi

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 785

Version 3.1
VSX Scalar Round to Double-Precision Integer
exact using Current rounding mode XX2-form

xsrdpic XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

if FPSCR.RN=0b00 then

 rnd ← bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)

if FPSCR.RN=0b01 then

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

if FPSCR.RN=0b10 then

 rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

if FPSCR.RN=0b11 then

 rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if xx_flag=1 then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
specified by RN.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered
FPRF FR FI FX XX VXSNAN

60 T /// B 107 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsrdpic

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I786

Version 3.1
VSX Scalar Round to Double-Precision Integer
using round toward -Infinity XX2-form

xsrdpim XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← 0b0

FPSCR.FI ← 0b0

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward -Infinity.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 121 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsrdpim

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 787

Version 3.1
VSX Scalar Round to Double-Precision Integer
using round toward +Infinity XX2-form

xsrdpip XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← 0b0

FPSCR.FI ← 0b0

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward +Infinity.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 105 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsrdpip

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I788

Version 3.1
VSX Scalar Round to Double-Precision Integer
using round toward Zero XX2-form

xsrdpiz XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

end

FPSCR.FR ← 0b0

FPSCR.FI ← 0b0

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to an integer using the rounding mode
Round toward Zero.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to 0. FI is set to 0.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

Special Registers Altered
FPRF FR=0b0 FI=0b0 FX VXSNAN

60 T /// B 89 BX TX
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xsrdpiz

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 789

Version 3.1
VSX Scalar Reciprocal Estimate
Double-Precision XX2-form

xsredp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

v ← bfp_RECIPROCAL_ESTIMATE(src)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if zx_flag=1 then SetFX(FPSCR.ZX)

vex_flag ← FPSCR.VE & vxsnan_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← 0bU

 FPSCR.FI ← 0bU

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A double-precision floating-point estimate of the
reciprocal of src is placed into doubleword element 0
of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative error in
precision no greater than one part in 16384 of the
reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to an undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU
FX OX UX XX=0bU VXSNAN

60 T /// B 90 BX TX
0 6 11 16 21 30 31

estimate
1

src
----------–

1
src

1

16384
------------------≤

Source Value Result Exception
–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsredp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I790

Version 3.1
VSX Scalar Reciprocal Estimate
Single-Precision XX2-form

xsresp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[VRB+32].dword[0])

v ← bfp_RECIPROCAL_ESTIMATE(src)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if 0bU then SetFX(FPSCR.XX)

if zx_flag=1 then SetFX(FPSCR.ZX)

vex_flag ← FPSCR.VE & vxsnan_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← 0bU

 FPSCR.FI ← 0bU

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A single-precision floating-point estimate of the
reciprocal of src is placed into doubleword element 0
of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, the result of a trap-disabled Overflow
exception, or a QNaN, the estimate has a relative error
in precision no greater than one part in 16384 of the
reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to an
undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU
FX OX UX ZX XX=0bU VXSNAN

60 T /// B 26 BX TX
0 6 11 16 21 30 31

estimate
1

src
----------–

1
src

1

16384
------------------≤

Source Value Result Exception

–Infinity –Zero None

–Zero –Infinity1 ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1. No result if ZE=1.
2. No result if VE=1.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note
Chapter 7. Vector-Scalar Extension Facility 791

Version 3.1
VSR Data Layout for xsresp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I792

Version 3.1
VSX Scalar Round to Quad-Precision Integer
[with Inexact] Z23-form

xsrqpi R,VRT,VRB,RMC (EX=0)
xsrqpix R,VRT,VRB,RMC (EX=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if R=0 then do

 if RMC=0b00 then // Round to Nearest Away

 rmode ← 0b100

 if RMC=0b11 then do

 if FPSCR.RN=0b00 then // Round to Nearest Even

 rmode ← 0b000

 if FPSCR.RN=0b01 then // Round towards Zero

 rmode ← 0b001

 if FPSCR.RN=0b10 then // Round towards +Infinity

 rmode ← 0b010

 if FPSCR.RN=0b11 then // Round towards -Infinity

 rmode ← 0b011

 end

end

else do // R=1

 if RMC=0b00 then // Round to Nearest Even

 rmode ← 0b000

 if RMC=0b01 then // Round towards Zero

 rmode ← 0b001

 if RMC=0b10 then // Round towards +Infinity

 rmode ← 0b010

 if RMC=0b11 then // Round towards -Infinity

 rmode ← 0b011

end

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

if src.class.SNaN then do

 result ← bfp128_CONVERT_FROM_BFP(bfp_QUIET(src))

 vxsnan_flag ← 1

end

else if src.class.QNaN |

 src.class.Infinity |

 src.class.Zero then

 result ← bfp128_CONVERT_FROM_BFP(src)

else do

 rnd ← bfp_ROUND_TO_INTEGER(rmode, src)

 result ← bfp128_CONVERT_FROM_BFP(rnd)

end

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if xx_flag & EX then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← EX & (vxsnan_flag=0) & inc_flag

FPSCR.FI ← EX & (vxsnan_flag=0) & xx_flag

Let R and RMC specify the rounding mode as follows.

Let src be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If src is a Signalling NaN, an Invalid Operation
exception occurs, VXSNAN is set to 1, and the result is
the Quiet NaN corresponding to the Signalling NaN.

Otherwise, if src is a Quiet NaN, an Infinity, or a Zero,
then the result is src.

Otherwise, src is rounded to an integer using the
rounding mode rmode.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result.

For xsrqpi, FR is set to 0, FI is set to 0, and XX is not
set by an Inexact exception.

For xsrqpix, FR is set to indicate if the result was
incremented when rounded, FI is set to indicate the
result is inexact, and XX is set by an Inexact exception.

If a trap-disabled Invalid Operation exception occurs,
FPRF is set to an undefined value.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified.

Special Registers Altered:
FPRF VXSNAN FX
FR (set to 0) FI (set to 0) (if xsrqpi)
FR FI XX . (if xsrqpix)

63 VRT /// R VRB RMC 5 EX
0 6 11 15 16 21 23 31

R R
M

C

FP
SC

R
.R

N

Rounding Mode
0 00 – Round to Nearest Away
0 01 – reserved
0 10 – reserved
0 11 00 Round to Nearest Even
0 11 01 Round towards Zero
0 11 10 Round towards +Infinity
0 11 11 Round towards -Infinity
1 00 – Round to Nearest Even
1 01 – Round towards Zero
1 10 – Round towards +Infinity
1 11 – Round towards -Infinity
Chapter 7. Vector-Scalar Extension Facility 793

Version 3.1
VSR Data Layout for xsrqpi

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I794

Version 3.1
VSX Scalar Round Quad-Precision to
Double-Extended-Precision Z23-form

xsrqpxp R,VRT,VRB,RMC

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

if R=0 then do

 if RMC=0b00 then // Round to Nearest Away

 rmode ← 0b100

 if RMC=0b11 then do

 if FPSCR.RN=0b00 then // Round to Nearest Even

 rmode ← 0b000

 if FPSCR.RN=0b01 then // Round towards Zero

 rmode ← 0b001

 if FPSCR.RN=0b10 then // Round towards +Infinity

 rmode ← 0b010

 if FPSCR.RN=0b11 then // Round towards -Infinity

 rmode ← 0b011

 end

end

else do // R=1

 if RMC=0b00 then // Round to Nearest Even

 rmode ← 0b000

 if RMC=0b01 then // Round towards Zero

 rmode ← 0b001

 if RMC=0b10 then // Round towards +Infinity

 rmode ← 0b010

 if RMC=0b11 then // Round towards -Infinity

 rmode ← 0b011

end

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

rnd ← bfp_ROUND_TO_BFP80(rmode,src)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vxsnan_flag=0) & inc_flag

FPSCR.FI ← (vxsnan_flag=0) & xx_flag

Let R and RMC specify the rounding mode as follows.

Let src be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If src is a Signalling NaN, an Invalid Operation
exception occurs, VXSNAN is set to 1, and the result is
the Quiet NaN corresponding to the Signalling NaN,
with the significand truncated to
double-extended-precision.

Otherwise, if src is a Quiet NaN, then the result is src
with the significand truncated to
double-extended-precision.

Otherwise, if src is an Infinity or a Zero, the result is
src.

Otherwise, src is rounded to double-extended
precision (i.e., 15-bit exponent range and 64-bit
significand precision) using the specified rounding
mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FPRF is set to an undefined value, and FR and FI are set
to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

63 VRT /// R VRB RMC 37 /
0 6 11 15 16 21 23 31

R R
M

C

FP
SC

R
.R

N

Rounding Mode
0 00 – Round to Nearest Away
0 01 – reserved
0 10 – reserved
0 11 00 Round to Nearest Even
0 11 01 Round to Zero
0 11 10 Round to +Infinity
0 11 11 Round to -Infinity
1 00 – Round to Nearest Even
1 01 – Round to Zero
1 10 – Round to +Infinity
1 11 – Round to -Infinity
Chapter 7. Vector-Scalar Extension Facility 795

Version 3.1
Special Registers Altered:
FPRF FR FI FX VXSNAN OX UX XX

VSR Data Layout for xsrqpxp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Power ISA™ I796

Version 3.1
VSX Scalar Round to Single-Precision
XX2-form

xsrsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,src)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vex_flag ← FPSCR.VE & vxsnan_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src is rounded to single-precision using the rounding
mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified.

Special Registers Altered
FPRF FR FI FX OX UX XX VXSNAN

60 T /// B 281 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsrsp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 797

Version 3.1
VSX Scalar Reciprocal Square Root Estimate
Double-Precision XX2-form

xsrsqrtedp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_RECIPROCAL_SQUARE_ROOT_ESTIMATE(src)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

if zx_flag=1 then SetFX(FPSCR.ZX)

vx_flag ← vxsnan_flag | vxsqrt_flag

vex_flag ← FPSCR.VE & vx_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← 0bU

 FPSCR.FI ← 0bU

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A double-precision floating-point estimate of the
reciprocal square root of src is placed into doubleword
element 0 of VSR[XT] in double-precision format.

Unless the reciprocal of the square root of src would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
16384 of the reciprocal of the square root of src. That
is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to an undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU
FX XX=0bU VXSNAN VXSQRT

60 T /// B 74 BX TX
0 6 11 16 21 30 31

estimate
1

src
---------------–

1

src

--
1

16384
----------------≤

Source Value Result Exception
–Infinity QNaN1

1. No result if VE=1.

VXSQRT

–Finite QNaN1 VXSQRT

–Zero –Infinity2

2. No result if ZE=1.

ZX

+Zero +Infinity2 ZX

+Infinity +Zero None

SNaN QNaN1 VXSNAN

QNaN QNaN None

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xsrsqrtedp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I798

Version 3.1
VSX Scalar Reciprocal Square Root Estimate
Single-Precision XX2-form

xsrsqrtesp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_RECIPROCAL_SQUARE_ROOT_ESTIMATE(src)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if 0bU then SetFX(FPSCR.XX)

if zx_flag=1 then SetFX(FPSCR.ZX)

vx_flag ← vxsnan_flag | vxsqrt_flag

vex_flag ← FPSCR.VE & vx_flag

zex_flag ← FPSCR.ZE & zx_flag

if vex_flag=0 & zex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← 0bU

 FPSCR.FI ← 0bU

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

A single-precision floating-point estimate of the
reciprocal square root of src is placed into doubleword
element 0 of VSR[XT] in double-precision format.

Unless the reciprocal of the square root of src would
be a zero, an infinity, or a QNaN, the estimate has a
relative error in precision no greater than one part in
16384 of the reciprocal of the square root of src. That
is,

Operation with various special values of the operand is
summarized below.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to an
undefined value. FI is set to an undefined value.

If a trap-enabled invalid operation exception or a
trap-enabled zero divide exception occurs, VSR[XT] and
FPRF are not modified.

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FPRF FR=0bU FI=0bU
FX OX UX ZX XX=0bU VXSNAN VXSQRT

60 T /// B 10 BXTX
0 6 11 16 21 30 31

estimate 1

src
---------------–

1

src

1

16384
----------------≤

Source Value Result Exception

–Infinity QNaN1

1. No result if VE=1.

VXSQRT

–Finite QNaN1 VXSQRT

–Zero –Infinity2

2. No result if ZE=1.

ZX

+Zero +Infinity2 ZX

+Infinity +Zero None

SNaN QNaN1 VXSNAN

QNaN QNaN None

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note
Chapter 7. Vector-Scalar Extension Facility 799

Version 3.1
VSR Data Layout for xsrsqrtesp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Power ISA™ I800

Version 3.1
VSX Scalar Square Root Double-Precision
XX2-form

xssqrtdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_SQUARE_ROOT(src)

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxsqrt_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 107.

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI FX XX VXSNAN VXSQRT

60 T /// B 75 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xssqrtdp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 801

Version 3.1
src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag←1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src

v ← Q(src)
vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
SQRT(x) The unbounded-precision square root of the floating-point value x.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 107.Actions for xssqrtdp
Power ISA™ I802

Version 3.1
VSX Scalar Square Root Quad-Precision
[using round to Odd] X-form

xssqrtqp VRT,VRB (RO=0)
xssqrtqpo VRT,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_SQUARE_ROOT(src)

rnd ← bfp_ROUND_TO_BFP128(RO,FPSCR.RN,v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxsqrt_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If src is a Signalling NaN, an Invalid Operation
exception occurs and VXSNAN is set to 1.

If src is a negative, non-zero value, an Invalid
Operation exception occurs and VXSQRT is set to 1.

If src is a Signalling NaN, the result is the Quiet NaN
corresponding to src.

Otherwise, if src is a Quiet NaN, the result is src.

Otherwise, if src is a negative value, the result is the
default Quiet NaN[1].

Otherwise, do the following.
The normalized square root of src is produced
with unbounded significand precision and
exponent range.

See Table 108, “Actions for xssqrtqp[o],” on
page 804.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Section 7.3.2.6, “Rounding” on page 518 for a
description of rounding modes.

If there is loss of precision, an Inexact exception
occurs.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FPRF is set to an undefined value, and FR and FI are set
to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI FX VXSNAN VXSQRT XX

63 VRT 27 VRB 804 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.

VSR Data Layout for xssqrtqp[o]

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 803

Version 3.1
src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1

v ← +Zero v ← +Zero v ← sqrt(src) v ← +Infinity v ← src v ← quiet(src)
vxsnan_flag ← 1

Explanation:
src The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
sqrt(x) Return the normalized1 square root of floating-point value x, having unbounded significand precision and exponent range.
quiet(x) Convert x to the corresponding Quiet NaN.
v The intermediate result having unbounded significand precision and unbounded exponent range.

1. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

Table 108. Actions for xssqrtqp[o]
Power ISA™ I804

Version 3.1
VSX Scalar Square Root Single-Precision
XX2-form

xssqrtsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_SQUARE_ROOT(src)

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxsqrt_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 107.

The intermediate result is rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT] in double-precision format.

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXSQRT

60 T /// B 11 BXTX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xssqrtsp

src VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 805

Version 3.1

src

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
SQRT(x) The unbounded-precision and exponent range square root of the floating-point value x.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 109.Actions for xssqrtsp
Power ISA™ I806

Version 3.1
VSX Scalar Subtract Double-Precision
XX3-form

xssubdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_ADD(src1,bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

result ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP64(result)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is negated and added[1] to src1, producing a sum
having unbounded range and precision.

See Table 110.

The sum is normalized[2].

The intermediate result is rounded to double-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result. FR is set
to indicate if the result was incremented when
rounded. FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI

60 T A B 40 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xssubdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 807

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
S(x,y) The floating-point value y is negated and then added to the floating-point value x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 110.Actions for xssubdp
Power ISA™ I808

Version 3.1
VSX Scalar Subtract Quad-Precision [using
round to Odd] X-form

xssubqp VRT,VRA,VRB (RO=0)
xssubqpo VRT,VRA,VRB (RO=1)

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP128(VSR[VRA+32])

src2 ← bfp_CONVERT_FROM_BFP128(VSR[VRB+32])

v ← bfp_ADD(src1, bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP128(RO,FPSCR.RN,v)

result ← bfp128_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[VRT+32] ← result

 FPSCR.FPRF ← fprf_CLASS_BFP128(result)

end

FPSCR.FR ← (vx_flag=0) & inc_flag

FPSCR.FI ← (vx_flag=0) & xx_flag

Let src1 be the floating-point value in VSR[VRA+32]
represented in quad-precision format.

Let src2 be the floating-point value in VSR[VRB+32]
represented in quad-precision format.

If either src1 or src2 is a Signalling NaN, an Invalid
Operation exception occurs and VXSNAN is set to 1.

If src1 and src2 are Infinity values having same signs,
an Invalid Operation exception occurs and VXISI is set
to 1.

If src1 is a Signalling NaN, the result is the Quiet NaN
corresponding to src1.

Otherwise, if src1 is a Quiet NaN, the result is src1.

Otherwise, if src2 is a Signalling NaN, the result is the
Quiet NaN corresponding to src2.

Otherwise, if src2 is a Quiet NaN, the result is src2.

Otherwise, if src1 and src2 are Infinity values having
same signs, the result is the default Quiet NaN[1].

Otherwise, do the following.
The normalized sum of the negation of src2 added
to src1 is produced with unbounded significand
precision and exponent range.

See Table 111, “Actions for xssubqp[o],” on
page 810.

If the intermediate result is Tiny (i.e., the unbiased
exponent is less than -16382) and UE=0, the
significand is shifted right N bits, where N is the
difference between -16382 and the unbiased
exponent of the intermediate result. The exponent
of the intermediate result is set to the value
-16382.

If RO=1, let the rounding mode be Round to Odd.
Otherwise, let the rounding mode be specified by
RN. Unless the result is an Infinity or a Zero, the
intermediate result is rounded to quad-precision
using the specified rounding mode.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into VSR[VRT+32] in quad-precision
format.

FPRF is set to the class and sign of the result. FR is set
to indicate if the rounded result was incremented. FI is
set to indicate the result is inexact.

If a trap-disabled Invalid Operation exception occurs,
FPRF is set to an undefined value, and FR and FI are set
to 0.

If a trap-enabled Invalid Operation exception occurs,
VSR[VRT+32] and FPRF are not modified, and FR and FI
are set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered:
FPRF FR FI FX VXSNAN VXISI OX UX XX

63 VRT VRA VRB 516 RO
0 6 11 16 21 31

1. The quad-precision default Quiet NaN is the value, 0x7FFF_8000_0000_0000_0000_0000_0000.
Chapter 7. Vector-Scalar Extension Facility 809

Version 3.1
VSR Data Layout for xssubqp[o]

src1 VSR[VRA+32]

src2 VSR[VRB+32]

tgt VSR[VRT+32]

0 127

src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1

v ← -Infinity

v ← src2

-NZF v ← sub(src1,src2) v ← src1 v ← sub(src1,src2)

-Zero
v ← src2

v ← Rezd v ← -Zero

v ← src2

+Zero v ← +Zero v ← Rezd
v ← quiet(src2)
vxsnan_flag ← 1

+NZF v ← sub(src1,src2) v ← src1 v ← sub(src1,src2)

+Infinity v ← +Infinity
v ← dQNaN

vxisi_flag ← 1

QNaN v ← src1
v ← src1

vxsnan_flag ← 1

SNaN v ← quiet(src1)
vxsnan_flag ← 1

Explanation:
src1 The quad-precision floating-point value in VSR[VRA+32].
src2 The quad-precision floating-point value in VSR[VRB+32].
dQNaN Default quiet NaN (0x7FFF_8000_0000_0000_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (subtraction of two finite numbers having same magnitude and signs).
sub(x,y) Return the normalized difference of floating-point value x and floating-point value y, having unbounded significand precision and

exponent range.
Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).

quiet(x) Convert x to the corresponding Quiet NaN.
v The intermediate result having unbounded significand precision and unbounded exponent range.

Table 111. Actions for xssubqp[o]
Power ISA™ I810

Version 3.1
VSX Scalar Subtract Single-Precision
XX3-form

xssubsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_xflags()

src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[0])

src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[0])

v ← bfp_ADD(src1,bfp_NEGATE(src2))

rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

result32 ← bfp32_CONVERT_FROM_BFP(rnd)

result64 ← bfp64_CONVERT_FROM_BFP(rnd)

if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

if vxisi_flag=1 then SetFX(FPSCR.VXISI)

if ox_flag=1 then SetFX(FPSCR.OX)

if ux_flag=1 then SetFX(FPSCR.UX)

if xx_flag=1 then SetFX(FPSCR.XX)

vx_flag ← vxsnan_flag | vxisi_flag

vex_flag ← FPSCR.VE & vx_flag

if vex_flag=0 then do

 VSR[32×TX+T].dword[0] ← result64

 VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

 FPSCR.FPRF ← fprf_CLASS_BFP32(result32)

 FPSCR.FR ← inc_flag

 FPSCR.FI ← xx_flag

end

else do

 FPSCR.FR ← 0b0

 FPSCR.FI ← 0b0

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

src2 is negated and added[1] to src1, producing the
sum, v, having unbounded range and precision.

See Table 112, “Actions for xssubsp,” on page 812.

v is normalized[2] and rounded to single-precision
using the rounding mode specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element 0 of
VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
set to 0.

FPRF is set to the class and sign of the result as
represented in single-precision format. FR is set to
indicate if the result was incremented when rounded.
FI is set to indicate the result is inexact.

If a trap-enabled invalid operation exception occurs,
VSR[XT] and FPRF are not modified, and FR and FI are
set to 0.

See Table 63, “VSX Scalar Floating-Point Final
Result,” on page 662.

Special Registers Altered
FPRF FR FI
FX OX UX XX VXSNAN VXISI

60 T A B 8 AX BX TX
0 6 11 16 21 30 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an
intermediate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the number
of bits the significand was shifted.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

VSR Data Layout for xssubsp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

tgt VSR[XB].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 811

Version 3.1
src2

-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element 0 of VSR[XA].
src2 The double-precision floating-point value in doubleword element 0 of VSR[XB].
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
S(x,y) The floating-point value y is negated and then added to the floating-point value x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 112.Actions for xssubsp
Power ISA™ I812

Version 3.1
VSX Scalar Test for software Divide
Double-Precision XX3-form

xstdivdp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[32×AX+A].dword[0]

src2 ← VSR[32×BX+B].dword[0]

e_a ← src1.bit[1:11] - 1023

e_b ← src2.bit[1:11] - 1023

fe_flag ← IsNaN(src1) | IsInf(src1) |

 IsNaN(src2) | IsInf(src2) | IsZero(src2) |

 (e_b <= -1022) |

 (e_b >= 1021) |

 (!IsZero(src1) & ((e_a - e_b) >= 1023)) |

 (!IsZero(src1) & ((e_a - e_b) <= -1021)) |

 (!IsZero(src1) & (e_a <= -970))

fg_flag ← IsInf(src1) | IsInf(src2) |

 IsZero(src2) | IsDen(src2)

fl_flag ← xsredp_error() <= 2-14

CR[BF] ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let src1 be the double-precision floating-point value in
doubleword element 0 of VSR[XA].

Let src2 be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

Let e_a be the unbiased exponent of src1.
Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following conditions.
– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -1022.
– e_b is greater than or equal to 1021.
– src1 is not a zero and the difference, e_a - e_b, is

greater than or equal to 1023.
– src1 is not a zero and the difference, e_a - e_b, is

less than or equal to -1021.
– src1 is not a zero and e_a is less than or equal to

-970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 for any of the following conditions.
– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized value.

Otherwise fg_flag is set to 0.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

60 BF // A B 61 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xstdivdp

src1 VSR[XA].dword[0] unused

src2 VSR[XB].dword[0] unused

0 64 127
Chapter 7. Vector-Scalar Extension Facility 813

Version 3.1
VSX Scalar Test for software Square Root
Double-Precision XX2-form

xstsqrtdp BF,XB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

e_b ← src.bit[1:11] - 1023

fe_flag ← IsNaN(src) | IsInf(src) | IsZero(src) |

 IsNeg(src) | (e_b <= -970)

fg_flag ← IsInf(src) | IsZero(src) | IsDen(src)

fl_flag ← xsrsqrtedp_error() <= 2-14

CR.field[BF] ← 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following conditions.
– src is a zero, a NaN, an infinity, or a negative

value.
– e_b is less than or equal to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 for any of the following conditions.
– src is a zero, an infinity, or a denormalized value.

Otherwise fg_flag is set to 0.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

60 BF // /// B 106 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xstsqrtdp

src2 VSR[XB].dword[0] unused

0 64 127
Power ISA™ I814

Version 3.1
VSX Scalar Test Data Class Double-Precision
XX2-form

xststdcdp BF,XB,DCMX

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

exponent ← src.bit[1:11]

fraction ← src.bit[12:63]

class.Infinity ← (exponent = 0x7FF) & (fraction = 0)

class.NaN ← (exponent = 0x7FF) & (fraction != 0)

class.Zero ← (exponent = 0x000) & (fraction = 0)

class.Denormal ← (exponent = 0x000) & (fraction != 0)

match ← (DCMX.bit[0] & class.NaN) |

 (DCMX.bit[1] & class.Infinity & !sign) |

 (DCMX.bit[2] & class.Infinity & sign) |

 (DCMX.bit[3] & class.Zero & !sign) |

 (DCMX.bit[4] & class.Zero & sign) |

 (DCMX.bit[5] & class.Denormal & !sign) |

 (DCMX.bit[6] & class.Denormal & sign)

CR.bit[4×BF+32] ← FPSCR.FL ← src.sign

CR.bit[4×BF+33] ← FPSCR.FG ← 0b0

CR.bit[4×BF+34] ← FPSCR.FE ← match

CR.bit[4×BF+35] ← FPSCR.FU ← 0b0

Let XB be the sum 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

Bit 0 of CR field BF and bit 0 of FPCC are set to the sign
bit of src.

Bit 1 of CR field BF and bit 1 of FPCC are set to 0b0.

Bit 2 of CR field BF and bit 2 of FPCC are set to indicate
whether the data class of src, as represented in
double-precision format, matches any of the data
classes specified by DCMX (Data Class Mask).

Bit 3 of CR field BF and bit 3 of FPCC are set to 0b0.

Special Registers Altered:
CR field BF
FPCC

60 BF DCMX B 362 BX /
0 6 9 16 21 30 31

DCMX bit Data Class
0 NaN
1 +Infinity
2 -Infinity
3 +Zero
4 -Zero
5 +Denormal
6 -Denormal

VSR Data Layout for xststdcdp

src VSR[XB].dword[0] unused

0 64 127
Chapter 7. Vector-Scalar Extension Facility 815

Version 3.1
VSX Scalar Test Data Class Quad-Precision
X-form

xststdcqp BF,VRB,DCMX

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[VRB+32]

exponent ← src.bit[1:15]

fraction ← src.bit[16:127]

class.Infinity ← (exponent = 0x7FFF) & (fraction = 0)

class.NaN ← (exponent = 0x7FFF) & (fraction != 0)

class.Zero ← (exponent = 0x0000) & (fraction = 0)

class.Denormal ← (exponent = 0x0000) & (fraction != 0)

match ← (DCMX.bit[0] & class.NaN) |

 (DCMX.bit[1] & class.Infinity & !sign) |

 (DCMX.bit[2] & class.Infinity & sign) |

 (DCMX.bit[3] & class.Zero & !sign) |

 (DCMX.bit[4] & class.Zero & sign) |

 (DCMX.bit[5] & class.Denormal & !sign) |

 (DCMX.bit[6] & class.Denormal & sign)

CR.bit[4×BF+32] ← FPSCR.FL ← src.sign

CR.bit[4×BF+33] ← FPSCR.FG ← 0b0

CR.bit[4×BF+34] ← FPSCR.FE ← match

CR.bit[4×BF+35] ← FPSCR.FU ← 0b0

Let src be the quad-precision floating-point value in
VSR[VRB+32].

Let the DCMX (Data Class Mask) field specify one or
more of the 7 possible data classes, where each bit
corresponds to a specific data class.

Bit 0 of CR field BF and bit 0 of FPCC are set to the sign
of src.

Bit 1 of CR field BF and bit 1 of FPCC are set to 0b0.

Bit 2 of CR field BF and bit 2 of FPCC are set to indicate
whether the data class of src, as represented in
quad-precision format, matches any of the data
classes specified by DCM.

Bit 3 of CR field BF and bit 3 of FPCC are set to 0b0.

Special Registers Altered:
CR field BF
FPCC

63 BF DCMX VRB 708 /
0 6 9 16 21 31

DCM bit Data Class
0 NaN
1 +Infinity
2 -Infinity
3 +Zero
4 -Zero
5 +Denormal
6 -Denormal

VSR Data Layout for xststdcqp

src VSR[VRB+32]

0 127
Power ISA™ I816

Version 3.1
VSX Scalar Test Data Class Single-Precision
XX2-form

xststdcsp BF,XB,DCMX

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

exponent ← src.bit[1:11]

fraction ← src.bit[12:63]

class.Infinity ← (exponent = 0x7FF) & (fraction = 0)

class.NaN ← (exponent = 0x7FF) & (fraction != 0)

class.Zero ← (exponent = 0x000) & (fraction = 0)

class.Denormal ← (exponent = 0x000) & (fraction != 0) |

 (exponent > 0x000) & (exponent < 0x381)

match ← (DCMX.bit[0] & class.NaN) |

 (DCMX.bit[1] & class.Infinity & !sign) |

 (DCMX.bit[2] & class.Infinity & sign) |

 (DCMX.bit[3] & class.Zero & !sign) |

 (DCMX.bit[4] & class.Zero & sign) |

 (DCMX.bit[5] & class.Denormal & !sign) |

 (DCMX.bit[6] & class.Denormal & sign)

not_SP_value ← (src != Convert_SPtoDP(Convert_DPtoSP(src)))

CR.bit[4×BF] ← FPSCR.FL ← src.sign

CR.bit[4×BF+1] ← FPSCR.FG ← 0b0

CR.bit[4×BF+2] ← FPSCR.FE ← match

CR.bit[4×BF+3] ← FPSCR.FU ← not_SP_value

Let XB be the sum 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

Bit 0 of CR field BF and bit 0 of FPCC are set to the sign
bit of src.

Bit 1 of CR field BF and bit 1 of FPCC are set to 0b0.

Bit 2 of CR field BF and bit 2 of FPCC are set to indicate
whether the data class of src, as represented in
single-precision format, matches any of the data
classes specified by DCMX (Data Class Mask).

Bit 3 of CR field BF and bit 3 of FPCC are set to indicate if
src is not representable in single-precision format.

Special Registers Altered:
CR field BF
FPCC

60 BF DCMX B 298 BX /
0 6 9 16 21 30 31

DCMX bit Data Class
0 NaN
1 +Infinity
2 -Infinity
3 +Zero
4 -Zero
5 +Denormal
6 -Denormal

VSR Data Layout for xststdcdp

src VSR[XB].dword[0] unused

0 64 127
Chapter 7. Vector-Scalar Extension Facility 817

Version 3.1
VSX Scalar Extract Exponent
Double-Precision XX2-form

xsxexpdp RT,XB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].dword[0]

GPR[RT] ← (src >> 52) & 0x0000_0000_0000_07FF

Let XB be the sum 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The value of the exponent field in src is placed into
GPR[RT] in unsigned integer format.

Special Registers Altered:
None

VSX Scalar Extract Exponent Quad-Precision
X-form

xsxexpqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[VRB+32]

VSR[VRT+32].dword[0] ← EXTZ64(src.bit[1:15]), 64)

VSR[VRT+32].dword[1] ← 0x0000_0000_0000_0000

Let src be the quad-precision floating-point value in
VSR[VRB+32].

The contents of the exponent field of src (bits 1:15) are
zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

Special Registers Altered:
None

60 RT 0 B 347 BX /
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Programming Note

63 VRT 2 VRB 804 /
0 6 11 16 21 31

VSR Data Layout for xsxexpdp

src VSR[XB].dword[0] unused

tgt GPR[RT]

0 63 127

VSR Data Layout for xsxexpdp

src VSR[VRB+32]

tgt VSR[VRT+32].dword[0] 0x0000_0000_0000_0000

0 63 127
Power ISA™ I818

Version 3.1
VSX Scalar Extract Significand
Double-Precision XX2-form

xsxsigdp RT,XB

if MSR.VSX=0 then VSX_Unavailable()

exponent ← VSR[32×BX+B].bit[1:11]

fraction ← EXTZ64(VSR[32×BX+B].bit[12:63])

if (exponent != 0) & (exponent != 2047) then

 significand ← fraction | 0x0010_0000_0000_0000

else

 significand ← fraction

GPR[RT] ← significand

Let XB be the sum 32×BX + B.

Let src be the double-precision floating-point value in
doubleword element 0 of VSR[XB].

The significand of src is placed into GPR[RT] in
unsigned integer format. If src is a normal value, the
implicit leading bit is set to 1.

Special Registers Altered:
None

VSX Scalar Extract Significand
Quad-Precision X-form

xsxsigqp VRT,VRB

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[VRB+32]

exponent ← EXTZ(src.bit[1:15])

fraction ← EXTZ128(src.bit[16:127])

if (exponent != 0) & (exponent != 32767) then

 VSR[VRT+32] ← fraction |

 0x0001_0000_0000_0000_0000_0000_0000_0000

else

 VSR[VRT+32] ← fraction

Let src be the quad-precision floating-point value in
VSR[VRB+32].

The significand of src is placed into VSR[VRT+32].

If the value of the exponent field of src is equal to
0b000_0000_0000_0000 (i.e., Zero or Denormal value) or
0b111_1111_1111_1111 (i.e., Infinity or NaN), 0b0 is
placed into bit 15 of VSR[VRT+32]. Otherwise (i.e.,
Normal value), 0b1 is placed into bit 15 of VSR[VRT+32].
The contents of bits 0:14 of VSR[VRT+32] are set to 0.

Special Registers Altered:
None

60 RT 1 B 347 BX /
0 6 11 16 21 30 31

This instruction can be used to operate on a
single-precision source operand.

Programming Note

63 VRT 18 VRB 804 /
0 6 11 16 21 31

VSR Data Layout for xsxsigdp

src VSR[XB].dword[0] unused

tgt GPR[RT]

0 64 127

VSR Data Layout for xsxsigqp

src VSR[VRB+32]

tgt VSR[VRT+32]

0 127
Chapter 7. Vector-Scalar Extension Facility 819

Version 3.1
VSX Vector Absolute Double-Precision
XX2-form

xvabsdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 VSR[32×TX+T].dword[i] ← bfp64_ABSOLUTE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 set to 0, is placed into doubleword
element i of VSR[XT].

Special Registers Altered
None

VSX Vector Absolute Single-Precision
XX2-form

xvabssp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 VSR[32×TX+T].word[i] ← bfp32_ABSOLUTE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with bit
0 set to 0, is placed into word element i of
VSR[XT].

Special Registers Altered
None

60 T /// B 473 BX TX
0 6 11 16 21 30 31

60 T /// B 409 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvabsdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127

VSR Data Layout for xvabssp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I820

Version 3.1
VSX Vector Add Double-Precision XX3-form

xvadddp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_ADD(src1,src2)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 113.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 96 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvadddp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 821

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 113.Actions for xvadddp (element i)
Power ISA™ I822

Version 3.1
Case FP
SC

R
.V

E

FP
SC

R
.O

E

FP
SC

R
.U

E

FP
SC

R
.Z

E

FP
SC

R
.X

E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

v
x
i
d
i
_
f
l
a
g

v
x
z
d
z
_
f
l
a
g

v
x
s
q
r
t
_
f
l
a
g

z
x
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠

 v
)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Special

– – – – – 0 0 0 0 0 0 0 – – – – T(r)

– – – 0 – – – – – – – 1 – – – – T(r), fx(ZX)

– – – 1 – – – – – – – 1 – – – – fx(ZX), error()

0 – – – – – – – – – 1 – – – – – T(r), fx(VXSQRT)

0 – – – – – – – – 1 – – – – – – T(r), fx(VXZDZ)

0 – – – – – – – 1 – – – – – – – T(r), fx(VXIDI)

0 – – – – – – 1 – – – – – – – – T(r), fx(VXISI)

0 – – – – 0 1 – – – – – – – – – T(r), fx(VXIMZ)

0 – – – – 1 0 – – – – – – – – – T(r), fx(VXSNAN)

0 – – – – 1 1 – – – – – – – – – T(r), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – – – – 1 – – – – – T(r), fx(VXSQRT)

1 – – – – – – – – 1 – – – – – – fx(VXZDZ), error()

1 – – – – – – – 1 – – – – – – – fx(VXIDI), error()

1 – – – – – – 1 – – – – – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – – – – – no – – – T(r)

– – – – 0 – – – – – – – yes no – – T(r), fx(XX)

– – – – 0 – – – – – – – yes yes – – T(r), fx(XX)

– – – – 1 – – – – – – – yes no – – T(r), fx(XX), error()

– – – – 1 – – – – – – – yes yes – – T(r), fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – – – – – T(r), fx(OX), fx(XX)

– 0 – – 1 – – – – – – – – – – – T(r), fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – no – fx(OX), error()

– 1 – – – – – – – – – – – – yes no fx(OX), fx(XX), error()

– 1 – – – – – – – – – – – – yes yes fx(OX), fx(XX), error()

Explanation:
– The results do not depend on this condition.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, unbounded exponent range.
r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, bounded exponent range.
v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 bits are set to any mode other than the

ignore-exception mode. Update of the target VSR is suppressed for all vector elements.
T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i={0,1} for results with 64-bit elements, and

i = {0,1,3,4}) for results with 32-bit elements).

Table 114.Vector Floating-Point Final Result
Chapter 7. Vector-Scalar Extension Facility 823

Version 3.1
Tiny

– – 0 – – – – – – – – – no – – – T(r)

– – 0 – 0 – – – – – – – yes no – – T(r), fx(UX), fx(XX)

– – 0 – 0 – – – – – – – yes yes – – T(r), fx(UX), fx(XX)

– – 0 – 1 – – – – – – – yes no – – T(r), fx(UX), fx(XX), error()

– – 0 – 1 – – – – – – – yes yes – – T(r), fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – no – fx(UX), error()

– – 1 – – – – – – – – – yes – yes no fx(UX), fx(XX), error()

– – 1 – – – – – – – – – yes – yes yes fx(UX), fx(XX), error()

Case FP
SC

R
.V

E

FP
SC

R
.O

E

FP
SC

R
.U

E

FP
SC

R
.Z

E

FP
SC

R
.X

E

v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

v
x
i
d
i
_
f
l
a
g

v
x
z
d
z
_
f
l
a
g

v
x
s
q
r
t
_
f
l
a
g

z
x
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠

 v
)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Explanation:
– The results do not depend on this condition.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, unbounded exponent range.
r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, bounded exponent range.
v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 bits are set to any mode other than the

ignore-exception mode. Update of the target VSR is suppressed for all vector elements.
T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i={0,1} for results with 64-bit elements, and

i = {0,1,3,4}) for results with 32-bit elements).

Table 114.Vector Floating-Point Final Result (Continued)
Power ISA™ I824

Version 3.1
VSX Vector Add Single-Precision XX3-form

xvaddsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_ADD(src1,src2)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src2 is added[1] to src1, producing a sum having
unbounded range and precision.

The sum is normalized[2].

See Table 115.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 64 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvaddsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 825

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← -Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← -Infinity v ← src2 v ← -Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← -Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← -Infinity v ← A(src1,src2) v ← src1 v ← src1 v ← A(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 115.Actions for xvaddsp (element i)
Power ISA™ I826

Version 3.1
VSX Vector bfloat16 GER (rank-2 update)
XX3-form

xvbf16ger2 AT,XA,XB

VSX Vector bfloat16 GER (rank-2
update) Positive multiply,
Positive accumulate XX3-form

xvbf16ger2pp AT,XA,XB

VSX Vector bfloat16 GER (rank-2
update) Positive multiply,
Negative accumulate XX3-form

xvbf16ger2pn AT,XA,XB

VSX Vector bfloat16 GER (rank-2
update) Negative multiply,
Positive accumulate XX3-form

xvbf16ger2np AT,XA,XB

VSX Vector bfloat16 GER (rank-2
update) Negative multiply,
Negative accumulate XX3-form

xvbf16ger2nn AT,XA,XB

Prefixed Masked VSX Vector bfloat16 GER
(rank-2 update) MMIRR:XX3-form

pmxvbf16ger2 AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector bfloat16 GER
(rank-2 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

pmxvbf16ger2pp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector bfloat16 GER
(rank-2 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

pmxvbf16ger2pn AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector bfloat16 GER
(rank-2 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

pmxvbf16ger2np AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector bfloat16 GER
(rank-2 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

pmxvbf16ger2nn AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

59 AT // A B 51 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 50 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 178 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 114 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 242 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 51 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 50 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 178 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 114 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 242 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 827

Version 3.1
if MSR.VSX=0 then VSX_Unavailable()

if “xvbf16ger2” | “xvbf16ger2pp” | “xvbf16ger2pn” | “xvbf16ger2np” | “xvbf16ger2nn” then do

 PMSK ← 0b11 // enable all rank updates

 XMSK ← 0b1111 // enable all ACC[AT] rows

 YMSK ← 0b1111 // enable all ACC[AT] columns

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i]=1 & YMSK.bit[j]=1 then do

 src11 ← (PMSK.bit[0]=0) ? bfp_ZERO : bfp_CONVERT_FROM_BFLOAT16(VSR[32×AX+A].word[i].hword[0])

 src21 ← (PMSK.bit[0]=0) ? bfp_ZERO : bfp_CONVERT_FROM_BFLOAT16(VSR[32×BX+B].word[j].hword[0])

 src12 ← (PMSK.bit[1]=0) ? bfp_ZERO : bfp_CONVERT_FROM_BFLOAT16(VSR[32×AX+A].word[i].hword[1])

 src22 ← (PMSK.bit[1]=0) ? bfp_ZERO : bfp_CONVERT_FROM_BFLOAT16(VSR[32×BX+B].word[j].hword[1])

 reset_flags()

 p1 ← bfp_MULTIPLY(src11, src21)

 v1 ← bfp_MULTIPLY_ADD(src12, src22, p1)

 r1 ← bfp_ROUND_TO_BFP32_SIGNIFICAND(v1)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 if “[pm]xvbf16ger2” then do

 reset_flags()

 r2 ← bfp_ROUND_TO_BFP32_NO_TRAP(r1)

 ACC[AT][i].word[j] ← bfp32_CONVERT_FROM_BFP(r2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

 else do

 acc ← bfp_CONVERT_FROM_BFP32(ACC[AT][i].word[j])

 reset_flags()

 if “[pm]xvbf16ger2pp” then v ← bfp_ADD(r1, acc)

 if “[pm]xvbf16ger2pn” then v ← bfp_ADD(r1, bfp_NEGATE(acc))

 if “[pm]xvbf16ger2np” then v ← bfp_ADD(bfp_NEGATE(r1), acc)

 if “[pm]xvbf16ger2nn” then v ← bfp_ADD(bfp_NEGATE(r1), bfp_NEGATE(acc))

 r2 ← bfp_ROUND_TO_BFP32_NO_TRAP(v)

 ACC[AT][i].word[j] ← bfp32_CONVERT_FROM_BFP(r2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end
Power ISA™ I828

Version 3.1
Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of single-precision floating-point values.

For xvbf16ger2, xvbf16ger2pp, xvbf16ger2pn, xvbf16ger2np, or xvbf16ger2nn, let PMSK=0b11, XMSK=0b1111, and
YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let src10 be the bfloat16 floating-point value in halfword 0 of word element i of
VSR[XA] and let src20 be the bfloat16 floating-point value in halfword 0 of word element j of VSR[XB].
Otherwise, let src10 be the value 0.0 and let src20 be the value 0.0, causing the product of src10 and src20
to be 0.0.

If bit 1 of PMSK is equal to 1, let src11 be the bfloat16 floating-point value in halfword 1 of word element i of
VSR[XA] and let src21 be the bfloat16 floating-point value in halfword 1 of word element j of VSR[XB].
Otherwise, let src11 be the value 0.0 and let src21 be the value 0.0, causing the product of src11 and src21
to be 0.0.

Let prod be the product of src10 and src20, having infinite precision and unbounded exponent range.

Let psum be the sum of the product, src11 multiplied by src21, and prod, having infinite precision and
unbounded exponent range.

Let r1 be the value psum with its significand rounded to 24-bit precision using the rounding mode specified
by RN, but retaining unbounded exponent range (i.e., cannot overflow or underflow).

For [pm]xvbf16ger2, do the following.
Let r2 be the value r1 rounded to 24-bit significand precision and 8-bit exponent range (i.e.,
single-precision) using the rounding mode specified by RN.

r2 is placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvbf16ger2pp, do the following.
Let v2 be the sum of r1 added to the single-precision floating-point value in word element j of
ACC[AT][i], having infinite precision and unbounded exponent range.

Let r2 be the value v2 rounded to 24-bit significand precision and 8-bit exponent range (i.e.,
single-precision) using the rounding mode specified by RN.

r2 is placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvbf16ger2pn, do the following.
Let v2 be the sum of r2 added to the negation of the single-precision floating-point value in word
element j of ACC[AT][i], having infinite precision and unbounded exponent range.

Let r2 be the value v2 rounded to 24-bit significand precision and 8-bit exponent range (i.e.,
single-precision) using the rounding mode specified by RN.

r2 is placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvbf16ger2np, do the following.
Let v2 be the sum of the negation of r2 added to the single-precision floating-point value in word
element j of ACC[AT][i], having infinite precision and unbounded exponent range.

Let r3 be the value v3 rounded to 24-bit significand precision and 8-bit exponent range (i.e.,
single-precision) using the rounding mode specified by RN.

r2 is placed into word element j of ACC[AT][i] in single-precision floating-point format.
Chapter 7. Vector-Scalar Extension Facility 829

Version 3.1
For [pm]xvbf16ger2nn, do the following.
Let v2 be the sum of the negation of r2 added to the negation of the single-precision floating-point
value in word element j of ACC[AT][i], having infinite precision and unbounded exponent range.

Let r2 be the value v3 rounded to 24-bit significand precision and 8-bit exponent range (i.e.,
single-precision) using the rounding mode specified by RN.

r2 is placed into word element j of ACC[AT][i] in single-precision floating-point format.

Otherwise, the contents of word element j of ACC[AT][i] are set to 0x0000_0000.

Unlike other VSX Vector Floating-Point instructions, ACC[AT] is always updated by the execution of the instruction,
even when a trap-enabled exception occurs. For every rounding operation that is performed as part of the execution
of this instruction, if an exception occurs as the result of that particular rounding operation, the trap-disabled
exception result is returned, even if that exception type is trap-enabled. Exception detection is based on the
trap-disabled definition. Exception status is accumulated and the appropriate exception status bits in the FPSCR are
updated at the completion of execution of the instruction. Otherwise, behavior is the same as any vector
floating-point instruction that can cause an exception. Taking a Program interrupt on a trap-enabled exception when
interrupts are enabled by MSR.FE0 and MSR.FE1 is still supported, albeit with the ACC[AT] updated based on a
trap-disabled result.

Special Registers Altered:
FX VXSNAN VXIMZ VXISI OX UX XX

Register Operand Data Layout for [pm]xvbf16ger2[pp|pn|np|nn]

VSR[XA] X[0][0] X[0][1] X[1][0] X[1][1] X[2][0] X[2][1] X[3][0] X[3][1]

VSR[XB] Y[0][0] Y[0][1] Y[1][0] Y[1][1] Y[2][0] Y[2][1] Y[3][0] Y[3][1]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 16 32 48 64 80 96 112 127
Power ISA™ I830

Version 3.1
Let X be the 4×2 matrix of bfloat16 floating-point values contained in VSR[XA] in row-major format.
Let Y be the 4×2 matrix of bfloat16 floating-point values contained in VSR[XB] in row-major format.
Let ACC[AT] be the accumulator containing a 4×4 matrix of single-precision floating-point values.

[pm]xvbf16ger2 performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fmadds(X[i][1],Y[j][1],fmulsx(X[i][0],Y[j][0]))

where fmulsx() is equivalent to a fmuls instruction that rounds the significand of its result to single-precision but
retains an exponent having unbounded range.

[pm]xvbf16ger2pp performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fadds(fmadds(X[i][1],Y[j][1],fmulsx(X[i][0],Y[j][0])), ACC[AT][i][j])

[pm]xvbf16ger2pn performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fsubs(fmadds(X[i][1],Y[j][1],fmulsx(X[i][0],Y[j][0])), ACC[AT][i][j])

[pm]xvbf16ger2np performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fadds(fnmadds(X[i][1],Y[j][1],fmulsx(X[i][0],Y[j][0])), ACC[AT][i][j])

[pm]xvbf16ger2nn performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fsubs(fnmadds(X[i][1],Y[j][1],fmulsx(X[i][0],Y[j][0])), ACC[AT][i][j])

Programming Note
Chapter 7. Vector-Scalar Extension Facility 831

Version 3.1
VSX Vector Compare Equal To
Double-Precision XX3-form

xvcmpeqdp XT,XA,XB (Rc=0)
xvcmpeqdp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 vxsnan_flag ← IsSNaN(src1) | IsSNaN(src2)

 if src1 = src2 then do

 vresult.dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is equal to src2, and is set
to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN

60 T A B Rc 99 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpeqdp[.]

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127
Power ISA™ I832

Version 3.1
VSX Vector Compare Equal To
Single-Precision XX3-form

xvcmpeqsp XT,XA,XB (Rc=0)
xvcmpeqsp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 vxsnan_flag ← IsSNaN(src1) | IsSNaN(src2)

 if src1 = src2 then do

 vresult.word[i] ← 0xFFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.word[i] ← 0x0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR.field[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR.field[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is equal to src2, and is set to all 0s
otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN

60 T A B Rc 67 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpeqsp[.]

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 833

Version 3.1
VSX Vector Compare Greater Than or Equal
To Double-Precision XX3-form

xvcmpgedp XT,XA,XB (Rc=0)
xvcmpgedp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 if src1.class.SNaN | src2.class.SNaN then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

 end

 else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

 if src1 >= src2 then do

 vresult.dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxvc_flag=1 then SetFX(FPSCR.VXVC)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxvc_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR.field[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR.field[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is greater than or equal to
the double-precision floating-point operand in
doubleword element i of src2, and is set to all 0s
otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 115 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgedp[[.]

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127
Power ISA™ I834

Version 3.1
VSX Vector Compare Greater Than or Equal
To Single-Precision XX3-form

xvcmpgesp XT,XA,XB (Rc=0)
xvcmpgesp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i=0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 if src1.class.SNaN | src2.class.SNaN then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

 end

 else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

 if src1 >= src2 then do

 vresult.word[i] ← 0xFFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.word[i] ← 0x0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxvc_flag=1 then SetFX(FPSCR.VXVC)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxvc_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR.field[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR.field[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is greater than or equal to src2,
and is set to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
true for that element.

Two infinity inputs of same signs return true for
that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 83 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgesp[.]

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 835

Version 3.1
VSX Vector Compare Greater Than
Double-Precision XX3-form

xvcmpgtdp XT,XA,XB (Rc=0)
xvcmpgtdp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 if src1.class.SNaN | src2.class.SNaN then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

 end

 else vxvc_flag ← IsQNaN(src1) | IsQNaN(src2)

 if src1 > src2 then do

 vresult.dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.dword[i] ← 0x0000_0000_0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxvc_flag=1 then SetFX(FPSCR.VXVC)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxvc_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR.field[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR.field[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is compared to src2.

The contents of doubleword element i of VSR[XT]
are set to all 1s if src1 is greater than src2, and is
set to all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
false for that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 107 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgtdp[[.]

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127
Power ISA™ I836

Version 3.1
VSX Vector Compare Greater Than
Single-Precision XX3-form

xvcmpgtsp XT,XA,XB (Rc=0)
xvcmpgtsp. XT,XA,XB (Rc=1)

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

all_false ← 0b1

all_true ← 0b1

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 if IsSNaN(src1)=1 | IsSNaN(src2)=1 then do

 vxsnan_flag ← 0b1

 if FPSCR.VE=0 then vxvc_flag ← 0b1

 end

 else

 vxvc_flag ← src1.class.QNaN | src2.class.QNaN

 if src1 > src2 then do

 vresult.word[i] ← 0xFFFF_FFFF

 all_false ← 0b0

 end

 else do

 vresult.word[i] ← 0x0000_0000

 all_true ← 0b0

 end

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxvc_flag=1 then SetFX(FPSCR.VXVC)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxvc_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

if Rc=1 then do

 if vex_flag=0 then

 CR.field[6] ← all_true || 0b0 || all_false || 0b0

 else

 CR.field[6] ← 0bUUUU

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is compared to src2.

The contents of word element i of VSR[XT] are set
to all 1s if src1 is greater than src2, and is set to
all 0s otherwise.

A NaN input causes the comparison to return false
for that element.

Two zero inputs of same or different signs return
false for that element.

If Rc=1, CR Field 6 is set as follows.
– Bit 0 is set to indicate all vector elements

compared true.
– Bit 1 is set to 0.
– Bit 2 is set to indicate all vector elements

compared false.
– Bit 3 is set to 0.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT] and the
contents of CR field 6 are undefined if Rc is equal to 1.

Special Registers Altered
CR field 6 . (if Rc=1)
FX VXSNAN VXVC

60 T A B Rc 75 AX BX TX
0 6 11 16 21 22 29 30 31

VSR Data Layout for xvcmpgtsp[.]

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 837

Version 3.1
VSX Vector Copy Sign Double-Precision
XX3-form

xvcpsgndp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src1 ← VSR[32×AX+A].dword[i] & 0x8000_0000_0000_0000

 src2 ← VSR[32×BX+B].dword[i] & 0x7FFF_FFFF_FFFF_FFFF

 VSR[32×TX+T].dword[i] ← src1 | src2

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
The contents of bit 0 of doubleword element i of
VSR[XA] are concatenated with the contents of bits
1:63 of doubleword element i of VSR[XB] and
placed into doubleword element i of VSR[XT].

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonic for VSX Vector Copy Sign Dou-
ble-Precision:

VSX Vector Copy Sign Single-Precision
XX3-form

xvcpsgnsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src1 ← VSR[32×AX+A].word[i] & 0x8000_0000

 src2 ← VSR[32×BX+B].word[i] & 0x7FFF_FFFF

 VSR[32×TX+T].word[i] ← src1 | src2

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
The contents of bit 0 of word element i of VSR[XA]
are concatenated with the contents of bits 1:31 of
word element i of VSR[XB] and placed into word
element i of VSR[XT].

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonic for VSX Vector Copy Sign Sin-
gle-Precision:

60 T A B 240 AX BX TX
0 6 11 16 21 29 30 31

Extended mnemonic: Equivalent to:
xvmovdp XT,XB xvcpsgndp XT,XB,XB

60 T A B 208 AX BX TX
0 6 11 16 21 29 30 31

Extended mnemonic: Equivalent to:
xvmovsp XT,XB xvcpsgnsp XT,XB,XB

VSR Data Layout for xvcpsgndp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 64 127

VSR Data Layout for xvcpsgnsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I838

Version 3.1
VSX Vector Convert bfloat16 to
Single-Precision format XX2-form
xvcvbf16sp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

do i = 0 to 3

 VSR[32×TX+T].word[i].hword[0]  VSR[32×BX+B].word[i].hword[1]

 VSR[32×TX+T].word[i].hword[1]  0x0000

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

The contents of the rightmost halfword of word
element i of VSR[XB] are placed into the leftmost
halfword of word element i of VSR[XT].

The contents of the rightmost halfword of word
element i of VSR[XT] are set to 0.

Special Registers Altered:
None

60 T 16 B 475 BX TX
0 6 11 16 21 30 31

Register Operand Data Layout for xvcvhpsp

src2 unused VSR[XB].word[0].hw[1] unused VSR[XB].word[1].hw[1] unused VSR[XB].word[2].hw[1] unused VSR[XB].word[3].hw[1]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 16 32 48 64 80 90 112 127
Chapter 7. Vector-Scalar Extension Facility 839

Version 3.1
VSX Vector Convert with round
Double-Precision to Single-Precision format
XX2-form

xvcvdpsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,src)

 vresult.dword[i].word[0] ← bfp32_CONVERT_FROM_BFP(rnd)

 vresult.dword[i].word[1] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[XT] ← result

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to single-precision using the
rounding mode specified by RN.

The result is placed into bits 0:31 and bits 32:63 of
doubleword element i of VSR[XT] in
single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN

60 T /// B 393 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of bits 32:63 of each doubleword in the
result register to be undefined, however, all proces-
sors that support this instruction write the result into
bits 32:63 of each doubleword in the result register
as well as into bits 0:31, as is required by this ver-
sion of the architecture.

Previous versions of the architecture allowed the
contents of doubleword 1 of the result register to be
undefined. However, all processors that support
this instruction write 0s into doubleword 1 of the
result register, as is required by this version of the
architecture.

Programming Note

Programming Note

VSR Data Layout for xvcvdpsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].dword[0] VSR[XB].dword[1]

0 32 64 96 127
Power ISA™ I840

Version 3.1
VSX Vector Convert with round to zero
Double-Precision to Signed Doubleword
format XX2-form

xvcvdpsxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i] ← si64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[XT] ← result

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If src
is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 263-1, the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than -263,
the result is 0x8000_0000_0000_0000 and VXCVI is
set to 1.

Otherwise, the result is the rounded value
converted to 64-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 116.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 472 BX TX
0 6 11 16 21 30 31

xvcvdpsxds rounds using Round towards Zero
rounding mode. For other rounding modes, soft-
ware must use a Round to Double-Precision Inte-
ger instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by the RN.

Programming Note

VSR Data Layout for xvcvdpsxds

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 841

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

In
ex

ac
t?

 (R
ou

nd
To

DP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 bits are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The double-precision floating-point integer value x is converted to 64-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).
Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
T(x) The signed integer doubleword value x is placed in doubleword element i of VSR[XT] (where i={0,1}).
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.

Table 116.Actions for xvcvdpsxds
Power ISA™ I842

Version 3.1
VSX Vector Convert with round to zero
Double-Precision to Signed Word format
XX2-form

xvcvdpsxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i].word[0] ← si32_CONVERT_FROM_BFP(rnd)

 vresult.dword[i].word[1] ← si32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN
is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 231-1, the
result is 0x7FFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231,
the result is 0x8000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT].

The result is also placed into bits 32:63 of
doubleword element i of VSR[XT].

See Table 117.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 216 BX TX
0 6 11 16 21 30 31

xvcvdpsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by RN.

Previous versions of the architecture allowed the
contents of words 1 and 3 of the result register to
be undefined. However, all processors that support
this instruction write the result into words 0 and 1
and words 2 and 3 of the result register, as is
required by this version of the architecture.

Programming Note

Programming Note

VSR Data Layout for xvcvdpsxws

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 843

Version 3.1
FP
SC

R.
VE

FP
SC

R.
XE

Ine
xa

ct
? (

 tru
nc

(sr
c)

≠ s
rc

)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes T(Nmax), fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 bits are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The double-precision floating-point integer value x is converted to 32-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer word value, -231(0x8000_0000).
Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
T(x) The signed integer word value x is placed in word elements 2×i and 2×i+1 of VSR[XT] (where i={0,1}).
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.

Table 117.Actions for xvcvdpsxws
Power ISA™ I844

Version 3.1
VSX Vector Convert with round to zero
Double-Precision to Unsigned Doubleword
format XX2-form

xvcvdpuxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i] ← ui64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If
src is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 264-1, the
result is 0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value
converted to 64-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 118.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 456 BX TX
0 6 11 16 21 30 31

xvcvdpuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by the RN.

Programming Note

VSR Data Layout for xvcvdpuxds

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 845

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

DP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in DP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes T(Nmax), fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The double-precision floating-point integer value x is converted to 64-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).
Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
T(x) The unsigned integer doubleword value x is placed in doubleword element i of VSR[XT] (where i={0,1}).
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.

Table 118.Actions for xvcvdpuxds
Power ISA™ I846

Version 3.1
VSX Vector Convert with round to zero
Double-Precision to Unsigned Word format
XX2-form

xvcvdpuxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i].word[0] ← ui32_CONVERT_FROM_BFP(rnd)

 vresult.dword[i].word[1] ← ui32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 232-1, the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT].

The result is also placed into bits 32:63 of
doubleword element i of VSR[XT].

See Table 119.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 200 BX TX
0 6 11 16 21 30 31

xvcvdpuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Double-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrdpic which uses the
rounding mode specified by RN.

Previous versions of the architecture allowed the
contents of words 1 and 3 of the result register to
be undefined. However, all processors that support
this instruction write the result into words 0 and 1
and words 2 and 3 of the result register, as is
required by this version of the architecture.

Programming Note

Programming Note

VSR Data Layout for xvcvdpuxws

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 847

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

DP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The double-precision floating-point integer value x is converted to 32-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer word value, 0 (0x0000_0000).
Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
T(x) The unsigned integer word value x is placed in word elements 2×i and 2×i+1 of VSR[XT] (where i={0,1}).
trunc(x) The double-precision floating-point value x is truncated to a floating-point integer.

Table 119.Actions for xvcvdpuxws
Power ISA™ I848

Version 3.1
VSX Vector Convert bfloat16 to
Single-Precision format XX2-form

xvcvhpsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

do i = 0 to 3

 src ← bfp_CONVERT_FROM_BFP16(VSR[BX×32+B].word[i].hword[1])

 if src.class.SNaN=1 then

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(bfp_QUIET(src))

 else

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(src)

 vxsnan_flag ← src.class.SNaN

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the half-precision floating-point value in
the rightmost halfword of word element i of
VSR[XB].

If src is an SNaN, the result is the single-precision
representation of that SNaN converted to a QNaN.

Otherwise, if src is a QNaN, the result is the
single-precision representation of that QNaN.

Otherwise, if src is an Infinity, the result is the
single-precision representation of Infinity with the
same sign as src.

Otherwise, if src is a Zero, the result is the
single-precision representation of Zero with the
same sign as src.

Otherwise, if src is a denormal value, the result is
the normalized single-precision representation of
src.

Otherwise, the result is the single-precision
representation of src.

The result is placed into word element i of
VSR[XT].

If a trap-enabled exception occurs, VSR[XT] is not
modified.

Special Registers Altered:
FX VXSNAN

60 T 24 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvhpsp

src unused VSR[XT].hword[1] unused VSR[XT].hword[3] unused VSR[XB].hword[5] unused VSR[XB].hword[7]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 16 32 48 64 80 96 112 127
Chapter 7. Vector-Scalar Extension Facility 849

Version 3.1
VSX Vector Convert with round
Single-Precision to bfloat16 format XX2-form

xvcvspbf16 XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 reset_flags()

 src  bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd  bfp_ROUND_TO_BFLOAT16_NO_TRAP(src)

 result.word[i].hword[0]  0x0000

 result.word[i].hword[1]  bfloat16_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag  ex_flag | (FPSCR.VE & vxsnan_flag)

  | (FPSCR.OE & ox_flag)

  | (FPSCR.UE & ux_flag)

  | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← result

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

Let src be the single-precision floating-point value
in word element i of VSR[XB].

If src is an SNaN, let result be the bfloat16
representation of that SNaN converted to a QNaN.

Otherwise, if src is a QNaN, let result be the
bfloat16 representation of that QNaN.

Otherwise, if src is an Infinity, let result be the
bfloat16 representation of Infinity with the same
sign as src.

Otherwise, if src is a Zero, let result be the
bfloat16 representation of Zero with the same sign
as src.

Otherwise, let result be the bfloat16
representation of src rounded to bfloat16
precision using the rounding mode specified in RN.

result is placed into rightmost halfword of word
element i of VSR[XT].

The leftmost halfword of word element i of
VSR[XT] is set to 0x0000.

If a trap-enabled exception occurs, VSR[XT] is not
modified.

Special Registers Altered:
FX VXSNAN OX UX XX

60 T 17 B 475 BX TX
0 6 11 16 21 30 31

Register Operand Data Layout for xvcvspbf16

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt 0x0000 VSR[XT].word[0].hw[1] 0x0000 VSR[XT].word[1].hw[1] 0x0000 VSR[XT].word[2].hw[1] 0x0000 VSR[XT].word[3].hw[1]

0 16 32 48 64 80 90 112 127
Power ISA™ I850

Version 3.1
VSX Vector Convert Single-Precision to
Double-Precision format XX2-form

xvcvspdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[BX×32+B].dword[i].word[0])

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(src)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in bits 0:31 of doubleword element i of
VSR[XB].

src is placed into doubleword element i of VSR[XT]
in double-precison format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 457 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvspdp

src VSR[XB].word[0] unused VSR[XB].word[2] unused

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 851

Version 3.1
VSX Vector Convert with round
Single-Precision to bfloat16 format XX2-form

xvcvsphp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

reset_flags()

do i = 0 to 3

 src ← bfp_CONVERT_FROM_BFP32(VSR[BX×32+B].word[i])

 rnd ← bfp_ROUND_TO_BFP16(FPSCR.RN,rnd)

 vresult.word[i].hword[0] ← 0x0000

 vresult.word[i].hword[1] ← bfp16_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ← | (FPSCR.OE & ox_flag)

 ← | (FPSCR.UE & ux_flag)

 ← | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in word element i of VSR[XB].

If src is an SNaN, the result is the half-precision
representation of that SNaN converted to a QNaN.

Otherwise, if src is a QNaN, the result is the
half-precision representation of that QNaN.

Otherwise, if src is an Infinity, the result is the
half-precision representation of Infinity with the
same sign as src.

Otherwise, if src is a Zero, the result is the
half-precision representation of Zero with the
same sign as src.

Otherwise, the result is the half-precision
representation of src rounded to half-precision
using the rounding mode specified by RN.

The result is zero-extended and placed into word
element i of VSR[XT].

If a trap-enabled exception occurs, VSR[XT] is not
modified.

Special Registers Altered:
FX VXSNAN OX UX XX

60 T 25 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsphp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt 0x0000 VSR[XT].hword[1] 0x0000 VSR[XT].hword[3] 0x0000 VSR[XT].hword[5] 0x0000 VSR[XT].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I852

Version 3.1
VSX Vector Convert with round to zero
Single-Precision to Signed Doubleword
format XX2-form

xvcvspsxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].dword[i].word[0])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i] ← si64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in word element i×2 of VSR[XB].

If src is a NaN, the result is the value
0x8000_0000_0000_0000 and VXCVI is set to 1. If src
is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 263-1, the
result is 0x7FFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than -263,
the result is 0x8000_0000_0000_0000 and VXCVI is
set to 1.

Otherwise, the result is the rounded value
converted to 64-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 119.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 408 BX TX
0 6 11 16 21 30 31

xvcvspsxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.

Programming Note

VSR Data Layout for xvcvspsxds

src VSR[XB].word[0] unused VSR[XB].word[2] unused

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 853

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

SP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The single-precision floating-point integer value x is converted to 64-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer doubleword value, -263 (0x8000_0000_0000_0000).
Nmax The largest signed integer doubleword value, 263-1 (0x7FFF_FFFF_FFFF_FFFF).
src The single-precision floating-point value in word element i of VSR[XB] (where i={0,2}).
T(x) The signed integer doubleword value x is placed in doubleword element i of VSR[XT] (where i={0,1}).
trunc(x) The single-precision floating-point value x is truncated to a floating-point integer.

Table 120.Actions for xvcvspsxds
Power ISA™ I854

Version 3.1
VSX Vector Convert with round to zero
Single-Precision to Signed Word format
XX2-form

xvcvspsxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.word[i] ← si32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

If src is a NaN, the result is the value 0x8000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 231-1, the
result is 0x7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231,
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit signed-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into word element i of
VSR[XT].

See Table 119.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 152 BX TX
0 6 11 16 21 30 31

xvcvspsxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.

Programming Note

VSR Data Layout for xvcvspsxws

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 855

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

SP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The single-precision floating-point integer value x is converted to 32-bit signed integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest signed integer word value, -231 (0x8000_0000).
Nmax The largest signed integer word value, 231-1 (0x7FFF_FFFF).
src The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
T(x) The signed integer word value x is placed in word element i of VSR[XT] (where i={0,1,2,3}).
trunc(x) The single-precision floating-point value x is truncated to a floating-point integer.

Table 121.Actions for xvcvspsxws
Power ISA™ I856

Version 3.1
VSX Vector Convert with round to zero
Single-Precision to Unsigned Doubleword
format XX2-form

xvcvspuxds XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].dword[i].word[0])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i] ← ui64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the single-precision floating-point
operand in word element i×2 of VSR[XB].

If src is a NaN, the result is the value
0x0000_0000_0000_0000 and VXCVI is set to 1. If src
is an SNaN, VXSNAN is also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 264-1, the
result is 0xFFFF_FFFF_FFFF_FFFF and VXCVI is set to
1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value
converted to 64-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into doubleword element i of
VSR[XT].

See Table 119.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 392 BX TX
0 6 11 16 21 30 31

xvcvspuxds rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.

Programming Note

VSR Data Layout for xvcvspuxds

src VSR[XB].word[0] unused VSR[XB].word[2] unused

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 857

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

SP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The single-precision floating-point integer value x is converted to 64-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer doubleword value, 0 (0x0000_0000_0000_0000).
Nmax The largest unsigned integer doubleword value, 264-1 (0xFFFF_FFFF_FFFF_FFFF).
src The single-precision floating-point value in word element i of VSR[XB] (where i={0,2}).
T(x) The unsigned integer doubleword value x is placed in doubleword element i of VSR[XT] (where i={0,1}).
trunc(x) The single-precision floating-point value x is truncated to a floating-point integer.

Table 122.Actions for xvcvspuxds
Power ISA™ I858

Version 3.1
VSX Vector Convert with round to zero
Single-Precision to Unsigned Word format
XX2-form

xvcvspuxws XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.word[i] ← ui32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxcvi_flag=1 then SetFX(FPSCR.VXCVI)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

lag ← ex_flag | (FPSCR.VE & vxcvi_flag)

lag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

If src is a NaN, the result is the value 0x0000_0000
and VXCVI is set to 1. If src is an SNaN, VXSNAN is
also set to 1.

Otherwise, src is rounded to a floating-point
integer using the rounding mode Round Toward
Zero.

If the rounded value is greater than 232-1, the
result is 0xFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value
converted to 32-bit unsigned-integer format, and if
the result is inexact (i.e., not equal to src), XX is
set to 1.

The result is placed into word element i of
VSR[XT].

See Table 119.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXCVI

60 T /// B 136 BX TX
0 6 11 16 21 30 31

xvcvspuxws rounds using Round towards Zero
rounding mode. For other rounding modes,
software must use a Round to Single-Precision
Integer instruction that corresponds to the desired
rounding mode, including xvrspic which uses the
rounding mode specified by RN.

Programming Note

VSR Data Layout for xvcvspuxws

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 859

Version 3.1
VE XE In
ex

ac
t?

 (R
ou

nd
To

SP
int

eg
erT

run
c(s

rc)
 ≠

src
)

Returned Results and Status Setting

src [Nmin-1
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

Nmin-1 < src < Nmin –
0 yes T(Nmin), fx(XX)

1 yes fx(XX), error()

src = Nmin – – no T(Nmin)

Nmin < src < Nmax –
– no T(f2i(trunc(src)))

0 yes T(f2i(trunc(src))), fx(XX)

1 yes fx(XX), error()

src = Nmax – – no T(Nmax)
Note: This case cannot occur as Nmax is not representable in SP format but is included here for completeness.

Nmax < src < Nmax+1 –
0 yes T(Nmax), fx(XX)

1 yes fx(XX), error()

src m Nmax+1
0 – – T(Nmax), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a QNaN
0 – – T(Nmin), fx(VXCVI)

1 – – fx(VXCVI), error()

src is a SNaN
0 – – T(Nmin), fx(VXCVI), fx(VXSNAN)

1 – – fx(VXCVI), fx(VXSNAN), error()

Explanation:
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode.
Update of VSR[XT] is suppressed.

f2i(x) The single-precision floating-point integer value x is converted to 32-bit unsigned integer format.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
Nmin The smallest unsigned integer word value, 0 (0x0000_0000).
Nmax The largest unsigned integer word value, 232-1 (0xFFFF_FFFF).
src The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
T(x) The unsigned integer word value x is placed in word element i of VSR[XT] (where i={0,1,2,3}).
trunc(x) The single-precision floating-point value x is truncated to a floating-point integer.

Table 123.Actions for xvcvspuxws
Power ISA™ I860

Version 3.1
VSX Vector Convert with round Signed
Doubleword to Double-Precision format
XX2-form

xvcvsxddp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_SI64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the signed integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by RN.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 504 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxddp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 861

Version 3.1
VSX Vector Convert with round Signed
Doubleword to Single-Precision format
XX2-form

xvcvsxdsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_SI64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.dword[i].word[0] ← bfp32_CONVERT_FROM_BFP(rnd)

 vresult.dword[i].word[1] ← bfp32_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the signed integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by RN.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT] in single-precision format.

The result is also placed into bits 32:63 of
doubleword element i of VSR[XT] in
single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 440 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of words 1 and 3 of the result register to
be undefined. However, all processors that support
this instruction write the result into words 0 and 1
and words 2 and 3 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xvcvsxdsp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I862

Version 3.1
VSX Vector Convert Signed Word to
Double-Precision format XX2-form

xvcvsxwdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← bfp_CONVERT_FROM_SI32(VSR[32×BX+B].dword[i].word[0])

 VSR[32×TX+T].dword[i] ← bfp64_CONVERT_FROM_BFP(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the signed integer value in bits 0:31 of
doubleword element i of VSR[XB].

src is placed into doubleword element i of VSR[XT]
in double-precision format.

Special Registers Altered
None

VSX Vector Convert with round Signed Word
to Single-Precision format XX2-form

xvcvsxwsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_SI32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the signed integer in word element i of
VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by RN.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 248 BX TX
0 6 11 16 21 30 31

60 T /// B 184 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvsxwdp

src VSR[XB].word[0] unused VSR[XB].word[2] unused

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 32 64 96 127

VSR Data Layout for xvcvsxwsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 863

Version 3.1
VSX Vector Convert with round Unsigned
Doubleword to Double-Precision format
XX2-form

xvcvuxddp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_UI64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the unsigned integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
double-precision using the rounding mode
specified by RN.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 488 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxddp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I864

Version 3.1
VSX Vector Convert with round Unsigned
Doubleword to Single-Precision format
XX2-form

xvcvuxdsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_UI64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,src)

 vresult.dword[i].word[0] ← bfp32_CONVERT_FROM_BFP(rnd)

 vresult.dword[i].word[1] ← bfp32_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the unsigned integer in doubleword
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by RN.

The result is placed into bits 0:31 of doubleword
element i of VSR[XT] in single-precision format.

The result is also placed into bits 32:63 of
doubleword element i of VSR[XT] in
single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 424 BX TX
0 6 11 16 21 30 31

Previous versions of the architecture allowed the
contents of words 1 and 3 of the result register to
be undefined. However, all processors that support
this instruction write the result into words 0 and 1
and words 2 and 3 of the result register, as is
required by this version of the architecture.

Programming Note

VSR Data Layout for xvcvuxdsp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 865

Version 3.1
VSX Vector Convert Unsigned Word to
Double-Precision format XX2-form

xvcvuxwdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← bfp_CONVERT_FROM_UI32(VSR[32×BX+B].dword[i].word[0])

 VSR[32×TX+T].dword[i] ← bfp64_CONVERT_FROM_BFP(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the unsigned integer value in bits 0:31
of doubleword element i of VSR[XB].

src is placed into doubleword element i of VSR[XT]
in double-precision format.

Special Registers Altered
None

VSX Vector Convert with round Unsigned
Word to Single-Precision format XX2-form

xvcvuxwsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_UI32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the unsigned integer value in word
element i of VSR[XB].

src is converted to an unbounded-precision
floating-point value and rounded to
single-precision using the rounding mode
specified by RN.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX

60 T /// B 232 BX TX
0 6 11 16 21 30 31

60 T /// B 168 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvcvuxwdp

src VSR[XB].word[0] unused VSR[XB].word[2] unused

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvcvuxwsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I866

Version 3.1
VSX Vector Divide Double-Precision XX3-form

xvdivdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_DIVIDE(src1,src2)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxidi_flag=1 then SetFX(FPSCR.VXIDI)

 if vxisi_flag=1 then SetFX(FPSCR.VXZDZ)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxidi_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxzdz_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is divided[1] by src2, producing a quotient
having unbounded range and precision.

The quotient is normalized[2].

See Table 124.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX ZX XX VXSNAN VXIDI VXZDZ

60 T A B 120 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvdivdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 867

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 124.Actions for xvdivdp (element i)
Power ISA™ I868

Version 3.1
VSX Vector Divide Single-Precision XX3-form

xvdivsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_DIVIDE(src1,src2)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxidi_flag=1 then SetFX(FPSCR.VXIDI)

 if vxisi_flag=1 then SetFX(FPSCR.VXZDZ)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxidi_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxzdz_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is divided[1] by src2, producing a quotient
having unbounded range and precision.

The quotient is normalized[2].

See Table 125.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX ZX XX VXSNAN VXIDI VXZDZ

60 T A B 88 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point division is based on exponent subtraction and division of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvdivsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 869

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxidi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-NZF v ← +Zero v ← D(src1,src2) v ← +Infinity
zx_flag ← 1

v ← –Infinity
zx_flag ← 1 v ← D(src1,src2) v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-Zero v ← +Zero v ← +Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← –Zero v ← –Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Zero v ← –Zero v ← –Zero v ← dQNaN
vxzdz_flag ← 1

v ← dQNaN
vxzdz_flag ← 1 v ← +Zero v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+NZF v ← –Zero v ← D(src1,src2) v ← –Infinity
zx_flag ← 1

v ← +Infinity
zx_flag ← 1 v ← D(src1,src2) v ← +Zero v ← src2 v ← Q(src2)

vxsnan_flag ← 1

+Infinity v ← dQNaN
vxidi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN

vxidi_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
D(x,y) Return the normalized quotient of floating-point value x divided by floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 125.Actions for xvdivsp (element i)
Power ISA™ I870

Version 3.1
VSX Vector 16-bit Floating-Point GER (rank-2
update) XX3-form

xvf16ger2 AT,XA,XB

VSX Vector 16-bit Floating-Point GER (rank-2
update) Positive multiply, Positive accumulate
XX3-form

xvf16ger2pp AT,XA,XB

VSX Vector 16-bit Floating-Point GER (rank-2
update) Positive multiply,
Negative accumulate XX3-form

xvf16ger2pn AT,XA,XB

VSX Vector 16-bit Floating-Point GER (rank-2
update) Negative multiply,
Positive accumulate XX3-form

xvf16ger2np AT,XA,XB

VSX Vector 16-bit Floating-Point GER (rank-2
update) Negative multiply,
Negative accumulate XX3-form

xvf16ger2nn AT,XA,XB

Prefixed Masked VSX Vector 16-bit
Floating-Point GER (rank-2 update)
MMIRR:XX3-form

pmxvf16ger2 AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit
Floating-Point GER (rank-2 update) Positive
multiply, Positive accumulate
MMIRR:XX3-form

pmxvf16ger2pp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit
Floating-Point GER (rank-2 update) Positive
multiply, Negative accumulate
MMIRR:XX3-form

pmxvf16ger2pn AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit
Floating-Point GER (rank-2 update) Negative
multiply, Positive accumulate
MMIRR:XX3-form

pmxvf16ger2np AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit
Floating-Point GER (rank-2 update) Negative
multiply, Negative accumulate
MMIRR:XX3-form

pmxvf16ger2nn AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

59 AT // A B 19 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 18 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 146 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 82 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 210 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 19 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 18 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 146 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 82 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 210 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 871

Version 3.1
if MSR.VSX=0 then VSX_Unavailable()

if “xvf16ger2” | “xvf16ger2pp” | “xvf16ger2pn” | “xvf16ger2np” | “xvf16ger2nn” then do

 PMSK ← 0b11

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 reset_flags()

 src10 ← bfp_CONVERT_FROM_BFP16((PMSK.bit[0]=0) ? 0x0000 : VSR[32×AX+A].word[i].hword[0])

 src11 ← bfp_CONVERT_FROM_BFP16((PMSK.bit[1]=0) ? 0x0000 : VSR[32×AX+A].word[i].hword[1])

 src20 ← bfp_CONVERT_FROM_BFP16((PMSK.bit[0]=0) ? 0x0000 : VSR[32×BX+B].word[j].hword[0])

 src21 ← bfp_CONVERT_FROM_BFP16((PMSK.bit[1]=0) ? 0x0000 : VSR[32×BX+B].word[j].hword[1])

 p1 ← bfp_MULTIPLY(src10, src20)

 v1 ← bfp_MULTIPLY_ADD(src11, src21, p1)

 r1 ← bfp_ROUND_TO_BFP32_NO_TRAP(FPSCR.RN, v1)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 reset_flags()

 if “[pm]xvf16ger2” then

 ACC[AT][i].word[j] ← bfp32_CONVERT_FROM_BFP(r1)

 else do

 acc ← bfp_CONVERT_FROM_BFP32(ACC[AT][i].word[j])

 if “[pm]xvf16ger2pp” then v2 ← bfp_ADD(r1, acc)

 if “[pm]xvf16ger2pn” then v2 ← bfp_ADD(r1, bfp_NEGATE(acc))

 if “[pm]xvf16ger2np” then v2 ← bfp_ADD(bfp_NEGATE(r1), acc)

 if “[pm]xvf16ger2nn” then v2 ← bfp_ADD(bfp_NEGATE(r1), bfp_NEGATE(acc))

 r2 ← bfp_ROUND_TO_BFP32_NO_TRAP(FPSCR.RN, v2)

 ACC[AT][i].word[j] ← bfp32_CONVERT_FROM_BFP(r2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end

Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of single-precision floating-point values.

Let result be a 4×4 matrix of word elements to be used as a temporary Accumulator.
Power ISA™ I872

Version 3.1
For xvf16ger2, xvf16ger2pp, xvf16ger2pn, xvf16ger2np, or xvf16ger2nn, let PMSK=0b11, XMSK=0b1111, and
YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let src10 be the half-precision floating-point value in hword 0 of word element i
of VSR[XA] and let src20 be the half-precision floating-point value in hword 0 of word element j of VSR[XB].
Otherwise, let src10 be the value 0.0 and let src20 be the value 0.0, causing the product of src10 and src20
to be 0.0.

If bit 1 of PMSK is equal to 1, let src11 be the half-precision floating-point value in hword 1 of word element i
of VSR[XA] and let src21 be the half-precision floating-point value in hword 1 of word element j of VSR[XB].
Otherwise, let src11 be the value 0.0 and let src21 be the value 0.0, causing the product of src11 and src21
to be 0.0.

Let prod be the single-precision product of src10 and src20.

Let msum be the sum of prod added to the product of src11 and src21. msum is rounded to single-precision
using the rounding mode specified in RN.

For [pm]xvf16ger2, the rounded msum is placed into word element j of ACC[AT][i] in single-precision
floating-point format.

For [pm]xvf16ger2pp, the rounded msum is added to the single-precision floating-point value in word
element j of ACC[AT][i], rounded to single-precision using the rounding mode specified in RN, and placed
into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvf16ger2pn, the rounded msum is added to the negation of the single-precision floating-point
value in word element j of ACC[AT][i], rounded to single-precision using the rounding mode specified in RN,
and placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvf16ger2np, the negation of the rounded msum is added to the single-precision floating-point
value in word element j of ACC[AT][i], rounded to single-precision using the rounding mode specified in RN,
and placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvf16ger2nn, the negation of the rounded msum is added to the negation of the single-precision
floating-point value in word element j of ACC[AT][i], rounded to single-precision using the rounding mode
specified in RN, and placed into word element j of ACC[AT][i] in single-precision floating-point format.

Otherwise, the contents of ACC[AT][i][j] are set to 0x0000_0000.

Unlike other VSX Vector Floating-Point instructions, ACC[AT] is always updated by the execution of the instruction,
even when a trap-enabled exception occurs. For every multiply-add operation that is performed as part of the
execution of this instruction, if an exception occurs as the result of that particular multiply-add operation, the
trap-disabled exception result is returned, even if that exception type is trap-enabled. Exception detection is based
on the trap-disable definition. Exception status is accumulated and the appropriate exception status bits in the
FPSCR are updated at the completion of execution of the instruction. Otherwise, behavior is the same as any vector
floating-point instruction that can cause an exception. Taking a Program interrupt on a trap-enabled exception when
interrupts are enabled by MSR.FE0 and MSR.FE1 is still supported, albeit with the ACC[AT] updated based on a
trap-disabled result.

Special Registers Altered:
FX VXSNAN VXIMZ OX UX XX (if [pm]xvf16ger2)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf16ger2pp)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf16ger2pn)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf16ger2np)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf16ger2nn)
Chapter 7. Vector-Scalar Extension Facility 873

Version 3.1
Register Operand Data Layout for [pm]xvf16ger2[pp|pn|np|nn]

VSR[XA] X[0][0] X[0][1] X[1][0] X[1][1] X[2][0] X[2][1] X[3][0] X[3][1]

VSR[XB] Y[0][0] Y[1][0] Y[0][1] Y[1][1] Y[0][2] Y[1][2] Y[0][3] Y[1][3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 16 32 48 64 80 96 112 127

Let X be the 4×2 matrix of half-precision floating-point values contained in VSR[XA] in row-major format.
Let Y be the 4×2 matrix of half-precision floating-point values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of single-precision floating-point values.

Note that floating-point arithmetic is not associative. That is, (X+Y)+T can return a different result that X+(Y+T).
The ordering specified by the instruction description for any result element i,j is the order the operations will be
performed in hardware. The floating-point operations to implement each result element for
xvf16ger2[pp|pn|np|nn] are shown below.

[pm]xvf16ger2 performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fmadds(X[i][1],Y[j][1],fmuls(X[i][0],Y[j][0]))

[pm]xvf16ger2pp performs the following form forms of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fadds(fmadds(X[i][1],Y[j][1],fmuls(X[i][0],Y[j][0])),ACC[AT][i][j])

[pm]xvf16ger2pn performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fsubs(fmadds(X[i][1],Y[j][1],fmuls(X[i][0],Y[j][0])),ACC[AT][i][j])

[pm]xvf16ger2np performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fadds(fnmadds(X[i][1],Y[j][1],fmuls(X[i][0],Y[j][0])),ACC[AT][i][j])

[pm]xvf16ger2nn performs the following form of accumulation of two outer products (rank 2 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fsubs(fnmadds(X[i][1],Y[j][1],fmuls(X[i][0],Y[j][0])),ACC[AT][i][j])

Programming Note
Power ISA™ I874

Version 3.1
VSX Vector 32-bit Floating-Point GER (rank-1
update) XX3-form

xvf32ger AT,XA,XB

VSX Vector 32-bit Floating-Point GER (rank-1
update) Positive multiply, Positive accumulate
XX3-form

xvf32gerpp AT,XA,XB

VSX Vector 32-bit Floating-Point GER (rank-1
update) Positive multiply,
Negative accumulate XX3-form

xvf32gerpn AT,XA,XB

VSX Vector 32-bit Floating-Point GER (rank-1
update) Negative multiply,
Positive accumulate XX3-form

xvf32gernp AT,XA,XB

VSX Vector 32-bit Floating-Point GER (rank-1
update) Negative multiply,
Negative accumulate XX3-form

xvf32gernn AT,XA,XB

Prefixed Masked VSX Vector 32-bit
Floating-Point GER (rank-1 update)
MMIRR:XX3-form

pmxvf32ger AT,XA,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 32-bit
Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate
MMIRR:XX3-form

pmxvf32gerpp AT,XA,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 32-bit
Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate
MMIRR:XX3-form

pmxvf32gerpn AT,XA,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 32-bit
Floating-Point GER (rank-1 update) Negative
multiply, Positive accumulate
MMIRR:XX3-form

pmxvf32gernp AT,XA,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 32-bit
Floating-Point GER (rank-1 update) Negative
multiply, Negative accumulate
MMIRR:XX3-form

pmxvf32gernn AT,XA,XB,XMSK,YMSK
Prefix:

Suffix:

59 AT // A B 27 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 26 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 154 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 90 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 218 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 27 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 26 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 154 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 90 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 218 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 875

Version 3.1
if MSR.VSX=0 then VSX_Unavailable()

if “xvf32ger” | “xvf32gerpp” | “xvf32gerpn” | “xvf32gernp” | “xvf32gernn” then do

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i]=1 & YMSK.bit[j]=1 then do

 reset_flags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[j])

 acc ← bfp_CONVERT_FROM_BFP32(ACC[AT][i].word[j])

 if “[pm]xvf32ger” then v ← bfp_MULTIPLY(src1, src2)

 if “[pm]xvf32gerpp” then v ← bfp_MULTIPLY_ADD(src1, src2, acc)

 if “[pm]xvf32gerpn” then v ← bfp_MULTIPLY_ADD(src1, src2, bfp_NEGATE(acc))

 if “[pm]xvf32gernp” then v ← bfp_MULTIPLY_ADD(src1, src2, bfp_NEGATE(acc))

 if “[pm]xvf32gernn” then v ← bfp_MULTIPLY_ADD(src1, src2, acc)

 r ← bfp_ROUND_TO_BFP32_NO_TRAP(v)

 if “[pm]xvf32gernp” then r ← bfp_NEGATE(r)

 if “[pm]xvf32gernn” then r ← bfp_NEGATE(r)

 ACC[AT][i].word[j] ← bfp32_CONVERT_FROM_BFP(r)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

 else

 ACC[AT][i].word[j] ← 0x0000_0000

 end

end

Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of single-precision floating-point values.

For xvf32ger, xvf32gerpp, xvf32gerpn, xvf32gernp, or xvf32gernn, let XMSK=0b1111 and YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

Let prod be the product of the single-precision floating-point value in word element i of VSR[XA] and the
single-precision floating-point value in word element j of VSR[XB], having unbounded range and precision.

For [pm]xvf32ger, prod is rounded to single-precision using the rounding mode specified in RN. The
rounded result is placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvf32gerpp, the single-precision floating-point value in word element j of ACC[AT][i] is added to
prod. The intermediate result is rounded to single-precision using the rounding mode specified in RN. The
rounded result is placed into word element j of ACC[AT][i] in single-precision floating-point format.

For [pm]xvf32gerpn, the single-precision floating-point value in word element j of ACC[AT][i] is subtracted
from prod. The intermediate result is rounded to single-precision using the rounding mode specified in RN.
The rounded result is placed into word element j of ACC[AT][i] in single-precision floating-point format.
Power ISA™ I876

Version 3.1
For [pm]xvf32gernp, the single-precision floating-point value in word element j of ACC[AT][i] is subtracted
from prod. The intermediate result is rounded to single-precision using the rounding mode specified in RN.
The rounded result is negated and placed into word element j of ACC[AT][i] in single-precision
floating-point format.

For [pm]xvf32gernn, the single-precision floating-point value in word element j of ACC[AT][i] is added to
prod. The intermediate result is rounded to single-precision using the rounding mode specified in RN. The
rounded result is negated and placed into word element j of ACC[AT][i] in single-precision floating-point
format.

Otherwise, the contents of word element j of ACC[AT][i] are set to 0x0000_0000.

Unlike other vector floating-point instructions, ACC[AT] is always updated by the execution of the instruction, even
when a trap-enabled exception occurs. For every multiply-add operation that is performed as part of the execution of
this instruction, if an exception occurs as the result of that particular multiply-add operation, the trap-disabled
exception result is returned, even if that exception type is trap-enabled. Exception detection is based on the
trap-disable definition. Exception status is and the appropriate exception status bits in the FPSCR are updated at
the completion of execution of the instruction. Otherwise, behavior is the same as any vector floating-point
instruction that can cause an eaccumulatedxception. Taking a Program interrupt on a trap-enabled exception when
interrupts are enabled by MSR.FE0 and MSR.FE1 is still supported, albeit with the ACC[AT] updated based on a
trap-disabled result.

Special Registers Altered:
FX VXSNAN VXIMZ OX UX XX (if [pm]xvf32ger)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf32gerpp)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf32gerpn)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf32gernp)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf32gernn)

Register Operand Data Layout for [pm]xvf32ger[pp|pn|np|nn]

VSR[XA] X[0] X[1] X[2] X[3]

VSR[XB] Y[0] Y[1] Y[2] Y[3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]
Chapter 7. Vector-Scalar Extension Facility 877

Version 3.1
Let X be the 4-element vector of single-precision floating-point values contained in VSR[XA].
Let Y be the 4-element vector of single-precision floating-point values contained in VSR[XB].
Let ACC[AT] be the Accumulator containing a 4×4 matrix of single-precision floating-point values.

The floating-point operations to implement each result element for xvf32ger[pp|pn|np|nn] are shown below.

[pm]xvf32ger performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fmuls(X[i],Y[j])

[pm]xvf32gerpp performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fmadds(X[i],Y[j],ACC[AT][i][j])

[pm]xvf32gerpn performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fmsubs(X[i],Y[j],ACC[AT][i][j])

[pm]xvf32gernp performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fnmsubs(X[i],Y[j],ACC[AT][i][j])

[pm]xvf32gernn] performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 3:
 ACC[AT][i][j] = fnmadds(X[i],Y[j],ACC[AT][i][j])

Programming Note
Power ISA™ I878

Version 3.1
VSX Vector 64-bit Floating-Point GER (rank-1
update) XX3-form

xvf64ger AT,XAp,XB

VSX Vector 64-bit Floating-Point GER (rank-1
update) Positive multiply, Positive accumulate
XX3-form

xvf64gerpp AT,XAp,XB

VSX Vector 64-bit Floating-Point GER (rank-1
update) Positive multiply, Negative
accumulate XX3-form

xvf64gerpn AT,XAp,XB

VSX Vector 64-bit Floating-Point GER (rank-1
update) Negative multiply, Positive
accumulate XX3-form

xvf64gernp AT,XAp,XB

VSX Vector 64-bit Floating-Point GER (rank-1
update) Negative multiply, Negative
accumulate XX3-form

xvf64gernn AT,XAp,XB

Prefixed Masked VSX Vector 64-bit
Floating-Point GER (rank-1 update)
MMIRR:XX3-form

pmxvf64ger AT,XAp,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 64-bit
Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate
MMIRR:XX3-form

pmxvf64gerpp AT,XAp,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 64-bit
Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate
MMIRR:XX3-form

pmxvf64gerpn AT,XAp,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 64-bit
Floating-Point GER (rank-1 update) Negative
multiply, Positive accumulate
MMIRR:XX3-form

pmxvf64gernp AT,XAp,XB,XMSK,YMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 64-bit
Floating-Point GER (rank-1 update) Negative
multiply, Negative accumulate
MMIRR:XX3-form

pmxvf64gernn AT,XAp,XB,XMSK,YMSK
Prefix:

Suffix:

59 AT // Ap B 59 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // Ap B 58 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // Ap B 186 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // Ap B 122 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // Ap B 250 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // Ap B 59 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // Ap B 58 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // Ap B 186 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // Ap B 122 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / /// XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // Ap B 250 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 879

Version 3.1
if MSR.VSX=0 then VSX_Unavailable()

if “xvf64ger” | “xvf64gerpp” | “xvf64gerpn” | “xvf64gernp” | “xvf64gernn” then do

 XMSK ← 0b1111

 YMSK ← 0b11

end

vsrc1.qword[0] ← VSR[32×AX+Ap]

vsrc1.qword[1] ← VSR[32×AX+Ap+1]

vsrc2 ← VSR[32×BX+B]

do i = 0 to 3

 do j = 0 to 1

 if XMSK.bit[i]=1 & YMSK.bit[j]=1 then do

 reset_flags()

 src1 ← bfp_CONVERT_FROM_BFP64(vsrc1.dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(vsrc2.dword[j])

 acc ← bfp_CONVERT_FROM_BFP64(ACC[AT][i].dword[j])

 if “[pm]xvf64ger” then v ← bfp_MULTIPLY(src1, src2)

 if “[pm]xvf64gerpp” then v ← bfp_MULTIPLY_ADD(src1, src2, acc)

 if “[pm]xvf64gerpn” then v ← bfp_MULTIPLY_ADD(src1, src2, bfp_NEGATE(acc))

 if “[pm]xvf64gernp” then v ← bfp_MULTIPLY_ADD(src1, src2, bfp_NEGATE(acc))

 if “[pm]xvf64gernn” then v ← bfp_MULTIPLY_ADD(src1, src2, acc)

 r ← bfp_ROUND_TO_BFP64_NO_TRAP(v)

 if “[pm]xvf64gernp” then r ← bfp_NEGATE(r)

 if “[pm]xvf64gernn” then r ← bfp_NEGATE(r)

 ACC[AT][i].dword[j] ← bfp64_CONVERT_FROM_BFP(r)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 end

 else

 ACC[AT][i].dword[j] ← 0x0000_0000_0000_0000

 end

end

Let XAp be the value of 32×AX + Ap. If XAp is odd, or is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×2 matrix of double-precision floating-point values.

Let vsrcX be the concatenation of the contents of VSR[XAp] and VSR[XAp+1].
Let vsrcY be the contents of VSR[XB].

For xvf64ger, xvf64gerpp, xvf64gerpn, xvf64gernp, and xvf64gernn, let XMSK=0b1111 and YMSK=0b11.

For each integer value i from 0 to 3, and each integer value j from 0 to 1, do the following.

If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

Let prod be the product of the double-precision floating-point value in doubleword element i of vsrcX and
the double-precision floating-point value in doubleword element j of vsrcY, having unbounded range and
precision.

For [pm]xvf64ger, prod is rounded to double-precision using the rounding mode specified in RN. The
rounded result is placed into doubleword element j of ACC[AT][i] in double-precision floating-point format.
Power ISA™ I880

Version 3.1
For [pm]xvf64gerpp, prod is added to the double-precision floating-point value in doubleword element j of
ACC[AT][i]. The intermediate result is rounded to double-precision using the rounding mode specified in RN.
The rounded result is placed into doubleword element j of ACC[AT][i] in double-precision floating-point
format.

For [pm]xvf64gerpn, prod is added to the negation of the double-precision floating-point value in
doubleword element j of ACC[AT][i]. The intermediate result is rounded to double-precision using the
rounding mode specified in RN. The rounded result is placed into doubleword element j of ACC[AT][i] in
double-precision floating-point format.

For [pm]xvf64gernn, prod is added to the double-precision floating-point value in doubleword element j of
ACC[AT][i]. The intermediate result is rounded to double-precision using the rounding mode specified in RN.
The rounded result is negated and placed into doubleword element j of ACC[AT][i] in double-precision
floating-point format.

For [pm]xvf64gernp, prod is added to the negation of the double-precision floating-point value in
doubleword element j of ACC[AT][i]. The intermediate result is rounded to double-precision using the
rounding mode specified in RN. The rounded result is negated and placed into doubleword element j of
ACC[AT][i] in double-precision floating-point format.

Otherwise, the contents of doubleword element j of ACC[AT][i] are set to 0x0000_0000_0000_0000.

Unlike other vector floating-point instructions, ACC[AT] is always updated by the execution of the instruction, even
when a trap-enabled exception occurs. For every multiply-add operation that is performed as part of the execution of
this instruction, if an exception occurs as the result of that particular multiply-add operation, the trap-disabled
exception result is returned, even if that exception type is trap-enabled. Exception detection is based on the
trap-disable definition. Exception status is accumulated and the appropriate exception status bits in the FPSCR are
updated at the completion of execution of the instruction. Otherwise, behavior is the same as any vector
floating-point instruction that can cause an exception. Taking a Program interrupt on a trap-enabled exception when
interrupts are enabled by MSR.FE0 and MSR.FE1 is still supported, albeit with the ACC[AT] updated based on a
trap-disabled result.

Special Registers Altered:
FX VXSNAN VXIMZ OX UX XX (if [pm]xvf64ger)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf64gerpp)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf64gerpn)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf64gernp)
FX VXSNAN VXIMZ VXISI OX UX XX (if [pm]xvf64gernn)

Register Operand Data Layout for [pm]xvf64ger[pp|pn|np|nn]

VSR[XAp] X[0] X[1]

VSR[XAp+1] X[2] X[3]

VSR[XB] Y[0] Y[1]

ACC[AT][0] T[0][0] T[0][1]

ACC[AT][1] T[1][0] T[1][1]

ACC[AT][2] T[2][0] T[2][1]

ACC[AT][3] T[3][0] T[3][1]
Chapter 7. Vector-Scalar Extension Facility 881

Version 3.1
Let X be the 4-element vector of double-precision floating-point values contained in the concatenation of
VSR[XAp] and VSR[XAp+1].
Let Y be the 2-element vector of double-precision floating-point values contained in VSR[XB].
Let ACC[AT] be the Accumulator containing a 4×2 matrix of double-precision floating-point values.

The floating-point operations to implement each result element for xvf64ger[pp|pn|np|nn] are shown below.

[pm]xvf64ger performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 1:
 ACC[AT][i][j] = fmul(X[i],Y[j])

[pm]xvf64gerpp performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 1:
 ACC[AT][i][j] = fmadd(X[i],Y[j],ACC[AT][i][j])

[pm]xvf64gerpn performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 1:
 ACC[AT][i][j] = fmsub(X[i],Y[j],ACC[AT][i][j])

[pm]xvf64gernp performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 1:
 ACC[AT][i][j] = fnmsub(X[i],Y[j],ACC[AT][i][j])

[pm]xvf64gernn performs the following form of accumulation of one outer product (rank 1 update).

for i=0 to 3, j=0 to 1:
 ACC[AT][i][j] = fnmadd(X[i],Y[j],ACC[AT][i][j])

Programming Note
Power ISA™ I882

Version 3.1
VSX Vector 4-bit Signed Integer GER (rank-8 update) XX3-form

xvi4ger8 AT,XA,XB

VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply, Positive accumulate
XX3-form

xvi4ger8pp AT,XA,XB

Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) MMIRR:XX3-form

pmxvi4ger8 AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

pmxvi4ger8pp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “xvi4ger8” | “xvi4ger8pp” then do

 PMSK ← 0b11111111

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 prod0 ← (PMSK.bit[0]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[0]) * EXTS(VSR[32×BX+B].word[j].nibble[0])

 prod1 ← (PMSK.bit[1]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[1]) * EXTS(VSR[32×BX+B].word[j].nibble[1])

 prod2 ← (PMSK.bit[2]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[2]) * EXTS(VSR[32×BX+B].word[j].nibble[2])

 prod3 ← (PMSK.bit[3]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[3]) * EXTS(VSR[32×BX+B].word[j].nibble[3])

 prod4 ← (PMSK.bit[4]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[4]) * EXTS(VSR[32×BX+B].word[j].nibble[4])

 prod5 ← (PMSK.bit[5]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[5]) * EXTS(VSR[32×BX+B].word[j].nibble[5])

 prod6 ← (PMSK.bit[6]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[6]) * EXTS(VSR[32×BX+B].word[j].nibble[6])

 prod7 ← (PMSK.bit[7]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].nibble[7]) * EXTS(VSR[32×BX+B].word[j].nibble[7])

 psum ← prod0 + prod1 + prod2 + prod3 + prod4 + prod5 + prod6 + prod7

 if “[pm]xvi4ger8” then ACC[AT][i].word[j] ← CHOP32(psum)

 if “[pm]xvi4ger8pp” then ACC[AT][i].word[j] ← CHOP32(psum + EXTS(ACC[AT][i].word[j]))

 end

59 AT // A B 35 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 34 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 35 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK XMSK YMSK
0 6 8 12 14 15 16 24 28 31

59 AT // A B 34 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 883

Version 3.1
 else

 ACC[AT][i].word[j] ← 0x0000_0000

 end

end

Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of 32-bit signed integer values.

For xvi4ger8 or xvi4ger8pp, let PMSK=0b11111111, XMSK=0b1111, and YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.

If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.
If bit 0 of PMSK is equal to 1, let prod0 be the product of the 4-bit signed integer value in nibble 0 of word
element i of VSR[XA] (X[i][0]) and the 4-bit signed integer value in byte 0 of word element j of VSR[XB]
(Y[j][0]), sign-extended to 32 bits. Otherwise, let prod0 be the value 0.

If bit 1 of PMSK is equal to 1, let prod1 be the product of the 4-bit signed integer value in nibble 1 of word
element i of VSR[XA] (X[i][1]) and the 4-bit signed integer value in nibble 1 of word element j of VSR[XB]
(Y[j][1]), sign-extended to 32 bits. Otherwise, let prod1 be the value 0.

If bit 2 of PMSK is equal to 1, let prod2 be the product of the 4-bit signed integer value in nibble 2 of word
element i of VSR[XA] (X[i][2]) and the 4-bit signed integer value in nibble 2 of word element j of VSR[XB]
(Y[j][2]), sign-extended to 32 bits. Otherwise, let prod2 be the value 0.

If bit 3 of PMSK is equal to 1, let prod3 be the product of the 4-bit signed integer value in nibble 3 of word
element i of VSR[XA] (X[i][3]) and the 4-bit signed integer value in nibble 3 of word element j of VSR[XB]
(Y[j][3]), sign-extended to 32 bits. Otherwise, let prod3 be the value 0.

If bit 4 of PMSK is equal to 1, let prod4 be the product of the 4-bit signed integer value in nibble 4 of word
element i of VSR[XA] (X[i][4]) and the 4-bit signed integer value in nibble 4 of word element j of VSR[XB]
(Y[j][4]), sign-extended to 32 bits. Otherwise, let prod4 be the value 0.

If if bit 5 of PMSK is equal to 1, let prod5 be the product of the 4-bit signed integer value in nibble 5 of word
element i of VSR[XA] (X[i][5]) and the 4-bit signed integer value in nibble 5 of word element j of VSR[XB]
(Y[j][5]), sign-extended to 32 bits. Otherwise, let prod5 be the value 0.

If bit 6 of PMSK is equal to 1, let prod6 be the product of the 4-bit signed integer value in nibble 6 of word
element i of VSR[XA] (X[i][6]) and the 4-bit signed integer value in nibble 6 of word element j of VSR[XB]
(Y[j][6]), sign-extended to 32 bits. Otherwise, let prod6 be the value 0.

If bit 7 of PMSK is equal to 1, let prod7 be the product of the 4-bit signed integer value in nibble 7 of word
element i of VSR[XA] (X[i][7]) and the 4-bit signed integer value in nibble 7 of word element j of VSR[XB]
(Y[j][7]), sign-extended to 32 bits. Otherwise, let prod7 be the value 0.

Let psum be the sum of prod0, prod1, prod2, prod3, prod4, prod5, prod6, and prod7.

For [pm]xvi4ger8, psum is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

For [pm]xvi4ger8pp, psum is added to the 32-bit signed integer value in word element j of ACC[AT][i], and
the result is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

Otherwise, let ACC[AT][i][j] is set to 0x0000_0000.

Special Registers Altered:
None
Power ISA™ I884

Version 3.1
Register Operand Data Layout for [pm]xvi4ger8[pp]

VSR[XA]

X[
0]
[0
]

X[
0]
[1
]

X[
0]
[2
]

X[
0]
[3
]

X[
0]
[4
]

X[
0]
[5
]

X[
0]
[6
]

X[
0]
[7
]

X[
1]
[0
]

X[
1]
[1
]

X[
1]
[2
]

X[
1]
[3
]

X[
1]
[4
]

X[
1]
[5
]

X[
1]
[6
]

X[
1]
[7
]

X[
2]
[0
]

X[
2]
[1
]

X[
2]
[2
]

X[
2]
[3
]

X[
2]
[4
]

X[
2]
[5
]

X[
2]
[6
]

X[
2]
[7
]

X[
3]
[0
]

X[
3]
[1
]

X[
3]
[2
]

X[
3]
[3
]

X[
3]
[4
]

X[
3]
[5
]

X[
3]
[6
]

X[
3]
[7
]

VSR[XB]
Y[
0]
[0
]

Y[
1]
[0
]

Y[
2]
[0
]

Y[
3]
[0
]

Y[
4]
[0
]

Y[
5]
[0
]

Y[
6]
[0
]

Y[
7]
[0
]

Y[
0]
[1
]

Y[
1]
[1
]

Y[
2]
[1
]

Y[
3]
[1
]

Y[
4]
[1
]

Y[
5]
[1
]

Y[
6]
[1
]

Y[
7]
[1
]

Y[
0]
[2
]

Y[
1]
[2
]

Y[
2]
[2
]

Y[
3]
[2
]

Y[
4]
[2
]

Y[
5]
[2
]

Y[
6]
[2
]

Y[
7]
[2
]

Y[
0]
[3
]

Y[
1]
[3
]

Y[
2]
[3
]

Y[
3]
[3
]

Y[
4]
[3
]

Y[
5]
[3
]

Y[
6]
[3
]

Y[
7]
[3
]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 127

Let X be the 8×4 matrix of 4-bit signed integer values contained in VSR[XA] in row-major format.
Let Y be the 8×4 matrix of 4-bit signed integer values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of 32-bit signed-integer values.

[pm]xvi4ger8 performs the following form of accumulation of eight outer products (rank 8 update).

ACC[AT][i][j] = si32_CHOP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]) +
 EXTS(X[i][2]) * EXTS(Y[j][2]) +
 EXTS(X[i][3]) * EXTS(Y[j][3]) +
 EXTS(X[i][4]) * EXTS(Y[j][4]) +
 EXTS(X[i][5]) * EXTS(Y[j][5]) +
 EXTS(X[i][6]) * EXTS(Y[j][6]) +
 EXTS(X[i][7]) * EXTS(Y[j][7]))

[pm]xvi4ger8pp performs the following form of accumulation of eight outer products (rank 8 update).

ACC[AT][i][j] = si32_CHOP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]) +
 EXTS(X[i][2]) * EXTS(Y[j][2]) +
 EXTS(X[i][3]) * EXTS(Y[j][3]) +
 EXTS(X[i][4]) * EXTS(Y[j][4]) +
 EXTS(X[i][5]) * EXTS(Y[j][5]) +
 EXTS(X[i][6]) * EXTS(Y[j][6]) +
 EXTS(X[i][7]) * EXTS(Y[j][7]) +
 EXTS(ACC[AT][i][j]))

Programming Note
Chapter 7. Vector-Scalar Extension Facility 885

Version 3.1
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) XX3-form

xvi8ger4 AT,XA,XB

VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive multiply, Positive
accumulate XX3-form

xvi8ger4pp AT,XA,XB

Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) MMIRR:XX3-form

pmxvi8ger4 AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

pmxvi8ger4pp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “xvi8ger4” | “xvi8ger4pp” then do

 PMSK ← 0b1111

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 prod0 ← (PMSK.bit[0]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[0]) * EXTZ(VSR[32×BX+B].word[j].byte[0])

 prod1 ← (PMSK.bit[1]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[1]) * EXTZ(VSR[32×BX+B].word[j].byte[1])

 prod2 ← (PMSK.bit[2]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[2]) * EXTZ(VSR[32×BX+B].word[j].byte[2])

 prod3 ← (PMSK.bit[3]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[3]) * EXTZ(VSR[32×BX+B].word[j].byte[3])

 psum ← prod0 + prod1 + prod2 + prod3

 if “[pm]xvi8ger4” then ACC[AT][i].word[j] ← CHOP32(psum)

 if “[pm]xvi8ger4pp” then ACC[AT][i].word[j] ← CHOP32(psum + EXTS(ACC[AT][i].word[j]))

 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end

59 AT // A B 3 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 2 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 20 24 28 31

59 AT // A B 3 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 20 24 28 31

59 AT // A B 2 AXBX /
0 6 9 11 16 21 29 30 31
Power ISA™ I886

Version 3.1
Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of 32-bit signed integer values.

For xvi8ger4 or xvi8ger4pp, let PMSK=0b1111, XMSK=0b1111, and YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let prod0 be the product of the 8-bit signed integer value in byte 0 of word
element i of VSR[XA] (X[i][0]) and the 8-bit unsigned integer value in byte 0 of word element j of VSR[XB]
(Y[j][0]), sign-extended to 32 bits. Otherwise, let prod0 be the value 0.

If bit 1 of PMSK is equal to 1, let prod1 be the product of the 8-bit signed integer value in byte 1 of word
element i of VSR[XA] (X[i][1]) and the 8-bit unsigned integer value in byte 1 of word element j of VSR[XB]
(Y[j][1]), sign-extended to 32 bits. Otherwise, let prod1 be the value 0.

If bit 2 of PMSK is equal to 1, let prod2 be the product of the 8-bit signed integer value in byte 2 of word
element i of VSR[XA] (X[i][2]) and the 8-bit unsigned integer value in byte 2 of word element j of VSR[XB]
(Y[j][2]), sign-extended to 32 bits. Otherwise, let prod2 be the value 0.

If bit 3 of PMSK is equal to 1, let prod3 be the product of the 8-bit signed integer value in byte 3 of word
element i of VSR[XA] (X[i][3]) and the 8-bit unsigned integer value in byte 3 of word element j of VSR[XB]
(Y[j][3]), sign-extended to 32 bits. Otherwise, let prod3 be the value 0.

Let sum be the sum of prod0, prod1, prod2, and prod3.

For [pm]xvi8ger4, psum is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

For [pm]xvi8ger4pp, psum is added to the 32-bit signed integer value in word element j of ACC[AT][i], and
the result is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

Otherwise, let word element j of ACC[AT][i] is set to 0x0000_0000.

Special Registers Altered:
None

Register Operand Data Layout for [pm]xvi8ger4[pp]

VSR[XA] X[0][0] X[0][1] X[0][2] X[0][3] X[1][0] X[1][1] X[1][2] X[1][3] X[2][0] X[2][1] X[2][2] X[2][3] X[3][0] X[3][1] X[3][2] X[3][3]

VSR[XB] Y[0][0] Y[1][0] Y[2][0] Y[3][0] Y[0][1] Y[1][1] Y[2][1] Y[3][1] Y[0][2] Y[1][2] Y[2][2] Y[3][2] Y[0][3] Y[1][3] Y[2][3] Y[3][3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 127
Chapter 7. Vector-Scalar Extension Facility 887

Version 3.1
Let X be the 4×4 matrix of 8-bit signed integer values contained in VSR[XA] in row-major format.
Let Y be the 4×4 matrix of 8-bit unsigned integer values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of 32-bit signed-integer values.

[pm]xvi8ger4 performs the following form of accumulation of four outer products (rank 4 update).

ACC[AT][i][j] = si32_CHOP(EXTS(X[i][0]) * EXTZ(Y[j][0]) +
 EXTS(X[i][1]) * EXTZ(Y[j][1]) +
 EXTS(X[i][2]) * EXTZ(Y[j][2]) +
 EXTS(X[i][3]) * EXTZ(Y[j][3]))

[pm]xvi8ger4pp performs the following form of accumulation of four outer products (rank 4 update).

ACC[AT][i][j] = si32_CHOP(EXTS(X[i][0]) * EXTZ(Y[j][0]) +
 EXTS(X[i][1]) * EXTZ(Y[j][1]) +
 EXTS(X[i][2]) * EXTZ(Y[j][2]) +
 EXTS(X[i][3]) * EXTZ(Y[j][3]) +
 EXTS(ACC[AT][i][j]))

Programming Note
Power ISA™ I888

Version 3.1
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with Saturate Positive multiply,
Positive accumulate XX3-form

xvi8ger4spp AT,XA,XB

Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with Saturate
Positive multiply, Positive accumulate MMIRR:XX3-form

pmxvi8ger4spp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “xvi8ger4pps” then do

 PMSK ← 0b1111

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 prod0 ← (PMSK.bit[0]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[0]) * EXTZ(VSR[32×BX+B].word[j].byte[0])

 prod1 ← (PMSK.bit[1]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[1]) * EXTZ(VSR[32×BX+B].word[j].byte[1])

 prod2 ← (PMSK.bit[2]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[2]) * EXTZ(VSR[32×BX+B].word[j].byte[2])

 prod3 ← (PMSK.bit[3]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].byte[3]) * EXTZ(VSR[32×BX+B].word[j].byte[3])

 psum ← prod0 + prod1 + prod2 + prod3

 ACC[AT][i].word[j] ← si32_CLAMP(psum + EXTS(ACC[AT][i].word[j])

 if sat_flag=1 then VSCR.SAT ← 1

 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end

Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of 32-bit signed integer values.

For xvi8ger4spp, let PMSK=0b1111, XMSK=0b1111, and YMSK=0b1111.

For each integer value i from 0 to 3, and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let prod0 be the product of the 8-bit signed integer value in byte 0 of word
element i of VSR[XA] (X[i][0]) and the 8-bit unsigned integer value in byte 0 of word element j of VSR[XB]
(Y[j][0]), sign-extended to 32 bits. Otherwise, let prod0 be the value 0.

If bit 1 of PMSK is equal to 1, let prod1 be the product of the 8-bit signed integer value in byte 1 of word
element i of VSR[XA] (X[i][1]) and the 8-bit unsigned integer value in byte 1 of word element j of VSR[XB]
(Y[j][1]), sign-extended to 32 bits. Otherwise, let prod1 be the value 0.

59 AT // A B 99 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 20 24 28 31

59 AT // A B 99 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 889

Version 3.1
If bit 2 of PMSK is equal to 1, let prod2 be the product of the 8-bit signed integer value in byte 2 of word
element i of VSR[XA] (X[i][2]) and the 8-bit unsigned integer value in byte 2 of word element j of VSR[XB]
(Y[j][2]), sign-extended to 32 bits. Otherwise, let prod2 be the value 0.

If bit 3 of PMSK is equal to 1, let prod3 be the product of the 8-bit signed integer value in byte 3 of word
element i of VSR[XA] (X[i][3]) and the 8-bit unsigned integer value in byte 3 of word element j of VSR[XB]
(Y[j][3]), sign-extended to 32 bits. Otherwise, let prod3 be the value 0.

Let psum be the sum of prod0, prod1, prod2, and prod3.

psum is added to the 32-bit signed integer value in word element j of ACC[AT][i] and the result is placed
into word element j of ACC[AT][i] in 32-bit signed integer format.

If the result is less than -231, the result saturates to -231 and SAT is set to 1.
If the result is greater than 231-1, the result saturates to 231-1 and SAT is set to 1.

Otherwise, let word element j of ACC[AT][i] is set to 0x0000_0000.

Special Registers Altered:
SAT

Register Operand Data Layout for [pm]xvi8ger4[pp]

VSR[XA] X[0][0] X[0][1] X[0][2] X[0][3] X[1][0] X[1][1] X[1][2] X[1][3] X[2][0] X[2][1] X[2][2] X[2][3] X[3][0] X[3][1] X[3][2] X[3][3]

VSR[XB] Y[0][0] Y[1][0] Y[2][0] Y[3][0] Y[0][1] Y[1][1] Y[2][1] Y[3][1] Y[0][2] Y[1][2] Y[2][2] Y[3][2] Y[0][3] Y[1][3] Y[2][3] Y[3][3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 127

Let X be the 4×4 matrix of 8-bit signed integer values contained in VSR[XA] in row-major format.
Let Y be the 4×4 matrix of 8-bit unsigned integer values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of 32-bit signed integer values.

[pm]xvi8ger4 (see <PAGE XREF to xvi8ger4>) performs the following form of accumulation of four outer
products (rank 4 update).

ACC[i][j] = si32_CHOP(EXTS(X[i][0]) * EXTZ(Y[j][0]) +
 EXTS(X[i][1]) * EXTZ(Y[j][1]) +
 EXTS(X[i][2]) * EXTZ(Y[j][2]) +
 EXTS(X[i][3]) * EXTZ(Y[j][3]))

Note that a saturating form of the above accumulation is not needed nor provided since the sum of four 16-bit
signed integer products cannot overflow the 32-bit signed integer format.

[pm]xvi8ger4spp performs the following form of accumulation of four outer products (rank 4 update).

ACC[i][j] = si32_CLAMP(EXTS(X[i][0]) * EXTZ(Y[j][0]) +
 EXTS(X[i][1]) * EXTZ(Y[j][1]) +
 EXTS(X[i][2]) * EXTZ(Y[j][2]) +
 EXTS(X[i][3]) * EXTZ(Y[j][3]) +
 EXTS(ACC[i][j]))

Programming Note
Power ISA™ I890

Version 3.1
VSX Vector 16-bit Signed Integer GER (rank-2 update) XX3-form

xvi16ger2 AT,XA,XB

VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply, Positive accumulate
XX3-form

xvi16ger2pp AT,XA,XB

Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) MMIRR:XX3-form

pmxvi16ger2 AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

pmxvi16ger2pp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “xvi16ger2s” | “xvi16ger2spp” then do

 PMSK ← 0b11

 XMSK ← 0b1111

 YMSK ← 0b1111

end

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 prod0 ← (PMSK.bit[0]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].hword[0]) * EXTS(VSR[32×BX+B].word[j].hword[0])

 prod1 ← (PMSK.bit[1]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].hword[1]) * EXTS(VSR[32×BX+B].word[j].hword[1])

 psum ← prod0 + prod1

 if “[pm]xvi16ger2” then ACC[AT][i].word[j] ← CHOP32(psum)

 if “[pm]xvi16ger2pp” then ACC[AT][i].word[j] ← CHOP32(psum + EXTS(ACC[AT][i].word[j])

 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end

59 AT // A B 75 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 107 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 75 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 107 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 891

Version 3.1
Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of 32-bit signed integer values.

For xvi16ger2 or xvi16ger2pp, let PMSK=0b11, XMSK=0b1111, and YMSK=0b1111.

For each integer value i from 0 to 3 and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let prod0 be the product of the 16-bit signed integer value in halfword 0 of word
element i of VSR[XA] and the 16-bit signed integer value in halfword 0 of word element j of VSR[XB].
Otherwise, let prod0 be the value 0.

If bit 1 of PMSK is equal to 1, let prod1 be the product of the 16-bit signed integer value in halfword 1 of word
element i of VSR[XA] and the 16-bit signed integer value in halfword 1 of word element j of VSR[XB].
Otherwise, let prod1 be the value 0.

Let psum be the sum of prod0 and prod1.

For [pm]xvi16ger2, psum is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

For [pm]xvi16ger2pp, psum is added to the 32-bit signed integer value in word element j of ACC[AT][i],
and the result is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

Otherwise, let ACC[AT][i][j] is set to 0x0000_0000.

Special Registers Altered:
None

Register Operand Data Layout for [pm]xvi16ger2[pp]

VSR[XA] X[0][0] X[0][1] X[1][0] X[1][1] X[2][0] X[2][1] X[3][0] X[3][1]

VSR[XB] Y[0][0] Y[1][0] Y[0][1] Y[1][1] Y[0][2] Y[1][2] Y[0][3] Y[1][3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 16 32 48 64 80 96 112 127

Let X be the 4×2 matrix of 16-bit signed integer values contained in VSR[XA] in row-major format.
Let Y be the 4×2 matrix of 16-bit signed integer values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of 32-bit signed integer values.

[pm]xvi16ger2 performs the following form of accumulation of two outer products (rank 2 update).

ACC[i][j] = si32_CHOP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]))

[pm]xvi16ger2pp performs the following form of accumulation of two outer products (rank 2 update).

ACC[i][j] = si32_CHOP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]) +
 EXTS(ACC[i][J]))

Programming Note
Power ISA™ I892

Version 3.1
VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation XX3-form

xvi16ger2s AT,XA,XB

VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation Positive multiply, Positive
accumulate XX3-form

xvi16ger2spp AT,XA,XB

Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation
MMIRR:XX3-form

pmxvi16ger2s AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation Positive
multiply, Positive accumulate MMIRR:XX3-form

pmxvi16ger2spp AT,XA,XB,XMSK,YMSK,PMSK
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

if “xvi16ger2s” | “xvi16ger2spp” then do

 PMSK ← 0b11

 XMSK ← 0b1111

 YMSK ← 0b1111

end

sat_flag ← 0

do i = 0 to 3

 do j = 0 to 3

 if XMSK.bit[i] & YMSK.bit[j] then do

 prod0 ← (PMSK.bit[0]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].hword[0]) * EXTS(VSR[32×BX+B].word[j].hword[0])

 prod1 ← (PMSK.bit[1]=0) ? 0 : EXTS(VSR[32×AX+A].word[i].hword[1]) * EXTS(VSR[32×BX+B].word[j].hword[1])

 psum ← prod0 + prod1

 if “[pm]xvi16ger2s” then

 ACC[AT][i].word[j] ← si32_CLAMP(psum)

 if “[pm]xvi16ger2spp” then

 ACC[AT][i].word[j] ← si32_CLAMP(psum + EXTS(ACC[AT][i].word[j])

 if sat_flag=1 then VSCR.SAT ← 1

59 AT // A B 43 AXBX /
0 6 9 11 16 21 29 30 31

59 AT // A B 42 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 43 AXBX /
0 6 9 11 16 21 29 30 31

1 3 9 // / / PMSK /// XMSK YMSK
0 6 8 12 14 15 16 18 24 28 31

59 AT // A B 42 AXBX /
0 6 9 11 16 21 29 30 31
Chapter 7. Vector-Scalar Extension Facility 893

Version 3.1
 end

 else

 ACC[AT][i][j] ← 0x0000_0000

 end

end

Let XA be the value of 32×AX + A. If XA is in the range 4×AT to 4×AT+3, the instruction form is invalid.
Let XB be the value of 32×BX + B. If XB is in the range 4×AT to 4×AT+3, the instruction form is invalid.

Let the contents of ACC[AT] be a 4×4 matrix of 32-bit signed integer values.

For xvi16ger2s or xvi16ger2spp, let PMSK=0b11, XMSK=0b1111, and YMSK=0b1111.

For each integer value i from 0 to 3 and each integer value j from 0 to 3, do the following.
If bit i of XMSK is equal to 1 and bit j of YMSK is equal to 1, do the following.

If bit 0 of PMSK is equal to 1, let prod0 be the product of the 16-bit signed integer value in halfword 0 of word
element i of VSR[XA] and the 16-bit signed integer value in halfword 0 of word element j of VSR[XB].
Otherwise, let prod0 be the value 0.

If bit 1 of PMSK is equal to 1, let prod1 be the product of the 16-bit signed integer value in halfword 1 of word
element i of VSR[XA] and the 16-bit signed integer value in halfword 1 of word element j of VSR[XB].
Otherwise, let prod1 be the value 0.

Let sum be the sum of prod0 and prod1.

For [pm]xvi16ger2s, let result be psum.

For [pm]xvi16ger2spp, let result be the sum of psum to the 32-bit signed integer value in word element j
of ACC[AT][i].

If result is less than -231, result saturates to -231 and SAT is set to 1.
If result is greater than 231-1, result saturates to 231-1 and SAT is set to 1.

result is placed into word element j of ACC[AT][i] in 32-bit signed integer format.

Otherwise, let ACC[AT][i][j] is set to 0x0000_0000.

Special Registers Altered:
SAT

Register Operand Data Layout for [pm]xvi16ger2s[pp]

VSR[XA] X[0][0] X[0][1] X[1][0] X[1][1] X[2][0] X[2][1] X[3][0] X[3][1]

VSR[XB] Y[0][0] Y[1][0] Y[0][1] Y[1][1] Y[0][2] Y[1][2] Y[0][3] Y[1][3]

ACC[AT][0] T[0][0] T[0][1] T[0][2] T[0][3]

ACC[AT][1] T[1][0] T[1][1] T[1][2] T[1][3]

ACC[AT][2] T[2][0] T[2][1] T[2][2] T[2][3]

ACC[AT][3] T[3][0] T[3][1] T[3][2] T[3][3]

0 16 32 48 64 80 96 112 127
Power ISA™ I894

Version 3.1
Let X be the 4×2 matrix of 16-bit signed integer values contained in VSR[XA] in row-major format.
Let Y be the 4×2 matrix of 16-bit signed integer values contained in VSR[XB] in row-major format.
Let ACC[AT] be the Accumulator containing a 4×4 matrix of 32-bit signed-integer values.

[pm]xvi16ger2s performs the following form of accumulation of two outer products (rank 2 update).

ACC[AT][i][j] = si32_CLAMP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]))

[pm]xvi16ger2spp performs the following form of accumulation of two outer products (rank 2 update).

ACC[AT][i][j] = si32_CLAMP(EXTS(X[i][0]) * EXTS(Y[j][0]) +
 EXTS(X[i][1]) * EXTS(Y[j][1]) +
 EXTS(ACC[AT][i][1]))

Programming Note
Chapter 7. Vector-Scalar Extension Facility 895

Version 3.1
VSX Vector Insert Exponent Double-Precision
XX3-form

xviexpdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src1 ← VSR[32×AX+A].dword[i]

 src2 ← VSR[32×BX+B].dword[i]

 VSR[32×TX+T].dword[i].bit[0] ← src1.bit[0]

 VSR[32×TX+T].dword[i].bit[1:11] ← src2.bit[53:63]

 VSR[32×TX+T].dword[i].bit[12:63] ← src1.bit[12:63]

end

Let XT be the sum 32×TX + T.
Let XA be the sum 32×AX + A.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the unsigned integer value in
doubleword element i of VSR[XA].

Let src2 be the unsigned integer value in
doubleword element i of VSR[XB].

The contents of bits 0 of src1 are placed into bit 0
of doubleword element i of VSR[XT].

The contents of bits 53:63 of src2 are placed into
bits 1:11 of doubleword element i of VSR[XT].

The contents of bits 12:63 of src1 are placed into
bits 12:63 of doubleword element i of VSR[XT].

Special Registers Altered:
None

VSX Vector Insert Exponent Single-Precision
XX3-form

xviexpsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src1 ← VSR[32×AX+A].word[i]

 src2 ← VSR[32×BX+B].word[i]

 VSR[32×TX+T].word[i].bit[0] ← src1.bit[0]

 VSR[32×TX+T].word[i].bit[1:8] ← src2.bit[24:31]

 VSR[32×TX+T].word[i].bit[9:31] ← src1.bit[9:31]

end

Let XT be the sum 32×TX + T.
Let XA be the sum 32×AX + A.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the unsigned integer value in word
element i of VSR[XA].

Let src2 be the unsigned integer value in word
element i of VSR[XB].

The contents of bits 0 of src1 are placed into bit 0
of word element i of VSR[XT].

The contents of bits 24:31 of src2 are placed into
bits 1:8 of word element i of VSR[XT].

The contents of bits 9:31 of src1 are placed into
bits 9:31 of word element i of VSR[XT].

Special Registers Altered:
None

60 T A B 248 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 216 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xviexpdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xviexpsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I896

Version 3.1
VSX Vector Multiply-Add Type-A
Double-Precision XX3-form

xvmaddadp XT,XA,XB

VSX Vector Multiply-Add Type-M
Double-Precision XX3-form

xvmaddmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 if “xvmaddadp” then do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,src2)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← result

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.

For xvmaddadp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XT].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XB].

For xvmaddmdp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XB].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 126.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 126.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 97 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 105 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 897

Version 3.1
VSR Data Layout for xvmaddadp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XT].dword[0] VSR[XT].dword[1]

src3 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvmaddmdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

src3 VSR[XT].dword[0] VSR[XT].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I898

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 For xvmaddadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).

For xvmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
src3 For xvmaddadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).

For xvmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 126.Actions for xvmadd(a|m)dp
Chapter 7. Vector-Scalar Extension Facility 899

Version 3.1
VSX Vector Multiply-Add Type-A
Single-Precision XX3-form

xvmaddasp XT,XA,XB

VSX Vector Multiply-Add Type-M
Single-Precision XX3-form

xvmaddmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 if “xvmaddasp” then do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,src2)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← result

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

For xvmaddasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvmaddmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 127.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 127.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 65 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 73 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Power ISA™ I900

Version 3.1
VSR Data Layout for xvmaddasp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

src3 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvmaddmsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

src3 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 901

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 For xvmaddasp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).

For xvmaddmsp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
src3 For xvmaddasp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).

For xvmaddmsp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 127.Actions for xvmadd(a|m)sp
Power ISA™ I902

Version 3.1
VSX Vector Maximum Double-Precision
XX3-form

xvmaxdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← VSR[32×AX+A].dword[i]

 src2 ← VSR[32×BX+B].dword[i]

 vresult.dword[i] ← bfp64_MAXIMUM(src1,src2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src1 is greater than src2, src1 is placed into
doubleword element i of VSR[XT] in
double-precision format. Otherwise, src2 is
placed into doubleword element i of VSR[XT] in
double-precision format.

The maximum of +0 and -0 is +0. The maximum of
a QNaN and any value is that value. The
maximum of any value and an SNaN when VE=0 is
that SNaN converted to a QNaN.

See Table 128.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 224 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmaxdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 903

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element i (i={0,1}) of VSR[XT] in double-precision format.
fx(x) If x is equal to 0, FX is set to 1. x is set to 1.

Table 128.Actions for xvmaxdp
Power ISA™ I904

Version 3.1
VSX Vector Maximum Single-Precision
XX3-form

xvmaxsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← VSR[32×AX+A].word[i]

 src2 ← VSR[32×BX+B].word[i]

 vresult.word[i] ← bfp32_MAXIMUM(src1,src2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

If src1 is greater than src2, src1 is placed into
word element i of VSR[XT] in single-precision
format. Otherwise, src2 is placed into word
element i of VSR[XT] in single-precision format.

The maximum of +0 and –0 is +0. The maximum
of a QNaN and any value is that value. The
maximum of any value and an SNaN when VE=0
is that SNaN converted to a QNaN.

See Table 129.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 192 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmaxsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 905

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src1) T(M(src1,src2)) T(src2) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src1) T(src1) T(src1) T(src2) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src1) T(src1) T(src1) T(src1) T(src2) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src1) T(src1) T(src1) T(src1) T(M(src1,src2)) T(src2) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the greater of floating-point value x and floating-point value y.
T(x) The value x is placed in word element i (i={0,1,2,3}) of VSR[XT] in single-precision format.
fx(x) If FPSCR.x is equal to 0, FPSCR.FX is set to 1. FPSCR.x is set to 1.

Table 129.Actions for xvmaxsp
Power ISA™ I906

Version 3.1
VSX Vector Minimum Double-Precision
XX3-form

xvmindp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← VSR[32×AX+A].dword[i]

 src2 ← VSR[32×BX+B].dword[i]

 vresult.dword[i] ← bfp64_MINIMUM(src1,src2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

If src1 is less than src2, src1 is placed into
doubleword element i of VSR[XT] in
double-precision format. Otherwise, src2 is placed
into doubleword element i of VSR[XT] in
double-precision format.

The minimum of +0 and -0 is -0. The minimum of
a QNaN and any value is that value. The minimum
of any value and an SNaN when VE=0 is that
SNaN converted to a QNaN.

See Table 130.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 232 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvmindp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 907

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the lesser of floating-point value x and floating-point value y.
T(x) The value x is placed in doubleword element i (i={0,1}) of VSR[XT] in double-precision format.
fx(x) If FPSCR>x is equal to 0, FPSCR>FX is set to 1. FPSCR>x is set to 1.

Table 130.Actions for xvmindp
Power ISA™ I908

Version 3.1
VSX Vector Minimum Single-Precision
XX3-form

xvminsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← VSR[32×AX+A].word[i]

 src2 ← VSR[32×BX+B].word[i]

 vresult.word[i] ← bfp32_MINIMUM(src1,src2)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

If src1 is less than src2, src1 is placed into word
element i of VSR[XT] in single-precision format.
Otherwise, src2 is placed into word element i of
VSR[XT] in single-precision format.

The minimum of +0 and -0 is -0. The minimum of
a QNaN and any value is that value. The minimum
of any value and an SNaN when VE=0 is that
SNaN converted to a QNaN.

See Table 131.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T A B 200 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xvminsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 909

Version 3.1
src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–NZF T(src2) T(M(src1,src2)) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

–Zero T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Zero T(src2) T(src2) T(src2) T(src1) T(src1) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+NZF T(src2) T(src2) T(src2) T(src2) T(M(src1,src2)) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

+Infinity T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1) T(Q(src2))
fx(VXSNAN)

QNaN T(src2) T(src2) T(src2) T(src2) T(src2) T(src2) T(src1) T(src1)
fx(VXSNAN)

SNaN T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

T(Q(src1))
fx(VXSNAN)

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
NZF Nonzero finite number.
Q(x) Return a QNaN with the payload of x.
M(x,y) Return the lesser of floating-point value x and floating-point value y.
T(x) The value x is placed in word element i (i={0,1,2,3}) of VSR[XT] in single-precision format.
fx(x) If FPSCR.x is equal to 0, FPSCR.FX is set to 1. FPSCR.x is set to 1.
VXSNAN Floating-point Invalid Operation Exception (SNaN). If FPSCR.VE=1, update of VSR[XT] is suppressed.

Table 131.Actions for xvminsp
Power ISA™ I910

Version 3.1
VSX Vector Multiply-Subtract Type-A
Double-Precision XX3-form

xvmsubadp XT,XA,XB

VSX Vector Multiply-Subtract Type-M
Double-Precision XX3-form

xvmsubmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 if “xvmsubadp” then do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,bfp_NEGATE(src2))

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← result

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.

For xvmsubadp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XT].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XB].

For xvmsubmdp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XB].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 132.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 132.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 113 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 121 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 911

Version 3.1
VSR Data Layout for xvmsubadp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XT].dword[0] VSR[XT].dword[1]

src3 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvmsubmdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

src3 VSR[XT].dword[0] VSR[XT].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I912

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 For xvmsubadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).

For xvmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
src3 For xvmsubadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).

For xvmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 132.Actions for xvmsub(a|m)dp
Chapter 7. Vector-Scalar Extension Facility 913

Version 3.1
VSX Vector Multiply-Subtract Type-A
Single-Precision XX3-form

xvmsubasp XT,XA,XB

VSX Vector Multiply-Subtract Type-M
Single-Precision XX3-form

xvmsubmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 if “xvmsubasp” then do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,bfp_NEGATE(src2))

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← result

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

For xvmsubasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvmsubmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 133.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 133.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 81 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 89 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Power ISA™ I914

Version 3.1
VSR Data Layout for xvmsubasp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

src3 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvmsubmsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

src3 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 915

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← +Zero p ← –Zero p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← –Zero p ← +Zero p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 For xvmsubasp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).

For xvmsubmsp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
src3 For xvmsubasp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).

For xvmsubmsp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 133.Actions for xvmsub(a|m)sp
Power ISA™ I916

Version 3.1
VSX Vector Multiply Double-Precision
XX3-form

xvmuldp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_MULTIPLY(src1,src3)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 134.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXIMZ

60 T A B 112 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvmuldp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 917

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity p ← –Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 134.Actions for xvmuldp
Power ISA™ I918

Version 3.1
VSX Vector Multiply Single-Precision
XX3-form

xvmulsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_MULTIPLY(src1,src3)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src1 is multiplied[1] by src2, producing a product
having unbounded range and precision.

The product is normalized[2].

See Table 135.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXIMZ

60 T A B 80 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-

ber of bits the significand was shifted.

VSR Data Layout for xvmulsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 919

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← M(src1,src2) v ← +Zero v ← –Zero v ← M(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← dQNaN
vximz_flag ← 1 v ← +Zero v ← +Zero v ← –Zero v ← –Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← dQNaN
vximz_flag ← 1 v ← –Zero v ← –Zero v ← +Zero v ← +Zero v ← dQNaN

vximz_flag ← 1 v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← M(src1,src2) v ← –Zero v ← +Zero v ← M(src1,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← –Infinity p ← –Infinity v ← dQNaN
vximz_flag ← 1

v ← dQNaN
vximz_flag ← 1 v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 135.Actions for xvmulsp
Power ISA™ I920

Version 3.1
VSX Vector Negative Absolute
Double-Precision XX2-form

xvnabsdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 VSR[32×TX+T].dword[i] ← bfp64_NEGATIVE_ABSOLUTE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 set to 1, is placed into doubleword
element i of VSR[XT].

Special Registers Altered
None

VSX Vector Negative Absolute
Single-Precision XX2-form

xvnabssp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 VSR[32×TX+T].word[i] ← bfp32_NEGATIVE_ABSOLUTE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with bit
0 set to 1, is placed into word element i of VSR[XT].

Special Registers Altered
None

60 T /// B 489 BX TX
0 6 11 16 21 30 31

60 T /// B 425 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnabsdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvnabssp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 921

Version 3.1
VSX Vector Negate Double-Precision
XX2-form

xvnegdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 VSR[32×TX+T].dword[i] ← bfp64_NEGATE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
The contents of doubleword element i of VSR[XB],
with bit 0 complemented, is placed into
doubleword element i of VSR[XT].

Special Registers Altered
None

VSX Vector Negate Single-Precision XX2-form

xvnegsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 VSR[32×TX+T].word[i] ← bfp32_NEGATE(src)

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
The contents of word element i of VSR[XB], with bit
0 complemented, is placed into word element i of
VSR[XT].

Special Registers Altered
None

60 T /// B 505 BX TX
0 6 11 16 21 30 31

60 T /// B 441 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvnegdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvnegsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I922

Version 3.1
VSX Vector Negative Multiply-Add Type-A
Double-Precision XX3-form

xvnmaddadp XT,XA,XB

VSX Vector Negative Multiply-Add Type-M
Double-Precision XX3-form

xvnmaddmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 if “xvnmaddadp” then do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,src2)

 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP64(FPSCR.RN,v))

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.

For xvnmaddadp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XT].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XB].

For xvnmaddmdp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XB].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 136.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 136.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element i of VSR[XT] in double-precision format.

See Table 137, “Vector Floating-Point Final Result
with Negation,” on page 926.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 225 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 233 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 923

Version 3.1
VSR Data Layout for xvnmaddadp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XT].dword[0] VSR[XT].dword[1]

src3 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvnmaddmdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

src3 VSR[XT].dword[0] VSR[XT].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I924

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 For xvnmaddadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).

For xvnmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
src3 For xvnmaddadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).

For xvnmaddmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 136.Actions for xvnmadd(a|m)dp
Chapter 7. Vector-Scalar Extension Facility 925

Version 3.1
Case VE O
E

U
E

ZE XE v
x
s
n
a
n
_
f
l
a
g

v
x
i
m
z
_
f
l
a
g

v
x
i
s
i
_
f
l
a
g

Is
 r

 in
ex

ac
t?

 (r
 ≠
v

)

Is
 r

 in
cr

em
en

te
d?

 (|
r

| >
 |v

|)

Is
 q

 in
ex

ac
t?

 (q
 ≠
v

)

Is
 q

 in
cr

em
en

te
d?

 (|
q

| >
 |v

|)

Returned Results and Status Setting

Special

– – – – – 0 0 0 – – – – T(N(r))

0 – – – – – – 1 – – – – T(r), fx(VXISI)

0 – – – – 0 1 – – – – – T(r), fx(VXIMZ)

0 – – – – 1 0 – – – – – T(r), fx(VXSNAN)

0 – – – – 1 1 – – – – – T(r), fx(VXSNAN), fx(VXIMZ)

1 – – – – – – 1 – – – – fx(VXISI), error()

1 – – – – 0 1 – – – – – fx(VXIMZ), error()

1 – – – – 1 0 – – – – – fx(VXSNAN), error()

1 – – – – 1 1 – – – – – fx(VXSNAN), fx(VXIMZ), error()

Normal

– – – – – – – – no – – – T(N(r))

– – – – 0 – – – yes no – – T(N(r)), fx(XX)

– – – – 0 – – – yes yes – – T(N(r)), fx(XX)

– – – – 1 – – – yes no – – T(N(r)), fx(XX), error()

– – – – 1 – – – yes yes – – T(N(r)), fx(XX), error()

Overflow

– 0 – – 0 – – – – – – – T(N(r)), fx(OX), fx(XX)

– 0 – – 1 – – – – – – – T(N(r)), fx(OX), fx(XX), error()

– 1 – – – – – – – – no – fx(OX), error()

– 1 – – – – – – – – yes no fx(OX), fx(XX), error()

– 1 – – – – – – – – yes yes fx(OX), fx(XX), error()

Tiny

– – 0 – – – – – no – – – T(N(r))

– – 0 – 0 – – – yes no – – T(N(r)), fx(UX), fx(XX)

– – 0 – 0 – – – yes yes – – T(N(r)), fx(UX), fx(XX)

– – 0 – 1 – – – yes no – – T(N(r)), fx(UX), fx(XX), error()

– – 0 – 1 – – – yes yes – – T(N(r)), fx(UX), fx(XX), error()

– – 1 – – – – – yes – no – fx(UX), error()

– – 1 – – – – – yes – yes no fx(UX), fx(XX), error()

– – 1 – – – – – yes – yes yes fx(UX), fx(XX), error()

Explanation:
– The results do not depend on this condition.
error() The system error handler is invoked for the trap-enabled exception if MSR.FE0 and MSR.FE1 are set to any mode other than the

ignore-exception mode. Update of the target VSR is suppressed for all vector elements.
fx(x) FPSCR.FX is set to 1 if FPSCR.x=0. FPSCR.x is set to 1.
q The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, unbounded exponent range.
r The value defined in Table 62, “Scalar Floating-Point Intermediate Result Handling,” on page 661, signficand rounded to the target

precision, bounded exponent range.
v The precise intermediate result defined in the instruction having unbounded signficand precision, unbounded exponent range.
N(x) The value x is is negated by complementing the sign bit of x.
T(x) The value x is placed in element i of VSR[XT] in the target precision format (where i={0,1} for results with 64-bit elements, and

i={0,1,3,4}) for results with 32-bit elements).

Table 137.Vector Floating-Point Final Result with Negation
Power ISA™ I926

Version 3.1
VSX Vector Negative Multiply-Add Type-A
Single-Precision XX3-form

xvnmaddasp XT,XA,XB

VSX Vector Negative Multiply-Add Type-M
Single-Precision XX3-form

xvnmaddmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 if “xvnmaddasp” then do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,src2)

 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP32(FPSCR.RN,v))

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP32(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

For xvnmaddasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvnmaddmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 138.

src2 is added[2] to the product, producing a sum
having unbounded range and precision.

The sum is normalized[3].

See part 2 of Table 138.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into word
element i of VSR[XT] in single-precision format.

See Table 137, “Vector Floating-Point Final Result
with Negation,” on page 926.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 193 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 201 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 927

Version 3.1
VSR Data Layout for xvnmaddasp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

src3 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvnmaddmsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

src3 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I928

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Add

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← –Infinity v ← src2 v ← –Zero v ← Rezd v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← –Infinity v ← src2 v ← Rezd v ← +Zero v ← src2 v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← –Infinity v ← A(p,src2) v ← p v ← p v ← A(p,src2) v ← +Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← dQNaN
vxisi_flag ← 1 v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 For xvnmaddasp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).

For xvnmaddmsp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
src3 For xvnmaddasp, the single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).

For xvnmaddmsp, the single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
A(x,y) Return the normalized sum of floating-point value x and floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 138.Actions for xvnmadd(a|m)sp
Chapter 7. Vector-Scalar Extension Facility 929

Version 3.1
VSX Vector Negative Multiply-Subtract Type-A
Double-Precision XX3-form

xvnmsubadp XT,XA,XB

VSX Vector Negative Multiply-Subtract Type-M
Double-Precision XX3-form

xvnmsubmdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 if “xvnmsubadp” then do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 src3 ← bfp_CONVERT_FROM_BFP64(VSR[32×TX+T].dword[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,bfp_NEGATE(src2))

 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP64(FPSCR.RN,v))

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.

For xvmsubadp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XT].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XB].

For xvmsubmdp, do the following.
– Let src1 be the double-precision floating-point

operand in doubleword element i of VSR[XA].
– Let src2 be the double-precision floating-point

operand in doubleword element i of VSR[XB].
– Let src3 be the double-precision floating-point

operand in doubleword element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 139.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 139.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into doubleword
element i of VSR[XT] in double-precision format.

See Table 137, “Vector Floating-Point Final Result
with Negation,” on page 926.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 241 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 249 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Power ISA™ I930

Version 3.1
VSR Data Layout for xvnmsubadp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XT].dword[0] VSR[XT].dword[1]

src3 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvnmsubmdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

src3 VSR[XT].dword[0] VSR[XT].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 931

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 For xvnmsubadp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).

For xvnmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
src3 For xvnmsubadp, the double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).

For xvnmsubmdp, the double-precision floating-point value in doubleword element i of VSR[XT] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 139.Actions for xvnmsub(a|m)dp
Power ISA™ I932

Version 3.1
VSX Vector Negative Multiply-Subtract Type-A
Single-Precision XX3-form

xvnmsubasp XT,XA,XB

VSX Vector Negative Multiply-Subtract Type-M
Single-Precision XX3-form

xvnmsubmsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 if “xvnmsubasp” then do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 end

 else do

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 src3 ← bfp_CONVERT_FROM_BFP32(VSR[32×TX+T].word[i])

 end

 v ← bfp_MULTIPLY_ADD(src1,src3,bfp_NEGATE(src2))

 rnd ← bfp_NEGATE(bfp_ROUND_TO_BFP32(FPSCR.RN,v))

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP32(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vximz_flag=1 then SetFX(FPSCR.VXIMZ)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vximz_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.

For xvnmsubasp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XT].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XB].

For xvnmsubmsp, do the following.
– Let src1 be the single-precision floating-point

operand in word element i of VSR[XA].
– Let src2 be the single-precision floating-point

operand in word element i of VSR[XB].
– Let src3 be the single-precision floating-point

operand in word element i of VSR[XT].

src1 is multiplied[1] by src3, producing a product
having unbounded range and precision.

See part 1 of Table 140.

src2 is negated and added[2] to the product,
producing a sum having unbounded range and
precision.

The sum is normalized[3].

See part 2 of Table 140.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is negated and placed into word
element i of VSR[XT] in single-precision format.

See Table 137, “Vector Floating-Point Final Result
with Negation,” on page 926.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI VXIMZ

60 T A B 209 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 217 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point multiplication is based on exponent addition and multiplication of the significands.
2. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,

and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

3. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.
Chapter 7. Vector-Scalar Extension Facility 933

Version 3.1
VSR Data Layout for xvnmsubasp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

src3 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvnmsubmsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

src3 VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I934

Version 3.1
Part 1:
Multiply

src3
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

–Infinity p ← +Infinity p ← +Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← –Infinity p ← –Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

–NZF p ← +Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← –Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

–Zero p ← dQNaN
vximz_flag ← 1 p ← +Zero p ← +Zero p ← –Zero p ← –Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Zero p ← dQNaN
vximz_flag ← 1 p ← –Zero p ← –Zero p ← +Zero p ← +Zero p ← dQNaN

vximz_flag ← 1 p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+NZF p ← –Infinity p ← M(src1,src3) p ← src1 p ← src1 p ← M(src1,src3) p ← +Infinity p ← src3 p ← Q(src3)
vxsnan_flag ← 1

+Infinity p ← –Infinity p ← –Infinity p ← dQNaN
vximz_flag ← 1

p ← dQNaN
vximz_flag ← 1 p ← +Infinity p ← +Infinity p ← src3 p ← Q(src3)

vxsnan_flag ← 1

QNaN p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1 p ← src1
vxsnan_flag ← 1

SNaN p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

p ← Q(src1)
vxsnan_flag ← 1

Part 2:
Subtract

src2
–Infinity –NZF –Zero +Zero +NZF +Infinity QNaN SNaN

p

–Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

–NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

–Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(p,src2) v ← p v ← p v ← S(p,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1
QNaN &

src1 is a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← p v ← p
vxsnan_flag ← 1

QNaN &
src1 not a NaN v ← p v ← p v ← p v ← p v ← p v ← p v ← src2 v ← Q(src2)

vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XT] (where i={0,1,2,3}).
src3 The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs). Can also occur with two

nonzero finite number source operands.
Q(x) Return a QNaN with the payload of x.
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
M(x,y) Return the normalized product of floating-point value x and floating-point value y, having unbounded range and precision.
p The intermediate product having unbounded range and precision.
v The intermediate result having unbounded range and precision.

Table 140.Actions for xvnmsub(a|m)sp
Chapter 7. Vector-Scalar Extension Facility 935

Version 3.1
VSX Vector Round to Double-Precision
Integer using round to Nearest Away
XX2-form

xvrdpi XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_NEAR_AWAY(src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round to Nearest Away.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 201 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpi

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I936

Version 3.1
VSX Vector Round to Double-Precision
Integer Exact using Current rounding mode
XX2-form

xvrdpic XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 if FPSCR.RN=0b00 then

 rnd ← bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)

 if FPSCR.RN=0b01 then

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 if FPSCR.RN=0b10 then

 rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

 if FPSCR.RN=0b11 then

 rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode specified by RN.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN

60 T /// B 235 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpic

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 937

Version 3.1
VSX Vector Round to Double-Precision
Integer using round toward -Infinity XX2-form

xvrdpim XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward -Infinity.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 249 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpim

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I938

Version 3.1
VSX Vector Round to Double-Precision
Integer using round toward +Infinity XX2-form

xvrdpip XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward +Infinity.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Double-Precision
Integer using round toward Zero XX2-form

xvrdpiz XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward Zero.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 233 BX TX
0 6 11 16 21 30 31

60 T /// B 217 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrdpip

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvrdpiz

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 939

Version 3.1
VSX Vector Reciprocal Estimate
Double-Precision XX2-form

xvredp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_RECIPROCAL_ESTIMATE(src)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.word[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

A double-precision floating-point estimate of the
reciprocal of src is placed into doubleword
element i of VSR[XT] in double-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in
16384 of the reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX OX UX ZX VXSNAN

60 T /// B 218 BX TX
0 6 11 16 21 30 31

Source Value Result Exception
–Infinity –Zero None

–Zero –Infinity1

1. No result if ZE=1.

ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2

2. No result if VE=1.

VXSNAN

QNaN QNaN None

estimate
1

src
----------–

1
src

1

16384
------------------≤

VSR Data Layout for xvredp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I940

Version 3.1
VSX Vector Reciprocal Estimate
Single-Precision XX2-form

xvresp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_RECIPROCAL_ESTIMATE(src)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

A single-precision floating-point estimate of the
reciprocal of src is placed into word element i of
VSR[XT] in single-precision format.

Unless the reciprocal of src would be a zero, an
infinity, or a QNaN, the estimate has a relative
error in precision no greater than one part in
16384 of the reciprocal of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX OX UX ZX VXSNAN

60 T /// B 154 BX TX
0 6 11 16 21 30 31

Source Value Result Exception
–Infinity –Zero None

–Zero –Infinity1

1. No result if ZE=1.

ZX

+Zero +Infinity1 ZX

+Infinity +Zero None

SNaN QNaN2

2. No result if VE=1.

VXSNAN

QNaN QNaN None

estimate
1

src
----------–

1
src

--
1

16384
------------------≤

VSR Data Layout for xvresp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 941

Version 3.1
VSX Vector Round to Single-Precision Integer
using round to Nearest Away XX2-form

xvrspi XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_NEAR_AWAY(src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round to Nearest Away.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 137 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspi

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I942

Version 3.1
VSX Vector Round to Single-Precision Integer
Exact using Current rounding mode XX2-form

xvrspic XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 if FPSCR.RN=0b00 then

 rnd ← bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)

 if FPSCR.RN=0b01 then

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 if FPSCR.RN=0b10 then

 rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

 if FPSCR.RN=0b11 then

 rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer value using the
rounding mode specified by RN.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN

60 T /// B 171 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspic

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 943

Version 3.1
VSX Vector Round to Single-Precision Integer
using round toward -Infinity XX2-form

xvrspim XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_FLOOR(src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward -Infinity.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 185 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspim

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I944

Version 3.1
VSX Vector Round to Single-Precision Integer
using round toward +Infinity XX2-form

xvrspip XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_CEIL(src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward +Infinity.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

VSX Vector Round to Single-Precision Integer
using round toward Zero XX2-form

xvrspiz XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 rnd ← bfp_ROUND_TO_INTEGER_TRUNC(src)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

src is rounded to an integer using the rounding
mode Round toward Zero.

The result is placed into word element i of VSR[XT]
in single-precision format.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX VXSNAN

60 T /// B 169 BX TX
0 6 11 16 21 30 31

60 T /// B 153 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvrspip

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xvrspiz

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 945

Version 3.1
VSX Vector Reciprocal Square Root Estimate
Double-Precision XX2-form

xvrsqrtedp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_RECIPROCAL_SQUARE_ROOT_ESTIMATE(src)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxsqrt_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

A double-precision floating-point estimate of the
reciprocal square root of src is placed into
doubleword element i of VSR[XT] in
double-precision format.

Unless the reciprocal of the square root of src
would be a zero, an infinity, or a QNaN, the
estimate has a relative error in precision no
greater than one part in 16384 of the reciprocal of
the square root of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX ZX VXSNAN VXSQRT

60 T /// B 202 BX TX
0 6 11 16 21 30 31

Source Value Result Exception
–Infinity QNaN1

1. No result if VE=1.

VXSQRT

+Infinity +Zero None

–Finite QNaN1 VXSQRT

–Zero –Infinity2

2. No result if ZE=1.

ZX

+Zero +Infinity2 ZX

SNaN QNaN1 VXSNAN

QNaN QNaN None

estimate
1

src
---------------–

1

src

1

16384
----------------≤

VSR Data Layout for xvrsqrtedp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I946

Version 3.1
VSX Vector Reciprocal Square Root Estimate
Single-Precision XX2-form

xvrsqrtesp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_RECIPROCAL_SQUARE_ROOT_ESTIMATE(src)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

 if zx_flag=1 then SetFX(FPSCR.ZX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxsqrt_flag)

 ex_flag ← ex_flag | (FPSCR.ZE & zx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

A single-precision floating-point estimate of the
reciprocal square root of src is placed into word
element i of VSR[XT] in single-precision format.

Unless the reciprocal of the square root of src
would be a zero, an infinity, or a QNaN, the
estimate has a relative error in precision no
greater than one part in 16384 of the reciprocal of
the square root of src. That is,

Operation with various special values of the operand is
summarized below.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

The results of executing this instruction is permitted to
vary between implementations, and between different
executions on the same implementation.

Special Registers Altered
FX ZX VXSNAN VXSQRT

60 T /// B 138 BX TX
0 6 11 16 21 30 31

Source Value Result Exception
–Infinity QNaN1

1. No result if VE=1.

VXSQRT

+Infinity +Zero None

–Finite QNaN1 VXSQRT

–Zero –Infinity2

2. No result if ZE=1.

ZX

+Zero +Infinity2 ZX

SNaN QNaN1 VXSNAN

QNaN QNaN None

estimate
1

src
---------------–

1

src

--
1

16384
----------------≤

VSR Data Layout for xvrsqrtesp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 947

Version 3.1
VSX Vector Square Root Double-Precision
XX2-form

xvsqrtdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_SQUARE_ROOT(src)

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxsqrt_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 141.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXSQRT

60 T /// B 203 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvsqrtdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
SQRT(x) The unbounded-precision square root of the floating-point value x.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 141.Actions for xvsqrtdp
Power ISA™ I948

Version 3.1
VSX Vector Square Root Single-Precision
XX2-form

xvsqrtsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].word[i])

 v ← bfp_SQUARE_ROOT(src)

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxsqrt_flag=1 then SetFX(FPSCR.VXSQRT)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxsqrt_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

The unbounded-precision square root of src is
produced.

See Table 142.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX XX VXSNAN VXSQRT

60 T /// B 139 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvsqrtsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

src
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

v ← dQNaN
vxsqrt_flag ← 1

v ← dQNaN
vxsqrt_flag ← 1 v ← +Zero v ← +Zero v ← SQRT(src) v ← +Infinity v ← src v ← Q(src)

vxsnan_flag ← 1

Explanation:
src The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
SQRT(x) The unbounded-precision square root of the floating-point value x.
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 142.Actions for xvsqrtsp
Chapter 7. Vector-Scalar Extension Facility 949

Version 3.1
VSX Vector Subtract Double-Precision
XX3-form

xvsubdp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 1

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP64(VSR[32×AX+A].dword[i])

 src2 ← bfp_CONVERT_FROM_BFP64(VSR[32×BX+B].dword[i])

 v ← bfp_ADD(src1,bfp_NEGATE(src2))

 rnd ← bfp_ROUND_TO_BFP64(0b0,FPSCR.RN,v)

 vresult.dword[i] ← bfp64_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

src2 is negated and added[1] to src1, producing a
sum having unbounded range and precision.

The sum is normalized[2].

See Table 143.

The intermediate result is rounded to
double-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into doubleword element i of
VSR[XT] in double-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 104 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvsubdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I950

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The double-precision floating-point value in doubleword element i of VSR[XA] (where i={0,1}).
src2 The double-precision floating-point value in doubleword element i of VSR[XB] (where i={0,1}).
dQNaN Default quiet NaN (0x7FF8_0000_0000_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 143.Actions for xvsubdp
Chapter 7. Vector-Scalar Extension Facility 951

Version 3.1
VSX Vector Subtract Single-Precision
XX3-form

xvsubsp XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

ex_flag ← 0b0

do i = 0 to 3

 reset_xflags()

 src1 ← bfp_CONVERT_FROM_BFP32(VSR[32×AX+A].word[i])

 src2 ← bfp_CONVERT_FROM_BFP32(VSR[32×BX+B].word[i])

 v ← bfp_ADD(src1,bfp_NEGATE(src2))

 rnd ← bfp_ROUND_TO_BFP32(FPSCR.RN,v)

 vresult.word[i] ← bfp32_CONVERT_FROM_BFP(rnd)

 if vxsnan_flag=1 then SetFX(FPSCR.VXSNAN)

 if vxisi_flag=1 then SetFX(FPSCR.VXISI)

 if ox_flag=1 then SetFX(FPSCR.OX)

 if ux_flag=1 then SetFX(FPSCR.UX)

 if xx_flag=1 then SetFX(FPSCR.XX)

 ex_flag ← ex_flag | (FPSCR.VE & vxsnan_flag)

 ex_flag ← ex_flag | (FPSCR.VE & vxisi_flag)

 ex_flag ← ex_flag | (FPSCR.OE & ox_flag)

 ex_flag ← ex_flag | (FPSCR.UE & ux_flag)

 ex_flag ← ex_flag | (FPSCR.XE & xx_flag)

end

if ex_flag=0 then VSR[32×TX+T] ← vresult

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

src2 is negated and added[1] to src1, producing a
sum having unbounded range and precision.

The sum is normalized[2].

See Table 144.

The intermediate result is rounded to
single-precision using the rounding mode
specified by RN.

See Table 62, “Scalar Floating-Point Intermediate
Result Handling,” on page 661.

The result is placed into word element i of VSR[XT]
in single-precision format.

See Table 114, “Vector Floating-Point Final
Result,” on page 823.

If a trap-enabled exception occurs in any element of
the vector, no results are written to VSR[XT].

Special Registers Altered
FX OX UX XX VXSNAN VXISI

60 T A B 72 AX BX TX
0 6 11 16 21 29 30 31

1. Floating-point addition is based on exponent comparison and addition of the two significands. The exponents of the two operands are compared,
and the significand accompanying the smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or subtracted as appropriate, depending on the signs of the operands, to form an interme-
diate sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the computation.

2. Floating-point normalization is based on shifting the significand left until the most-significant bit is 1 and decrementing the exponent by the num-
ber of bits the significand was shifted.

VSR Data Layout for xvsubsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I952

Version 3.1
src2
-Infinity -NZF -Zero +Zero +NZF +Infinity QNaN SNaN

sr
c1

-Infinity v ← dQNaN
vxisi_flag ← 1 v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← –Infinity v ← src2 v ← Q(src2)

vxsnan_flag ← 1

-NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

-Zero v ← +Infinity v ← –src2 v ← –Zero v ← Rezd v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Zero v ← +Infinity v ← –src2 v ← Rezd v ← +Zero v ← –src2 v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+NZF v ← +Infinity v ← S(src1,src2) v ← src1 v ← src1 v ← S(src1,src2) v ← –Infinity v ← src2 v ← Q(src2)
vxsnan_flag ← 1

+Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← +Infinity v ← dQNaN
vxisi_flag ← 1 v ← src2 v ← Q(src2)

vxsnan_flag ← 1

QNaN v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1 v ← src1
vxsnan_flag ← 1

SNaN v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

v ← Q(src1)
vxsnan_flag ← 1

Explanation:
src1 The single-precision floating-point value in word element i of VSR[XA] (where i={0,1,2,3}).
src2 The single-precision floating-point value in word element i of VSR[XB] (where i={0,1,2,3}).
dQNaN Default quiet NaN (0x7FC0_0000).
NZF Nonzero finite number.
Rezd Exact-zero-difference result (addition of two finite numbers having same magnitude but different signs).
S(x,y) Return the normalized sum of floating-point value x and negated floating-point value y, having unbounded range and precision.

Note: If x = -y, v is considered to be an exact-zero-difference result (Rezd).
Q(x) Return a QNaN with the payload of x.
v The intermediate result having unbounded signficand precision and unbounded exponent range.

Table 144.Actions for xvsubsp
Chapter 7. Vector-Scalar Extension Facility 953

Version 3.1
VSX Vector Test for software Divide
Double-Precision XX3-form

xvtdivdp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

eq_flag ← 0b0

gt_flag ← 0b0

do i = 0 to 1

 src1 ← VSR[32×AX+A].dword[i]

 src2 ← VSR[32×BX+B].dword[i]

 e_a ← src1.bit[1:11] - 1023

 e_b ← src2.bit[1:11] - 1023

 fe_flag ← fe_flag | IsNaN(src1) | IsInf(src1) |

 IsNaN(src2) | IsInf(src2) | IsZero(src2) |

 (e_b <= -1022) |

 (e_b >= 1021) |

 (!IsZero(src1) & ((e_a - e_b) >= 1023)) |

 (!IsZero(src1) & ((e_a - e_b) <= -1021)) |

 (!IsZero(src1) & (e_a <= -970))

 fg_flag ← fg_flag | IsInf(src1) | IsInf(src2) |

 IsZero(src2) | IsDen(src2)

end

fl_flag ← xvredp_error() <= 2-14

CR[BF] ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each integer value i from 0 to 1, do the following.
Let src1 be the double-precision floating-point
operand in doubleword element i of VSR[XA].

Let src2 be the double-precision floating-point
operand in doubleword element i of VSR[XB].

Let e_a be the unbiased exponent of src1.
Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following
conditions.

– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -1022.
– e_b is greater than or equal to 1021.
– src1 is not a zero and the difference,

e_a - e_b, is greater than or equal to 1023.
– src1 is not a zero and the difference,

e_a - e_b, is less than or equal to -1021.
– src1 is not a zero and e_a is less than or

equal to -970

fg_flag is set to 1 for any of the following
conditions.

– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

60 BF // A B 125 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xvtdivdp

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

0 64 127
Power ISA™ I954

Version 3.1
VSX Vector Test for software Divide
Single-Precision XX3-form

xvtdivsp BF,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

eq_flag ← 0b0

gt_flag ← 0b0

do i = 0 to 3

 src1 ← VSR[32×AX+A].word[i]

 src2 ← VSR[32×BX+B].word[i]

 e_a ← src1.bit[1:8] - 127

 e_b ← src2.bit[1:8] - 127

 fe_flag ← fe_flag | IsNaN(src1) | IsInf(src1) |

 IsNaN(src2) | IsInf(src2) | IsZero(src2) |

 (e_b <= -126) |

 (e_b >= 125) |

 (!IsZero(src1) & ((e_a - e_b) >= 127)) |

 (!IsZero(src1) & ((e_a - e_b) <= -125)) |

 (!IsZero(src1) & (e_a <= -103))

 fg_flag ← fg_flag | IsInf(src1) | IsInf(src2) |

 IsZero(src2) | IsDen(src2)

end

fl_flag ← xvredp_error() <= 2-14

CR.field[BF] ← 0b1 || fg_flag || fe_flag || 0b0

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each integer value i from 0 to 3, do the following.
Let src1 be the single-precision floating-point
operand in word element i of VSR[XA].

Let src2 be the single-precision floating-point
operand in word element i of VSR[XB].

Let e_a be the unbiased exponent of src1.
Let e_b be the unbiased exponent of src2.

fe_flag is set to 1 for any of the following
conditions.

– src1 is a NaN or an infinity.
– src2 is a zero, a NaN, or an infinity.
– e_b is less than or equal to -126.
– e_b is greater than or equal to 125.
– src1 is not a zero and the difference,

e_a - e_b, is greater than or equal to 127.
– src1 is not a zero and the difference,

e_a - e_b, is less than or equal to -125.
– src1 is not a zero and e_a is less than or

equal to -103.

fg_flag is set to 1 for any of the following
conditions.

– src1 is an infinity.
– src2 is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

60 BF // A B 93 AX BX /
0 6 9 11 16 21 29 30 31

VSR Data Layout for xvtdivsp

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 955

Version 3.1
VSX Vector Test for software Square Root
Double-Precision XX2-form

xvtsqrtdp BF,XB

if MSR.VSX=0 then VSX_Unavailable()

fe_flag ← 0b0

fg_flag ← 0b0

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 e_b ← src2.bit[1:11] - 1023

 fe_flag ← fe_flag | IsNaN(src) | IsInf(src) |

 IsZero(src) | IsNeg(src) | (e_a <= -970)

 fg_flag ← fg_flag | IsInf(src) | IsZero(src) |

 IsDen(src)

end

fl_flag ← xvrsqrtedp_error() <= 2-14

CR.field[BF] ← 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value 32×BX + B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
operand in doubleword element i of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following
conditions.

– src is a zero, a NaN, an infinity, or a negative
value.

– e_b is less than or equal to -970.

fg_flag is set to 1 for the following condition.
– src is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

VSX Vector Test for software Square Root
Single-Precision XX2-form

xvtsqrtsp BF,XB

if MSR.VSX=0 then VSX_Unavailable()

fe_flag ← 0b0

fg_flag ← 0b0

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 e_b ← src2.bit[1:8] - 127

 fe_flag ← fe_flag | IsNaN(src) | IsInf(src) |

 IsZero(src) | IsNeg(src) | (e_a <= -103)

 fg_flag ← fg_flag | IsInf(src) | IsZero(src) |

 IsDen(src)

end

fl_flag = xvrsqrtesp_error() <= 2-14

CR.field[BF] = 0b1 || fg_flag || fe_flag || 0b0

Let XB be the value 32×BX + B.

fe_flag is initialized to 0.
fg_flag is initialized to 0.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point
operand in word element i of VSR[XB].

Let e_b be the unbiased exponent of src.

fe_flag is set to 1 for any of the following
conditions.

– src is a zero, a NaN, an infinity, or a negative
value.

– e_b is less than or equal to -103.

fg_flag is set to 1 for the following condition.
– src is a zero, an infinity, or a denormalized

value.

CR field BF is set to the value
0b1 || fg_flag || fe_flag || 0b0.

Special Registers Altered
CR field BF

60 BF // /// B 234 BX /
0 6 9 11 16 21 30 31

60 BF // /// B 170 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xvtsqrtdp

src VSR[XB].dword[0] VSR[XB].dword[1]

0 64 127

VSR Data Layout for xvtsqrtsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

0 32 64 96 127
Power ISA™ I956

Version 3.1
VSX Vector Test Data Class Double-Precision
XX2-form

xvtstdcdp XT,XB,DCMX

if MSR.VSX=0 then VSX_Unavailable()

DCMX ← dc || dm || dx

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 sign ← src.bit[0]

 exponent ← src.bit[1:11]

 fraction ← src.bit[12:63]

 class.Infinity ← (exponent = 0x7FF) & (fraction = 0)

 class.NaN ← (exponent = 0x7FF) & (fraction != 0)

 class.Zero ← (exponent = 0x000) & (fraction = 0)

 class.Denormal ← (exponent = 0x000) & (fraction != 0)

 match ← (DCMX.bit[0] & class.NaN) |

 (DCMX.bit[1] & class.Infinity & !sign) |

 (DCMX.bit[2] & class.Infinity & sign) |

 (DCMX.bit[3] & class.Zero & !sign) |

 (DCMX.bit[4] & class.Zero & sign) |

 (DCMX.bit[5] & class.Denormal & !sign) |

 (DCMX.bit[6] & class.Denormal & sign)

 if match = 1 then

 VSR[32×TX+T].dword[i] ← 0xFFFF_FFFF_FFFF_FFFF

 else

 VSR[32×TX+T].dword[i] ← 0x0000_0000_0000_0000

end

Let XB be the sum 32×BX + B.
Let XT be the sum 32×TX + T.
Let DCMX be the value dc concatenated with dm
concatenated with dx.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
value in doubleword element i of VSR[XB].

If src matches one of the 7 possible data classes
specified by DCMX (Data Class Mask), the contents
of doubleword element i of VSR[XT] are set to
0xFFFF_FFFF_FFFF_FFFF. Otherwise, the contents of
doubleword element i of VSR[XT] are set to
0x0000_0000_0000_0000.

Special Registers Altered:
None

60 T dx B 15 dx 5 dmBX TX
0 6 11 16 21 25 26 29 30 31

DCMX bit Data Class
0 NaN
1 +Infinity
2 -Infinity
3 +Zero
4 -Zero
5 +Denormal
6 -Denormal

VSR Data Layout for xvtstdcdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 957

Version 3.1
VSX Vector Test Data Class Single-Precision
XX2-form

xvtstdcsp XT,XB,DCMX

if MSR.VSX=0 then VSX_Unavailable()

DCMX ← dc || dm || dx

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 sign ← src.bit[0]

 exponent ← src.bit[1:8]

 fraction ← src.bit[9:31]

 class.Infinity ← (exponent = 0xFF) & (fraction = 0)

 class.NaN ← (exponent = 0xFF) & (fraction != 0)

 class.Zero ← (exponent = 0x00) & (fraction = 0)

 class.Denormal ← (exponent = 0x00) & (fraction != 0)

 match ← (DCMX.bit[0] & class.NaN) |

 (DCMX.bit[1] & class.Infinity & !sign) |

 (DCMX.bit[2] & class.Infinity & sign) |

 (DCMX.bit[3] & class.Zero & !sign) |

 (DCMX.bit[4] & class.Zero & sign) |

 (DCMX.bit[5] & class.Denormal & !sign) |

 (DCMX.bit[6] & class.Denormal & sign)

 if match = 1 then

 VSR[32×TX+T].dword[i] ← 0xFFFF_FFFF

 else

 VSR[32×TX+T].dword[i] ← 0x0000_0000

end

Let XB be the sum 32×BX + B.
Let XT be the sum 32×TX + T.
Let DCMX be the value dc concatenated with dm
concatenated with dx.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in word element i of VSR[XB].

If src matches one of the 7 possible data classes
specified by DCMX (Data Class Mask), the contents
of word element i of VSR[XT] are set to
0xFFFF_FFFF. Otherwise, the contents of word
element i of VSR[XT] are set to 0x0000_0000.

Special Registers Altered:
None

60 T dx B 13 dx 5 dmBX TX
0 6 11 16 21 25 26 29 30 31

DCMX bit Data Class
0 NaN
1 +Infinity
2 -Infinity
3 +Zero
4 -Zero
5 +Denormal
6 -Denormal

VSR Data Layout for xvtstdcsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I958

Version 3.1
VSX Vector Test Least-Significant Bit by Byte
XX2-form

xvtlsbb BF,XB

if MSR.VSX=0 then VSX_Unavailable()

ALL_TRUE ← 1

ALL_FALSE ← 1

do i = 0 to 15

 ALL_TRUE ← ALL_TRUE & (VSR[XB].byte[i].bit[7]=1)

 ALL_FALSE ← ALL_FALSE & (VSR[XB].byte[i].bit[7]=0)

end

CR.field_WRITE(BF, ALL_TRUE, 0, ALL_FALSE, 0);

Set CR field BF to indicate if bit 7 of every byte element in VSR[XB] is equal to 1 (ALL_TRUE) or equal to 0 (ALL_FALSE).

Special Registers Altered
CR field BF

60 BF // 2 B 475 BX /
0 6 9 11 16 21 30 31

VSR Data Layout for xvtlsbb

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

This instruction following any Vector Compare provides the ability to direct the summary status of the Vector
Compare to any CR field, not just CR field 6 when Rc=1.

Programming Note
Chapter 7. Vector-Scalar Extension Facility 959

Version 3.1
VSX Vector Extract Exponent
Double-Precision XX2-form

xvxexpdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 VSR[32×TX+T].dword[i] ← EXTZ64(src.bit[1:11])

end

Let XT be the sum 32×TX + T.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
value in doubleword element i of VSR[XB].

The value of the exponent field in src is placed
into doubleword element i of VSR[XT] in unsigned
integer format.

Special Registers Altered:
None

VSX Vector Extract Exponent Single-Precision
XX2-form

xvxexpsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 VSR[32×TX+T].word[i] ← EXTZ32(src.bit[1:8])

end

Let XT be the sum 32×TX + T.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in word element i of VSR[XB].

The value of the exponent field in src is placed
into word element i of VSR[XT] in unsigned integer
format.

Special Registers Altered:
None

60 T 0 B 475 BX TX
0 6 11 16 21 30 31

60 T 8 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvxexpdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvxexpsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I960

Version 3.1
VSX Vector Extract Significand
Double-Precision XX2-form

xvxsigdp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 src ← VSR[32×BX+B].dword[i]

 exponent ← EXTZ(src.bit[1:11])

 fraction ← EXTZ64(src.bit[12:63])

 if (exponent != 0) & (exponent != 2047) then

 fraction ← fraction | 0x0010_0000_0000_0000

 VSR[32×TX+T].dword[i] ← fraction

end

Let XT be the sum 32×TX + T.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 1, do the following.
Let src be the double-precision floating-point
value in doubleword element i of VSR[XB].

The significand of src is placed into doubleword
element i of VSR[XT] in unsigned integer format. If
src is a normal value, the implicit leading bit is set
to 1.

Special Registers Altered:
None

VSX Vector Extract Significand
Single-Precision XX2-form

xvxsigsp XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 src ← VSR[32×BX+B].word[i]

 exponent ← EXTZ(src.bit[1:8])

 fraction ← EXTZ32(src.bit[9:31])

 if (exponent != 0) & (exponent != 255) then

 fraction ← fraction | 0x0080_0000

 VSR[32×TX+T].word[i] ← fraction

end

Let XT be the sum 32×TX + T.
Let XB be the sum 32×BX + B.

For each integer value i from 0 to 3, do the following.
Let src be the single-precision floating-point value
in word element i of VSR[XB].

The significand of src is placed into word element
i of VSR[XT] in unsigned integer format. If src is a
normal value, the implicit leading bit is set to 1.

Special Registers Altered:
None

60 T 1 B 475 BX TX
0 6 11 16 21 30 31

60 T 9 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xvxsigdp

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127

VSR Data Layout for xvxsigsp

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 961

Version 3.1
VSX Vector Blend Variable Byte 8RR:XX4-form

xxblendvb XT,XA,XB,XC
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 15

 if VSR[32×CX+C].byte[i].bit[0]=0 then

 VSR[32×TX+T].byte[i] ← VSR[32*AX+A].byte[i]

 else

 VSR[32×TX+T].byte[i] ← VSR[32*BX+B].byte[i]

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

For each integer value i from 0 to 15, do the following.
If the contents of bit 0 of byte element i of VSR[XC]
is equal to 0, the contents of byte element i of
VSR[XA] are placed into byte element i of VSR[XT].
Otherwise, the contents of byte element i of
VSR[XB] are placed into byte element i of VSR[XT].

Special Registers Altered:
None

VSX Vector Blend Variable Halfword
8RR:XX4-form

xxblendvh XT,XA,XB,XC
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 7

 if VSR[32×CX+C].hword[i].bit[0]=0 then

 VSR[32×TX+T].hword[i] ← VSR[32×AX+A].hword[i]

 else

 VSR[32×TX+T].hword[i] ← VSR[32×BX+B].hword[i]

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

For each integer value i from 0 to 7, do the following.
If the contents of bit 0 of halfword element i of
VSR[XC] is equal to 0, the contents of halfword
element i of VSR[XA] are placed into halfword
element i of VSR[XT]. Otherwise, the contents of
halfword element i of VSR[XB] are placed into
halfword element i of VSR[XT].

Special Registers Altered:
None

1 1 0 // ///
0 6 8 12 14 31

33 T A B C 0 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

1 1 0 // ///
0 6 8 12 14 31

33 T A B C 1 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

VSR Data Layout for xxblendvb

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

VSR Data Layout for xxblendvh

src1 VSR[XA].hword[0] VSR[XA].hword[1] VSR[XA].hword[2] VSR[XA].hword[3] VSR[XA].hword[4] VSR[XA].hword[5] VSR[XA].hword[6] VSR[XA].hword[7]

src2 VSR[XB].hword[0] VSR[XB].hword[1] VSR[XB].hword[2] VSR[XB].hword[3] VSR[XB].hword[4] VSR[XB].hword[5] VSR[XB].hword[6] VSR[XB].hword[7]

src3 VSR[XC].hword[0] VSR[XC].hword[1] VSR[XC].hword[2] VSR[XC].hword[3] VSR[XC].hword[4] VSR[XC].hword[5] VSR[XC].hword[6] VSR[XC].hword[7]

tgt VSR[XT].hword[0] VSR[XT].hword[1] VSR[XT].hword[2] VSR[XT].hword[3] VSR[XT].hword[4] VSR[XT].hword[5] VSR[XT].hword[6] VSR[XT].hword[7]

0 16 32 48 64 80 96 112 127
Power ISA™ I962

Version 3.1
VSX Vector Blend Variable Word
8RR:XX4-form

xxblendvw XT,XA,XB,XC
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 if VSR[32×CX+C].word[i].bit[0]=0 then

 VSR[32×TX+T].word[i] ← VSR[32×AX+A].word[i]

 else

 VSR[32×TX+T].word[i] ← VSR[32×BX+B].word[i]

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

For each integer value i from 0 to 3, do the following.
If the contents of bit 0 of word element i of
VSR[XC] is equal to 0, the contents of word
element i of VSR[XA] are placed into word element
i of VSR[XT]. Otherwise, the contents of word
element i of VSR[XB] are placed into word element
i of VSR[XT].

Special Registers Altered:
None

VSX Vector Blend Variable Doubleword
8RR:XX4-form

xxblendvd XT,XA,XB,XC
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 if VSR[32×CX+C].dword[i].bit[0]=0 then

 VSR[32×TX+T].dword[i] ← VSR[32×AX+A].dword[i]

 else

 VSR[32×TX+T].dword[i] ← VSR[32×BX+B].dword[i]

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

For each integer value i from 0 to 1, do the following.
If the contents of bit 0 of doubleword element i of
VSR[XC] is equal to 0, the contents of doubleword
element i of VSR[XA] are placed into doubleword
element i of VSR[XT]. Otherwise, the contents of
doubleword element i of VSR[XB] are placed into
doubleword element i of VSR[XT].

Special Registers Altered:
None

1 1 0 // ///
0 6 8 12 14 31

33 T A B C 2 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

1 1 0 // ///
0 6 8 12 14 31

33 T A B C 3 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

VSR Data Layout for xxblendvw

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

src3 VSR[XC].word[0] VSR[XC].word[1] VSR[XC].word[2] VSR[XC].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xxblendvd

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XB].dword[0] VSR[XB].dword[1]

src3 VSR[XC].dword[0] VSR[XC].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Chapter 7. Vector-Scalar Extension Facility 963

Version 3.1
VSX Vector Byte-Reverse Doubleword
XX2-form

xxbrd XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 1

 vsrc ← VSR[32×BX+B].dword[i]

 do j = 0 to 7

 VSR[32×TX+T].dword[i].byte[j] ← vsrc.byte[7-j]

 end

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 1, do the following.
The contents of byte 7 of doubleword element i of
VSR[XB] are placed into byte 0 of doubleword
element i of VSR[XT].

The contents of byte 6 of doubleword element i of
VSR[XB] are placed into byte 1 of doubleword
element i of VSR[XT].

The contents of byte 5 of doubleword element i of
VSR[XB] are placed into byte 2 of doubleword
element i of VSR[XT].

The contents of byte 4 of doubleword element i of
VSR[XB] are placed into byte 3 of doubleword
element i of VSR[XT].

The contents of byte 3 of doubleword element i of
VSR[XB] are placed into byte 4 of doubleword
element i of VSR[XT].

The contents of byte 2 of doubleword element i of
VSR[XB] are placed into byte 5 of doubleword
element i of VSR[XT].

The contents of byte 1 of doubleword element i of
VSR[XB] are placed into byte 6 of doubleword
element i of VSR[XT].

The contents of byte 0 of doubleword element i of
VSR[XB] are placed into byte 7 of doubleword
element i of VSR[XT].

Special Registers Altered:
None

60 T 23 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xxbrd

src VSR[XB].dword[0] VSR[XB].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I964

Version 3.1
VSX Vector Byte-Reverse Halfword XX2-form

xxbrh XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 7

 vsrc ← VSR[32×BX+B].hword[i]

 do j = 0 to 1

 VSR[32×TX+T].hword[i].byte[j] ← vsrc.byte[1-j]

 end

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 7, do the following.
The contents of byte 1 of halfword element i of
VSR[XB] are placed into byte 0 of halfword element
i of VSR[XT].

The contents of byte 0 of halfword element i of
VSR[XB] are placed into byte 1 of halfword element
i of VSR[XT].

Special Registers Altered:
None

60 T 7 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xxbrh

src VSR[XB].hword[0] VSR[XB].hword[1] VSR[XB].hword[2] VSR[XB].hword[3] VSR[XB].hword[4] VSR[XB].hword[5] VSR[XB].hword[6] VSR[XB].hword[7]

tgt VSR[XT].hword[0] VSR[XT].hword[1] VSR[XT].hword[2] VSR[XT].hword[3] VSR[XT].hword[4] VSR[XT].hword[5] VSR[XT].hword[6] VSR[XT].hword[7]

0 16 32 48 64 80 96 112 127
Chapter 7. Vector-Scalar Extension Facility 965

Version 3.1
VSX Vector Byte-Reverse Quadword XX2-form

xxbrq XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 15

 VSR[32×TX+T].byte[i] ← VSR[32×BX+B].byte[15-i]

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 15, do the following.
The contents of byte sub-element 15-i of VSR[XB]
are placed into byte sub-element i of VSR[XT].

Special Registers Altered:
None

60 T 31 B 475 BX TX
0 6 11 16 21 30 31

VSR Data Layout for xxbrq

src VSR[XB]

tgt VSR[XT]

0 127
Power ISA™ I966

Version 3.1
VSX Vector Byte-Reverse Word XX2-form

xxbrw XT,XB

if MSR.VSX=0 then VSX_Unavailable()

do i = 0 to 3

 vsrc ← VSR[32×BX+B].word[i]

 do j = 0 to 3

 VSR[32×TX+T].word[i].byte[j] ← vsrc.byte[3-j]

 end

end

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

For each integer value i from 0 to 3, do the following.
The contents of byte 3 of word element i of
VSR[XB] are placed into byte 0 of word element i
of VSR[XT].

The contents of byte 2 of word element i of
VSR[XB] are placed into byte 1 of word element i
of VSR[XT].

The contents of byte 1 of word element i of
VSR[XB] are placed into byte 2 of word element i
of VSR[XT].

The contents of byte 0 of word element i of
VSR[XB] are placed into byte 3 of word element i
of VSR[XT].

Special Registers Altered:
None

VSX Vector Evaluate 8RR:XX4-form

xxeval XT,XA,XB,XC,IMM
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[32xAX+A]

src2 ← VSR[32xBX+B]

src3 ← VSR[32xCX+C]

result ← (~src1&~src2&~src3 & qword_bit_splat(IMM.bit[0]) |

 (~src1&~src2& src3 & qword_bit_splat(IMM.bit[1]) |

 (~src1& src2&~src3 & qword_bit_splat(IMM.bit[2]) |

 (~src1& src2& src3 & qword_bit_splat(IMM.bit[3]) |

 (src1&~src2&~src3 & qword_bit_splat(IMM.bit[4]) |

 (src1&~src2& src3 & qword_bit_splat(IMM.bit[5]) |

 (src1& src2&~src3 & qword_bit_splat(IMM.bit[6]) |

 (src1& src2& src3 & qword_bit_splat(IMM.bit[7])

VSR[32xTX+T] ← result

For each integer value i, 0 to 127, do the following.
Let j be the value of the concatenation of the
contents of bit i of VSR[XA], bit i of VSR[XB], bit i of
VSR[XC].

The value of bit j of IMM is placed into bit i of
VSR[XT].

See Table 145, “xxeval(A, B, C, IMM) Equivalent
Functions,” on page 968 for the equivalent
function evaluated by this instruction for any given
value of IMM.

Special Registers Altered:
None

60 T 15 B 475 BX TX
0 6 11 16 21 30 31

1 1 0 // /// IMM
0 6 8 12 14 24 31

34 T A B C 1 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

VSR Data Layout for xxbrw

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xxeval

src1 VSR[XA]

src2 VSR[XB]

src3 VSR[XC]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 967

Version 3.1

)

Table 145:xxeval(A, B, C, IMM) Equivalent Functions
IMM 0b.....000 0b.....001 0b.....010 0b.....011 0b.....100 0b.....101 0b.....110 0b.....111

0b00000... false and(A,B,C) nor(C,nand(B,A)) and(B,A) nor(B,nand(A,C)) and(C,A) and(A,xor(B,C)) and(A,or(B,C))

0b00001... and(A,nor(B,C)) and(A,eqv(B,C)) and(A,not(C)) C?and(B,A):A and(A,not(B)) B?and(A,C):A and(A,nand(B,C)) A

0b00010... nor(A,nand(B,C)) and(C,B) and(B,xor(A,C)) and(B,or(A,C)) and(C,xor(B,A)) and(C,or(A,B)) A?xor(B,C):and(B,C) major(A,B,C)

0b00011... A?nor(B,C):and(B,C) A?eqv(B,C):and(B,C) A?not(C):and(B,C) C?B:A A?not(B):and(B,C) B?C:A xor(A,and(B,C)) or(A,and(B,C))

0b00100... and(B,nor(A,C)) and(B,eqv(A,C)) and(B,not(C)) C?and(B,A):B B?nor(A,C):and(A,C) B?eqv(A,C):and(A,C) B?not(C):and(A,C) C?A:B

0b00101... nor(C,eqv(B,A)) C?and(B,A):xor(B,A) nor(C,nor(B,A)) C?and(B,A):or(B,A) B?nor(A,C):A B?eqv(A,C):A B?not(C):A C?A:or(B,A)

0b00110... and(B,not(A)) A?and(B,C):B and(B,nand(A,C)) B B?not(A):and(A,C) A?C:B xor(B,and(A,C)) or(B,and(A,C))

0b00111... A?nor(B,C):B A?eqv(B,C):B A?not(C):B C?B:or(B,A) xor(B,A) C?or(B,A):xor(B,A) A?nand(B,C):B or(B,A)

0b01000... and(C,nor(B,A)) and(C,eqv(B,A)) C?nor(B,A):and(B,A) C?eqv(B,A):and(B,A) and(C,not(B)) B?and(A,C):C C?not(B):and(B,A) B?A:C

0b01001... nor(B,eqv(A,C)) B?and(A,C):xor(A,C) C?nor(B,A):A B?A:xor(A,C) nor(B,nor(A,C)) B?and(A,C):or(A,C) C?not(B):A B?A:or(A,C)

0b01010... and(C,not(A)) A?and(B,C):C C?not(A):and(B,A) A?B:C and(C,nand(B,A)) C xor(C,and(B,A)) or(C,and(B,A))

0b01011... A?nor(B,C):C A?eqv(B,C):C xor(C,A) B?or(A,C):xor(A,C) A?not(B):C B?C:or(A,C) A?nand(B,C):C or(C,A)

0b01100... nor(A,eqv(B,C)) A?and(B,C):xor(B,C) C?nor(B,A):B A?B:xor(B,C) B?nor(A,C):C A?C:xor(B,C) xor(C,B) A?or(B,C):xor(B,C)

0b01101... A?nor(B,C):xor(B,C) xor(A,B,C) xor(C,or(B,A)) C?eqv(B,A):or(B,A) xor(B,or(A,C)) B?eqv(A,C):or(A,C) B?not(C):or(A,C) or(A,xor(B,C))

0b01110... nor(A,nor(B,C)) A?and(B,C):or(B,C) C?not(A):B A?B:or(B,C) B?not(A):C A?C:or(B,C) B?nand(A,C):C or(C,B)

0b01111... xor(A,or(B,C)) A?eqv(B,C):or(B,C) A?not(C):or(B,C) or(B,xor(A,C)) A?not(B):or(B,C) or(C,xor(B,A)) A?nand(B,C):or(B,C) or(A,B,C)

0b10000... nor(A,B,C) A?and(B,C):nor(B,C) nor(C,xor(B,A)) A?B:nor(B,C) nor(B,xor(A,C)) A?C:nor(B,C) A?xor(B,C):nor(B,C) eqv(A,or(B,C))

0b10001... nor(C,B) B?and(A,C):not(C) A?not(C):nor(B,C) B?A:not(C) A?not(B):nor(B,C) C?A:not(B) A?nand(B,C):nor(B,C) or(A,nor(B,C))

0b10010... nor(A,xor(B,C)) B?C:nor(A,C) B?xor(A,C):nor(A,C) eqv(B,or(A,C)) C?xor(B,A):nor(B,A) eqv(C,or(B,A)) eqv(A,B,C) A?or(B,C):eqv(B,C)

0b10011... A?nor(B,C):eqv(B,C) eqv(C,B) A?not(C):eqv(B,C) B?or(A,C):not(C) A?not(B):eqv(B,C) C?or(B,A):not(B) A?nand(B,C):eqv(B,C) or(A,eqv(B,C))

0b10100... nor(C,A) A?and(B,C):not(C) B?not(C):nor(A,C) A?B:not(C) B?nor(A,C):eqv(A,C) eqv(C,A) A?xor(B,C):not(C) A?or(B,C):not(C)

0b10101... nor(C,and(B,A)) eqv(C,and(B,A)) not(C) nand(C,nand(B,A)) A?not(B):not(C) C?A:nand(B,A) A?nand(B,C):not(C) or(A,not(C))

0b10110... B?not(A):nor(A,C) C?B:not(A) B?nand(A,C):nor(A,C) or(B,nor(A,C)) B?not(A):eqv(A,C) C?or(B,A):not(A) B?nand(A,C):eqv(A,C) or(B,eqv(A,C))

0b10111... B?not(A):not(C) C?B:nand(B,A) B?nand(A,C):not(C) or(B,not(C)) C?xor(B,A):nand(B,A) C?or(B,A):nand(B,A) nand(C,eqv(B,A)) nand(C,nor(B,A))

0b11000... nor(B,A) A?and(B,C):not(B) C?nor(B,A):eqv(B,A) eqv(B,A) C?not(B):nor(B,A) A?C:not(B) A?xor(B,C):not(B) A?or(B,C):not(B)

0b11001... nor(B,and(A,C)) eqv(B,and(A,C)) A?not(C):not(B) B?A:nand(A,C) not(B) nand(B,nand(A,C)) A?nand(B,C):not(B) or(A,not(B))

0b11010... C?not(A):nor(B,A) B?C:not(A) B?xor(A,C):not(A) B?or(A,C):not(A) C?nand(B,A):nor(B,A) or(C,nor(B,A)) C?nand(B,A):eqv(B,A) or(C,eqv(B,A))

0b11011... C?not(A):not(B) B?C:nand(A,C) B?xor(A,C):nand(A,C) B?or(A,C):nand(A,C) C?nand(B,A):not(B) or(C,not(B)) nand(B,eqv(A,C)) nand(B,nor(A,C))

0b11100... nor(A,and(B,C)) eqv(A,and(B,C)) B?not(C):not(A) A?B:nand(B,C) C?not(B):not(A) A?C:nand(B,C) A?xor(B,C):nand(B,C) A?or(B,C):nand(B,C

0b11101... minor(A,B,C) A?eqv(B,C):nand(B,C) nand(C,or(B,A)) nand(C,xor(B,A)) nand(B,or(A,C)) nand(B,xor(A,C)) nand(C,B) or(A,nand(B,C))

0b11110... not(A) nand(A,nand(B,C)) B?nand(A,C):not(A) or(B,not(A)) C?nand(B,A):not(A) or(C,not(A)) nand(A,eqv(B,C)) nand(A,nor(B,C))

0b11111... nand(A,or(B,C)) nand(A,xor(B,C)) nand(C,A) or(B,nand(A,C)) nand(B,A) or(C,nand(B,A)) nand(A,B,C) true
Power ISA™ I968

Version 3.1
VSX Vector Extract Unsigned Word XX2-form

xxextractuw XT,XB,UIM

if MSR.VSX=0 then VSX_Unavailable()

src ← VSR[32×BX+B].byte[UIM:UIM+3]

VSR[32×TX+T].dword[0] ← EXTZ64(src)

VSR[32×TX+T].dword[1] ← 0x0000_0000_0000_0000

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The contents of byte elements UIM:UIM+3 of VSR[XB]
are placed into word element 1 of VSR[XT]. The
contents of the remaining word elements of VSR[XT]
are set to 0.

If the value of UIM is greater than 12, the results are
undefined.

Special Registers Altered:
None

VSX Vector Insert Word XX2-form

xxinsertw XT,XB,UIM

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T].byte[UIM:UIM+3] ← VSR[32×BX+B].bit[32:63]

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The contents of word element 1 of VSR[XB] are placed
into byte elements UIM:UIM+3 of VSR[XT]. The contents
of the remaining byte elements of VSR[XT] are not
modified.

If the value of UIM is greater than 12, the results are
undefined.

Special Registers Altered:
None

60 T / UIM B 165 BX TX
0 6 11 12 16 21 30 31

60 T / UIM B 181 BX TX
0 6 11 12 16 21 30 31

VSR Data Layout for xxextractuw

src .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 127

VSR Data Layout for xxinsertw

src unused VSR[XB].word[1] unused unused

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 969

Version 3.1
VSX Vector Generate PCV from Byte Mask
X-form

xxgenpcvbm XT,VRB,IMM

if MSR.VSX=0 then VSX_Unavailable()

if IMM=0b00000 then do // Big-Endian expansion

 j ← 0

 do i = 0 to 15

 if VSR[VRB+32].byte[i].bit[0]=1 then do

 VSR[XT].byte[i] ← j

 j ← j + 1

 end

 else

 VSR[XT].byte[i] ← i + 0x10

 end

end

else if IMM=0b00001 then do // Big-Endian compression

 j ← 0

 do i = 0 to 15

 if VSR[VRB+32].byte[i].bit[0]=1 then do

 VSR[XT].byte[j] = i

 j = j + 1

 end

 end

 do i = j to 15

 VSR[XT].byte[i] = 0xUU

 end

end

else if IMM=0b00010 then do // Little-Endian expansion

 j ← 0;

 do i = 0 to 15

 if VSR[VRB+32].byte[15-i].bit[0]=1 then do

 VSR[XT].byte[15-i] ← j

 j ← j + 1

 end

 else

 VSR[XT].byte[15-i] ← i + 0x10

 end

end

else if IMM=0b00011 then do // Little-Endian compression

 j ← 0

 do i = 0 to 15

 if VSR[VRB+32].byte[15-i].bit[0]=1 then do

 VSR[XT].byte[15-j] ← i

 j ← j + 1

 end

 end

 do i = j to 15

 VSR[XT].byte[15-i] ← 0xUU

 end

end

Let XT be the value 32×TX + T.

If IMM=0b00000, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement an expansion of the leftmost
byte elements of a source vector into the byte
elements of a result vector specified by the
byte-element mask in VSR[VRB+32].

If IMM=0b00001, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement a compression of the sparse
byte elements in a source vector specified by the
byte-element mask in VSR[VRB+32] into the leftmost
byte elements of a result vector.

If IMM=0b00010, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement an expansion of the rightmost
byte elements of a source vector into the byte
elements of a result vector specified by the
byte-element mask in VSR[VRB+32].

If IMM=0b00011, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement a compression of the sparse
byte elements in a source vector specified by the
byte-element mask in VSR[VRB+32] into the rightmost
byte elements of a result vector.

pcv is placed into VSR[XT].

Unused values of IMM are reserved.

Special Registers Altered:
None

60 T IMM VRB 916 TX
0 6 11 16 21 31
Power ISA™ I970

Version 3.1
The following is an example of how a Load VSX Vector and Expand Byte, when using Big-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Byte.

xxgenpcvbm vPCV, vMASK, 0b00000 // generates the required permute control vector for Big-Endian expansion

vcntmbb vN, vMASK, 0b1 // calculates N, number of true byte-mask elements

lxvl vLD, EA, rN // loads N bytes

// Option 1: expand & merge

xxperm vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxperm vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Load VSX Vector Expand Byte, when using Little-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Byte.

xxgenpcvbm vPCV, vMASK, 0b00010 // generates the required permute control vector for Big-Endian expansion

vcntmbb vN, vMASK, 0b1 // calculates N, number of true byte-mask elements

lxvl vLD, EA, rN // loads N bytes

// Option 1: expand & merge

xxpermr vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxpermr vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a VSX Vector Compress Byte and Store, when using Big-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Byte.

xxgenpcvbm vPCV, vMASK, 0b00001 // generates the required permute control vector for Big-Endian compression

vcntmbb vN, vMASK, 0b1 // calculates N, number of true byte-mask elements

xxperm vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store N bytes

The following is an example of how a VSX Vector Byte Compress and Store, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask.

xxgenpcvbm vPCV, vMASK, 0b00011 // generates the required permute control vector for Big-Endian compression

vcntmbb vN, vMASK, 0b1 // calculates N, number of true byte-mask elements

xxpermr vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store N bytes

Programming Note
Chapter 7. Vector-Scalar Extension Facility 971

Version 3.1
VSX Vector Generate PCV from Halfword
Mask X-form

xxgenpcvhm XT,VRB,IMM

if MSR.VSX=0 then VSX_Unavailable()

if IMM=0b00000 then do // Big-Endian expansion

 j ← 0

 do i = 0 to 7

 if VSR[VRB+32].hword[i].bit[0]=1 then do

 VSR[XT].hword[i].byte[0] ← 2×j + 0x00

 VSR[XT].hword[i].byte[1] ← 2×j + 0x01

 j ← j + 1

 end

 else do

 VSR[XT].hword[i].byte[0] ← 2×i + 0x10

 VSR[XT].hword[i].byte[1] ← 2×i + 0x11

 end

 end

end

else if IMM=0b00001 then do // Big-Endian compression

 j ← 0

 do i = 0 to 7

 if VSR[VRB+32].hword[i].bit[0]=1 then do

 VSR[XT].hword[j].byte[0] ← 2×i + 0x00

 VSR[XT].hword[j].byte[1] ← 2×i + 0x01

 j ← j + 1

 end

 end

 do i = j to 7

 VSR[XT].hword[i] ← 0xUUUU

 end

end

else if IMM=0b00010 then do // Little-Endian expansion

 j ← 0

 do i = 0 to 7

 if VSR[VRB+32].hword[7-i].bit[0]=1 then do

 VSR[XT].hword[7-i].byte[1] ← 2×j + 0x00

 VSR[XT].hword[7-i].byte[0] ← 2×j + 0x01

 j ← j + 1

 end

 else do

 VSR[XT].hword[7-i].byte[1] ← 2×i + 0x10

 VSR[XT].hword[7-i].byte[0] ← 2×i + 0x11

 end

 end

end

else if IMM=0b00011 then do // Little-Endian compression

 j ← 0

 do i = 0 to 7

 if VSR[VRB+32].hword[7-i].bit[0]=1 then do

 VSR[XT].hword[7-j].byte[1] ← 2×i + 0x00

 VSR[XT].hword[7-j].byte[0] ← 2×i + 0x01

 j ← j + 1

 end

 end

 do i = j to 7

 VSR[XT].hword[7-i] ← 0xUUUU

 end

end

Let XT be the value 32×TX + T.

If IMM=0b00000, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement an expansion of the leftmost
halfword elements of a source vector into the halfword
elements of a result vector specified by the
halfword-element mask in VSR[VRB+32].

If IMM=0b00001, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement a compression of the sparse
halfword elements in a source vector specified by the
halfword-element mask in VSR[VRB+32] into the leftmost
halfword elements of a result vector.

If IMM=0b00010, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement an expansion of the rightmost
halfword elements of a source vector into the halfword
elements of a result vector specified by the
halfword-element mask in VSR[VRB+32].

If IMM=0b00011, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement a compression of the sparse
halfword elements in a source vector specified by the
halfword-element mask in VSR[VRB+32] into the
rightmost halfword elements of a result vector.

pcv is placed into VSR[XT].

Unused values of IMM are reserved.

Special Registers Altered:
None

60 T IMM VRB 917 TX
0 6 11 16 21 31
Power ISA™ I972

Version 3.1
The following is an example of how a Load VSX Vector Expand Halfword, when using Big-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Halfword.

xxgenpcvhm vPCV, vMASK, 0b00000 // generates the required permute control vector for Big-Endian expansion

vcntmbh rN, vMASK, 0b1 // calculates N, number of true halfword-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 2×N bytes

// Option 1: expand & merge

xxperm vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxperm vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Load VSX Vector Expand Halfword, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Halfword.

xxgenpcvhm vPCV, vMASK, 0b00010 // generates the required permute control vector for Little-Endian expansion

vcntmbh rN, vMASK, 0b1 // calculates N, number of true halfword-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 2×N bytes

// Option 1: expand & merge

xxpermr vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxpermr vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Store VSX Vector Compress Halfword, when using Big-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Halfword.

xxgenpcvhm vPCV, vMASK, 0b00001 // generates the required permute control vector for Big-Endian compression

vcntmbh rN, vMASK, 0b1 // calculates N, number of true halfword-mask elements, adjusted to # of bytes

xxperm vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 2×N bytes

The following is an example of how a Store VSX Vector Compress Halfword, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Halfword.

xxgenpcvhm vPCV, vMASK, 0b00011 // generates the required permute control vector for Little-Endian compression

vcntmbh rN, vMASK, 0b1 // calculates N, number of true halfword-mask elements, adjusted to # of bytes

xxpermr vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 2×N bytes

Programming Note
Chapter 7. Vector-Scalar Extension Facility 973

Version 3.1
VSX Vector Generate PCV from Word Mask
X-form

xxgenpcvwm XT,VRB,IMM

if MSR.VSX=0 then VSX_Unavailable()

if IMM=0b00000 then do // Big-Endian expansion

 j ← 0

 do i = 0 to 3

 if VSR[VRB+32].word[i].bit[0]=1 then do

 VSR[XT].word[i].byte[0] ← 4×j + 0x00

 VSR[XT].word[i].byte[1] ← 4×j + 0x01

 VSR[XT].word[i].byte[2] ← 4×j + 0x02

 VSR[XT].word[i].byte[3] ← 4×j + 0x03

 j = j + 1

 end

 else do

 VSR[XT].word[i].byte[0] ← 4×i + 0x10

 VSR[XT].word[i].byte[1] ← 4×i + 0x11

 VSR[XT].word[i].byte[2] ← 4×i + 0x12

 VSR[XT].word[i].byte[3] ← 4×i + 0x13

 end

 end

end

else if IMM=0b00001 then do // Big-Endian compression

 j ← 0

 do i = 0 to 3

 if VSR[VRB+32].word[i].bit[0]=1 then do

 VSR[XT].word[j].byte[0] ← 4×i + 0x00

 VSR[XT].word[j].byte[1] ← 4×i + 0x01

 VSR[XT].word[j].byte[2] ← 4×i + 0x02

 VSR[XT].word[j].byte[3] ← 4×i + 0x03

 j ← j + 1

 end

 end

 do i = j to 3

 VSR[XT].word[i] ← 0xUUUU_UUUU

 end

end

else if IMM=0b00010 then do // Little-Endian expansion

 j ← 0

 do i = 0 to 3

 if VSR[VRB+32].word[3-i].bit[0]=1 then do

 VSR[XT].word[3-i].byte[3] ← 4×j + 0x00

 VSR[XT].word[3-i].byte[2] ← 4×j + 0x01

 VSR[XT].word[3-i].byte[1] ← 4×j + 0x02

 VSR[XT].word[3-i].byte[0] ← 4×j + 0x03

 j ← j + 1

 end

 else do

 VSR[XT].word[3-i].byte[3] ← 4×i + 0x10

 VSR[XT].word[3-i].byte[2] ← 4×i + 0x11

 VSR[XT].word[3-i].byte[1] ← 4×i + 0x12

 VSR[XT].word[3-i].byte[0] ← 4×i + 0x13

 end

 end

end

else if IMM=0b00011 then do // Little-Endian compression

 j ← 0

 do i = 0 to 3

 if VSR[VRB+32].word[3-i].bit[0]=1 then do

 VSR[XT].word[3-j].byte[3] ← 4×i + 0x00

 VSR[XT].word[3-j].byte[2] ← 4×i + 0x01

 VSR[XT].word[3-j].byte[1] ← 4×i + 0x02

 VSR[XT].word[3-j].byte[0] ← 4×i + 0x03

 j ← j + 1

 end

 end

 do i = j to 3

 VSR[XT].word[3-i] ← 0xUUUU_UUUU

 end

end

Let XT be the value 32×TX + T.

If IMM=0b00000, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement an expansion of the leftmost
word elements of a source vector into the word
elements of a result vector specified by the
word-element mask in VSR[VRB+32].

If IMM=0b00001, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement a compression of the sparse
word elements in a source vector specified by the
word-element mask in VSR[VRB+32] into the leftmost
word elements of a result vector.

If IMM=0b00010, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement an expansion of the rightmost
word elements of a source vector into the word
elements of a result vector specified by the
word-element mask in VSR[VRB+32].

If IMM=0b00011, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement a compression of the sparse
word elements in a source vector specified by the
word-element mask in VSR[VRB+32] into the rightmost
word elements of a result vector.

pcv is placed into VSR[XT].

Unused values of IMM are reserved.

Special Registers Altered:
None

60 T IMM VRB 948 TX
0 6 11 16 21 31
Power ISA™ I974

Version 3.1
The following is an example of how a Load VSX Vector Expand Word, when using Big-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Word.

xxgenpcvwm vPCV, vMASK, 0b00000 // generates the required permute control vector for Big-Endian expansion

vcntmbw rN, vMASK, 0b1 // calculates N, number of true word-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 4×N bytes

// Option 1: expand & merge

xxperm vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxperm vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Load VSX Vector Expand Word, when using Little-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Word.

xxgenpcvwm vPCV, vMASK, 0b00010 // generates the required permute control vector for Little-Endian expansion

vcntmbw rN, vMASK, 0b1 // calculates N, number of true word-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 4×N bytes

// Option 1: expand & merge

xxpermr vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxpermr vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Store VSX Vector Compress Word, when using Big-Endian byte-ordering,
can be emulated using VSX Vector Generate PCV from Mask Word.

xxgenpcvwm vPCV, vMASK, 0b00001 // generates the required permute control vector for Big-Endian compression

vcntmbw rN, vMASK, 0b1 // calculates N, number of true word-mask elements, adjusted to # of bytes

xxperm vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 4×N bytes

The following is an example of how a Store VSX Vector Compress Word, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Word.

xxgenpcvwm vPCV, vMASK, 0b00011 // generates the required permute control vector for Little-Endian compression

vcntmbw rN, vMASK, 0b1 // calculates N, number of true word-mask elements, adjusted to # of bytes

xxpermr vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 4×N bytes

Programming Note
Chapter 7. Vector-Scalar Extension Facility 975

Version 3.1
VSX Vector Generate PCV from Doubleword
Mask X-form

xxgenpcvdm XT,VRB,IMM

if MSR.VSX=0 then VSX_Unavailable()

if IMM=0b00000 then do // Big-Endian expansion

 j ← 0

 do i = 0 to 1

 if VSR[VRB+32].dword[i].bit[0]=1 then do

 VSR[XT].dword[i].byte[0] ← 8×j + 0x00

 VSR[XT].dword[i].byte[1] ← 8×j + 0x01

 VSR[XT].dword[i].byte[2] ← 8×j + 0x02

 VSR[XT].dword[i].byte[3] ← 8×j + 0x03

 VSR[XT].dword[i].byte[4] ← 8×j + 0x04

 VSR[XT].dword[i].byte[5] ← 8×j + 0x05

 VSR[XT].dword[i].byte[6] ← 8×j + 0x06

 VSR[XT].dword[i].byte[7] ← 8×j + 0x07

 j ← j + 1

 end

 else do

 VSR[XT].dword[i].byte[0] ← 8×i + 0x10

 VSR[XT].dword[i].byte[1] ← 8×i + 0x11

 VSR[XT].dword[i].byte[2] ← 8×i + 0x12

 VSR[XT].dword[i].byte[3] ← 8×i + 0x13

 VSR[XT].dword[i].byte[4] ← 8×i + 0x14

 VSR[XT].dword[i].byte[5] ← 8×i + 0x15

 VSR[XT].dword[i].byte[6] ← 8×i + 0x16

 VSR[XT].dword[i].byte[7] ← 8×i + 0x17

 end

 end

end

else if IMM=0b00001 then do // Big-Endian compression

 j ← 0

 do i = 0 to 1

 if VSR[VRB+32].dword[i].bit[0]=1 then do

 VSR[XT].dword[j].byte[0] ← 8×i + 0x00

 VSR[XT].dword[j].byte[1] ← 8×i + 0x01

 VSR[XT].dword[j].byte[2] ← 8×i + 0x02

 VSR[XT].dword[j].byte[3] ← 8×i + 0x03

 VSR[XT].dword[j].byte[4] ← 8×i + 0x04

 VSR[XT].dword[j].byte[5] ← 8×i + 0x05

 VSR[XT].dword[j].byte[6] ← 8×i + 0x06

 VSR[XT].dword[j].byte[7] ← 8×i + 0x07

 j ← j + 1

 end

 end

 do i = j to 1

 VSR[XT].dword[i] ← 0xUUUU_UUUU_UUUU_UUUU

 end

end

else if IMM=0b00010 then do // Little-Endian expansion

 j ← 0

 do i = 0 to 1

 if VSR[VRB+32].dword[1-i].bit[0]=1 then do

 VSR[XT].dword[1-i].byte[7] ← 8×j + 0x00

 VSR[XT].dword[1-i].byte[6] ← 8×j + 0x01

 VSR[XT].dword[1-i].byte[5] ← 8×j + 0x02

 VSR[XT].dword[1-i].byte[4] ← 8×j + 0x03

 VSR[XT].dword[1-i].byte[3] ← 8×j + 0x04

 VSR[XT].dword[1-i].byte[2] ← 8×j + 0x05

 VSR[XT].dword[1-i].byte[1] ← 8×j + 0x06

 VSR[XT].dword[1-i].byte[0] ← 8×j + 0x07

 j ← j + 1

 end

 else do

 VSR[XT].dword[1-i].byte[7] ← 8×i + 0x10

 VSR[XT].dword[1-i].byte[6] ← 8×i + 0x11

 VSR[XT].dword[1-i].byte[5] ← 8×i + 0x12

 VSR[XT].dword[1-i].byte[4] ← 8×i + 0x13

 VSR[XT].dword[1-i].byte[3] ← 8×i + 0x14

 VSR[XT].dword[1-i].byte[2] ← 8×i + 0x15

 VSR[XT].dword[1-i].byte[1] ← 8×i + 0x16

 VSR[XT].dword[1-i].byte[0] ← 8×i + 0x17

 end

 end

end

else if IMM=0b00011 then do // Little-Endian compression

 j ← 0

 do i = 0 to 1

 if VSR[VRB+32].dword[1-i].bit[0]=1 then do

 VSR[XT].dword[1-j].byte[7] ← 8×i + 0x00

 VSR[XT].dword[1-j].byte[6] ← 8×i + 0x01

 VSR[XT].dword[1-j].byte[5] ← 8×i + 0x02

 VSR[XT].dword[1-j].byte[4] ← 8×i + 0x03

 VSR[XT].dword[1-j].byte[3] ← 8×i + 0x04

 VSR[XT].dword[1-j].byte[2] ← 8×i + 0x05

 VSR[XT].dword[1-j].byte[1] ← 8×i + 0x06

 VSR[XT].dword[1-j].byte[0] ← 8×i + 0x07

 j ← j + 1

 end

 end

 do i = j to 1

 VSR[XT].dword[1-i] ← 0xUUUU_UUUU_UUUU_UUUU

 end

end

Let XT be the value 32×TX + T.

If IMM=0b00000, let pcv be the permute control vector
required to enable a left-indexed permute (vperm or
xxperm) to implement an expansion of the leftmost
doubleword elements of a source vector into the
doubleword elements of a result vector specified by
the doubleword-element mask in VSR[VRB+32].

If IMM=0b00001, let pcv be the the permute control
vector required to enable a left-indexed permute
(vperm or xxperm) to implement a compression of the
sparse doubleword elements in a source vector
specified by the doubleword-element mask in
VSR[VRB+32] into the leftmost doubleword elements of a
result vector.

60 T IMM VRB 949 TX
0 6 11 16 21 31
Power ISA™ I976

Version 3.1
If IMM=0b00010, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement an expansion of the rightmost
doubleword elements of a source vector into the
doubleword elements of a result vector specified by
the doubleword-element mask in VSR[VRB+32].

If IMM=0b00011, let pcv be the permute control vector
required to enable a right-indexed permute (vpermr or
xxpermr) to implement a compression of the sparse
doubleword elements in a source vector specified by
the doubleword-element mask in VSR[VRB+32] into the
rightmost doubleword elements of a result vector.

pcv is placed into VSR[XT].

Special Registers Altered:
None

The following is an example of how a Load VSX Vector Expand Doubleword, when using Big-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Doubleword.

xxgenpcvdm vPCV, vMASK, 0b00000 // generates the required permute control vector for Big-Endian expansion

vcntmbd rN, vMASK, 0b1 // calculates N, number of true doubleword-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 8×N bytes

// Option 1: expand & merge

xxperm vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxperm vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Load VSX Vector Expand Doubleword, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Doubleword.

xxgenpcvdm vPCV, vMASK, 0b00010 // generates the required permute control vector for Little-Endian expansion

vcntmbd rN, vMASK, 0b1 // calculates N, number of true doubleword-mask elements, adjusted to # of bytes

lxvl vLD, EA, rN // loads 8×N bytes

// Option 1: expand & merge

xxpermr vT, vLD, vT, vPCV // perform the expansion,

 // specifying vT as 2nd source operand causes expanded load data to be

 // merged into VSR[vT]

// Option 2: expand & zero

xxpermr vT, vLD, vZERO, vPCV // perform the expansion,

 // specifying vZERO (vector of 0s) as 2nd source operand causes expanded

 // load data to be placed into VSR[vT] with other elements set to 0

The following is an example of how a Store VSX Vector Compress Doubleword, when using Big-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Doubleword.

xxgenpcvdm vPCV, vMASK, 0b00001 // generates the required permute control vector for Big-Endian compression

vcntmbd rN, vMASK, 0b1 // calculates N, number of true doubleword-mask elements, adjusted to # of bytes

xxperm vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 8×N bytes

The following is an example of how a Store VSX Vector Compress Doubleword, when using Little-Endian
byte-ordering, can be emulated using VSX Vector Generate PCV from Mask Doubleword.

xxgenpcvdm vPCV, vMASK, 0b00011 // generates the required permute control vector for Little-Endian compression

vcntmbd rN, vMASK, 0b1 // calculates N, number of true doubleword-mask elements, adjusted to # of bytes

xxpermr vSD, vS, vS, vPCV // perform the compression

stxvl vSD, rEA, rN // store 8×N bytes

Programming Note
Chapter 7. Vector-Scalar Extension Facility 977

Version 3.1
VSX Vector Logical AND XX3-form

xxland XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] & VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ANDed with the contents
of VSR[XB] and the result is placed into VSR[XT].

Special Registers Altered
None

VSX Vector Logical AND with Complement
XX3-form

xxlandc XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] & ~VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ANDed with the
complement of the contents of VSR[XB] and the result is
placed into VSR[XT].

Special Registers Altered
None

60 T A B 130 AX BX TX
0 6 11 16 21 29 30 31 60 T A B 138 AX BX TX

0 6 11 16 21 29 30 31

VSR Data Layout for xxland

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127

VSR Data Layout for xxlandc

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Power ISA™ I978

Version 3.1
VSX Vector Logical Equivalence XX3-form

xxleqv XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] ≡ VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are exclusive-ORed with the
contents of VSR[XB] and the complemented result is
placed into VSR[XT].

Special Registers Altered:
None

VSX Vector Logical NAND XX3-form

xxlnand XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← ¬(VSR[32×AX+A] & VSR[32×BX+B])

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ANDed with the contents
of VSR[XB] and the complemented result is placed into
VSR[XT].

Special Registers Altered:
None

60 T A B 186 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 178 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxleqv

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127

VSR Data Layout for xxlnand

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 979

Version 3.1
VSX Vector Logical OR with Complement
XX3-form

xxlorc XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] | ¬VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ORed with the
complement of the contents of VSR[XB] and the result is
placed into VSR[XT].

Special Registers Altered:
None

VSX Vector Logical NOR XX3-form

xxlnor XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← ~(VSR[32×AX+A] | VSR[32×BX+B])

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ORed with the contents of
VSR[XB] and the complemented result is placed into
VSR[XT].

Special Registers Altered
None

60 T A B 170 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 162 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlorc

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127

VSR Data Layout for xxlnor

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Power ISA™ I980

Version 3.1
VSX Vector Logical OR XX3-form

xxlor XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] | VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are ORed with the contents of
VSR[XB] and the result is placed into VSR[XT].

Special Registers Altered
None

VSX Vector Logical XOR XX3-form

xxlxor XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T] ← VSR[32×AX+A] ⊕ VSR[32×BX+B]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of VSR[XA] are exclusive-ORed with the
contents of VSR[XB] and the result is placed into
VSR[XT].

Special Registers Altered
None

60 T A B 146 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 154 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxlor

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127

VSR Data Layout for xxlxor

src1 VSR[XA]

src2 VSR[XB]

tgt VSR[XT]

0 127
Chapter 7. Vector-Scalar Extension Facility 981

Version 3.1
VSX Vector Merge High Word XX3-form

xxmrghw XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T].word[0] ← VSR[32×AX+A].word[0]

VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[0]

VSR[32×TX+T].word[2] ← VSR[32×AX+A].word[1]

VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[1]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of word element 0 of VSR[XA] are placed
into word element 0 of VSR[XT].

The contents of word element 0 of VSR[XB] are placed
into word element 1 of VSR[XT].

The contents of word element 1 of VSR[XA] are placed
into word element 2 of VSR[XT].

The contents of word element 1 of VSR[XB] are placed
into word element 3 of VSR[XT].

Special Registers Altered
None

VSX Vector Merge Low Word XX3-form

xxmrglw XT,XA,XB

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T].word[0] ← VSR[32×AX+A].word[2]

VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[2]

VSR[32×TX+T].word[2] ← VSR[32×AX+A].word[3]

VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[3]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

The contents of word element 2 of VSR[XA] are placed
into word element 0 of VSR[XT].

The contents of word element 2 of VSR[XB] are placed
into word element 1 of VSR[XT].

The contents of word element 3 of VSR[XA] are placed
into word element 2 of VSR[XT].

The contents of word element 3 of VSR[XB] are placed
into word element 3 of VSR[XT].

Special Registers Altered
None

60 T A B 18 AX BX TX
0 6 11 16 21 29 30 31

60 T A B 50 AX BX TX
0 6 11 16 21 29 30 31

VSR Data Layout for xxmrghw

src1 VSR[XA].word[0] VSR[XA].word[1] unused unused

src2 VSR[XB].word[0] VSR[XB].word[1] unused unused

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xxmrglw

src1 unused unused VSR[XA].word[2] VSR[XA].word[3]

src unused unused VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I982

Version 3.1
VSX Move From Accumulator X-form

xxmfacc AS

if MSR.VSX=0 then VSX_Unavailable()

VSR[4×AS] ← ACC[AS][0]

VSR[4×AS+1] ← ACC[AS][1]

VSR[4×AS+2] ← ACC[AS][2]

VSR[4×AS+3] ← ACC[AS][3]

For each integer value i from 0 to 3, the contents of
row i of ACC[AS] are placed into VSR[4×AS+i].

Special Registers Altered:
None

31 AS // 0 /// 177 /
0 6 9 11 16 21 31

During extended periods of the execution of an
application when there isn’t any active use of the
Accumulators and VSX Vector GER instructions,
hardware may deactivate these facilities for power
savings. Once deactivated, while any attempted
execution of any xxmfacc, xxmtacc, xxsetaccz,
or VSX Vector GER instruction will cause these
facilities to become reactivated, this reactivation
causes significant delay beyond the normal
execution of these instructions. This delay can be
avoided by periodically issuing an xxmfacc with
AS=0 instruction during extended times that the
facilities are not being used to keep the facilities
activated. Since the contents of ACC[0] will be
undefined after the first execution, performance
on subsequent executions of xxmfacc 0 can be
expected to be degraded compared to
performance when the contents of ACC[0] are
defined. As such, to keep the facilities activated,
xxmfacc 0 should be used with attention to
performance implications.

Programming Note

VSR Data Layout for xxmfacc

src

ACC[AS][0]

ACC[AS][1]

ACC[AS][2]

ACC[AS][3]

tgt

VSR[4×AS]

VSR[4×AS]

VSR[4×AS]

VSR[4×AS]

0 127
Chapter 7. Vector-Scalar Extension Facility 983

Version 3.1
VSX Move To Accumulator X-form

xxmtacc AT

if MSR.VSX=0 then VSX_Unavailable()

ACC[AT][0] ← VSR[4×AT]

ACC[AT][1] ← VSR[4×AT+1]

ACC[AT][2] ← VSR[4×AT+2]

ACC[AT][3] ← VSR[4×AT+3]

For each integer value i from 0 to 3, the contents of
VSR[4×AT+i] are placed into row i of ACC[AT].

Special Registers Altered:
None

31 AT // 1 /// 177 /
0 6 9 11 16 21 31

VSR Data Layout for xxmtacc

src

VSR[4×AT]

VSR[4×AT+1]

VSR[4×AT+2]

VSR[4×AT+3]

tgt

ACC[AT][0]

ACC[AT][1]

ACC[AT][2]

ACC[AT][3]

0 127
Power ISA™ I984

Version 3.1
VSX Vector Permute XX3-form

xxperm XT,XA.XB

if MSR.VSX=0 then VSX_Unavailable()

src.byte[0:15] ← VSR[32×AX+A]

src.byte[16:31] ← VSR[32×TX+T]

pcv.byte[0:15] ← VSR[32×BX+B]

do i = 0 to 15

 idx ← pcv.byte[i].bit[3:7]

 VSR[32×TX+T].byte[i] ← src.byte[idx]

end

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XT be the value 32×TX + T.

Let bytes 0:15 of src be the contents of VSR[XA].
Let bytes 16:31 of src be the contents of VSR[XT].

Let the permute control vector pcv be the contents of
VSR[XB].

For each integer value i from 0 to 15, do the following.
Let idx be the unsigned integer in bits 3:7 of byte
element i of pcv.

The contents of byte element idx of src is placed
into byte element i of VSR[XT].

Special Registers Altered:
None

VSX Vector Permute Right-indexed XX3-form

xxpermr XT,XA.XB

if MSR.VSX=0 then VSX_Unavailable()

src.byte[0:15] ← VSR[32×AX+A]

src.byte[16:31] ← VSR[32×TX+T]

pcv.byte[0:15] ← VSR[32×BX+B]

do i = 0 to 15

 idx ← pcv.byte[i].bit[3:7]

 VSR[32×TX+T].byte[i] ← src.byte[31-idx]

end

Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XT be the value 32×TX + T.

Let bytes 0:15 of src be the contents of VSR[XA].
Let bytes 16:31 of src be the contents of VSR[XT].

Let the permute control vector pcv be the contents of
VSR[XB].

For each integer value i from 0 to 15, do the following.
Let idx be the unsigned integer in bits 3:7 of byte
element i of pcv.

The contents of byte element 31-idx of src is
placed into byte element i of VSR[XT].

Special Registers Altered:
None

60 T A B 26 AXBXTX
0 6 11 16 21 29 30 31

60 T A B 58 AXBXTX
0 6 11 16 21 29 30 31

VSR Data Layout for xxperm

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

VSR Data Layout for xxpermr

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 985

Version 3.1
VSX Vector Permute Doubleword Immediate
XX3-form

xxpermdi XT,XA,XB,DM

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T].dword[0] ← VSR[32×AX+A].dword[DM.bit[0]]

VSR[32×TX+T].dword[1] ← VSR[32×BX+B].dword[DM.bit[1]]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

If DM.bit[0]=0, the contents of doubleword element 0
of VSR[XA] are placed into doubleword element 0 of
VSR[XT]. Otherwise the contents of doubleword
element 1 of VSR[XA] are placed into doubleword
element 0 of VSR[XT].

If DM.bit[1]=0, the contents of doubleword element 0
of VSR[XB] are placed into doubleword element 1 of
VSR[XT]. Otherwise the contents of doubleword
element 1 of VSR[XB] are placed into doubleword
element 1 of VSR[XT].

Special Registers Altered
None

Extended Mnemonics:

Extended mnemonics for VSX Vector Permute Double-
word Immediate:

60 T A B 0 DM 10 AX BX TX
0 6 11 16 21 22 24 29 30 31

Extended mnemonic: Equivalent to:
xxspltd T,A,0 xxpermdi T,A,A,0b00
xxspltd T,A,1 xxpermdi T,A,A,0b11
xxmrghd T,A,B xxpermdi T,A,B,0b00
xxmrgld T,A,B xxpermdi T,A,B,0b11
xxswapd T,A xxpermdi T,A,A,0b10

VSR Data Layout for xxpermdi

src1 VSR[XA].dword[0] VSR[XA].dword[1]

src2 VSR[XA].dword[0] VSR[XA].dword[1]

tgt VSR[XT].dword[0] VSR[XT].dword[1]

0 64 127
Power ISA™ I986

Version 3.1
VSX Vector Permute Extended 8RR:XX4-form

xxpermx XT,XA,XB,XC,UIM
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

src.qword[0] ← VSR[32×AX+A]

src.qword[1] ← VSR[32×BX+B]

do i = 0 to 15

 section ← VSR[32×CX+C].byte[i].bit[0:2]

 eidx ← VSR[32×CX+C].byte[i].bit[3:7]

 if section=UIM then

 VSR[32×TX+T].byte[i] ← src.byte[eidx]

 else

 VSR[32×TX+T].byte[i] ← 0x00

end

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

Let UIM specify which 32-byte section of the long vector
that src contains.

Let src be the concatenation VSR[XA] and VSR[XB],
comprising a 32-byte section of up to a 128-byte
vector.

For each integer value i from 0 to 15, do the following.

Let eidx be the contents of bits 3:7 of byte
element i of VSR[XC].

If UIM is equal to the contents of bits 0:2 of byte
element i of VSR[XC], the contents of byte element
eidx of src are placed into byte element i of
VSR[XT]. Otherwise, the contents of byte element i
of VSR[XT] are set to 0.

Special Registers Altered:
None

1 1 0 // /// UIM
0 6 8 12 14 29 31

34 T A B C 0 CXAXBXTX
0 6 11 16 21 26 28 29 30 31

The following is an example of emulating 256-bit
xxperm, where a 256-bit vector is contained in a
pair of VSRs. The instruction is capable of
emulating up to a 1024-bit xxperm.

vT0a = xxpermx(vA0, vA1, vC0, 0);

vT0b = xxpermx(vB0, vB1, vC0. 1);

vT1a = xxpermx(vA0, vA1, vC1, 0);

vT1b = xxpermx(vB0, vB1, vC1. 1);

vT0 = xxlor(vT0a, vT0b);

vT1 = xxlor(vT1a, vT1b);

The following is an example of a parallel table
lookup. In this case, a 16-way SIMD 256-entry
byte table lookup.

vT0 = xxpermx(vS0, vS1, vINDEX, 0);

vT1 = xxpermx(vS2, vS3, vINDEX, 1);

vT2 = xxpermx(vS4, vS5, vINDEX, 2);

vT3 = xxpermx(vS6, vS7, vINDEX, 3);

vT4 = xxpermx(vS8, vS9, vINDEX, 4);

vT5 = xxpermx(vSA, vSB, vINDEX, 5);

vT6 = xxpermx(vSC, vSD, vINDEX, 6);

vT7 = xxpermx(vSE, vSF, vINDEX, 7);

vT0 = xxlor(vT0, vT1);

vT1 = xxlor(vT2, vT3);

vT2 = xxlor(vT4, vT5);

vT3 = xxlor(vT6, vT7);

vT0 = xxlor(vT0, vT1);

vT1 = xxlor(vT2, vT3);

Programming Note

Programming Note

VSR Data Layout for xxpermx

src1 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src2 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

src3 .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Chapter 7. Vector-Scalar Extension Facility 987

Version 3.1
VSX Vector Select XX4-form

xxsel XT,XA,XB,XC

if MSR.VSX=0 then VSX_Unavailable()

src1 ← VSR[32×AX+A]

src2 ← VSR[32×BX+B]

mask ← VSR[32×CX+C]

VSR[32×TX+T] ← (src1 & ~mask) | (src2 & mask)

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.
Let XC be the value 32×CX + C.

Let src1 be the contents of VSR[XA].
Let src2 be the contents of VSR[XB].
Let mask be the contents of VSR[XC].

The value, (src1 & ~mask) | (src2 & mask), is placed
into VSR[XT].

Special Registers Altered
None

60 T A B C 3 CXAX BX TX
0 6 11 16 21 26 28 29 30 31

VSR Data Layout for xxsel

src1 VSR[XA]

src2 VSR[XB]

src3 VSR[XC]

tgt VSR[XT]

0 127
Power ISA™ I988

Version 3.1
VSX Set Accumulator to Zero X-form

xxsetaccz AT

if MSR.VSX=0 then VSX_Unavailable()

ACC[AT][0] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][1] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][2] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][3] ← 0x0000_0000_0000_0000_0000_0000_0000_0000

For each integer value i from 0 to 3, the contents of
row i of ACC[AT] are set to 0.

Special Registers Altered:
None

31 AT // 3 /// 177 /
0 6 9 11 16 21 31

VSR Data Layout for xxmtacc

tgt

ACC[AT][0] = 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][1] = 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][2] = 0x0000_0000_0000_0000_0000_0000_0000_0000

ACC[AT][3] = 0x0000_0000_0000_0000_0000_0000_0000_0000

0 127
Chapter 7. Vector-Scalar Extension Facility 989

Version 3.1
VSX Vector Shift Left Double by Word
Immediate XX3-form

xxsldwi XT,XA,XB,SHW

if MSR.VSX=0 then VSX_Unavailable()

source.qword[0] ← VSR[32×AX+A]

source.qword[1] ← VSR[32×BX+B]

VSR[32×TX+T] ← source.word[SHW:SHW+3]

Let XT be the value 32×TX + T.
Let XA be the value 32×AX + A.
Let XB be the value 32×BX + B.

Let vsrc be the concatenation of the contents of
VSR[XA] followed by the contents of VSR[XB].

Words SHW:SHW+3 of vsrc are placed into VSR[XT].

Special Registers Altered
None

60 T A B 0 SHW 2 AXBXTX
0 6 11 16 21 22 24 29 30 31

VSR Data Layout for xxsldwi

src1 VSR[XA].word[0] VSR[XA].word[1] VSR[XA].word[2] VSR[XA].word[3]

src2 VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I990

Version 3.1
VSX Vector Splat Immediate Byte X-form

xxspltib XT,IMM8

if TX=0 & MSR.VSX=0 then VSX_Unavailable()

if TX=1 & MSR.VEC=0 then Vector_Unavailable()

do i = 0 to 15

 VSR[32×TX+T].byte[i] ← UIM8

end

Let XT be the sum 32×TX + T.

The value IMM8 is copied into each byte element of
VSR[XT].

Special Registers Altered:
None

VSX Vector Splat Immediate Double-Precision
8RR:D-form

xxspltidp XT,IMM32
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

IMM32 ← imm0<<16 | imm1;

temp ← bfp_CONVERT_FROM_BFP32(IMM32);

VSR[32×TX+T].dword[0] ← bfp64_CONVERT_FROM_BFP(IMM32);

VSR[32×TX+T].dword[1] ← bfp64_CONVERT_FROM_BFP(IMM32);

Let IMM32 be the concatenation of imm0 and imm1,
representing a single-precision value.

IMM32 is converted to double-precision format and
placed into each doubleword element of VSR[XT].

If IMM32 specifies a single-precision denormal value
(i.e., bits 1:8 equal to 0 and bits 9:31 not equal to 0),
the result is undefined.

Special Registers Altered:
None

60 T 0 IMM8 360 TX
0 6 11 13 21 31

1 1 0 // // imm0
0 6 8 12 14 16 31

32 T 2 TX imm1
0 6 11 15 16 31

VSR Data Layout for xxspltib

tgt .byte[0] .byte[1] .byte[2] .byte[3] .byte[4] .byte[5] .byte[6] .byte[7] .byte[8] .byte[9] .byte[10] .byte[11] .byte[12] .byte[13] .byte[14] .byte[15]

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

VSR Data Layout for xxspltidp

tgt VSR[XT].dword[0] 0x0000_0000_0000_0000

0 64 127
Chapter 7. Vector-Scalar Extension Facility 991

Version 3.1
VSX Vector Splat Immediate Word 8RR:D-form

xxspltiw XT,IMM32
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

IMM32 ← imm0<<16 | imm1

do i = 0 to 3

 VSR[32×TX+T].word[i] ← IMM32

end

Let XT be the value 32×TX + T.
Let IMM32 be the concatenation of imm0 and imm1.

IMM32 is placed into each word element of VSR[XT].

Special Registers Altered:
None

VSX Vector Splat Immediate32 Doubleword
Indexed 8RR:D-form

xxsplti32dx XT,IX,IMM32
Prefix:

Suffix:

if MSR.VSX=0 then VSX_Unavailable()

IMM32 ← imm0<<16 | imm1

VSR[32×TX+T].dword[0].word[IX] ← IMM32

VSR[32×TX+T].dword[1].word[IX] ← IMM32

Let XT be the value 32×TX + T.
Let IMM32 be the concatenation of imm0 and imm1.

IMM32 is placed into word element IX of each
doubleword element of VSR[XT]. The contents of the
remaining word elements are not modified.

Special Registers Altered:
None

1 1 0 // // imm0
0 6 8 12 14 16 31

32 T 3 TX imm1
0 6 11 15 16 31

1 1 0 // // imm0
0 6 8 12 14 16 31

32 T 0 IX TX imm1
0 6 11 14 15 16 31

VSR Data Layout for xxspltiw

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127

VSR Data Layout for xxsplti32dx

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Power ISA™ I992

Version 3.1
VSX Vector Splat Word XX2-form

xxspltw XT,XB,UIM

if MSR.VSX=0 then VSX_Unavailable()

VSR[32×TX+T].word[0] ← VSR[32×BX+B].word[UIM]

VSR[32×TX+T].word[1] ← VSR[32×BX+B].word[UIM]

VSR[32×TX+T].word[2] ← VSR[32×BX+B].word[UIM]

VSR[32×TX+T].word[3] ← VSR[32×BX+B].word[UIM]

Let XT be the value 32×TX + T.
Let XB be the value 32×BX + B.

The contents of word element UIM of VSR[XB] are
replicated in each word element of VSR[XT].

Special Registers Altered
None

60 T /// UIM B 164 BXTX
0 6 11 14 16 21 30 31

VSR Data Layout for xxspltw

src VSR[XB].word[0] VSR[XB].word[1] VSR[XB].word[2] VSR[XB].word[3]

tgt VSR[XT].word[0] VSR[XT].word[1] VSR[XT].word[2] VSR[XT].word[3]

0 32 64 96 127
Chapter 7. Vector-Scalar Extension Facility 993

Version 3.1
Power ISA™ I994

Version 3.1
Appendix A. Suggested Floating-Point Models

A.1 Floating-Point Round to Single-Precision Model
The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB)1:11 < 897 and (FRB)1:63 > 0 then
Do

If FPSCRUE = 0 then goto Disabled Exponent Underflow
If FPSCRUE = 1 then goto Enabled Exponent Underflow

End

If (FRB)1:11 > 1150 and (FRB)1:11 < 2047 then
Do

If FPSCROE = 0 then goto Disabled Exponent Overflow
If FPSCROE = 1 then goto Enabled Exponent Overflow

End

If (FRB)1:11 > 896 and (FRB)1:11 < 1151 then goto Normal Operand

If (FRB)1:63 = 0 then goto Zero Operand

If (FRB)1:11 = 2047 then
Do

If (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)12 = 1 then goto QNaN Operand
If (FRB)12 = 0 and (FRB)13:63 > 0 then goto SNaN Operand

End

Disabled Exponent Underflow:
sign  (FRB)0
If (FRB)1:11 = 0 then

Do
exp  -1022
frac0:52  0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp  (FRB)1:11 - 1023
frac0:52  0b1 || (FRB)12:63

End
Denormalize operand:

G || R || X  0b000
Do while exp < -126

exp  exp + 1
frac0:52 || G || R || X  0b0 || frac0:52 || G || (R | X)

End
FPSCRUX  (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCRXX  FPSCRXX | FPSCRFI
If frac0:52 = 0 then

Do
FRT0  sign
FRT1:63  0
Appendix A. Suggested Floating-Point Models 995

Version 3.1
If sign = 0 then FPSCRFPRF  “+ zero”
If sign = 1 then FPSCRFPRF  “- zero”

End
If frac0:52 > 0 then

Do
If frac0 = 1 then

Do
If sign = 0 then FPSCRFPRF  “+ normal number”
If sign = 1 then FPSCRFPRF  “- normal number”

End
If frac0 = 0 then

Do
If sign = 0 then FPSCRFPRF  “+ denormalized number”
If sign = 1 then FPSCRFPRF  “- denormalized number”

End
Normalize operand:

Do while frac0 = 0
exp  exp-1
frac0:52  frac1:52 || 0b0

End
FRT0  sign
FRT1:11  exp + 1023
FRT12:63  frac1:52

End
Done

Enabled Exponent Underflow:
FPSCRUX  1
sign  (FRB)0
If (FRB)1:11 = 0 then

Do
exp  -1022
frac0:52  0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp  (FRB)1:11 - 1023
frac0:52  0b1 || (FRB)12:63

End
Normalize operand:

Do while frac0 = 0
exp  exp - 1
frac0:52  frac1:52 || 0b0

End
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX  FPSCRXX | FPSCRFI
exp  exp + 192
FRT0  sign
FRT1:11  exp + 1023
FRT12:63  frac1:52
If sign = 0 then FPSCRFPRF  “+ normal number”
If sign = 1 then FPSCRFPRF  “- normal number”
Done

Disabled Exponent Overflow:
FPSCROX  1
If FPSCRRN = 0b00 then /* Round to Nearest */

Do
If (FRB)0 = 0 then FRT  0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT  0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF  “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF  “- infinity”

End
If FPSCRRN = 0b01 then /* Round toward Zero */

Do
Power ISA™ I996

Version 3.1
If (FRB)0 = 0 then FRT  0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT  0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF  “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF  “- normal number”

End
If FPSCRRN = 0b10 then /* Round toward +Infinity */

Do
If (FRB)0 = 0 then FRT  0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT  0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF  “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF  “- normal number”

End
If FPSCRRN = 0b11 then /* Round toward -Infinity */

Do
If (FRB)0 = 0 then FRT  0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT  0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF  “+ normal number”
If (FRB)0 = 1 then FPSCRFPRF  “- infinity”

End
FPSCRFR  undefined
FPSCRFI  1
FPSCRXX  1
Done

Enabled Exponent Overflow:
sign  (FRB)0
exp  (FRB)1:11 - 1023
frac0:52  0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX  FPSCRXX | FPSCRFI

Enabled Overflow:
FPSCROX  1
exp  exp - 192
FRT0  sign
FRT1:11  exp + 1023
FRT12:63  frac1:52
If sign = 0 then FPSCRFPRF  “+ normal number”
If sign = 1 then FPSCRFPRF  “- normal number”
Done

Zero Operand:
FRT  (FRB)
If (FRB)0 = 0 then FPSCRFPRF  “+ zero”
If (FRB)0 = 1 then FPSCRFPRF  “- zero”
FPSCRFRFI  0b00
Done

Infinity Operand:
FRT  (FRB)
If (FRB)0 = 0 then FPSCRFPRF  “+ infinity”
If (FRB)0 = 1 then FPSCRFPRF  “- infinity”
FPSCRFRFI  0b00
Done

QNaN Operand:
FRT  (FRB)0:34 || 290
FPSCRFPRF  “QNaN”
FPSCRFR FI  0b00
Done
Appendix A. Suggested Floating-Point Models 997

Version 3.1
SNaN Operand:
FPSCRVXSNAN  1
If FPSCRVE = 0 then

Do
FRT0:11  (FRB)0:11
FRT12  1
FRT13:63  (FRB)13:34 || 290
FPSCRFPRF  “QNaN”

End
FPSCRFR FI  0b00
Done

Normal Operand:
sign  (FRB)0
exp  (FRB)1:11 - 1023
frac0:52  0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX  FPSCRXX | FPSCRFI
If exp > 127 and FPSCROE = 0 then go to Disabled Exponent Overflow
If exp > 127 and FPSCROE = 1 then go to Enabled Overflow
FRT0  sign
FRT1:11  exp + 1023
FRT12:63  frac1:52
If sign = 0 then FPSCRFPRF  “+ normal number”
If sign = 1 then FPSCRFPRF  “- normal number”
Done

Round Single(sign,exp,frac0:52,G,R,X):
inc  0
lsb  frac23
gbit  frac24
rbit  frac25
xbit  (frac26:52||G||R||X)≠0
If FPSCRRN = 0b00 then /* Round to Nearest */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc  1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc  1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc  1

End
If FPSCRRN = 0b10 then /* Round toward + Infinity */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc  1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc  1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc  1

End
If FPSCRRN = 0b11 then /* Round toward - Infinity */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc  1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc  1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc  1

End
frac0:23  frac0:23 + inc
If carry_out = 1 then

Do
frac0:23  0b1 || frac0:22
exp  exp + 1

End
frac24:52  290
FPSCRFR  inc
FPSCRFI  gbit | rbit | xbit
Return
Power ISA™ I998

Version 3.1
A.2 Floating-Point Convert to Integer Model
The following describes algorithmically the operation of the Floating Convert To Integer instructions.

if Floating Convert To Integer Word then do
round_mode  FPSCRRN
tgt_precision  “32-bit signed integer”

end

if Floating Convert To Integer Word Unsigned then do
round_mode  FPSCRRN
tgt_precision  “32-bit unsigned integer”

end

if Floating Convert To Integer Word with round toward Zero then do
round_mode  0b01
tgt_precision  “32-bit signed integer”

end

if Floating Convert To Integer Word Unsigned with round toward Zero then do
round_mode  0b01
tgt_precision  “32-bit unsigned integer”

end

if Floating Convert To Integer Doubleword then do
round_mode  FPSCRRN
tgt_precision  “64-bit signed integer”

end

if Floating Convert To Integer Doubleword Unsigned then do
round_mode  FPSCRRN
tgt_precision  “64-bit unsigned integer”

end

if Floating Convert To Integer Doubleword with round toward Zero then do
round_mode  0b01
tgt_precision  “64-bit signed integer”

end

if Floating Convert To Integer Doubleword Unsigned with round toward Zero then do
round_mode  0b01
tgt_precision  “64-bit unsigned integer”

end

sign  (FRB)0
if (FRB)1:11 = 2047 and (FRB)12:63 = 0 then goto Infinity Operand
if (FRB)1:11 = 2047 and (FRB)12 = 0 then goto SNaN Operand
if (FRB)1:11 = 2047 and (FRB)12 = 1 then goto QNaN Operand
if (FRB)1:11 > 1086 then goto Large Operand

if (FRB)1:11 > 0 then exp  (FRB)1:11 - 1023 /* exp - bias */
if (FRB)1:11 = 0 then exp  -1022
if (FRB)1:11 > 0 then frac0:64  0b01 || (FRB)12:63 || 110 /* normal */
if (FRB)1:11 = 0 then frac0:64  0b00 || (FRB)12:63 || 110 /* denormal */

gbit || rbit || xbit  0b000
do i=1,63-exp /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit  0b0 || frac0:64 || gbit || (rbit | xbit)
end

Round Integer(sign, frac0:64, gbit, rbit, xbit, round_mode)

if sign = 1 then frac0:64  ¬frac0:64 + 1 /* needed leading 0 for -264<(FRB)<-263 */
Appendix A. Suggested Floating-Point Models 999

Version 3.1
if tgt_precision = “32-bit signed integer” and frac0:64 > 231-1 then
goto Large Operand

if tgt_precision = “64-bit signed integer” and frac0:64 > 263-1 then
goto Large Operand

if tgt_precision = “32-bit signed integer” and frac0:64 < -231 then
goto Large Operand

if tgt_precision = “64-bit signed integer” and frac0:64 < -263 then
goto Large Operand

if tgt_precision = “32-bit unsigned integer” & frac0:64 > 232-1 then
goto Large Operand

if tgt_precision = “64-bit unsigned integer” & frac0:64 > 264-1 then
goto Large Operand

if tgt_precision = “32-bit unsigned integer” & frac0:64 < 0 then
goto Large Operand

if tgt_precision = “64-bit unsigned integer” & frac0:64 < 0 then
goto Large Operand

FPSCRXX  FPSCRXX | FPSCRFI
if tgt_precision = “32-bit signed integer” then FRT  0xUUUU_UUUU || frac33:64
if tgt_precision = “32-bit unsigned integer” then FRT  0xUUUU_UUUU || frac33:64
if tgt_precision = “64-bit signed integer” then FRT  frac1:64
if tgt_precision = “64-bit unsigned integer” then FRT  frac1:64
FPSCRFPRF  0bUUUUU
done

Round Integer(sign, frac0:64, gbit, rbit, xbit, round_mode):
inc  0
if round_mode = 0b00 then do /* Round to Nearest */

if sign || frac64 || gbit || rbit || xbit = 0bU11UU then inc  1
if sign || frac64 || gbit || rbit || xbit = 0bU011U then inc  1
if sign || frac64 || gbit || rbit || xbit = 0bU01U1 then inc  1

end
if round_mode = 0b10 then do /* Round toward +Infinity */

if sign || frac64 || gbit || rbit || xbit = 0b0U1UU then inc  1
if sign || frac64 || gbit || rbit || xbit = 0b0UU1U then inc  1
if sign || frac64 || gbit || rbit || xbit = 0b0UUU1 then inc  1

end
if round_mode = 0b11 then do /* Round toward -Infinity */

if sign || frac64 || gbit || rbit || xbit = 0b1U1UU then inc  1
if sign || frac64 || gbit || rbit || xbit = 0b1UU1U then inc  1
if sign || frac64 || gbit || rbit || xbit = 0b1UUU1 then inc  1

end
frac0:64  frac0:64 + inc
FPSCRFR  inc
FPSCRFI  gbit | rbit | xbit
return

Infinity Operand:
FPSCRFR  0b0
FPSCRFI  0b0
FPSCRVXCVI  0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then do
if sign=0 then FRT  0xUUUU_UUUU_7FFF_FFFF
if sign=1 then FRT  0xUUUU_UUUU_8000_0000

end
else if tgt_precision = “32-bit unsigned integer” then do

if sign=0 then FRT  0xUUUU_UUUU_FFFF_FFFF
if sign=1 then FRT  0xUUUU_UUUU_0000_0000

end
else if tgt_precision = “64-bit signed integer” then do

if sign=0 then FRT  0x7FFF_FFFF_FFFF_FFFF
if sign=1 then FRT  0x8000_0000_0000_0000
Power ISA™ I1000

Version 3.1
end

else if tgt_precision = “64-bit unsigned integer” then do
if sign=0 then FRT  0xFFFF_FFFF_FFFF_FFFF
if sign=1 then FRT  0x0000_0000_0000_0000

end
FPSCRFPRF  0bUUUUU

end
done

SNaN Operand:
FPSCRFR  0b0
FPSCRFI  0b0
FPSCRVXSNAN  0b1
FPSCRVXCVI  0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then FRT  0xUUUU_UUUU_8000_0000
if tgt_precision = “64-bit signed integer” then FRT  0x8000_0000_0000_0000
if tgt_precision = “32-bit unsigned integer” then FRT  0xUUUU_UUUU_0000_0000
if tgt_precision = “64-bit unsigned integer” then FRT  0x0000_0000_0000_0000
FPSCRFPRF  0bUUUUU

end
done

QNaN Operand:
FPSCRFR  0b0
FPSCRFI  0b0
FPSCRVXCVI  0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then FRT  0xUUUU_UUUU_8000_0000
if tgt_precision = “64-bit signed integer” then FRT  0x8000_0000_0000_0000
if tgt_precision = “32-bit unsigned integer” then FRT  0xUUUU_UUUU_0000_0000
if tgt_precision = “64-bit unsigned integer” then FRT  0x0000_0000_0000_0000
FPSCRFPRF  0bUUUUU

end
done

Large Operand:
FPSCRFR  0b0
FPSCRFI  0b0
FPSCRVXCVI  0b1
if FPSCRVE = 0 then do

if tgt_precision = “32-bit signed integer” then do
if sign = 0 then FRT  0xUUUU_UUUU_7FFF_FFFF
if sign = 1 then FRT  0xUUUU_UUUU_8000_0000

end
else if tgt_precision = “64-bit signed integer” then do

if sign = 0 then FRT  0x7FFF_FFFF_FFFF_FFFF
if sign = 1 then FRT  0x8000_0000_0000_0000

end
else if tgt_precision = “32-bit unsigned integer” then do

if sign = 0 then FRT  0xUUUU_UUUU_FFFF_FFFF
if sign = 1 then FRT  0xUUUU_UUUU_0000_0000

end
else if tgt_precision = “64-bit unsigned integer” then do

if sign = 0 then FRT  0xFFFF_FFFF_FFFF_FFFF
if sign = 1 then FRT  0x0000_0000_0000_0000

end
FPSCRFPRF  0bUUUUU

end
done
Appendix A. Suggested Floating-Point Models 1001

Version 3.1
A.3 Floating-Point Convert from Integer Model
The following describes algorithmically the operation of the Floating Convert From Integer instructions.

if Floating Convert From Integer Doubleword then do
tgt_precision  “double-precision”
sign  (FRB)0
exp  63
frac0:63  (FRB)

end
if Floating Convert From Integer Doubleword Single then do

tgt_precision  “single-precision”
sign  (FRB)0
exp  63
frac0:63  (FRB)

end
if Floating Convert From Integer Doubleword Unsigned then do

tgt_precision  “double-precision”
sign  0
exp  63
frac0:63  (FRB)

end
if Floating Convert From Integer Doubleword Unsigned Single then do

tgt_precision  “single-precision”
sign  0
exp  63
frac0:63  (FRB)

end

if frac0:63 = 0 then go to Zero Operand
if sign = 1 then frac0:63  ¬frac0:63 + 1
/* do the loop 0 times if (FRB) = max negative 64-bit integer or */
/* if (FRB) = max unsigned 64-bit integer */
do while frac0 = 0

frac0:63  frac1:63 || 0b0
exp  exp - 1

end

Round Float(sign, exp, frac0:63, RN)
if sign = 0 then FPSCRFPRF  “+normal number”
if sign = 1 then FPSCRFPRF  “-normal number”
FRT0  sign
FRT1:11  exp + 1023 /* exp + bias */
FRT12:63  frac1:52
done

Zero Operand:
FPSCRFR  0b00
FPSCRFI  0b00
FPSCRFPRF  “+ zero”
FRT  0x0000_0000_0000_0000
done

Round Float(sign, exp, frac0:63, round_mode):
inc  0

if tgt_precision = “single-precision” then do
lsb  frac23
gbit  frac24
rbit  frac25
xbit  frac26:63 > 0

end
else do /* tgt_precision = “double-precision” */
Power ISA™ I1002

Version 3.1
lsb  frac52
gbit  frac53
rbit  frac54
xbit  frac55:63 > 0

end

if round_mode = 0b00 then do /* Round to Nearest */
if sign || lsb || gbit || rbit || xbit = 0bU11UU then inc  1
if sign || lsb || gbit || rbit || xbit = 0bU011U then inc  1
if sign || lsb || gbit || rbit || xbit = 0bU01U1 then inc  1

end
if round_mode = 0b10 then do /* Round toward + Infinity */

if sign || lsb || gbit || rbit || xbit = 0b0U1UU then inc  1
if sign || lsb || gbit || rbit || xbit = 0b0UU1U then inc  1
if sign || lsb || gbit || rbit || xbit = 0b0UUU1 then inc  1

end
if round_mode = 0b11 then do /* Round toward - Infinity */

if sign || lsb || gbit || rbit || xbit = 0b1U1UU then inc  1
if sign || lsb || gbit || rbit || xbit = 0b1UU1U then inc  1
if sign || lsb || gbit || rbit || xbit = 0b1UUU1 then inc  1

end

if tgt_precision = “single-precision” then
frac0:23  frac0:23 + inc

else /* tgt_precision = “double-precision” */
frac0:52  frac0:52 + inc

if carry_out = 1 then exp  exp + 1

FPSCRFR  inc
FPSCRFI  gbit | rbit | xbit
FPSCRXX  FPSCRXX | FPSCRFI
return
Appendix A. Suggested Floating-Point Models 1003

Version 3.1
A.4 Floating-Point Round to Integer Model
The following describes algorithmically the operation of the Floating Round To Integer instructions.

If (FRB)1:11 = 2047 and (FRB)12:63 = 0, then goto Infinity Operand
If (FRB)1:11 = 2047 and (FRB)12 = 0, then goto SNaN Operand
If (FRB)1:11 = 2047 and (FRB)12 = 1, then goto QNaN Operand
if (FRB)1:63 = 0 then goto Zero Operand
If (FRB)1:11 < 1023 then goto Small Operand /* exp < 0; |value| < 1*/
If (FRB)1:11 > 1074 then goto Large Operand /* exp > 51; integral value */

sign  (FRB)0
exp  (FRB)1:11 - 1023 /* exp - bias */
frac0:52  0b1 || (FRB)12:63
gbit || rbit || xbit  0b000

Do i = 1, 52 - exp
frac0:52 || gbit || rbit || xbit  0b0 || frac0:52 || gbit || (rbit | xbit)

End

Round Integer (sign, frac0:52, gbit, rbit, xbit)

Do i = 2, 52 - exp
frac0:52  frac1:52 || 0b0

End

If frac0 = 1, then exp  exp + 1
Else frac0:52  frac1:52 || 0b0

FRT0  sign
FRT1:11  exp + 1023
FRT12:63  frac1:52

If (FRT)0 = 0 then FPSCRFPRF  “+ normal number”
Else FPSCRFPRF  “- normal number”
FPSCRFR FI  0b00
Done

Round Integer(sign, frac0:52, gbit, rbit, xbit):
inc  0
If inst = Floating Round to Integer Nearest then /* ties away from zero */

Do /* comparisons ignore u bits */
If sign || frac52 || gbit || rbit || xbit = 0buu1uu then inc  1

End
If inst = Floating Round to Integer Plus then

Do /* comparisons ignore u bits */
If sign || frac52 || gbit || rbit || xbit = 0b0u1uu then inc  1
If sign || frac52 || gbit || rbit || xbit = 0b0uu1u then inc  1
If sign || frac52 || gbit || rbit || xbit = 0b0uuu1 then inc  1

End
If inst = Floating Round to Integer Minus then

Do /* comparisons ignore u bits */
If sign || frac52 || gbit || rbit || xbit = 0b1u1uu then inc  1
If sign || frac52 || gbit || rbit || xbit = 0b1uu1u then inc  1
If sign || frac52 || gbit || rbit || xbit = 0b1uuu1 then inc  1

End
frac0:52  frac0:52 + inc
Return
Power ISA™ I1004

Version 3.1
Infinity Operand:
FRT  (FRB)
If (FRB)0 = 0 then FPSCRFPRF  “+ infinity“
If (FRB)0 = 1 then FPSCRFPRF  “- infinity”
FPSCRFR FI  0b00
Done

SNaN Operand:
FPSCRVXSNAN  1
If FPSCRVE = 0 then

Do
FRT  (FRB)
FRT12  1
FPSCRFPRF  “QNaN”

End
FPSCRFR FI  0b00
Done

QNaN Operand:
FRT  (FRB)
FPSCRFPRF  “QNaN”
FPSCRFR FI  0b00
Done

Zero Operand:
If (FRB)0 = 0 then

Do
FRT  0x0000_0000_0000_0000
FPSCRFPRF  “+ zero”

End
Else

Do
FRT  0x8000_0000_0000_0000
FPSCRFPRF  “- zero”

End
FPSCRFR FI  0b00
Done

Small Operand:
If inst = Floating Round to Integer Nearest and
(FRB)1:11 < 1022 then goto Zero Operand
If inst = Floating Round to Integer Toward Zero
then goto Zero Operand
If inst = Floating Round to Integer Plus and (FRB)0
= 1 then goto Zero Operand
If inst = Floating Round to Integer Minus and
(FRB)0 = 0 then goto Zero Operand

If (FRB)0 = 0 then
Do

FRT  0x3FF0_0000_0000_0000
/* value = 1.0 */

FPSCRFPRF  “+ normal number”
End

Else
Do

FRT  0xBFF0_0000_0000_0000
/* value = -1.0 */

FPSCRFPRF  “- normal number”
End

FPSCRFR FI  0b00
Done

Large Operand:
FRT  (FRB)

If FRT0 = 0 then FPSCRFPRF  “+ normal num-
ber”
Else FPSCRFPRF  “- normal number”
FPSCRFR FI  0b00
Done
Appendix A. Suggested Floating-Point Models 1005

Version 3.1
Power ISA™ I1006

Version 3.1
Appendix B. Densely Packed Decimal

The trailing significand field of the decimal floating-point
data format is encoded using Densely Packed Decimal
(DPD). DPD encoding is a compression technique
which supports the representation of decimal integers
of arbitrary length. Translation operates on three
Binary Coded Decimal (BCD) digits at a time com-
pressing the 12 bits into 10 bits with an algorithm that

can be applied or reversed using simple Boolean oper-
ations. In the following examples, a 3-digit BCD num-
ber is represented as (abcd)(efgh)(ijkm), a 10-bit DPD
number is represented as (pqr)(stu)(v)(wxy), and the
Boolean operations, & (AND), | (OR), and ¬ (NOT) are
used.

B.1 BCD-to-DPD Translation
The translation from a 3-digit BCD number to a 10-bit
DPD can be performed through the following Boolean
operations.

p = (f & a & i & ¬e) | (j & a & ¬i) | (b & ¬a)
q = (g & a & i & ¬e) | (k & a & ¬i) | (c & ¬a)
r = d

s = (j & ¬a & e & ¬i) | (f & ¬i & ¬e) |
 (f & ¬a & ¬e) | (e & i)
t = (k & ¬a & e & ¬i) | (g & ¬i & ¬e) |
 (g & ¬a & ¬e) | (a & i)
u = h

v = a | e | i

w = (¬e & j & ¬i) | (e & i) | a
x = (¬a & k & ¬i) | (a & i) | e
y = m

Alternatively, the following table can be used to perform
the translation. The most significant bit of the three
BCD digits (left column) is used to select a specific
10-bit encoding (right column) of the DPD.

The full translation of a 3-digit BCD number (000 - 999)
to a 10-bit DPD is shown in Table 146 on page 1009,

with the DPD entries shown in hexadecimal format.
The BCD number is produced by replacing ‘_’ in the
leftmost column with the corresponding digit along the
top row. The table is split into two halves, with the right
half being a continuation of the left half.

B.2 DPD-to-BCD Translation
The translation from a 10-bit DPD to a 3-digit BCD
number can be performed through the following Bool-
ean operations.

a = (¬s & v & w) | (t & v & w & s) | (v & w & ¬x)
b = (p & s & x & ¬t) | (p & ¬w) | (p & ¬v)
c = (q & s & x & ¬t) | (q & ¬w) | (q & ¬v)
d = r

e = (v & ¬w & x) | (s & v & w & x) |
 (¬t & v & x & w)
f = (p & t & v & w & x & ¬s) | (s & ¬x & v) |
 (s & ¬v)
g = (q & t & w & v & x & ¬s) | (t & ¬x & v) |
 (t & ¬v)
h = u

i = (t & v & w & x) | (s & v & w & x) |
 (v & ¬w & ¬x)
j = (p & ¬s & ¬t & w & v) | (s & v & ¬w & x) |
 (p & w & ¬x & v) | (w & ¬v)
k = (q & ¬s & ¬t & v & w) | (t & v & ¬w & x) |
 (q & v & w & ¬x) | (x & ¬v)
m = y

Alternatively, the following table can be used to perform
the translation. A combination of five bits in the DPD
encoding (leftmost column) are used to specify a trans-
lation to the 3-digit BCD encoding. Dashes (-) in the
table are don’t cares, and can be either one or zero.

aei pqr stu v wxy

000 bcd fgh 0 jkm

001 bcd fgh 1 00m

010 bcd jkh 1 01m

011 bcd 10h 1 11m

100 jkd fgh 1 10m

101 fgd 01h 1 11m

110 jkd 00h 1 11m

111 00d 11h 1 11m
Appendix B. Densely Packed Decimal 1007

Version 3.1

The full translation of the 10-bit DPD to a 3-digit BCD
number is shown in Table 147 on page 1010. The
10-bit DPD index is produced by concatenating the
6-bit value shown in the left column with the 4-bit index
along the top row, both represented in hexadecimal.
The values in parentheses are non-preferred transla-
tions and are explained further in the following section.

B.3 Preferred DPD encoding
Translating from a 3-digit BCD number (1000 numbers)
to a 10-bit DPD encoding (1024 combinations) leaves
24 redundant translations. The 24 redundant combina-
tions are evenly assigned to eight BCD numbers and
are shown in the following table, with the non-preferred
encoding in parentheses. The preferred encoding is
produced by translating a 3-digit BCD number with the
translation table or Boolean operations shown in Sec-
tion B.1. The redundant DPD encodings are all valid
and will be correctly translated to their respective BCD
value through the mechanisms provided in Section B.2.
For decimal floating-point operations all DPD encod-
ings are recognized as source operands.

vwxst abcd efgh ijkm

0---- 0pqr 0stu 0wxy

100-- 0pqr 0stu 100y

101-- 0pqr 100u 0sty

110-- 100r 0stu 0pqy

11100 100r 100u 0pqy

11101 100r 0pqu 100y

11110 0pqr 100u 100y

11111 100r 100u 100y

DPD Code BCD Value DPD Code BCD Value
0x06E

888
0x0EE

988(0x16E) (0x1EE)

(0x26E) (0x2EE)

(0x36E) (0x3EE)

0x06F
889

0x0EF
989(0x16F) (0x1EF)

(0x26F) (0x2EF)

(0x36F) (0x3EF)

0x07E
898

0x0FE
998(0x17E) (0x1FE)

(0x27E) (0x2FE)

(0x37E) (0x3FE)

0x07F
899

0x0FF
999(0x17F) (0x1FF)

(0x27F) (0x2FF)

(0x37F) (0x3FF)
Power ISA™ I1008

Version 3.1
Table 146:BCD-to-DPD translation
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

00_ 000 001 002 003 004 005 006 007 008 009 50_ 280 281 282 283 284 285 286 287 288 289
01_ 010 011 012 013 014 015 016 017 018 019 51_ 290 291 292 293 294 295 296 297 298 299
02_ 020 021 022 023 024 025 026 027 028 029 52_ 2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2A8 2A9
03_ 030 031 032 033 034 035 036 037 038 039 53_ 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 2B8 2B9
04_ 040 041 042 043 044 045 046 047 048 049 54_ 2C0 2C1 2C2 2C3 2C4 2C5 2C6 2C7 2C8 2C9
05_ 050 051 052 053 054 055 056 057 058 059 55_ 2D0 2D1 2D2 2D3 2D4 2D5 2D6 2D7 2D8 2D9
06_ 060 061 062 063 064 065 066 067 068 069 56_ 2E0 2E1 2E2 2E3 2E4 2E5 2E6 2E7 2E8 2E9
07_ 070 071 072 073 074 075 076 077 078 079 57_ 2F0 2F1 2F2 2F3 2F4 2F5 2F6 2F7 2F8 2F9
08_ 00A 00B 02A 02B 04A 04B 06A 06B 04E 04F 58_ 28A 28B 2AA 2AB 2CA 2CB 2EA 2EB 2CE 2CF
09_ 01A 01B 03A 03B 05A 05B 07A 07B 05E 05F 59_ 29A 29B 2BA 2BB 2DA 2DB 2FA 2FB 2DE 2DF
10_ 080 081 082 083 084 085 086 087 088 089 60_ 300 301 302 303 304 305 306 307 308 309
11_ 090 091 092 093 094 095 096 097 098 099 61_ 310 311 312 313 314 315 316 317 318 319
12_ 0A0 0A1 0A2 0A3 0A4 0A5 0A6 0A7 0A8 0A9 62_ 320 321 322 323 324 325 326 327 328 329
13_ 0B0 0B1 0B2 0B3 0B4 0B5 0B6 0B7 0B8 0B9 63_ 330 331 332 333 334 335 336 337 338 339
14_ 0C0 0C1 0C2 0C3 0C4 0C5 0C6 0C7 0C8 0C9 64_ 340 341 342 343 344 345 346 347 348 349
15_ 0D0 0D1 0D2 0D3 0D4 0D5 0D6 0D7 0D8 0D9 65_ 350 351 352 353 354 355 356 357 358 359
16_ 0E0 0E1 0E2 0E3 0E4 0E5 0E6 0E7 0E8 0E9 66_ 360 361 362 363 364 365 366 367 368 369
17_ 0F0 0F1 0F2 0F3 0F4 0F5 0F6 0F7 0F8 0F9 67_ 370 371 372 373 374 375 376 377 378 379
18_ 08A 08B 0AA 0AB 0CA 0CB 0EA 0EB 0CE 0CF 68_ 30A 30B 32A 32B 34A 34B 36A 36B 34E 34F
19_ 09A 09B 0BA 0BB 0DA 0DB 0FA 0FB 0DE 0DF 69_ 31A 31B 33A 33B 35A 35B 37A 37B 35E 35F
20_ 100 101 102 103 104 105 106 107 108 109 70_ 380 381 382 383 384 385 386 387 388 389
21_ 110 111 112 113 114 115 116 117 118 119 71_ 390 391 392 393 394 395 396 397 398 399
22_ 120 121 122 123 124 125 126 127 128 129 72_ 3A0 3A1 3A2 3A3 3A4 3A5 3A6 3A7 3A8 3A9
23_ 130 131 132 133 134 135 136 137 138 139 73_ 3B0 3B1 3B2 3B3 3B4 3B5 3B6 3B7 3B8 3B9
24_ 140 141 142 143 144 145 146 147 148 149 74_ 3C0 3C1 3C2 3C3 3C4 3C5 3C6 3C7 3C8 3C9
25_ 150 151 152 153 154 155 156 157 158 159 75_ 3D0 3D1 3D2 3D3 3D4 3D5 3D6 3D7 3D8 3D9
26_ 160 161 162 163 164 165 166 167 168 169 76_ 3E0 3E1 3E2 3E3 3E4 3E5 3E6 3E7 3E8 3E9
27_ 170 171 172 173 174 175 176 177 178 179 77_ 3F0 3F1 3F2 3F3 3F4 3F5 3F6 3F7 3F8 3F9
28_ 10A 10B 12A 12B 14A 14B 16A 16B 14E 14F 78_ 38A 38B 3AA 3AB 3CA 3CB 3EA 3EB 3CE 3CF
29_ 11A 11B 13A 13B 15A 15B 17A 17B 15E 15F 79_ 39A 39B 3BA 3BB 3DA 3DB 3FA 3FB 3DE 3DF
30_ 180 181 182 183 184 185 186 187 188 189 80_ 00C 00D 10C 10D 20C 20D 30C 30D 02E 02F
31_ 190 191 192 193 194 195 196 197 198 199 81_ 01C 01D 11C 11D 21C 21D 31C 31D 03E 03F
32_ 1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 1A9 82_ 02C 02D 12C 12D 22C 22D 32C 32D 12E 12F
33_ 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 1B8 1B9 83_ 03C 03D 13C 13D 23C 23D 33C 33D 13E 13F
34_ 1C0 1C1 1C2 1C3 1C4 1C5 1C6 1C7 1C8 1C9 84_ 04C 04D 14C 14D 24C 24D 34C 34D 22E 22F
35_ 1D0 1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 1D9 85_ 05C 05D 15C 15D 25C 25D 35C 35D 23E 23F
36_ 1E0 1E1 1E2 1E3 1E4 1E5 1E6 1E7 1E8 1E9 86_ 06C 06D 16C 16D 26C 26D 36C 36D 32E 32F
37_ 1F0 1F1 1F2 1F3 1F4 1F5 1F6 1F7 1F8 1F9 87_ 07C 07D 17C 17D 27C 27D 37C 37D 33E 33F
38_ 18A 18B 1AA 1AB 1CA 1CB 1EA 1EB 1CE 1CF 88_ 00E 00F 10E 10F 20E 20F 30E 30F 06E 06F
39_ 19A 19B 1BA 1BB 1DA 1DB 1FA 1FB 1DE 1DF 89_ 01E 01F 11E 11F 21E 21F 31E 31F 07E 07F
40_ 200 201 202 203 204 205 206 207 208 209 90_ 08C 08D 18C 18D 28C 28D 38C 38D 0AE 0AF
41_ 210 211 212 213 214 215 216 217 218 219 91_ 09C 09D 19C 19D 29C 29D 39C 39D 0BE 0BF
42_ 220 221 222 223 224 225 226 227 228 229 92_ 0AC 0AD 1AC 1AD 2AC 2AD 3AC 3AD 1AE 1AF
43_ 230 231 232 233 234 235 236 237 238 239 93_ 0BC 0BD 1BC 1BD 2BC 2BD 3BC 3BD 1BE 1BF
44_ 240 241 242 243 244 245 246 247 248 249 94_ 0CC 0CD 1CC 1CD 2CC 2CD 3CC 3CD 2AE 2AF
45_ 250 251 252 253 254 255 256 257 258 259 95_ 0DC 0DD 1DC 1DD 2DC 2DD 3DC 3DD 2BE 2BF
46_ 260 261 262 263 264 265 266 267 268 269 96_ 0EC 0ED 1EC 1ED 2EC 2ED 3EC 3ED 3AE 3AF
47_ 270 271 272 273 274 275 276 277 278 279 97_ 0FC 0FD 1FC 1FD 2FC 2FD 3FC 3FD 3BE 3BF
48_ 20A 20B 22A 22B 24A 24B 26A 26B 24E 24F 98_ 08E 08F 18E 18F 28E 28F 38E 38F 0EE 0EF
49_ 21A 21B 23A 23B 25A 25B 27A 27B 25E 25F 99_ 09E 09F 19E 19F 29E 29F 39E 39F 0FE 0FF
Appendix B. Densely Packed Decimal 1009

Version 3.1
Table 147: DPD-to-BCD translation
0 1 2 3 4 5 6 7 8 9 A B C D E F

00_ 000 001 002 003 004 005 006 007 008 009 080 081 800 801 880 881
01_ 010 011 012 013 014 015 016 017 018 019 090 091 810 811 890 891
02_ 020 021 022 023 024 025 026 027 028 029 082 083 820 821 808 809
03_ 030 031 032 033 034 035 036 037 038 039 092 093 830 831 818 819
04_ 040 041 042 043 044 045 046 047 048 049 084 085 840 841 088 089
05_ 050 051 052 053 054 055 056 057 058 059 094 095 850 851 098 099
06_ 060 061 062 063 064 065 066 067 068 069 086 087 860 861 888 889
07_ 070 071 072 073 074 075 076 077 078 079 096 097 870 871 898 899
08_ 100 101 102 103 104 105 106 107 108 109 180 181 900 901 980 981
09_ 110 111 112 113 114 115 116 117 118 119 190 191 910 911 990 991
0A_ 120 121 122 123 124 125 126 127 128 129 182 183 920 921 908 909
0B_ 130 131 132 133 134 135 136 137 138 139 192 193 930 931 918 919
0C_ 140 141 142 143 144 145 146 147 148 149 184 185 940 941 188 189
0D_ 150 151 152 153 154 155 156 157 158 159 194 195 950 951 198 199
0E_ 160 161 162 163 164 165 166 167 168 169 186 187 960 961 988 989
0F_ 170 171 172 173 174 175 176 177 178 179 196 197 970 971 998 999
10_ 200 201 202 203 204 205 206 207 208 209 280 281 802 803 882 883
11_ 210 211 212 213 214 215 216 217 218 219 290 291 812 813 892 893
12_ 220 221 222 223 224 225 226 227 228 229 282 283 822 823 828 829
13_ 230 231 232 233 234 235 236 237 238 239 292 293 832 833 838 839
14_ 240 241 242 243 244 245 246 247 248 249 284 285 842 843 288 289
15_ 250 251 252 253 254 255 256 257 258 259 294 295 852 853 298 299
16_ 260 261 262 263 264 265 266 267 268 269 286 287 862 863 (888) (889)
17_ 270 271 272 273 274 275 276 277 278 279 296 297 872 873 (898) (899)
18_ 300 301 302 303 304 305 306 307 308 309 380 381 902 903 982 983
19_ 310 311 312 313 314 315 316 317 318 319 390 391 912 913 992 993
1A_ 320 321 322 323 324 325 326 327 328 329 382 383 922 923 928 929
1B_ 330 331 332 333 334 335 336 337 338 339 392 393 932 933 938 939
1C_ 340 341 342 343 344 345 346 347 348 349 384 385 942 943 388 389
1D_ 350 351 352 353 354 355 356 357 358 359 394 395 952 953 398 399
1E_ 360 361 362 363 364 365 366 367 368 369 386 387 962 963 (988) (989)
1F_ 370 371 372 373 374 375 376 377 378 379 396 397 972 973 (998) (999)
20_ 400 401 402 403 404 405 406 407 408 409 480 481 804 805 884 885
21_ 410 411 412 413 414 415 416 417 418 419 490 491 814 815 894 895
22_ 420 421 422 423 424 425 426 427 428 429 482 483 824 825 848 849
23_ 430 431 432 433 434 435 436 437 438 439 492 493 834 835 858 859
24_ 440 441 442 443 444 445 446 447 448 449 484 485 844 845 488 489
25_ 450 451 452 453 454 455 456 457 458 459 494 495 854 855 498 499
26_ 460 461 462 463 464 465 466 467 468 469 486 487 864 865 (888) (889)
27_ 470 471 472 473 474 475 476 477 478 479 496 497 874 875 (898) (899)
28_ 500 501 502 503 504 505 506 507 508 509 580 581 904 905 984 985
29_ 510 511 512 513 514 515 516 517 518 519 590 591 914 915 994 995
2A_ 520 521 522 523 524 525 526 527 528 529 582 583 924 925 948 949
2B_ 530 531 532 533 534 535 536 537 538 539 592 593 934 935 958 959
2C_ 540 541 542 543 544 545 546 547 548 549 584 585 944 945 588 589
2D_ 550 551 552 553 554 555 556 557 558 559 594 595 954 955 598 599
2E_ 560 561 562 563 564 565 566 567 568 569 586 587 964 965 (988) (989)
2F_ 570 571 572 573 574 575 576 577 578 579 596 597 974 975 (998) (999)
30_ 600 601 602 603 604 605 606 607 608 609 680 681 806 807 886 887
31_ 610 611 612 613 614 615 616 617 618 619 690 691 816 817 896 897
32_ 620 621 622 623 624 625 626 627 628 629 682 683 826 827 868 869
33_ 630 631 632 633 634 635 636 637 638 639 692 693 836 837 878 879
34_ 640 641 642 643 644 645 646 647 648 649 684 685 846 847 688 689
35_ 650 651 652 653 654 655 656 657 658 659 694 695 856 857 698 699
36_ 660 661 662 663 664 665 666 667 668 669 686 687 866 867 (888) (889)
37_ 670 671 672 673 674 675 676 677 678 679 696 697 876 877 (898) (899)
38_ 700 701 702 703 704 705 706 707 708 709 780 781 906 907 986 987
39_ 710 711 712 713 714 715 716 717 718 719 790 791 916 917 996 997
3A_ 720 721 722 723 724 725 726 727 728 729 782 783 926 927 968 969
3B_ 730 731 732 733 734 735 736 737 738 739 792 793 936 937 978 979
3C_ 740 741 742 743 744 745 746 747 748 749 784 785 946 947 788 789
3D_ 750 751 752 753 754 755 756 757 758 759 794 795 956 957 798 799
3E_ 760 761 762 763 764 765 766 767 768 769 786 787 966 967 (988) (989)
3F_ 770 771 772 773 774 775 776 777 778 779 796 797 976 977 (998) (999)
Power ISA™ I1010

Version 3.1
Appendix C. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended mne-
monics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch Condi-
tional, Compare, Trap, Rotate and Shift, and certain other instructions.

Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.

C.1 Symbols
The following symbols are defined for use in instructions (basic or extended mnemonics) that specify a Condition
Register field or a Condition Register bit. The first five (lt, ..., un) identify a bit number within a CR field. The remainder
(cr0, ..., cr7) identify a CR field. An expression in which a CR field symbol is multiplied by 4 and then added to a
bit-number-within-CR-field symbol and 32 can be used to identify a CR bit.

The extended mnemonics in Sections C.2.2 and C.3 require identification of a CR bit: if one of the CR field symbols is
used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range 0-3, explicit or sym-
bolic) and 32. The extended mnemonics in Sections C.2.3 and C.5 require identification of a CR field: if one of the CR
field symbols is used, it must not be multiplied by 4 or added to 32. (For the extended mnemonics in Section C.2.3,
the bit number within the CR field is part of the extended mnemonic. The programmer identifies the CR field, and the
Assembler does the multiplication and addition required to produce a CR bit number for the BI field of the underlying
basic mnemonic.)

Symbol Value Meaning
lt 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after floating-point comparison)
cr0 0 CR Field 0
cr1 1 CR Field 1
cr2 2 CR Field 2
cr3 3 CR Field 3
cr4 4 CR Field 4
cr5 5 CR Field 5
cr6 6 CR Field 6
cr7 7 CR Field 7
Power ISA™ I1011

Version 3.1
C.2 Branch Mnemonics
The mnemonics discussed in this section are variations of the Branch Conditional instructions.

Note: bclr, bclrl, bcctr, and bcctrl each serve as both a basic and an extended mnemonic. The Assembler will rec-
ognize a bclr, bclrl, bcctr, or bcctrl mnemonic with three operands as the basic form, and a bclr, bclrl, bcctr, or
bcctrl mnemonic with two operands as the extended form. In the extended form the BH operand is omitted and
assumed to be 0b00. Similarly, for all the extended mnemonics described in Sections C.2.2 - C.2.4 that devolve to
any of these four basic mnemonics the BH operand can either be coded or omitted. If it is omitted it is assumed to be
0b00.

C.2.1 BO and BI Fields
The 5-bit BO and BI fields control whether the branch is taken. Providing an extended mnemonic for every possible
combination of these fields would be neither useful nor practical. The mnemonics described in Sections C.2.2 - C.2.4
include the most useful cases. Other cases can be coded using a basic Branch Conditional mnemonic (bc[l][a],
bclr[l], bcctr[l]) with the appropriate operands.

C.2.2 Simple Branch Mnemonics
Instructions using one of the mnemonics in Table 148 that tests a Condition Register bit specify the corresponding bit
as the first operand. The symbols defined in Section C.1 can be used in this operand.

Notice that there are no extended mnemonics for relative and absolute unconditional branches. For these the basic
mnemonics b, ba, bl, and bla should be used.

Examples
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: bc 16,0,target)

2. Same as (1) but branch only if CTR is nonzero and condition in CR0 is “equal”.

bdnzt eq,target (equivalent to: bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4×cr5+eq,target (equivalent to: bc 8,22,target)

Table 148:Simple branch mnemonics

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch unconditionally - - blr bctr - - blrl bctrl
Branch if CRBI=1 bt bta btlr btctr btl btla btlrl btctrl
Branch if CRBI=0 bf bfa bflr bfctr bfl bfla bflrl bfctrl
Decrement CTR, branch if
CTR nonzero

bdnz bdnza bdnzlr - bdnzl bdnzla bdnzlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=1

bdnzt bdnzta bdnztlr - bdnztl bdnztla bdnztlrl -

Decrement CTR, branch if
CTR nonzero and CRBI=0

bdnzf bdnzfa bdnzflr - bdnzfl bdnzfla bdnzflrl -

Decrement CTR, branch if
CTR zero

bdz bdza bdzlr - bdzl bdzla bdzlrl -

Decrement CTR, branch if
CTR zero and CRBI=1

bdzt bdzta bdztlr - bdztl bdztla bdztlrl -

Decrement CTR, branch if
CTR zero and CRBI=0

bdzf bdzfa bdzflr - bdzfl bdzfla bdzflrl -
Power ISA™ I1012

Version 3.1
4. Branch if bit 59 of CR is 0.

bf 27,target (equivalent to: bc 4,27,target)

5. Same as (4), but set the Link Register. This is a form of conditional “call”.

bfl 27,target (equivalent to: bcl 4,27,target)

C.2.3 Branch Mnemonics Incorporating Conditions
In the mnemonics defined in Table 149, the test of a bit in a Condition Register field is encoded in the mnemonic.

Instructions using the mnemonics in Table 149 specify the CR field as an optional first operand. One of the CR field
symbols defined in Section C.1 can be used for this operand. If the CR field being tested is CR Field 0, this operand
need not be specified unless the resulting basic mnemonic is bclr[l] or bcctr[l] and the BH operand is specified.

A standard set of codes has been adopted for the most common combinations of branch conditions.

These codes are reflected in the mnemonics shown in Table 149.

Examples
1. Branch if CR0 reflects condition “not equal”.

bne target (equivalent to: bc 4,2,target)

2. Same as (1), but condition is in CR3.

Code Meaning
lt Less than
le Less than or equal
eq Equal
ge Greater than or equal
gt Greater than
nl Not less than
ne Not equal
ng Not greater than
so Summary overflow
ns Not summary overflow
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

Table 149:Branch mnemonics incorporating conditions

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl
Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl
Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl
Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl
Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl
Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl
Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl
Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl
Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl
Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl
Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl
Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl
Power ISA™ I1013

Version 3.1
bne cr3,target (equivalent to: bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than”, setting the Link Register. This is a form of condi-
tional “call”.

bgtla cr4,target (equivalent to: bcla 12,17,target)

4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 (equivalent to: bcctrl 12,17,0)

C.2.4 Branch Prediction
Software can use the “at” bits of Branch Conditional instructions to provide a hint to the processor about the behavior
of the branch. If, for a given such instruction, the branch is almost always taken or almost always not taken, a suffix
can be added to the mnemonic indicating the value to be used for the “at” bits.

+ Predict branch to be taken (at=0b11)

- Predict branch not to be taken (at=0b10)

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either the Count
Register or a CR bit (but not both). Assemblers should use 0b00 as the default value for the “at” bits, indicating that
software has offered no prediction.

Examples
1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.

blt+ target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.

bltlr-
Power ISA™ I1014

Version 3.1
C.3 Condition Register Logical Mnemonics
The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit. Extended mnemonics are provided that allow these operations to be coded easily.

The symbols defined in Section C.1 can be used to identify the Condition Register bits.

Examples
1. Set CR bit 57.

crset 25 (equivalent to: creqv 25,25,25)

2. Clear the SO bit of CR0.

crclr so (equivalent to: crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4×cr3+so (equivalent to: crxor 15,15,15)

4. Invert the EQ bit.

crnot eq,eq (equivalent to: crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.

crnot 4×cr5+eq,4×cr4+eq (equivalent to: crnor 22,18,18)

C.4 Subtract Mnemonics

C.4.1 Subtract Immediate
Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an Add Immediate instruc-
tion with the immediate operand negated. Extended mnemonics are provided that include this negation, making the
intent of the computation clearer.

subi Rx,Ry,value (equivalent to: addi Rx,Ry,-value)
subis Rx,Ry,value (equivalent to: addis Rx,Ry,-value)
subic Rx,Ry,value (equivalent to: addic Rx,Ry,-value)
subic. Rx,Ry,value (equivalent to: addic. Rx,Ry,-value)

C.4.2 Subtract
The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended mnemonics are pro-
vided that use the more “normal” order, in which the third operand is subtracted from the second. Both these mne-
monics can be coded with a final “o” and/or “.” to cause the OE and/or Rc bit to be set in the underlying instruction.

sub Rx,Ry,Rz (equivalent to: subf Rx,Rz,Ry)
subc Rx,Ry,Rz (equivalent to: subfc Rx,Rz,Ry)

Table 150:Condition Register logical mnemonics
Operation Extended Mnemonic Equivalent to
Condition Register set crset bx creqv bx,bx,bx
Condition Register clear crclr bx crxor bx,bx,bx
Condition Register move crmove bx,by cror bx,by,by
Condition Register not crnot bx,by crnor bx,by,by
Power ISA™ I1015

Version 3.1
C.5 Compare Mnemonics
The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities or
as 32-bit quantities. Extended mnemonics are provided that represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed into CR Field 0. Otherwise the target CR
field must be specified as the first operand. One of the CR field symbols defined in Section C.1 can be used for this
operand.

Note: The Assembler will recognize a basic Compare mnemonic with three operands, and will generate the instruc-
tion with L=0. Thus the Assembler must require that the BF field, which normally can be omitted when CR Field 0 is
the target, be specified explicitly if L is.

C.5.1 Doubleword Comparisons

Examples
1. Compare register Rx and immediate value 100 as unsigned 64-bit integers and place result into CR0.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place result into CR4.

cmpldi cr4,Rx,100 (equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit integers and place result into CR0.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

C.5.2 Word Comparisons

Examples
1. Compare bits 32:63 of register Rx and immediate value 100 as signed 32-bit integers and place result into CR0.

cmpwi Rx,100 (equivalent to: cmpi 0,0,Rx,100)

2. Same as (1), but place result into CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,0,Rx,100)

3. Compare bits 32:63 of registers Rx and Ry as unsigned 32-bit integers and place result into CR0.

cmplw Rx,Ry (equivalent to: cmpl 0,0,Rx,Ry)

Table 151:Doubleword compare mnemonics
Operation Extended Mnemonic Equivalent to
Compare doubleword immediate cmpdi bf,ra,si cmpi bf,1,ra,si
Compare doubleword cmpd bf,ra,rb cmp bf,1,ra,rb
Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1,ra,ui
Compare logical doubleword cmpld bf,ra,rb cmpl bf,1,ra,rb

Table 152:Word compare mnemonics
Operation Extended Mnemonic Equivalent to
Compare word immediate cmpwi bf,ra,si cmpi bf,0,ra,si
Compare word cmpw bf,ra,rb cmp bf,0,ra,rb
Compare logical word immediate cmplwi bf,ra,ui cmpli bf,0,ra,ui
Compare logical word cmplw bf,ra,rb cmpl bf,0,ra,rb
Power ISA™ I1016

Version 3.1
C.6 Trap Mnemonics
The mnemonics defined in Table 153 are variations of the Trap instructions, with the most useful values of TO repre-
sented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

These codes are reflected in the mnemonics shown in Table 153.

Code Meaning TO encoding < > = <u >u

lt Less than 16 1 0 0 0 0
le Less than or equal 20 1 0 1 0 0
eq Equal 4 0 0 1 0 0
ge Greater than or equal 12 0 1 1 0 0
gt Greater than 8 0 1 0 0 0
nl Not less than 12 0 1 1 0 0
ne Not equal 24 1 1 0 0 0
ng Not greater than 20 1 0 1 0 0
llt Logically less than 2 0 0 0 1 0
lle Logically less than or equal 6 0 0 1 1 0
lge Logically greater than or equal 5 0 0 1 0 1
lgt Logically greater than 1 0 0 0 0 1
lnl Logically not less than 5 0 0 1 0 1
lng Logically not greater than 6 0 0 1 1 0
u Unconditionally with parameters 31 1 1 1 1 1
(none) Unconditional 31 1 1 1 1 1

Table 153:Trap mnemonics

Trap Semantics
64-bit Comparison 32-bit Comparison

tdi
Immediate

td
Register

twi
Immediate

tw
Register

Trap unconditionally - - - trap
Trap unconditionally with parameters tdui tdu twui twu
Trap if less than tdlti tdlt twlti twlt
Trap if less than or equal tdlei tdle twlei twle
Trap if equal tdeqi tdeq tweqi tweq
Trap if greater than or equal tdgei tdge twgei twge
Trap if greater than tdgti tdgt twgti twgt
Trap if not less than tdnli tdnl twnli twnl
Trap if not equal tdnei tdne twnei twne
Trap if not greater than tdngi tdng twngi twng
Trap if logically less than tdllti tdllt twllti twllt
Trap if logically less than or equal tdllei tdlle twllei twlle
Trap if logically greater than or equal tdlgei tdlge twlgei twlge
Trap if logically greater than tdlgti tdlgt twlgti twlgt
Trap if logically not less than tdlnli tdlnl twlnli twlnl
Trap if logically not greater than tdlngi tdlng twlngi twlng
Power ISA™ I1017

Version 3.1
Examples
1. Trap if register Rx is not 0.

tdnei Rx,0 (equivalent to: tdi 24,Rx,0)

2. Same as (1), but comparison is to register Ry.

tdne Rx,Ry (equivalent to: td 24,Rx,Ry)

3. Trap if bits 32:63 of register Rx, considered as a 32-bit quantity, are logically greater than 0x7FF.

twlgti Rx,0x7FF (equivalent to: twi 1,Rx,0x7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

5. Trap unconditionally with immediate parameters Rx and Ry

tdu Rx,Ry (equivalent to: td 31,Rx,Ry)

C.7 Integer Select Mnemonics
The mnemonics defined in Table 154, “Integer Select mnemonics,” on page 1018 are variations of the Integer Select
instructions, with the most useful values of BC represented in the mnemonic rather than specified as a numeric oper-
and..

These codes are reflected in the mnemonics shown in Table 154.

Examples
1. Set register Rx to Ry if the LT bit is set in CR0, and to Rz otherwise.

isellt Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,0)

2. Set register Rx to Ry if the GT bit is set in CR0, and to Rz otherwise.

iselgt Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,1)

3. Set register Rx to Ry if the EQ bit is set in CR0, and to Rz otherwise.

iseleq Rx,Ry,Rz (equivalent to: isel Rx,Ry,Rz,2)

Code Meaning
lt Less than
eq Equal
gt Greater than

Table 154: Integer Select mnemonics

Select semantics
isel

extended
mnemonic

Integer Select if less than isellt
Integer Select if equal iseleq
Integer Select if greater than iselgt
Power ISA™ I1018

Version 3.1
C.8 Rotate and Shift Mnemonics
The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be diffi-
cult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded easily.

Mnemonics are provided for the following types of operation.

Extract Select a field of n bits starting at bit position b in the source register; left or right justify this field in the target
register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at bit posi-
tion b of the target register; leave other bits of the target register unchanged. (No extended mnemonic is
provided for insertion of a left-justified field when operating on doublewords, because such an insertion
requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to scale
a (known nonnegative) array index by the width of an element.

C.8.1 Operations on Doublewords
All these mnemonics can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction.

Examples
1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry,1,0 (equivalent to: rldicl Rx,Ry,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx,1,0 (equivalent to: rldimi Rz,Rx,63,0)

3. Shift the contents of register Rx left 8 bits.

sldi Rx,Rx,8 (equivalent to: rldicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of register Ry and place the result into register Rx.

clrldi Rx,Ry,32 (equivalent to: rldicl Rx,Ry,0,32)

Table 155:Doubleword rotate and shift mnemonics
Operation Extended Mnemonic Equivalent to
Extract and left justify immediate extldi ra,rs,n,b (n > 0) rldicr ra,rs,b,n-1
Extract and right justify immediate extrdi ra,rs,n,b (n > 0) rldicl ra,rs,b+n,64-n
Insert from right immediate insrdi ra,rs,n,b (n > 0) rldimi ra,rs,64-(b+n),b
Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,0
Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64-n,0
Rotate left rotld ra,rs,rb rldcl ra,rs,rb,0
Shift left immediate sldi ra,rs,n (n < 64) rldicr ra,rs,n,63-n
Shift right immediate srdi ra,rs,n (n < 64) rldicl ra,rs,64-n,n
Clear left immediate clrldi ra,rs,n (n < 64) rldicl ra,rs,0,n
Clear right immediate clrrdi ra,rs,n (n < 64) rldicr ra,rs,0,63-n
Clear left and shift left immediate clrlsldi ra,rs,b,n (n <= b < 64) rldic ra,rs,n,b-n
Power ISA™ I1019

Version 3.1
C.8.2 Operations on Words
All these mnemonics can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction. The
operations as described above apply to the low-order 32 bits of the registers, as if the registers were 32-bit registers.
The Insert operations either preserve the high-order 32 bits of the target register or place rotated data there; the other
operations clear these bits.

Examples
1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,0 (equivalent to: rlwinm Rx,Ry,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx,1,0 (equivalent to: rlwimi Rz,Rx,31,0,0)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi Rx,Rx,8 (equivalent to: rlwinm Rx,Rx,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of register Ry and place the result into register Rx, clearing
the high-order 32 bits of register Rx.

clrlwi Rx,Ry,16 (equivalent to: rlwinm Rx,Ry,0,16,31)

Table 156:Word rotate and shift mnemonics
Operation Extended Mnemonic Equivalent to
Extract and left justify immediate extlwi ra,rs,n,b (n > 0) rlwinm ra,rs,b,0,n-1
Extract and right justify immediate extrwi ra,rs,n,b (n > 0) rlwinm ra,rs,b+n,32-n,31
Insert from left immediate inslwi ra,rs,n,b (n > 0) rlwimi ra,rs,32-b,b,(b+n)-1
Insert from right immediate insrwi ra,rs,n,b (n > 0) rlwimi ra,rs,32-(b+n),b,(b+n)-1
Rotate left immediate rotlwi ra,rs,n rlwinm ra,rs,n,0,31
Rotate right immediate rotrwi ra,rs,n rlwinm ra,rs,32-n,0,31
Rotate left rotlw ra,rs,rb rlwnm ra,rs,rb,0,31
Shift left immediate slwi ra,rs,n (n < 32) rlwinm ra,rs,n,0,31-n
Shift right immediate srwi ra,rs,n (n < 32) rlwinm ra,rs,32-n,n,31
Clear left immediate clrlwi ra,rs,n (n < 32) rlwinm ra,rs,0,n,31
Clear right immediate clrrwi ra,rs,n (n < 32) rlwinm ra,rs,0,0,31-n
Clear left and shift left immediate clrlslwi ra,rs,b,n (n ≤ b < 32) rlwinm ra,rs,n,b-n,31-n
Power ISA™ I1020

Version 3.1
C.9 Move To/From Special Purpose Register Mnemonics
The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.

Examples

1. Copy the contents of register Rx to the XER.

mtxer Rx (equivalent to: mtspr 1,Rx)

Table 157:Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to
XER mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1
DSCR mtudscr Rx mtspr 3,Rx mfudscr Rx mfspr Rx,3
LR mtlr Rx mtspr 8,Rx mflr Rx mfspr Rx,8
CTR mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9
AMR mtuamr Rx mtspr 13,Rx mfuamr Rx mfspr Rx,13
CTRL - - mfctrl Rx mfspr Rx,136
VRSAVE mtvrsave Rx mtspr 256,Rx mfvrsave Rx mfspr Rx,256
SPRG3 - - mfusprg3 Rx mfspr Rx,259
TB - - mftb Rx mftb Rx,268

mfspr Rx,268
TBU - - mftbu Rx mftb Rx,269

mfspr Rx,269
SIER - - mfusier Rx mfspr Rx,768
MMCR2 mtummcr2 Rx mtspr 769,Rx mfummcr2 Rx mfspr Rx,769
MMCRA mtummcra Rx mtspr 770,Rx mfummcra Rx mfspr Rx,770
PMC1 mtupmc1 Rx mtspr 771,Rx mfupmc1 Rx mfspr Rx,771
PMC2 mtupmc2 Rx mtspr 772,Rx mfupmc2 Rx mfspr Rx,772
PMC3 mtupmc3 Rx mtspr 773,Rx mfupmc3 Rx mfspr Rx,773
PMC4 mtupmc4 Rx mtspr 774,Rx mfupmc4 Rx mfspr Rx,774
PMC5 mtupmc5 Rx mtspr 775,Rx mfupmc5 Rx mfspr Rx,775
PMC6 mtupmc6 Rx mtspr 776,Rx mfupmc6 Rx mfspr Rx,776
MMCR0 mtummcr0 Rx mtspr 779,Rx mfummcr0 Rx mfspr Rx,779
SIAR - - mfusiar Rx mfspr Rx,780
SDAR - - mfusdar Rx mfspr Rx,781
MMCR1 - - mfummcr1 Rx mfspr Rx,782
BESCRS mtbescrs Rx mtspr 800,Rx mfbescrs Rx mfspr Rx,800
BESCRU mtbescru Rx mtspr 801,Rx mfbescru Rx mfspr Rx,801
BESCRR mtbescrr Rx mtspr 802,Rx mfbescrr Rx mfspr Rx,802
BESCRRU mtbescrru Rx mtspr 803,Rx mfbescrru Rx mfspr Rx,803
EBBHR mtebbhr Rx mtspr 804,Rx mfebbhr Rx mfspr Rx,804
EBBRR mtebbrr Rx mtspr 805,Rx mfebbrr Rx mfspr Rx,805
BESCR mtbescr Rx mtspr 806,Rx mfbescr Rx mfspr Rx,806
TAR mttar Rx mtspr 815,Rx mftar Rx mfspr Rx,815
PPR mtppr Rx mtspr 896,Rx mfppr Rx mfspr Rx,896
PPR32 mtppr32 Rx mtspr 898,Rx mfppr32 Rx mfspr Rx,898
Power ISA™ I1021

Version 3.1
2. Copy the contents of the LR to register Rx.

mflr Rx (equivalent to: mfspr Rx,8)

3. Copy the contents of register Rx to the CTR.

mtctr Rx (equivalent to: mtspr 9,Rx)

C.10 Miscellaneous Mnemonics
No-op
Many Power ISA instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-time optimization
related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

For some uses of a no-op instruction, optimizations related to no-ops, such as removal from the execution stream,
are not desireable. An extended mnemonic is provided for the executed form of no-op. This form of no-op will still
consume execution resources.

xnop (equivalent to: xori 0,0,0)

To avoid certain security vulnerabilities, it is sometimes desirable to constrain the order in which instructions are exe-
cuted at certain points in a program. An extended mnemonic is provided for a form of the Or Immediate instruction
that serves this purpose. See Section 5.4.3 of Book III.

exser (equivalent to: ori 31,31,0)

Load Immediate
The addi and addis instructions can be used to load an immediate value into a register. Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate field
of the instruction to a register).

Load a 16-bit signed immediate value into register Rx.

li Rx,value (equivalent to: addi Rx,0,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx.

lis Rx,value (equivalent to: addis Rx,0,value)

Load Next Instruction Address
The addpcis instruction can be used to load the next instruction address into a register. An extended mnemonics is
provided to perform this operation.

lnia Rx (equivalent to: addpcis Rx,0)
Power ISA™ I1022

Version 3.1
Load Address
This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which nor-
mally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the Assembler to sup-
ply the base register number and compute the displacement. If the variable v is located at offset Dv bytes from the
address in register Rv, and the Assembler has been told to use register Rv as a base for references to the data struc-
ture containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv)

Move Register
Several Power ISA instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but merely
data movement (from one register to another).

The following instruction copies the contents of register Ry to register Rx. This mnemonic can be coded with a final
“.” to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register
Several Power ISA instructions can be coded in a way such that they complement the contents of one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded easily.

The following instruction complements the contents of register Ry and places the result into register Rx. This mne-
monic can be coded with a final “.” to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor Rx,Ry,Ry)

Move To/From Condition Register
This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the Condition Register, using the
same style as the mfcr instruction.

mtcr Rx (equivalent to: mtcrf 0xFF,Rx)

The following instructions may generate either the (old) mtcrf or mfcr instructions or the (new) mtocrf or mfocrf
instruction, respectively, depending on the target machine type assembler parameter.

mtcrf FXM,Rx
mfcr Rx

All three extended mnemonics in this subsection are being phased out. In future assemblers the form “mtcr Rx” may
not exist, and the mtcrf and mfcr mnemonics may generate the old form instructions (with bit 11 = 0) regardless of
the target machine type assembler parameter, or may cease to exist.
Appendix C. Assembler Extended Mnemonics 1023

Version 3.1
Power ISA™ I1024

Version 3.1
Appendix C. Assembler Extended Mnemonics 1025

Version 3.1
Power ISA™ I1026

Version 3.1
Book II:

Power ISA Virtual Environment Architecture
 Book II: Power ISA Virtual Environment Architecture 1027

Version 3.1
Power ISA™ II1028

Version 3.1
Chapter 1. Storage Model

1.1 Definitions
The following definitions, in addition to those specified
in Book I, are used in this Book. In these definitions,
“Load instruction” includes the Cache Management
and other instructions that are stated in the instruction
descriptions to be “treated as a Load”, and similarly for
“Store instruction”.

 system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing pro-
grams. Sometimes the reference to system
includes services provided by the privileged soft-
ware.

 main storage
The level of storage hierarchy in which all storage
state is visible to all processors and mechanisms
in the system.

 normal memory
Coherently-accessed, well-behaved regions of
main storage that hold supervisor software and
data and general purpose applications and data.
This is in contrast with regions of main storage
associated with accelerators or I/O interfaces or
attached to other systems. Normal memory is
assumed to have the following storage control
attributes (see Section 1.6): not Write Through
Required, not Caching Inhibited, Memory Coher-
ence Required, and not Guarded.

 persistent storage
Storage that retains its contents when power is
removed, and is "behind" certain regions of main
storage, that is not Caching Inhibited, in the sense
that a store (to a location in such a region of main
storage) will get to main storage before it gets to
persistent storage.

 primary cache
The level of cache closest to the processor.

 secondary cache
After the primary cache, the next closest level of
cache to the processor.

 instruction storage
The view of storage as seen by the mechanism
that fetches instructions.

 data storage
The view of storage as seen by a Load or Store
instruction.

 program order
The execution of instructions in the order required
by the sequential execution model. (See
Section 2.2 of Book I.) A dcbz instruction that
modifies storage which contains instructions has
the same effect with respect to the sequential exe-
cution model as a Store instruction as described
there.)
For the instructions and facilities defined in this
Book, there are two additional exceptions to the
sequential execution model that the processor
obeys beyond those described in Section 2.2 of
Book I.

- an event-based branch occurs (see Chapter
6)

- the BHRB is read (see Section 7.2)

 event-based exception
An unusual condition, or external signal, that sets a
status bit in the BESCR and may or may not cause
an event-based branch, depending upon whether
event-based branches are enabled.

 storage location
A contiguous sequence of one or more bytes in
storage. When used in association with a specific
instruction or the instruction fetching mechanism,
the length of the sequence of one or more bytes is
typically implied by the operation. In other uses, it
may refer more abstractly to a group of bytes
which share common storage attributes.

 storage access
An access to a storage location. There are three
(mutually exclusive) kinds of storage access.

- data access

An access to the storage location specified by
a Load or Store instruction, or, if the access is
Chapter 1. Storage Model 1029

Version 3.1
performed “out-of-order” (see Section 6.5 of
Book III), an access to a storage location as if
it were the storage location specified by a
Load or Store instruction.

- instruction fetch

An access for the purpose of fetching an
instruction.

- implicit access

An access by the processor for the purpose of
finding the address translation tables, translat-
ing an address, or recording reference and
change information (see Book III).

 caused by, associated with

- caused by

A storage access is said to be caused by an
instruction if the instruction is a Load or Store
and the access (data access) is to the storage
location specified by the instruction.

- associated with

A storage access is said to be associated with
an instruction if the access is for the purpose
of fetching the instruction (instruction fetch), or
is a data access caused by the instruction, or
is an implicit access that occurs as a side
effect of fetching or executing the instruction.

 metadata
Companion data associated with a storage loca-
tion. In addition to the data that is loaded into a
target register or stored from a source register, a
storage location may be associated with additional
control information. The granularity, meaning, and
treatment of the control information may vary
based on the type of storage access involved and
on the state of the process making the access.
Unless otherwise stated or obvious from context,
loads ignore the metadata and stores zero the
metadata.

Note that not all storage locations have associated
metadata. The absence of associated metadata
does not necessarily prevent successful comple-
tion of an instruction that specifies the treatment of
metadata. Unless otherwise stated or obvious
from context, metadata associated with a store is
lost, and a load will have its metadata set to zero if
the storage location has no associated metadata.

 prefetched instructions
Instructions for which a copy of the instruction has
been fetched from instruction storage, but the
instruction has not yet been executed.

 uniprocessor
A system that contains one processor.

 multiprocessor
A system that contains two or more processors.

 shared storage multiprocessor
A multiprocessor that contains some common stor-
age, which all the processors in the system can
access.

 performed
A load or instruction fetch by a processor or mech-
anism (P1) is performed with respect to any pro-
cessor or mechanism (P2) when the value to be
returned by the load or instruction fetch can no lon-
ger be changed by a store by P2. A store by P1 is
performed with respect to P2 when a load by P2
from the location accessed by the store will return
the value stored (or a value stored subsequently).
An instruction cache block invalidation by P1 is
performed with respect to P2 when the instruction
that requested the invalidation has caused the
specified block, if present, to be made invalid in
P2’s instruction cache, and similarly for a data
cache block invalidation.

The preceding definitions apply regardless of
whether P1 and P2 are the same entity.

 page (virtual page)
2n contiguous bytes of storage aligned such that
the effective address of the first byte in the page is
an integral multiple of the page size for which pro-
tection and control attributes are independently
specifiable and for which reference and change
status are independently recorded.

 block
The aligned unit of storage operated on by the
Cache Management instructions. The size of an
instruction cache block may differ from the size of
a data cache block, and both sizes may vary
between implementations. The maximum block
size is equal to the minimum page size.

1.2 Introduction
The Power ISA User Instruction Set Architecture, dis-
cussed in Book I, defines storage as a linear array of
bytes indexed from 0 to a maximum of 264-1. Each byte
is identified by its index, called its address, and each
byte contains a value. This information is sufficient to
allow the programming of applications that require no
special features of any particular system environment.
The Power ISA Virtual Environment Architecture,
described herein, expands this simple storage model to
include caches, virtual storage, and shared storage
multiprocessors. The Power ISA Virtual Environment
Architecture, in conjunction with services based on the
Power ISA Operating Environment Architecture (see
Book III) and provided by the operating system, permits
explicit control of this expanded storage model. A sim-
Power ISA™ II1030

Version 3.1
ple model for sequential execution allows at most one
storage access to be performed at a time and requires
that all storage accesses appear to be performed in
program order. In contrast to this simple model, the
Power ISA specifies a relaxed model of storage consis-
tency. In a multiprocessor system that allows multiple
copies of a storage location, aggressive implementa-
tions of the architecture can permit intervals of time
during which different copies of a storage location have
different values. This chapter describes features of the
Power ISA that enable programmers to write correct
programs for this storage model.

1.3 Virtual Storage
The Power ISA system implements a virtual storage
model for applications. This means that a combination
of hardware and software can present a storage model
that allows applications to exist within a “virtual”
address space larger than either the effective address
space or the real address space.

Each program can access 264 bytes of “effective
address” (EA) space, subject to limitations imposed by
the operating system. In a typical Power ISA system,
each program's EA space is a subset of a larger “virtual
address” (VA) space managed by the operating sys-
tem.

Each effective address is translated to a real address
(i.e., to an address of a byte in real storage or on an I/O
device) before being used to access storage. The
hardware accomplishes this, using the address transla-
tion mechanism described in Book III. The operating
system manages the real (physical) storage resources
of the system, by setting up the tables and other infor-
mation used by the hardware address translation
mechanism.

In general, real storage may not be large enough to
map all the virtual pages used by the currently active
applications. With support provided by hardware, the
operating system can attempt to use the available real
pages to map a sufficient set of virtual pages of the
applications. If a sufficient set is maintained, “paging”
activity is minimized. If not, performance degradation
is likely.

The operating system can support restricted access to
virtual pages (including read/write, read only, and no
access; see Book III), based on system standards (e.g.,
program code might be read only) and application
requests.

1.4 Single-Copy Atomicity
An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible frag-
mentation. Atomic accesses are thus serialized: each

happens in its entirety in some order, even when that
order is not specified in the program or enforced
between processors.

The access caused by an instruction other than a Load/
Store Multiple or Move Assist instruction is guaranteed
to be atomic if the storage operand is not larger than a
doubleword and is aligned (see Section 1.10.1 of Book
I).

Quadword accesses with aligned storage operands are
guaranteed to be atomic when caused by the following
instructions.
 lq
 stq
 lqarx
 stqcx.

Quadword atomicity applies only to storage that is nei-
ther Write Through Required nor Caching Inhibited.
The cases described above are the only cases in which
the access to the storage operand is guaranteed to be
atomic. For example, the access caused by the follow-
ing instructions is not guaranteed to be atomic.
 any Load or Store instruction for which the storage

operand is unaligned
 lmw, stmw, lswi, lswx, stswi, stswx
 lfdp, lfdpx, stfdp, stfdpx
 any Cache Management instruction

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses. If the non-atomic
access is caused by an instruction other than a Load/
Store Multiple or Move Assist instruction and one of the
following conditions is satisfied, the non-atomic access
is performed as described in the corresponding list
item. The first list item matching a given situation
applies.
 The storage operand is at least 16 bytes long and

is doubleword-aligned:
the access is performed as a set of disjoint atomic
accesses each of which consists of one or more
aligned doublewords.

 The storage operand is at least eight bytes long
and is word-aligned:
the access is performed as a set of disjoint atomic
accesses each of which consists of one or more
aligned words.

 The storage operand is at least four bytes long and
is halfword-aligned:
the access is performed as a set of disjoint atomic
accesses each of which consists of one or more
aligned halfwords.

In all other cases the number, length, and alignment of
the component disjoint atomic accesses are implemen-
tation-dependent. In all cases the relative order in
which the component disjoint atomic accesses are per-
formed is implementation-dependent.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.
Chapter 1. Storage Model 1031

Version 3.1
1. When two processors perform atomic stores to
locations that do not overlap, and no other stores
are performed to those locations, the contents of
those locations are the same as if the two stores
were performed by a single processor.

2. When two processors perform atomic stores to the
same storage location, and no other store is per-
formed to that location, the contents of that loca-
tion are the result stored by one of the processors.

3. When two processors perform stores that have the
same target location and are not guaranteed to be
atomic, and no other store is performed to that
location, the result is some combination of the
bytes stored by both processors.

4. When two processors perform stores to overlap-
ping locations, and no other store is performed to
those locations, the result is some combination of
the bytes stored by the processors to the overlap-
ping bytes. The portions of the locations that do
not overlap contain the bytes stored by the proces-
sor storing to the location.

5. When a processor performs an atomic store to a
location, a second processor performs an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the contents of the location before the store
or the contents of the location after the store.

6. When a load and a store with the same target loca-
tion can be performed simultaneously, and the
accesses are not guaranteed to be atomic, and no
other store is performed to that location, the value
returned by the load is some combination of the
contents of the location before the store and the
contents of the location after the store.

1.5 Cache Model
A cache model in which there is one cache for instruc-
tions and another cache for data is called a “Har-
vard-style” cache. This is the model assumed by the
Power ISA, e.g., in the descriptions of the Cache Man-
agement instructions in Section 4.3. Alternative cache
models may be implemented (e.g., a “combined cache”
model, in which a single cache is used for both instruc-
tions and data, or a model in which there are several
levels of caches), but they support the programming
model implied by a Harvard-style cache.

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with modifications to those storage locations (e.g.,
modifications caused by Store instructions).

A location in the data cache is considered to be modi-
fied in that cache if the location has been modified

(e.g., by a Store instruction) and the modified data have
not been written to main storage.

Cache Management instructions are provided so that
programs can manage the caches when needed. For
example, program management of the caches is
needed when a program generates or modifies code
that will be executed (i.e., when the program modifies
data in storage and then attempts to execute the modi-
fied data as instructions). The Cache Management
instructions are also useful in optimizing the use of
memory bandwidth in such applications as graphics
and numerically intensive computing. The functions
performed by these instructions depend on the storage
control attributes associated with the specified storage
location (see Section 1.6, “Storage Control Attributes”).

The Cache Management instructions allow the pro-
gram to do the following.

 invalidate the copy of storage in an instruction
cache block (icbi)

 provide a hint that an instruction will probably soon
be accessed from a specified instruction cache
block (icbt)

 provide a hint that the program will probably soon
access a specified data cache block (dcbt, dcbtst)

 set the contents of a data cache block to zeros
(dcbz)

 copy the contents of a modified data cache block
to main storage (dcbst)

 copy the contents of a modified data cache block
to main storage and make the copy of the block in
the data cache invalid (dcbf or dcbfl)

A write to main storage caused by a dcbst or dcbf
instruction has updated main storage when a load by
any given processor, that is satisfied from main storage
from the location accessed by the write, will return the
value written (or a value written or stored subse-
quently), and similarly for the store caused by a Store
instruction.

1.6 Storage Control Attributes
Some operating systems may provide a means to allow
programs to specify the storage control attributes
described in this section. Because the support pro-
vided for these attributes by the operating system may
vary between systems, the details of the specific sys-
tem being used must be known before these attributes
can be used.

Storage control attributes are associated with units of
storage that are multiples of the page size. Each stor-
age access is performed according to the storage con-
trol attributes of the specified storage location, as
described below. The storage control attributes are the
following.

 Write Through Required
 Caching Inhibited
Power ISA™ II1032

Version 3.1
 Memory Coherence Required
 Guarded


These attributes have meaning only when an effective
address is translated by the processor performing the
storage access.

In the remainder of this section, “Load instruction”
includes the Cache Management and other instructions
that are stated in the instruction descriptions to be
“treated as a Load” unless they are explicitly excluded,
and similarly for “Store instruction”.

1.6.1 Write Through Required
A store to a Write Through Required storage location is
performed in main storage. A Store instruction that
specifies a location in Write Through Required storage
may cause additional locations in main storage to be
accessed. If a copy of the block containing the speci-
fied location is retained in the data cache, the store is
also performed in the data cache. The store does not
cause the block to be considered to be modified in the
data cache.

In general, accesses caused by separate Store instruc-
tions that specify locations in Write Through Required
storage may be combined into one access. Such com-
bining does not occur if the Store instructions are sepa-
rated by a sync or eieio instruction.

1.6.2 Caching Inhibited
An access to a Caching Inhibited storage location is
performed in main storage. A Load instruction that
specifies a location in Caching Inhibited storage may
cause additional locations in main storage to be

accessed unless the specified location is also Guarded.
An instruction fetch from Caching Inhibited storage may
cause additional words in main storage to be accessed.
No copy of the accessed locations is placed into the
caches.

In general, non-overlapping accesses caused by sepa-
rate Load instructions that specify locations in Caching
Inhibited storage may be combined into one access, as
may non-overlapping accesses caused by separate
Store instructions that specify locations in Caching
Inhibited storage. Such combining does not occur if the
Load or Store instructions are separated by a sync
instruction. Combining may also occur among such
accesses from multiple processors that share a com-
mon memory interface. No combining occurs if the
storage is also Guarded.

1.6.3 Memory Coherence
Required
An access to a Memory Coherence Required storage
location is performed coherently, as follows.

Memory coherence refers to the ordering of stores to a
single location. Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor or mechanism is able to observe any subset
of those stores as occurring in a conflicting order. This
serialization order is an abstract sequence of values;
the physical storage location need not assume each of
the values written to it. For example, a processor may
update a location several times before the value is writ-
ten to physical storage. The result of a store operation
is not available to every processor or mechanism at the
same instant, and it may be that a processor or mecha-
nism observes only some of the values that are written
to a location. However, when a location is accessed
atomically and coherently by all processors and mech-
anisms, the sequence of values loaded from the loca-
tion by any processor or mechanism during any interval
of time forms a subsequence of the sequence of values
that the location logically held during that interval. That
is, a processor or mechanism can never load a “newer”
value first and then, later, load an “older” value.

Memory coherence is managed in blocks called coher-
ence blocks. Their size is implementation-dependent,
but is larger than a word and is usually the size of a
cache block.

For storage that is not Memory Coherence Required,
software must explicitly manage memory coherence to

The Write Through Required and Caching Inhibited
attributes are mutually exclusive because, as
described below, the Write Through Required attri-
bute permits the storage location to be in the data
cache while the Caching Inhibited attribute does
not.

Storage that is Write Through Required or Caching
Inhibited is not intended to be used for general-pur-
pose programming. For example, the lbarx, lharx,
lwarx, ldarx, lqarx, stbcx., sthcx., stwcx., stdcx.,
and stqcx. instructions may cause the system data
storage error handler to be invoked if they specify a
location in storage having either of these attributes.
To obtain the best performance across the widest
range of implementations, storage that is Write
Through Required or Caching Inhibited should be
used only when the use of such storage meets spe-
cific functional or semantic needs or enables a per-
formance optimization.

Programming Note

None of the memory barrier instructions prevent
the combining of accesses from different proces-
sors. The Guarded storage attribute must be used
in combination with Caching Inhibited to prevent
such combining.

Programming Note
Chapter 1. Storage Model 1033

Version 3.1
the extent required by program correctness. The oper-
ations required to do this may be system-dependent.

Because the Memory Coherence Required attribute for
a given storage location is of little use unless all pro-
cessors that access the location do so coherently, in
statements about Memory Coherence Required stor-
age elsewhere in this document it is generally assumed
that the storage has the Memory Coherence Required
attribute for all processors that access it.

1.6.4 Guarded
A data access to a Guarded storage location is per-
formed only if either (a) the access is caused by an
instruction that is known to be required by the sequen-
tial execution model, or (b) the access is a load and the
storage location is already in a cache. If the storage is
also Caching Inhibited, only the storage location speci-
fied by the instruction is accessed; otherwise any stor-
age location in the cache block containing the specified
storage location may be accessed.

Except in ultravisor or hypervisor real addressing
mode, instructions are not fetched from storage that is
Guarded. Except in these addressing modes, if the
instruction addressed by the current instruction
address is in such storage, the system instruction stor-
age error handler is invoked (see Section 7.5.5 of Book
III).

1.7 Shared Storage
This architecture supports the sharing of storage
between programs, between different instances of the
same program, and between processors and other
mechanisms. It also supports access to a storage loca-
tion by one or more programs using different effective
addresses. All these cases are considered storage
sharing. Storage is shared in blocks that are an inte-
gral number of pages.

When the same storage location has different effective
addresses, the addresses are said to be aliases. Each
application can be granted separate access privileges
to aliased pages.

1.7.1 Storage Access Ordering
The storage model for the ordering of storage accesses
is weakly consistent. This model provides an opportu-
nity for improved performance over a model that has
stronger consistency rules, but places the responsibility
on the program to ensure that ordering or synchroniza-
tion instructions are properly placed when storage is
shared by two or more programs.

The order in which the processor performs storage
accesses, the order in which those accesses are per-
formed with respect to another processor or mecha-
nism, and the order in which those accesses are
performed in main storage may all be different. Several
means of enforcing an ordering of storage accesses
are provided to allow programs to share storage with
other programs, or with mechanisms such as I/O
devices. These means are listed below. The phrase
“to the extent required by the associated Memory

Operating systems that allow programs to request
that storage not be Memory Coherence Required
should provide services to assist in managing
memory coherence for such storage, including all
system-dependent aspects thereof.

In most systems the default is that all storage is
Memory Coherence Required. For some applica-
tions in some systems, software management of
coherence may yield better performance. In such
cases, a program can request that a given unit of
storage not be Memory Coherence Required, and
can manage the coherence of that storage by using
the sync instruction, the Cache Management
instructions, and services provided by the operat-
ing system.

Programming Note

In some implementations, instructions may be exe-
cuted before they are known to be required by the
sequential execution model. Because the results
of instructions executed in this manner are dis-
carded if it is later determined that those instruc-
tions would not have been executed in the
sequential execution model, this behavior does not
affect most programs.

This behavior does affect programs that access
storage locations that are not “well-behaved” (e.g.,
a storage location that represents a control register
on an I/O device that, when accessed, causes the
device to perform an operation). To avoid unin-
tended results, programs that access such storage
locations should request that the storage be
Guarded, and should prevent such storage loca-
tions from being in a cache (e.g., by requesting that
the storage also be Caching Inhibited).

Programming Note
Power ISA™ II1034

Version 3.1
Coherence Required attributes” refers to the Memory
Coherence Required attribute, if any, associated with
each access.

 If two Store instructions or two Load instructions
specify storage locations that are both Caching
Inhibited and Guarded, the corresponding storage
accesses are performed in program order with
respect to any processor or mechanism.

 If a Load instruction depends on the value returned
by a preceding Load instruction (because the
value is used to compute the effective address
specified by the second Load), the corresponding
storage accesses are performed in program order
with respect to any processor or mechanism to the
extent required by the associated Memory Coher-
ence Required attributes. This applies even if the
dependency has no effect on program logic (e.g.,
the value returned by the first Load is ANDed with
zero and then added to the effective address spec-
ified by the second Load).

 When a processor (P1) executes a Synchronize or
eieio instruction a memory barrier is created,
which orders applicable storage accesses pair-
wise, as follows. Let A be a set of storage
accesses that includes all storage accesses asso-
ciated with instructions preceding the barrier-creat-
ing instruction, and let B be a set of storage
accesses that includes all storage accesses asso-
ciated with instructions following the barrier-creat-
ing instruction. For each applicable pair ai,bj of
storage accesses such that ai is in A and bj is in B,
the memory barrier ensures that ai will be per-
formed with respect to any processor or mecha-
nism, to the extent required by the associated
Memory Coherence Required attributes, before bj
is performed with respect to that processor or
mechanism.

The ordering done by a memory barrier is said to
be “cumulative” if it also orders storage accesses
that are performed by processors and mecha-
nisms other than P1, as follows.

- A includes all applicable storage accesses by
any such processor or mechanism that have
been performed with respect to P1 before the
memory barrier is created.

- B includes all applicable storage accesses by
any such processor or mechanism that are
performed after a Load instruction executed
by that processor or mechanism has returned
the value stored by a store that is in B.

No ordering should be assumed among the storage
accesses caused by a single instruction (i.e, by an
instruction for which the access is not atomic), and no
means are provided for controlling that order.
Chapter 1. Storage Model 1035

Version 3.1
Programming Note

Because stores cannot be performed “out-of-order”
(see Book III), if a Store instruction depends on the
value returned by a preceding Load instruction
(because the value returned by the Load is used to
compute either the effective address specified by the
Store or the value to be stored), the corresponding stor-
age accesses are performed in program order. The
same applies if whether the Store instruction is exe-
cuted depends on a conditional Branch instruction that
in turn depends on the value returned by a preceding
Load instruction.

Because an isync instruction prevents the execution of
instructions following the isync until instructions pre-
ceding the isync have completed, if an isync follows a
conditional Branch instruction that depends on the
value returned by a preceding Load instruction, the
load on which the Branch depends is performed before
any loads caused by instructions following the isync.
This applies even if the effects of the “dependency” are
independent of the value loaded (e.g., the value is
compared to itself and the Branch tests the EQ bit in
the selected CR field), and even if the branch target is
the sequentially next instruction.

With the exception of the cases described above and
earlier in this section, data dependencies and control
dependencies do not order storage accesses. Exam-
ples include the following.

 If a Load instruction specifies the same storage
location as a preceding Store instruction and the
location is in storage that is not Caching Inhibited,
the load may be satisfied from a “store queue” (a
buffer into which the processor places stored val-
ues before presenting them to the storage subsys-
tem), and not be visible to other processors and
mechanisms. A consequence is that if a subse-
quent Store depends on the value returned by the
Load, the two stores need not be performed in pro-
gram order with respect to other processors and
mechanisms.

 Because a Store Conditional instruction may com-
plete before its store has been performed, a condi-
tional Branch instruction that depends on the CR0
value set by a Store Conditional instruction does

not order the Store Conditional's store with respect
to storage accesses caused by instructions that
follow the Branch.

 Because processors may predict branch target
addresses and branch condition resolution, control
dependencies (e.g., branches) do not order stor-
age accesses except as described above. For
example, when a subroutine returns to its caller the
return address may be predicted, with the result
that loads caused by instructions at or after the
return address may be performed before the load
that obtains the return address is performed.

Because processors may implement nonarchitected
duplicates of architected resources (e.g., GPRs, CR
fields, and the Link Register), resource dependencies
(e.g., specification of the same target register for two
Load instructions) do not order storage accesses.

Examples of correct uses of dependencies, sync and
lwsync to order storage accesses can be found in
Appendix B. “Programming Examples for Sharing Stor-
age” on page 1107.

Because the storage model is weakly consistent, the
sequential execution model as applied to instructions
that cause storage accesses guarantees only that
those accesses appear to be performed in program
order with respect to the processor executing the
instructions. For example, an instruction may com-
plete, and subsequent instructions may be executed,
before storage accesses caused by the first instruction
have been performed. However, for a sequence of
atomic accesses to the same storage location, if the
location is in storage that is Memory Coherence
Required the definition of coherence guarantees that
the accesses are performed in program order with
respect to any processor or mechanism that accesses
the location coherently, and similarly if the location is in
storage that is Caching Inhibited.

Because accesses to storage that is Caching Inhibited
are performed in main storage, memory barriers and
dependencies on Load instructions order such
accesses with respect to any processor or mechanism
even if the storage is not Memory Coherence Required.

Power ISA™ II1036

Version 3.1

1.7.1.1 Storage Ordering of Copy/
Paste-Initiated Data Transfers
The Copy-Paste Facility (see Section 4.4) uses pairs of
instructions to initiate 128-byte data transfers. They
are referred to as “data transfers” to differentiate them
from the “normal” storage accesses caused by or asso-
ciated with loads, stores, and instructions that are
treated as loads and stores. In the absence of barriers,
the relative ordering among adjacent data transfers or
data transfers and storage accesses is not defined, and
the sequential execution model and coher-
ence-required ordering relationships do not apply. To
establish order between adjacent data transfers or
between data transfers and storage accesses, hwsync
must be used. See the description of the Synchronize
instruction in Section 4.6.3 for more information.

1.7.1.2 Storage Ordering of Stores to
Persistent Storage
A location in a region of main storage that is backed by
persistent storage is considered to be modified relative
to persistent storage if the location has been modified
in main storage (e.g., by a Store instruction) and the
modified data have not been written to persistent stor-
age. A store has updated persistent storage when a
load by any given processor, from the location
accessed by the store, would return the value stored
(or a value stored subsequently) if system power were
lost temporarily between the time the store has
updated persistent storage and the time the load is per-
formed. A store may update persistent storage signifi-
cantly later than it updates main storage. The dcbstps
(data cache block store to persistent storage) and dcb-
fps (data cache block flush to persistent storage)
instructions can be used to write modified locations in a
block to persistent storage (and to perform the func-
tions of Data Cache Block Store and Data Cache Block
Flush respectively). The phwsync (persistent heavy-
weight sync) and plwsync (persistent lightweight sync)
instructions can be used to establish order for these
writes to persistent storage. A store may update per-
sistent storage even in the absence of dcbstps and
dcbfps instructions targetting the cache block(s)
affected by the store. See Section 4.3.2 and Section
4.6.3 for more information.

Except in this section and in other material dealing with
persistent storage, references to the storage subsys-
tem in this document assume system power is not lost
unless otherwise stated or obvious from context.

The first example below illustrates cumulative
ordering of storage accesses preceding a memory
barrier, and the second illustrates cumulative order-
ing of storage accesses following a memory barrier.
Assume that locations X, Y, and Z initially contain
the value 0.

Example 1:

Processor A:
stores the value 1 to location X

Processor B:
loads from location X obtaining the value
1, executes a sync instruction, then
stores the value 2 to location Y

Processor C:
loads from location Y obtaining the value
2, executes a sync instruction, then loads
from location X

Example 2:

Processor A:
stores the value 1 to location X, executes
a sync instruction, then stores the value 2
to location Y

Processor B:
loops loading from location Y until the
value 2 is obtained, then stores the value
3 to location Z

Processor C:
loads from location Z obtaining the value
3, executes a sync instruction, then loads
from location X

In both cases, cumulative ordering dictates that the
value loaded from location X by processor C is 1.

Programming Note
It may be helpful to think of a copy/paste. pair
sending the real storage addresses of the 128-byte
source and destination to an asynchronous data
transfer engine completely separate from the pro-
cessor that is executing the copy and paste.
instructions. The data transfers collect in the
engine’s queue. The engine may perform the data
transfers in any order, and with the only relative
timing relationship to adjacent transfers and
accesses being determined by hwsync.

Programming Note
Chapter 1. Storage Model 1037

Version 3.1

1.7.1.3 Storage Ordering of I/O
Accesses
A “coherence domain” consists of all processors and all
interfaces to main storage. Memory reads and writes
initiated by mechanisms outside the coherence domain
are performed within the coherence domain in the
order in which they enter the coherence domain and
are performed as coherent accesses.

1.7.2 Atomic Update
The Load And Reserve and Store Conditional instruc-
tions together permit atomic update of a shared storage
location. There are byte, halfword, word, doubleword,
and quadword forms of each of these instructions.
Described here is the operation of the word forms
lwarx and stwcx.; operation of the byte, halfword, dou-
bleword, and quadword forms lbarx, stbcx., lharx,
sthcx., ldarx, stdcx., lqarx, and stqcx. is the same
except for obvious substitutions.

The lwarx instruction is a load from a word-aligned
location that has two side effects. Both of these side
effects occur at the same time that the load is per-
formed.

1. A reservation for a subsequent stwcx. instruction
is created.

2. The memory coherence mechanism is notified that
a reservation exists for the storage location speci-
fied by the lwarx.

The stwcx. instruction is a store to a word-aligned loca-
tion that is conditioned on the existence of the reserva-
tion created by the lwarx and on whether the same
storage location is specified by both instructions. To
emulate an atomic operation with these instructions, it
is necessary that both the lwarx and the stwcx. specify
the same storage location.

A stwcx. performs a store to the target storage location
only if the reservation created by the lwarx still exists at
the time the stwcx. is executed, and only if the storage
locations specified by the two instructions are in the
same aligned block of real storage whose size is the
smallest real page size supported by the implementa-
tion. The remainder of this paragraph assumes that
these two conditions are satisfied. If the storage loca-
tions specified by the two instructions differ, or if a Store
Conditional instruction is used with a preceding Load
And Reserve instruction that has a different storage
operand length (e.g., stwcx. with ldarx), whether the
store is performed is undefined. Otherwise the store is
performed.

A stwcx. that performs its store is said to “succeed”.

Examples of the use of lwarx and stwcx. are given in
Appendix B. “Programming Examples for Sharing Stor-
age” on page 1107.

A successful stwcx. to a given location may complete
before its store has been performed with respect to
other processors and mechanisms. As a result, a sub-
sequent load or lwarx from the given location by
another processor may return a “stale” value. However,
a subsequent lwarx from the given location by the
other processor followed by a successful stwcx. by
that processor is guaranteed to have returned the value
stored by the first processor’s stwcx. (in the absence of
other stores to the given location).

On the POWER9 processor, dcbf performs the
functions required of dcbfps and dcbstps. The
encodings chosen for dcbfps and dcbstps are
decoded as dcbf on the POWER9 processor.

On the POWER9 processor, lwsync and hwsync
perform the functions required of plwsync and
phwsync, respectively. The encodings chosen for
plwsync and phwsync are decoded as lwsync
and hwsync, respectively, on the POWER9 pro-
cessor.

The encodings for dcbfps, dcbstps, plwsync, and
phwsync were chosen to enable software devel-
oped to control updates to persistent storage on
processors that comply with Version 3.1 and sub-
sequent versions of the architecture to run compat-
ibly on the POWER9 processor.

The ordering of loads from persistent storage is not
discussed because loads are satisfied from the
nearest source (store buffer, nearest cache, or
memory) of a consistent value for a datum.

Programming Note

Programming Note

The store caused by a successful stwcx. is
ordered, by a dependence on the reservation, with
respect to the load caused by the lwarx that estab-
lished the reservation, such that the two storage
accesses are performed in program order with
respect to any processor or mechanism.

Programming Note
Power ISA™ II1038

Version 3.1
1.7.2.1 Reservations
The ability to emulate an atomic operation using lwarx
and stwcx. is based on the conditional behavior of
stwcx., the reservation created by lwarx, and the
clearing of that reservation if the target storage location
is modified by another processor or mechanism before
the stwcx. performs its store.

A reservation is held on an aligned unit of real storage
called a reservation granule. The size of the reserva-
tion granule is 2n bytes, where n is implementa-
tion-dependent but is always at least 4 (thus the
minimum reservation granule size is a quadword), and
where 2n is not larger than the smallest real page size

supported by the implementation. The reservation
granule associated with effective address EA contains
the real address to which EA maps. (“real_addr(EA)” in
the RTL for the Load And Reserve and Store Condi-
tional instructions stands for “real address to which EA
maps”.) The reservation also has an associated length,
which is equal to the storage operand length, in bytes,
of the Load And Reserve instruction that established
the reservation.

A processor has at most one reservation at any time. A
reservation is established by executing a lbarx, lharx,
lwarx, ldarx, or lqarx instruction, as described in item
1 below, and is lost or may be lost, depending on the
item, if any of the following occur. Items 1-8 apply only
if the relevant access is performed. (For example, an
access that would ordinarily be caused by an instruc-
tion might not be performed if the instruction causes the
system error handler to be invoked.)

1. The processor holding the reservation executes
another lbarx, lharx, lwarx, or ldarx: this clears
the first reservation and establishes a new one.

2. The processor holding the reservation executes
any stbcx., sthcx., stwcx., stdcx., or stqcx.,
regardless of whether the specified address
matches the address specified by the lbarx, lharx,
lwarx, ldarx, or lqarx that established the reserva-
tion, and regardless of whether the storage oper-
and lengths of the two instructions are the same.

3. The processor holding the reservation executes an
AMO that updates the same reservation granule:
whether the reservation is lost is undefined.

4. Some other processor executes a Store or dcbz
that specifies a location in the same reservation
granule.

5. Some other processor executes a dcbtst, or dcbt
that specifies a location in the same reservation
granule: whether the reservation is lost is unde-
fined. (For a dcbtst instruction that specifies a
data stream, "location" in the preceding sentence
includes all locations in the data stream.)

6. Any processor modifies a Reference or Change bit
in the same reservation granule: the reservation is
lost if the modification is atomic; otherwise whether
the reservation is lost is undefined. (See
Section 6.7.12 of Book III)

7. Some mechanism other than a processor modifies
a storage location in the same reservation granule.

8. An interrupt (see Book III) occurs on the processor
holding the reservation: the interrupt itself does not
clear the reservation, but system software invoked
by the interrupt may clear the reservation.

9. Implementation-specific characteristics of the
coherence mechanism cause the reservation to be
lost.

If a virtual address is reassigned to a different real
page, a reservation established at the virtual
address before the reassignment will not be
cleared by a store to the new real page by some
other processor or mechanism. (As described in
Section 1.7.2.1, reservations are held on real
addresses.) If Store Conditional instructions did not
suppress the store when the storage location spec-
ified by the Store Conditional instruction is in a dif-
ferent real page from the storage location specified
by the corresponding Load And Reserve instruc-
tion, such virtual address reassignment could per-
mit a Store Conditional instruction that specifies the
same virtual address as the corresponding Load
And Reserve instruction, and logically should fail
because the other processor or mechanism stored
to the virtual address, to succeed.

This real address checking cannot detect that the
virtual page in which the reservation was estab-
lished has been moved to a new real page and
back again to the original real page that was
accessed by the Load And Reserve instruction. It
also cannot detect that the real address of the stor-
age location specified by a Store Conditional
instruction is the same as the real address of the
reservation, or is in the same real page as the res-
ervation, only because the virtual page containing
the storage location specified by the Store Condi-
tional instruction has been moved to the real page
that was accessed by the corresponding Load And
Reserve instruction. Privileged software that moves
a virtual page should clear the reservation on the
processor it is running on in order to ensure that a
Store Conditional instruction executed by that pro-
cessor does not succeed in these cases. (If the
software that moves the virtual page uses Load
And Reserve and Store Conditional for its own pur-
poses, the clearing of the original reservation will
happen naturally. The stores that occur naturally as
part of moving the virtual page will cause any reser-
vations, held by other processors, in the target real
page to be cleared.)

Programming Note
Chapter 1. Storage Model 1039

Version 3.1
The reservation is also used by the waitrsv instruction
(see Section 4.6.4).

1.7.2.2 Forward Progress
Forward progress in loops that use lwarx and stwcx. is
achieved by a cooperative effort among hardware, sys-
tem software, and application software.

The architecture guarantees that when a processor
executes a lwarx to obtain a reservation for location X
and then a stwcx. to store a value to location X, either

1. the stwcx. succeeds and the value is written to
location X, or

2. the stwcx. fails because some other processor or
mechanism modified location X, or

3. the stwcx. fails because the processor’s reserva-
tion was lost for some other reason.

In Cases 1 and 2, the system as a whole makes prog-
ress in the sense that some processor successfully
modifies location X. Case 3 covers reservation loss
required for correct operation of the rest of the system.
This includes cancellation caused by some other pro-
cessor or mechanism writing elsewhere in the reserva-
tion granule, cancellation caused by the operating
system in managing certain limited resources such as
real storage, and cancellation caused by any of the
other effects listed in see Section 1.7.2.1.

An implementation may make a forward progress guar-
antee, defining the conditions under which the system
as a whole makes progress. Such a guarantee must
specify the possible causes of reservation loss in Case
3. While the architecture alone cannot provide such a
guarantee, the characteristics listed in Cases 1 and 2
are necessary conditions for any forward progress

A reservation may be lost if:
 Software executes a privileged instruction or

utilizes a privileged facility
 Software accesses storage not intended for

general-purpose programming

One use of lwarx and stwcx. is to emulate a “Com-
pare and Swap” primitive like that provided by the
IBM System/370 Compare and Swap instruction;
see Section B.1, “Atomic Update Primitives” on
page 1107. A System/370-style Compare and
Swap checks only that the old and current values of
the word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The combination of lwarx and stwcx.
improves on such a Compare and Swap, because
the reservation reliably binds the lwarx and stwcx.
together. The reservation is always lost if the word
is modified by another processor or mechanism
between the lwarx and stwcx., so the stwcx.
never succeeds unless the word has not been
stored into (by another processor or mechanism)
since the lwarx.

In general, programming conventions must ensure
that lwarx and stwcx. specify addresses that
match; a stwcx. should be paired with a specific
lwarx to the same storage location. Situations in
which a stwcx. may erroneously be issued after
some lwarx other than that with which it is intended
to be paired must be scrupulously avoided. For
example, there must not be a context switch in
which the processor holds a reservation in behalf of
the old context, and the new context resumes after
a lwarx and before the paired stwcx.. The stwcx.
in the new context might succeed, which is not
what was intended by the programmer. Such a situ-
ation must be prevented by executing a stbcx.,
sthcx., stwcx., stdcx., or stqcx. that specifies a
dummy writable aligned location as part of the con-
text switch; see Section 7.4.3 of Book III.

Virtualized Implementation Note

Programming Note

Programming Note

Because the reservation is lost if another processor
stores anywhere in the reservation granule, lock
words (or bytes, halfwords, or doublewords) should
be allocated such that few such stores occur, other
than perhaps to the lock word itself. (Stores by
other processors to the lock word result from con-
tention for the lock, and are an expected conse-
quence of using locks to control access to shared
storage; stores to other locations in the reservation
granule can cause needless reservation loss.)
Such allocation can most easily be accomplished
by allocating an entire reservation granule for the
lock and wasting all but one word. Because reser-
vation granule size is implementation-dependent,
portable code must do such allocation dynamically.

Similar considerations apply to other data that are
shared directly using lwarx and stwcx. (e.g., point-
ers in certain linked lists; see Section B.3, “List
Insertion” on page 1111).

Programming Note
Power ISA™ II1040

Version 3.1
guarantee. An implementation and operating system
can build on them to provide such a guarantee.

1.8 Instruction Storage
The instruction execution properties and requirements
described in this section, including its subsections,
apply only to instruction execution that is required by
the sequential execution model.

 In this section, including its subsections, it is assumed
that all instructions for which execution is attempted are
in storage that is not Caching Inhibited and (unless
instruction address translation is disabled; see Book III)
is not Guarded, and from which instruction fetching
does not cause the system error handler to be invoked
(e.g., from which instruction fetching is not prohibited
by the “address translation mechanism” or the “storage
protection mechanism”; see Book III).

The instruction cache is not necessarily kept consistent
with the data cache or with main storage. It is the
responsibility of software to ensure that instruction stor-
age is consistent with data storage when such consis-
tency is required for program correctness.

After one or more bytes of a storage location have been
modified and before an instruction located in that stor-
age location is executed, software must execute the
appropriate sequence of instructions to make instruc-
tion storage consistent with data storage. Otherwise
the result of attempting to execute the instruction is
boundedly undefined except as described in
Section 1.8.1, “Concurrent Modification and Execution
of Instructions” on page 1043.

On a virtualized implementation, Case 3 includes
reservation loss caused by the virtualization soft-
ware. Thus, on a virtualized implementation, a res-
ervation may be lost at any time without
apparent cause. The virtualization software partici-
pates in any forward progress assurances, as
described above.

The architecture does not include a “fairness guar-
antee”. In competing for a reservation, two proces-
sors can indefinitely lock out a third.

The results of attempting to execute instructions
from storage that does not satisfy this assumption
are described in Section 1.6.2 and Section 1.6.4 of
this Book and in Book III.

Virtualized Implementation Note

Programming Note

Programming Note
Chapter 1. Storage Model 1041

Version 3.1
Programming Note

Following are examples of how to make instruction
storage consistent with data storage. Because the opti-
mal instruction sequence to make instruction storage
consistent with data storage may vary between sys-
tems, many operating systems will provide a system
service to perform this function.

Case 1: The given program does not modify instruc-
tions executed by another program nor does another
program modify the instructions executed by the given
program.

Assume that location X previously contained the
instruction A0; the program modified one of more bytes
of that location such that, in data storage, the location
contains the instruction A1; and location X is wholly
contained in a single cache block. The following
instruction sequence will make instruction storage con-
sistent with data storage such that if the isync was in
location X-4, the instruction A1 in location X would be
executed immediately after the isync.

dcbst X #copy the block to main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
isync #discard prefetched instructions

Case 2: One or more programs execute the instruc-
tions that are concurrently being modified by another
program.

Assume program A has modified the instruction at loca-
tion X and other programs are waiting for program A to
signal that the new instruction is ready to execute. The
following instruction sequence will make instruction
storage consistent with data storage and then set a flag
to indicate to the waiting programs that the new instruc-
tion can be executed.

li r0,1 #put a 1 value in r0
dcbst X #copy the block in main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
sync #order invalidation before store

to flag
stw r0,flag #set flag indicating instruction

storage is now consistent

The following instruction sequence, executed by the
waiting program, will prevent the waiting programs from
executing the instruction at location X until location X in
instruction storage is consistent with data storage, and
then will cause any prefetched instructions to be dis-
carded.

lwz r0,flag #loop until flag = 1 (when 1 is
cmpwi r0,1 # loaded, location X in inst’n
bne $-8 # storage is consistent with

location X in data storage)
isync #discard any prefetched inst’ns

In the preceding instruction sequence any context syn-
chronizing instruction (e.g., rfid) can be used instead of
isync. (For Case 1 only isync can be used.)

For both cases, if two or more instructions in separate
data cache blocks have been modified, the dcbst
instruction in the examples must be replaced by a
sequence of dcbst instructions such that each block
containing the modified instructions is copied back to
main storage. Similarly, for icbi the sequence must
invalidate each instruction cache block containing a
location of an instruction that was modified. The sync
instruction that appears above between “dcbst X” and
“icbi X” would be placed between the sequence of
dcbst instructions and the sequence of icbi instructions.
Power ISA™ II1042

Version 3.1
1.8.1 Concurrent Modification and
Execution of Instructions
The phrase “concurrent modification and execution of
instructions” (CMODX) refers to the case in which a
processor fetches and executes an instruction from
instruction storage which has not been made consis-
tent with data storage. This section describes the only
case in which executing this instruction under these
conditions produces defined results.

In the remainder of this section the following terminol-
ogy is used.

 Location X is an arbitrary four-byte word-aligned
storage location.

 X0 is the value of the contents of location X for
which software has made the location X in instruc-
tion storage consistent with data storage.

 X1, X2, ..., Xn are the sequence of the first n values
occupying location X after X0.

 Xn is the first value of X subsequent to X0 for which
software has again made instruction storage con-
sistent with data storage.

 The “patch class” of words consists of the follow-
ing.

- the I-form Branch instruction (b[l][a])

- the preferred no-op instruction (ori 0,0,0)

- the prefix of the Prefixed No-op instruction
(pnop)

- the D-form and X-form Trap instructions for
which TO = 0b11111

 The “instruction from location X” includes both the
case of a word instruction contained in location X
and the case of a prefixed instruction for which the
prefix is contained in location X.

If the instruction from location X is executed after the
copy of location X in instruction storage is made consis-
tent for the value X0 and before it is made consistent for
the value Xn, the results of executing the instruction are
defined if and only if the following conditions are satis-
fied.

1. The stores that place the values X1, ..., Xn into
location X are atomic stores that modify all four
bytes of location X.

2. The sequence of Xi values is one of two types:
 any sequence in which each Xi is a patch

class word, or
 any sequence that is comprised of exactly two

unique word values, at least one of which is a
patch class word.

3. If a sequence of Xi values contains a prefix, the
only word instructions the sequence can contain
are the patch class Branch and patch class Trap
instructions. In this use, the target of the Branch
instruction must not be the word following the
Branch instruction.

4. Location X is in storage that is Memory Coherence
Required.

If these conditions are satisfied, each execution of an
instruction from location X will use some Xi, 0 ≤ i ≤ n.
The value of the ordinate i associated with each value
executed may be different and the sequence of ordi-
nates i associated with a sequence of values executed
is not constrained, (e.g., a valid sequence of execu-
tions of the instruction from location X could use the
sequence Xi, Xi+2, then Xi-1). If these conditions are not
satisfied, the results of each such execution of an
instruction from location X are boundedly undefined,
and may include causing inconsistent information to be
presented to the system error handler.

The architecture does not support CMODX modifi-
cation of an entire prefixed instruction because it
may be unaligned and therefore impossible to mod-
ify atomically. Furthermore, no need has arisen to
motivate the creation of special cases where it
must work. The architecture also does not support
CMODX modification of the suffix of a prefixed
instruction.

Programming Note

If the instruction from location X is a prefixed
instruction, it should obey the rules for prefixed
instructions. In particular:
 The instruction should not cross a 64-byte

boundary. (Thus if the EA of location X is
equal to 60 modulo 64, none of the Xi should
be prefixes.)

 If the instruction is pnop, the word at location
X+4 should not be a Branch instruction, rfebb,
a context synchronizing instruction other than
isync, or a “Service Processor Attention”
instruction.

An example of how failure to satisfy the require-
ments given above can cause inconsistent informa-
tion to be presented to the system error handler is
as follows. If the value X0 (an illegal instruction) is
executed, causing the system illegal instruction
handler to be invoked, and before the error handler
can load X0 into a register, X0 is replaced with X1,
an Add Immediate instruction, it will appear that a
legal instruction caused an illegal instruction
exception.

Programming Note

Programming Note
Chapter 1. Storage Model 1043

Version 3.1

It is possible to apply a patch or to instrument a
given program without the need to suspend or halt
the program. This can be accomplished by modify-
ing the example shown in the Programming Note at
the end of Section 1.8 where one program is creat-
ing instructions to be executed by one or more
other programs.

In place of the Store to a flag to indicate to the other
programs that the code is ready to be executed, the
program that is applying the patch would replace
an instruction in the original program with an I-form
Branch instruction that would cause any program
executing the Branch to branch to the newly cre-
ated code. The first instruction in the newly created
code must be an isync, which will cause any
prefetched instructions to be discarded, ensuring
that the execution is consistent with the newly cre-
ated code. The instruction storage location con-
taining the isync instruction in the patch area must
be consistent with data storage with respect to the
processor that will execute the patched code
before the Store which stores the new Branch
instruction is performed.

The ability to modify instructions that may be being
executed provides opportunities for significant per-
formance benefits in interpretive environments
(e.g., Java), and can be used to instrument code
dynamically to isolate critical hardware and soft-
ware bugs.

Programming Note

Programming Note
Power ISA™ II1044

Version 3.1
Chapter 2. Instruction Restart

In this section, “Load instruction” includes the Cache
Management and other instructions that are stated in
the instruction descriptions to be “treated as a Load”,
and similarly for “Store instruction”.

The following instructions are never restarted after hav-
ing accessed any portion of the storage operand
(unless the instruction causes a “Data Address Watch-
point match”, for which the corresponding rules are
given in Book III).

1. A Store instruction that causes an atomic access
2. A Load instructionthat causes an atomic access to

storage that is both Caching Inhibited and
Guarded

Any other Load or Store instruction may be partially
executed and then aborted after having accessed a
portion of the storage operand, and then re-executed
(i.e., restarted, by the processor or the operating sys-
tem). If an instruction is partially executed, the contents
of registers are preserved to the extent that the correct
result will be produced when the instruction is re-exe-
cuted. Additional restrictions on the partial execution of
instructions are described in Section 7.6 of Book III.

In order to ensure that the contents of registers are
preserved to the extent that a partially executed
instruction can be re-executed correctly, the regis-
ters that are preserved must satisfy the following
conditions. For any given instruction, zero or more
of the conditions applies.
 For a fixed-point Load instruction that is not a

multiple or string form, if RT=RA or RT=RB
then the contents of register RT are not
altered.

 For an update form Load or Store instruction,
the contents of register RA are not altered.

Programming Note

There are many events that might cause a Load or
Store instruction to be restarted. For example, a
hardware error may cause execution of the instruc-
tion to be aborted after part of the access has been
performed, and the recovery operation could then
cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially
executed, the contents of the instruction pointer
indicate that the instruction has not been executed,
however, the contents of some registers may have
been altered and some bytes within the storage
operand may have been accessed. The following
are examples of an instruction being partially exe-
cuted and altering the program state even though it
appears that the instruction has not been executed.

1. Load Multiple, Load String: Some registers in
the range of registers to be loaded may have
been altered.

2. Any Store instruction, dcbz: Some bytes of the
storage operand may have been altered.

Programming Note
Chapter 2. Instruction Restart 1045

Version 3.1
Power ISA™ II1046

Version 3.1
Chapter 3. Management of Shared Resources

The facilities described in this section provide the
means to control the use of resources that are shared
with other processors.

3.1 Program Priority Registers
The Program Priority Register (PPR) is a 64-bit register
that controls the program’s priority. The PPR provides
access to the full 64-bit PPR, and the Program Priority
Register 32-bit (PPR32) provides access to the upper
32 bits of the PPR. The layouts of the PPR and PPR32
are shown in Figure 1.

Bit(s) Description
11:13 Program Priority (PRI)

(PPR3243:45)

001 very low
010 low
011 medium low
100 medium
101 medium high

Programs can always set the PRI field to very
low, low, medium low, and medium priorities;
programs may be allowed to set the PRI field
to medium high priority during certain time
intervals. (See Section 5.3.6.) If the program
priority is medium high when the time interval
expires or if an attempt is made to set the pri-
ority to medium high when it is not allowed,
the PRI field is set to medium.

If other values are written to this field, the PRI
field is not changed. (See Section 5.3.5 of
Book III for additional information.)

All other fields are reserved.

Figure 1. Program Priority Register

PPR:
/// PRI ///

0 11 14 63
PPR32

/// PRI ///
32 43 46 63

The ability to access the low-order half of the PPR
(and thus the use of mfppr and mtppr) might be
phased out in a future version of the architecture.

By setting the PRI field, a programmer may be able
to improve system throughput by causing system
resources to be used more efficiently.

E.g., if a program is waiting on a lock (see Section
B.2), it could set low priority, with the result that
more processor resources would be diverted to the
program that holds the lock. This diversion of
resources may enable the lock-holding program to
complete the operation under the lock more
quickly, and then relinquish the lock to the waiting
program.

or Rx,Rx,Rx can be used to modify the PRI field;
see Section 3.2.

When the system error handler is invoked, the PRI
field may be set to an undefined value.

Programming Note

Programming Note

Programming Note

Programming Note
Chapter 3. Management of Shared Resources 1047

Version 3.1
3.2 “or” Instruction
Setting the PPR
The or Rx,Rx,Rx (see Book I) instruction can be used
to set PPRPRI as shown in Table 1. or. Rx,Rx,Rx does
not set PPRPRI.

Table 1: Priority levels for or Rx,Rx,Rx

Programs can always set the PRI field to very low, low,
medium low, and medium priorities; programs may be
allowed to set the PRI field to medium high priority
during certain time intervals. (See Section 5.3.6 of
Book III.) If the program priority is medium high when
the time interval expires or if an attempt is made to set
the priority to medium high when it is not allowed, the
PRI field is set to medium.

Rx PPRPRI Priority
31 001 very low
1 010 low
6 011 medium low
2 100 medium
5 101 medium high

Warning: Other forms of or Rx,Rx,Rx that are not
described in this section and in Section 4.3.3 may
also cause program priority to change. Use of
these forms should be avoided except when soft-
ware explicitly intends to alter program priority. If a
no-op is needed, the preferred no-op (ori 0,0,0)
should be used.

Programming Note
Power ISA™ II1048

Version 3.1
Chapter 4. Storage Control Instructions

4.1 Parameters Useful to Appli-
cation Programs
It is suggested that the operating system provide a ser-
vice that allows an application program to obtain the
following information.

1. The virtual page sizes
2. Coherence block size
3. Reservation granule size
4. An indication of the cache model implemented

(e.g., Harvard-style cache, combined cache)
5. Instruction cache size
6. Data cache size
7. Instruction cache block size
8. Data cache block size
9. Instruction cache associativity

10. Data cache associativity
11. Number of stream IDs supported for the stream

variant of dcbt
12. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an instruction cache attribute and the corre-
sponding data cache attribute.

4.2 Data Stream Control Regis-
ter (DSCR)
The layout of the Data Stream Control Register (DSCR)
is shown in Figure 2 below.

Figure 2. Data Stream Control Register

Bit(s) Description
39 Software Transient Enable (SWTE)

0 SWTE is disabled.
1 Applies the transient attribute to soft-

ware-defined streams.

40 Hardware Transient Enable (HWTE)

0 HWTE is disabled.
1 Applies the transient attribute to hard-

ware-detected streams.

41 Store Transient Enable (STE)

0 STE is disabled.
1 Applies the transient attribute to store

streams.

42 Load Transient Enable (LTE)

0 LTE is disabled.
1 Applies the transient attribute to load

streams.

43 Software Unit count Enable (SWUE)

0 SWUE is disabled.
1 Applies the unit count to software-defined

streams.

44 Hardware Unit count Enable (HWUE)

0 HWUE is disabled.
1 Applies the unit count to hard-

ware-detected streams.

45:54 Unit Count (UNITCNT)

Number of units in data stream.

55:57 Depth Attainment Urgency (URG)

This field indicates how quickly the prefetch
depth should be reached for hard-
ware-detected streams. Values and their
meanings are as follows.
 0 default
 1 not urgent
 2 least urgent
 3 less urgent
 4 medium
 5 urgent
 6 more urgent
 7 most urgent

58 Load Stream Disable (LSD)

0 No effect.
1 Disables hardware detection and initia-

tion of load streams.

//

SW
TE

H
W

TE
ST

E
LT

E
SW

U
E

H
W

U
E

U
N

IT
C

N
T

U
R

G

LS
D

SN
SE

SS
E

D
PF

D

0 38 39 40 41 42 43 44 45 54 55 57 58 59 60 61 63
Chapter 4. Storage Control Instructions 1049

Version 3.1
59 Stride-N Stream Enable (SNSE)

0 No effect.
1 Enables the hardware detection and initia-

tion of load and store streams that have a
stride greater than a single cache block.
Such load streams are detected only
when LSD is also zero. Such store
streams are detected only when SSE is
also one.

60 Store Stream Enable (SSE)

0 No effect.
1 Enables hardware detection and initiation

of store streams.

61:63 Default Prefetch Depth (DPFD)

This field supplies a prefetch depth for hard-
ware-detected streams and for soft-
ware-defined streams for which a depth of
zero is specified or for which dcbt/dcbtst with
TH=1010 is not used in their description. Val-
ues and their meanings are as follows.
 0 default (LPCRDPFD)
 1 none
 2 shallowest
 3 shallow
 4 medium
 5 deep
 6 deeper
 7 deepest

The contents of the DSCR affect how a processor han-
dles hardware-detected and software-defined data
streams. The DSCR provides the only means by which
software can control or supply information for hard-
ware-detected data streams. The DPFD, UNITCNT,
and transient fields may also be used instead of the
TH=01010 variant of dcbt for software-defined data
streams, especially when multiple streams have these
attributes in common. See Section 4.3.2, “Data Cache
Instructions” on page 1053, for information on streams
and how software may specify them.

The URG, LSD, SNSE and SSE fields do not affect
the initiation of streams specified using the dcbt
and dcbtst instructions.

Note that even when SNSE is not set, hardware
may detect Stride-N streams in intervals when they
access elements that map to sequential cache
blocks.

In order for the DSCR to apply the transient attri-
bute to streams, at least two of the four enable bits
must be set: one to choose a type of access (load
or store), and one to choose a kind of prefetching
(software-defined or hardware-detected).

Programming Note

Programming Note

The purpose of Depth Attainment Urgency is to
regulate the rate of prefetch generation from the
cycle at which the hardware first detects an incipi-
ent stream until the cycle when the prefetch Depth
is reached. A more urgent setting will benefit appli-
cations that are dominated by short to medium
length streams, because otherwise prefetching
does not occur rapidly enough to benefit them. In
contrast, applications that frequently cause unpro-
ductive prefetches due to stream mispredicts will
benefit from a less urgent setting.

Unlike the Depth, the Depth Attainment Urgency
applies only to hardware-detected streams. Fur-
thermore, the DSCR provides the only point of con-
trol for this parameter. Software-defined streams
are assumed not to have the correctness risk asso-
ciated with hardware streams, and therefore are
set to reach their depth relatively quickly.

In versions of the architecture that precede Version
2.07, mtspr specifying the DSCR caused all active
and nascent data streams to cease to exist. In
those versions of the architecture, the DSCR was
used as an overall control mechanism to specify a
single global profile for all streams. Beginning with
Version 2.07, the DSCR is intended to control and
accelerate the creation of new streams without dis-
turbing existing streams.

Programming Note

Programming Note
Power ISA™ II1050

Version 3.1
4.3 Cache Management Instructions

The Cache Management instructions obey the sequen-
tial execution model except as described in Section
4.3.1.

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is
treated as a Store” mean that the instruction is treated
as a Load (Store) from (to) the addressed byte with
respect to address translation, the definition of program
order on page 1029, storage protection, reference and
change recording, the storage access ordering
described in Section 1.7.1, and Performance Monitor
events (see Section 10.4.5 of Book III).

Some Cache Management instructions contain a CT
field that is used to specify a cache level within a cache
hierarchy or a portion of a cache structure to which the
instruction is to be applied. The correspondence
between the CT value specified and the cache level is
shown below.

CT values not shown above may be used to specify
implementation-dependent cache levels or implemen-
tation-dependent portions of a cache structure.

CT Field Value Cache Level
0 Primary Cache
2 Secondary Cache
Chapter 4. Storage Control Instructions 1051

Version 3.1
4.3.1 Instruction Cache Instructions

Instruction Cache Block Invalidate X-form

icbi RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invali-
dated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the instruction cache of this processor,
the block is invalidated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 4.3),
except that reference and change recording need not
be done.

Special Registers Altered:
None

Instruction Cache Block Touch X-form

icbt CT, RA, RB

Let the effective address (EA) be the sum (RA|0)+(RB).

The icbt instruction provides a hint that the program
will probably soon execute code from the block contain-
ing the byte addressed by EA, and that the block con-
taining the byte addressed by EA is to be loaded into
the cache specified by the CT field. (See Section 4.3 of
Book II.) If the CT field is set to a value not supported
by the implementation, no operation is performed.

The hint is ignored if the block is Caching Inhibited.

This instruction treated as a Load (see Section 4.3),
except that the system data storage error handler is not
invoked, and reference and change recording need not
be done.

Special Registers Altered:
None

31 /// RA RB 982 /
0 6 11 16 21 31

Because the instruction is treated as a Load, the
effective address is translated using translation
resources that are used for data accesses, even
though the block being invalidated was copied into
the instruction cache based on translation
resources used for instruction fetches (see Book
III).

The invalidation of the specified block need not
have been performed with respect to the processor
executing the icbi instruction until a subsequent
isync instruction has been executed by that pro-
cessor. No other instruction or event has the corre-
sponding effect.

Programming Note

Programming Note

31 / CT RA RB 22 /
0 6 7 11 16 21 31
Power ISA™ II1052

Version 3.1
4.3.2 Data Cache Instructions
The Data Cache instructions control various aspects of
the data cache.

TH field in the dcbt and dcbtst instructions

Described below are the TH field values for the dcbt
and dcbtst instructions. For all TH field values which
are not listed, the hint provided by the instruction is
undefined.

TH=0b00000

If TH=0b00000, the dcbt/dcbtst instruction provides a
hint that the program will probably soon access the
block containing the byte addressed by EA.

TH=0b01000 - 0b01111

The dcbt/dcbtst instructions provide hints regarding a
sequence of accesses to data elements, or indicate the
expected use thereof. Such a sequence is called a
“data stream”, and a dcbt/dcbtst instruction in which
TH is set to one of these values is said to be a “data
stream variant” of dcbt/dcbtst. In the remainder of this
section, “data stream” may be abbreviated to “stream”.

A data stream to which a program may perform Load
accesses is said to be a “load data stream”, and is
described using the data stream variants of the dcbt
instruction. A data stream to which a program may per-
form Store accesses is said to be a “store data stream”,
and is described using the data stream variants of the
dcbtst instruction.

When, and how often, effective addresses for a data
stream are translated is implementation-dependent.

Each data element is associated with a unit of storage,
which is the aligned 128-byte location in storage that
contains the first byte of the element. The data stream
variants may be used to specify the address of the
beginning of the data stream, the displacement (stride)
between the first byte of successive elements, and the
number of unique units of storage that are associated
with all of the data elements. If the stride is specified,
both the stride and the address of the first element are
specified at 4 byte granularity. If the stride is not speci-
fied, the address of the first element is the address of
the first unit.

Each such data stream is associated, by software, with
a stream ID, which is a resource that the processor
uses to distinguish the data stream from other such
data streams. The number of stream IDs is an imple-
mentation-dependent value in the range 1:16. Stream
IDs are numbered sequentially starting from 0.

The encodings of the TH field and of the corresponding
EA values are as follows. In the EA layout diagrams,
fields shown as "/"s are reserved. These reserved fields
are treated in the same manner as the corresponding
case for instruction fields (see Section 1.3.3 of Book I).
If a reserved value is specified for a defined EA field, or
if a TH value is specified that is not explicitly defined
below, the hint provided by the instruction is undefined.

TH Description
01000 The dcbt/dcbtst instruction provides a hint

that describes certain attributes of a data
stream, and may indicate that the program will
probably soon access the stream.

The EA is interpreted as follows.

Bit(s) Description

0:56 EATRUNC

High-order 57 bits of the effective
address of the first element of the data
stream. (i.e., the effective address of
the first unit of the stream is
EATRUNC || 70)

57 Direction (D)

0 Subsequent elements have
increasing addresses.

1 Subsequent elements have
decreasing addresses.

The architecture does not provide a way to specify
the size of the data elements that compose a
stream. An implementation may assume some
fixed size for all data elements. As a result,
depending on the offset, stride, and size (and in
particular whether the elements are aligned), the
implementation may reduce the latency for access-
ing only a portion of some of the elements. A future
version of the architecture may enable the specifi-
cation of element size to avoid this limitation.

Programming Note

The number of stream IDs available for a program
to use may be dependent on the current degree of
multithreading of a processor in the system.

EATRUNC D UG / ID
0 57 59 60 63

Programming Note
Chapter 4. Storage Control Instructions 1053

Version 3.1
58 Unlimited/GO (UG)

0 No information is provided by the
UG field.

1 The number of elements in the
data stream is unlimited, the ele-
ments are adjacent to each other,
the program’s need for each ele-
ment of the stream is not likely to
be transient, and the program will
probably soon access the stream.

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream.

01010 The dcbt/dcbtst instruction provides a hint
that describes certain attributes of a data
stream, or indicates that the program will
probably soon access data streams that have
been described using data stream variants of
the dcbt/dcbtst instruction, or will probably no
longer access such data streams.

The EA is interpreted as follows. If GO=1 and
S≠0b00 the hint provided by the instruction is
undefined; the remainder of this instruction
description assumes that this combination is
not used.

Bit(s) Description

0:31 Reserved

32 GO

0 No information is provided by the
GO field.

1 For dcbt, the program will probably
soon access all nascent load and
store data streams that have been
completely described, and will
probably no longer access all other
nascent load and store data
streams. All other fields of the EA
are ignored. (“Nascent” and “com-
pletely described” are defined
below.) For dcbtst, this field value
holds no meaning and is treated as
though it were zero.

33:34 Stop (S)

00 No information is provided by the S
field.

01 Reserved
10 The program will probably no lon-

ger access the data stream (if any)
associated with the specified

stream ID. (All other fields of the
EA except the ID field are ignored.)

11 For dcbt, the program will probably
no longer access the load and
store data streams associated with
all stream IDs. (All other fields of
the EA are ignored.) For dcbtst,
this field value holds no meaning,
and is treated as though it were
0b00.

35 Reserved

36:38 Depth (DEP)

The DEP field provides a relative esti-
mate of how many elements ahead of
the point of stream use the
latency-reducing actions should go.
This value reflects a comparison of the
rate of consumption of the elements of
the data stream and the latency to
bring an arbitrary element of the stream
into cache. The values are as follows.

39:46 Reserved

47:56 UNITCNT

Number of units in data stream.

57 Transient (T)

If T=1, the program’s need for each
element of the data stream is likely to
be transient (i.e., the time interval
during which the program accesses the
element is likely to be short).

58 Unlimited (U)

If U=1, the number of units in the data
stream is unlimited (and the UNITCNT
field is ignored).

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream
(GO=0 and S=0b00), or stream ID
associated with the data stream which
the program will probably no longer
access(S=0b10).

/// GO S / DEP // UNITCNT T U / ID

0 32 35 36 39 47 57 59 60 63

0 default = DSCRDPFD
1 none
2 shallowest
3 shallow
4 medium
5 deep
6 deeper
7 deepest
Power ISA™ II1054

Version 3.1

01011 The dcbt/dcbtst instruction provides a hint
that describes certain attributes of a data
stream.

The EA is interpreted as follows.

Bit(s) Description

0:31 Reserved

32:49 Stride

The displacement, in words, between
the first byte of successive elements in
the stream. The effective address of
the Nth element in the stream is

(N-1)×STRIDE×4

greater than or less than the effective
address of the first element of the
stream, depending on the direction
specified for the stream.

50 Reserved

51:55 Offset

The word-offset of the first element of
the stream in its unit (i.e., the effective
address of the first element of the
stream is (EATRUNC || OFFSET ||
0b00)).

56:59Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream.

If the specified stream ID value is greater than m -1,
where m is the number of stream IDs provided by the
implementation, and either (a) TH=0b01000 or
TH=0b01011, or (b) TH=0b01010 with GO=0 and
S≠0b11, no hint is provided by the instruction.

 The following terminology is used to describe the state
of a data stream. Except as described in the paragraph
after the next paragraph, the state of a data stream at a
given time is determined by the most recently provided
hint(s) for the stream.

 A data stream for which only descriptive hints have
been provided (by dcbt/dcbtst instructions with
TH=0b01000 and UG=0, TH=0b01010 and GO=0
and S=0b00, and/or with TH=0b01011) is said to
be “nascent”. A nascent data stream for which all
relevant descriptive hints have been provided (by
the dcbt/dcbtst usages listed in the preceding
sentence) is considered to be “completely
described”. The order of descriptive hints with
respect to one another is unimportant.

 A data stream for which a hint has been provided
(by a dcbt/dcbtst instruction with TH=0b01000
and UG=1 or dcbt with TH=0b01010 and GO=1)
that the program will probably soon access it is
said to be “active”.

 A data stream that is either nascent or active is
considered to “exist”.

 A data stream for which a hint has been provided
(e.g., by a dcbt instruction with TH=0b01010 and
S≠0b00) that the program will probably no longer
access it is considered no longer to exist.

The hint provided by a dcbt/dcbtst instruction with
TH=0b01000 and UG=1 implicitly includes a hint that
the program will probably no longer access the data
stream (if any) previously associated with the specified
stream ID. The hint provided by a dcbt/dcbtst instruc-
tion with TH=0b01000 and UG=0, or with TH=0b01010
and GO=0 and S=0b00, or with TH=0b01011 implicitly
includes a hint that the program will probably no longer
access the active data stream (if any) previously asso-
ciated with the specified stream ID.

If a data stream is specified without using a dcbt/
dcbtst instruction with TH=0b01010 and GO=0 and
S=0b00, then the number of elements in the stream is
unlimited, and the program’s need for each element of
the stream is not likely to be transient. If a data stream
is specified without using a dcbt/dcbtst instruction with

To maximize the utility of the Depth control mecha-
nism, the architecture provides a hierarchy of three
ways to program it. The DPFD field in the LPCR is
used by the provisory/firmware to set a safe or
appropriate default depth for unaware operating
systems and applications. The DPFD field in the
DSCR may be initialized by the aware OS and
overwritten by an application via the OS-provided
service when per stream control is unnecessary or
unaffordable. The DEP field in the EA specification
when TH=0b01010 may be used by the application
to specify the depth on a per-stream basis.

The number of elements ahead of the point of
stream use indicated by a given depth value may
differ across implementations, as may the latency
to bring a given element into the cache. To achieve
optimum performance, some experimentation with
different depth values may be necessary.

/// STRIDE OFFSET // ID
0 32 50 56 60 63

Programming Note
A program should use a dcbt/dcbtst instruction
with TH=0b01011 only when the stride is larger
than 128 bytes. Otherwise, consecutive units will
be accessed, so the additional stream information
has no benefit.

Programming Note
Chapter 4. Storage Control Instructions 1055

Version 3.1
TH=0b01011, then the stream will access consecutive
units of storage.

A context switch on a particular thread causes all exist-
ing data streams for that thread to cease to exist. The
mechanism of detection of a context switch is imple-
mentation-dependent. In addition, depending on the
implementation, certain conditions and events may
cause an existing data stream to cease to exist; for
example, in some implementations an existing data
stream ceases to exist when it comes to the end of a
page.
Power ISA™ II1056

Version 3.1
Programming Note

To obtain the best performance across the widest range
of implementations that support the data stream vari-
ants of dcbt/dcbtst, the programmer should assume
the following model when using those variants.

 The processor’s response to a hint that the pro-
gram will probably soon access a given data
stream is to take actions that reduce the latency of
accesses to the first few elements of the stream.
(Such actions may include prefetching cache
blocks into levels of the storage hierarchy that are
“near” the processor.) Thereafter, as the program
accesses each successive element of the stream,
the processor takes latency-reducing actions for
additional elements of the stream, pacing these
actions with the program’s accesses (i.e., taking
the actions for only a limited number of elements
ahead of the element that the program is currently
accessing).

The processor’s response to a hint that the pro-
gram will probably no longer access a given data
stream, or to the cessation of existence of a data
stream, is to stop taking latency-reducing actions
for the stream.

 A data stream having finite length ceases to exist
when the latency-reducing actions have been
taken for all elements of the stream.

 If the program ceases to need a given data stream
before having accessed all elements of the stream
(always the case for streams having unlimited
length), performance may be improved if the pro-
gram then provides a hint that it will no longer
access the stream (e.g., by executing the appropri-
ate dcbt instruction with TH=0b01010 and
S≠0b00).

 At each level of the storage hierarchy that is “near”
the processor, elements of a data stream that is
specified as transient are most likely to be
replaced. As a result, it may be desirable to stag-
ger addresses of streams (choose addresses that
map to different cache congruence classes) to
reduce the likelihood that an element of a transient
stream will be replaced prior to being accessed by
the program.

 Processors that comply with versions of the archi-
tecture that do not support the TH field at all treat
TH = 0b01000, 0b01010, and 0b01011 as if TH =
0b00000.

 A single set of stream IDs is shared between the
dcbt and dcbtst instructions.

 On some implementations, data streams that are
not specified by software may be detected by the
processor. Such data streams are called “hard-
ware-detected data streams”. On some such
implementations, data stream resources
(resources that are used primarily to support data
streams) are shared between software-specified
data streams and hardware-detected data
streams. On these latter implementations, the pro-
gramming model includes the following.

- Software-specified data streams take prece-
dence over hardware-detected data streams
in use of data stream resources.

- The processor’s response to a hint that the
program will probably no longer access a
given data stream, or to the cessation of exis-
tence of a data stream, includes releasing the
associated data stream resources, so that
they can be used by hardware-detected data
streams.
Chapter 4. Storage Control Instructions 1057

Version 3.1

The latency-reducing actions taken in response to
a program's hints about access to a data stream,
including the depth and urgency parameters, may
vary based on its behavior and on the behavior of
other programs sharing platform resources, as well
as on the design of the platform resources they
use. Without actually changing the stream specifi-
cation or DSCR parameters, the processor may
adjust its actions (e.g. slow down prefetches or be
more selective choosing them) based on their
effectiveness and on the availability of storage
bandwidth. In general, the goal of this variation is
to improve overall system performance and fair-
ness across the set of programs that share
resources. There often will be a performance ben-
efit, however, from adjusting stream specifications
to the platform and co-resident programs to adjust
for these actions by the processor.

Programming Note
Power ISA™ II1058

Version 3.1
Programming Note

This Programming Note describes several aspects of
using the data stream variants of the dcbt and dcbtst
instructions.

 A non-transient data stream having unlimited
length and which will access consecutive units in
storage can be completely specified, including pro-
viding the hint that the program will probably soon
access it, using one dcbt instruction. The corre-
sponding specification for a data stream having
other attributes requires two or three dcbt/dcbtst
instructions to describe the stream and one addi-
tional dcbt instruction to start the stream. How-
ever, one dcbt instruction with TH=0b01010 and
GO=1 can apply to a set of the data streams
described in the preceding sentence, so the corre-
sponding specification for n such data streams
requires 2×n to 3×n dcbt/dcbtst instructions plus
one dcbt instruction. (There is no need to execute
a dcbt/dcbtst instruction with TH=0b01010 and
S=0b10 for a given stream ID before using the
stream ID for a new data stream; the implicit por-
tion of the hint provided by dcbt/dcbtst instruc-
tions that describe data streams suffices.)

 If it is desired that the hint provided by a given
dcbt/dcbtst instruction be provided in program
order with respect to the hint provided by another
dcbt/dcbtst instruction, the two instructions must
be separated by an eieio instruction. For example,
if a dcbt instruction with TH=0b01010 and GO=1
is intended to indicate that the program will proba-
bly soon access nascent data streams described
(completely) by preceding dcbt/dcbtst instruc-
tions, and is intended not to indicate that the pro-
gram will probably soon access nascent data
streams described (completely) by following dcbt/
dcbtst instructions, an eieio instruction must sep-
arate the dcbt instruction with GO=1 from the pre-
ceding dcbt/dcbtst instructions, and another eieio
instruction must separate that dcbt instruction
from the following dcbt/dcbtst instructions.

 In practice, the second eieio described above can
sometimes be omitted. For example, if the pro-
gram consists of an outer loop that contains the
dcbt/dcbtst instructions and an inner loop that
contains the Load or Store instructions that access

the data streams, the characteristics of the inner
loop and of the implementation’s branch prediction
mechanisms may make it highly unlikely that hints
corresponding to a given iteration of the outer loop
will be provided out of program order with respect
to hints corresponding to the previous iteration of
the outer loop. (Also, any providing of hints out of
program order affects only performance, not pro-
gram correctness.)

 To mitigate the effects of context switches on data
streams, it may be desirable to specify a given
“logical” data stream as a sequence of shorter,
component data streams. Similar considerations
apply to conditions and events that, depending on
the implementation, may cause an existing data
stream to cease to exist; for example, in some
implementations an existing data stream ceases to
exist when it comes to the end of a virtual page.

 If it is desired to specify data streams without
regard to the number of stream IDs provided by
the implementation, stream IDs should be
assigned to data streams in order of decreasing
stream importance (stream ID 0 to the most
important stream, stream ID 1 to the next most
important stream, etc.). This order ensures that the
hints for the most important data streams will be
provided.

 In practice, it is usually the case that it is preferable
for data streams of the main or parent application
running on a particular thread to be prioritized over
data streams of a leaf or child application or func-
tion call. As an example, a library function call
would usually fall under the category of a leaf func-
tion whose data streams should be treated with
lower priority than those of the parent. As such, it is
advised that programmers writing library functions
or other functions which are expected to have leaf
routing use the lowest stream priority possible. For
example, if a leaf-type function instantiates two
data streams, best practice is to use stream ID 14
for its most important data stream, and stream ID
15 for its second most important stream.

TH=0b10000

If TH=0b10000, the dcbt instruction provides a hint that
the program will probably soon load from the block con-
taining the byte addressed by EA, and that the pro-
gram’s need for the block will be transient (i.e., the time

interval during which the program accesses the block is
likely to be short).
Chapter 4. Storage Control Instructions 1059

Version 3.1

TH=0b10001

If TH=0b10001, the dcbt instruction provides a hint that
the program will probably not access the block contain-
ing the byte addressed by EA for a relatively long
period of time.

The processor’s response to the hint that access to
the block will be transient is to prefetch data into
the cache hierarchy in a way that minimizes the
displacement of data that has not been identified as
transient.

Programming Note
Power ISA™ II1060

Version 3.1
Data Cache Block Touch X-form

dcbt RA,RB,TH

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbt instruction provides a hint that describes a
block or data stream to which the program may perform
a Load access. The instruction is also used to indicate
imminent access or end of access to described load
and store data streams. A hint that the program will
probably soon load from a given storage location is
ignored if the location is Caching Inhibited or Guarded.

The only operation that is “caused” by the dcbt instruc-
tion is the providing of the hint. The actions (if any)
taken by the processor in response to the hint are not
considered to be “caused by” or “associated with” the
dcbt instruction (e.g., dcbt is considered not to cause
any data accesses). No means are provided by which
software can synchronize these actions with the execu-
tion of the instruction stream. For example, these
actions are not ordered by memory barriers.

The dcbt instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified at the beginning of this sec-
tion. If TH≠0b01010 and TH≠0b01011, this instruction
is treated as a Load (see Section 4.3), except that the
system data storage error handler is not invoked, and
reference and change recording need not be done.

Special Registers Altered:
 None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch instruction so that it can be coded with the
TH value as the last operand for all categories, and so
that the transient hint can be specified without coding
the TH field explicitly.

31 TH RA RB 278 /
0 6 11 16 21 31

Extended: Equivalent to:
dcbtct RA,RB,TH dcbt for TH values of 0b00000 -

0b00111;
other TH values are invalid.

dcbtds RA,RB,TH dcbt for TH values of 0b00000 or
0b01000 - 0b01111;

 other TH values are invalid.
dcbtt RA,RB dcbt for TH value of 0b10000
dcbna RA,RB dcbt for TH value of 0b10001

New programs should avoid using the dcbt and
dcbtst mnemonics; one of the extended mnemon-
ics should be used exclusively.

If the dcbt mnemonic is used with only two oper-
ands, the TH operand is assumed to be 0b00000.

Processors that comply with versions of the archi-
tecture that precede Version 2.01 do not necessar-
ily ignore the hint provided by dcbt and dcbtst if
the specified block is in storage that is Guarded
and not Caching Inhibited.

See the Programming Notes at the beginning of
this section.

Programming Notes

Programming Note
Chapter 4. Storage Control Instructions 1061

Version 3.1
Data Cache Block Touch for Store X-form

dcbtst RA,RB,TH

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtst instruction provides a hint that describes a
block or data stream to which the program may perform
a Store access, or indicates the expected use thereof.
A hint that the program will soon store to a given stor-
age location is ignored if the location is Caching Inhib-
ited or Guarded.

The only operation that is “caused by” the dcbtst
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtst instruction (e.g., dcbtst is considered not to
cause any data accesses). No means are provided by
which software can synchronize these actions with the
execution of the instruction stream. For example, these
actions are not ordered by memory barriers.

The dcbtst instruction may complete before the opera-
tion it causes has been performed.

The nature of the hint depends, in part, on the value of
the TH field, as specified at the beginning of this sec-
tion. If TH≠0b01010 and TH≠0b01011, this instruction
is treated as a Store (see Section 4.3), except that the
system data storage error handler is not invoked, refer-
ence recording need not be done, and change record-
ing is not done.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Touch for Store instruction so that it can be coded
with the TH value as the last operand for all categories,
and so that the transient hint can be specified without
coding the TH field explicitly.

31 TH RA RB 246 /
0 6 11 16 21 31

Extended: Equivalent to:
dcbtstct RA,RB,TH dcbtst for TH values of 0b00000

or 0b00000 - 0b00111;
 other TH values are invalid.

dcbtstds RA,RB,TH dcbtst for TH values of 0b00000
or 0b01000 - 0b01111;

 other TH values are invalid.
dcbtstt RA,RB dcbtst for TH value of 0b10000.

See the Programming Notes at the beginning of
this section.

Programming Note
Power ISA™ II1062

Version 3.1
Data Cache Block set to Zero X-form

dcbz RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
n  block size (bytes)
m  log2(n)
ea  EA0:63-m ||

m0
MEM(ea, n)  n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store (see Section 4.3).

Special Registers Altered:
None

Data Cache Block Store X-form

dcbst RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those loca-
tions are written to main storage, additional locations in
the block may be written to main storage, and the block
ceases to be considered to be modified in that data
cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this processor and any
locations in the block are considered to be modified
there, those locations are written to main storage, addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered to be
modified in that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 4.3),
except that reference and change recording need not
be done.

Special Registers Altered:
None

31 /// RA RB 1014 /
0 6 11 16 21 31

dcbz does not cause the block to exist in the data
cache if the block is in storage that is Caching
Inhibited.

For storage that is neither Write Through Required
nor Caching Inhibited, dcbz provides an efficient
means of setting blocks of storage to zero. It can
be used to initialize large areas of such storage, in
a manner that is likely to consume less memory
bandwidth than an equivalent sequence of Store
instructions.

For storage that is either Write Through Required
or Caching Inhibited, dcbz is likely to take signifi-
cantly longer to execute than an equivalent
sequence of Store instructions. For example, on
some implementations dcbz for such storage may
cause the system alignment error handler to be
invoked; on such implementations the system
alignment error handler sets the specified block to
zero using Store instructions.

See Section 6.9.1 of Book III for additional informa-
tion about dcbz.

Programming Note

31 /// RA RB 54 /
0 6 11 16 21 31

Data Cache Block Store to Persistent Storage is
encoded as a variant of Data Cache Block Flush.
This was necessary so that the instruction has the
correct behavior on processors that implement Ver-
sion 3.0C. The extended mnemonic (dcbstps)
indicates the intended function. (There is expected
to be no interest in attaching persistent storage to
processors that comply with versions of the archi-
tecture that precede Version 3.0C.)

Programming Note
Chapter 4. Storage Control Instructions 1063

Version 3.1
Data Cache Block Flush X-form

dcbf RA,RB,L

Let the effective address (EA) be the sum (RA|0)+(RB).

 L=0

If the block containing the byte addressed by EA is
in storage that is Memory Coherence Required
and a block containing the byte addressed by EA
is in the data cache of any processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage. The block is invalidated in the
data caches of all processors.

If the block containing the byte addressed by EA is
in storage that is not Memory Coherence Required
and the block is in the data cache of this processor
and any locations in the block are considered to be
modified there, those locations are written to main
storage and additional locations in the block may
be written to main storage. The block is invalidated
in the data cache of this processor.

L=1 (“dcbf local”)

The L=1 form of the dcbf instruction permits a pro-
gram to limit the scope of the “flush” operation to
the data cache of this processor. If the block con-
taining the byte addressed by EA is in the data
cache of this processor, it is removed from this
cache. The coherence of the block is maintained to
the extent required by the Memory Coherence
Required storage attribute.

L = 3 (“dcbf local primary”)

The L=3 form of the dcbf instruction permits a pro-
gram to limit the scope of the “flush” operation to
the primary data cache of this processor. If the
block containing the byte addressed by EA is in the
primary data cache of this processor, it is removed
from this cache. The coherence of the block is
maintained to the extent required by the Memory
Coherence Required storage attribute.

L = 4 (“data cache block flush to persistent stor-
age”)

The L=4 form of the dcbf instruction performs all of
the functions of dcbf with L=0. After all writes to
main storage, caused by these functions, have
updated main storage, if the block maps to main
storage that is backed by persistent storage then
all locations in the block in main storage that are
considered to be modified relative to persistent
storage are written to persistent storage and addi-

tional locations in the block in main storage may be
written to persistent storage.

L = 6 (“data cache block store to persistent stor-
age”)

The L=6 form of the dcbf instruction performs all of
the functions of dcbst. After all writes to main stor-
age, caused by these functions, have updated
main storage, if the block maps to main storage
that is backed by persistent storage then all loca-
tions in the block in main storage that are consid-
ered to be modified relative to persistent storage
are written to persistent storage and additional
locations in the block in main storage may be writ-
ten to persistent storage.

For the L operand, the values 2, 5, and 7 are reserved.
The results of executing a dcbf instruction with L=2, 5,
or 7 are boundedly undefined.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 4.3),
except that reference and change recording need not
be done.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics are provided for the Data Cache
Block Flush instruction so that it can be coded with the
L value as part of the mnemonic rather than as a
numeric operand. These are shown as examples with
the instruction. See Appendix A. “Assembler Extended
Mnemonics” on page 1105. The extended mnemonics
are shown below.

Except in the dcbf instruction description in this sec-
tion, references to “dcbf” in Books I-III imply L=0
unless otherwise stated or obvious from context;
“dcbfl” is used for L=1, “dcbflp” is used for L=3, “dcb-
fps” is used for L=4, and “dcbstps” is used for L=6.

31 // L RA RB 86 /
0 6 8 11 16 21 31

This form of the dcbf instruction is considered
to be a functional extension of dcbst, and its
extended mnemonic reflects that association.

Extended: Equivalent to:
dcbf RA,RB dcbf RA,RB,0
dcbfl RA,RB dcbf RA,RB,1
dcbflp RA,RB dcbf RA,RB,3
dcbfps RA,RB dcbf RA,RB,4
dcbstps RA,RB dcbf RA,RB,6

Programming Note
Power ISA™ II1064

Version 3.1

4.3.2.1 Obsolete Data Cache Instruc-
tions
The Data Stream Touch (dst), Data Stream Touch for
Store (dstst), and Data Stream Stop (dss) instructions
(primary opcode 31, extended opcodes 342, 374, and
822 respectively), which were proposed for addition to
the Power ISA and were implemented by some proces-
sors, must be treated as no-ops (rather than as illegal
instructions).

The treatment of these instructions is independent of
whether other Vector instructions are available (i.e., is
independent of the contents of MSRVEC (see Book III).

dcbf serves as both a basic and an extended mne-
monic. The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form. In the extended form the L operand is omitted
and assumed to be 0.

dcbf with L=1 can be used to provide a hint that a
block in this processor’s data cache will not be
reused soon.

dcbf with L=3 can be used to flush a block from the
processor’s primary data cache but reduce the
latency of a subsequent access. For example, the
block may be evicted from the primary data cache
but a copy retained in a lower level of the cache
hierarchy.

Programs which manage coherence in software
must use dcbf with L=0 or L=4.

These instructions merely provided hints, and thus
were permitted to be treated as no-ops even on
processors that implemented them.

The treatment of these instructions is independent
of whether other Vector instructions are available
because, on processors that implemented the
instructions, the instructions were available even
when other Vector instructions were not.

The extended mnemonics for these instructions
were dstt, dststt, and dssall.

Programming Note

Programming Note

Programming Note
Chapter 4. Storage Control Instructions 1065

Version 3.1
4.3.3 “or” Instruction

“or” Cache Control Hint
or 26,26,26

This form of or provides a hint that stores caused
by preceding Store and dcbz instructions should
be performed with respect to other processors and
mechanisms as soon as is feasible.

Extended Mnemonics:

Additional extended mnemonic for the or hint:

“miso” is short for “make it so.”

Extended: Equivalent to:
miso or 26,26,26

This form of the or instruction can be used to
reduce latency in producer-consumer applications
by requesting that modified data be made visible to
other processors quickly. In this example it is
assumed that the base register is GPR3.

Producer:
addi r1,r0,0x1234
sth r1,0x1000(r3) # store data value 0x1234
lwsync # order data store before
 flag store
addi r2,r0,0x0001
stb r2,0x1002(r3) # store nonzero flag byte
or r26,r26,r26 # miso

p_loop:
lbz r2,0x1002(r3) # load flag byte
andi. r2,r2,0x00FF
bne p_loop # wait for consumer to clear
 # flag

Consumer:
c_loop:
lbz r2,0x1002(r3) # load flag byte
andi. r2,r2,0x00FF
beq c_loop # wait for producer to set
 # flag to nonzero
lwsync # order flag load before
 # data load
lhz r1,0x1000(r3) # load data value
lwsync # order data load before
 # flag store
addi r2,r0,0x0000
stb r2,0x1002(r3) # clear flag byte
or r26,r26,r26 # miso

Programming Note

Warning: Other forms of or Rx,Rx,Rx that are not
described in this section and in Section 3.2 may
also cause program priority to change. Use of
these forms should be avoided except when soft-
ware explicitly intends to alter program priority. If a
no-op is needed, the preferred no-op (ori 0,0,0)
should be used.

Programming Note
Power ISA™ II1066

Version 3.1
4.4 Copy-Paste Facility

The Copy-Paste Facility provides a means to copy a
block of data from one storage location to another. The
most straightforward application is memcpy. Depend-
ing on the platform configuration, other alternatives
such as posting a work element to an accelerator’s
queue or copying a block to another system may be
supported. The facility uses pairs of instructions, copy
followed by paste., to define the data transfers. (See
Section 1.7.1.1, “Storage Ordering of Copy/Paste-Initi-
ated Data Transfers” for the memory model character-
istics of these data transfers.)

The requirements for use of the platform-specific func-
tionality may vary across implementations. The spe-
cific details are beyond the scope of the Architecture.
Authority to use an accelerator is generally established
through a call to the hypervisor. The format of the work
element is accelerator-specific. Mappings for transfers
between systems are generally managed by the oper-
ating system. Each transfer preserves the order of
bytes in storage and is not affected by the endian mode
of the processor.

Since the buffer that holds the block until a data trans-
fer is performed is hidden state (cannot be saved and
restored) and there is no way to save the state of the
copy, any disruption of program execution (e.g. inter-
rupts, event-based branch) has the potential to prevent
the data transfer from completing correctly. The soft-
ware that handles the disruption is responsible for exe-
cuting cpabort to clear the state associated with an
outstanding data transfer if it will use the Copy-Paste
Facility itself or transfer control to another program that
might use the facility prior to returning control to the
original program.

Correct use of the Copy-Paste Facility consists of a
series of copy/paste. pairs. The two instructions in a
pair need not be adjacent in the instruction stream.
Two or more copy instructions with no intervening
paste. produces a “copy-paste sequence error.” Simi-
larly, a bare paste. with no preceding copy produces a
copy-paste sequence error. Copy-paste sequence
errors are reported by the paste. for the malformed
sequence of instructions.

Successful transfers are indicated when paste. returns
0b001x in CR0. Transient errors (a copy-paste
sequence error, a memory management state change
(tlbie[l]) during the transfer, or an implementation-spe-
cific transient problem) are indicated by a CR0 value of
0b000x, indicating the sequence should be retried. (A
sequence error is considered transient because it could
have been caused by an interruption between the copy
and paste..) Fatal errors unique to the Copy-Paste
Facility (attempting to copy from an accelerator or
attempting to use an accelerator that has not been
properly configured) cause the system data storage
error handler to be invoked when the (associated)
paste. instruction is executed. paste. instructions that
cause or report transient errors, fatal errors unique to
the Copy-Paste Facility, or successful transfer comple-
tion reset the state of the facility so that a subsequent
copy-paste sequence can begin with a clean slate.

A paste. instruction is ordered with respect to its
preceding copy by a dependency on the copy buf-
fer. No explicit synchronization or barrier is
required.

Programming Note

WARNING: In rare circumstances, paste. may
falsely report successful completion when the
copy-paste sequence is coded incorrectly. This
may occur if the instruction sequence includes a
redundant copy and the sequence is interrupted
just prior to the redundant copy. Since interrupts
should be rare, any sequence that returns a false
positive CR0 value should fail for most executions.

It is always best to avoid unnecessary instructions
between the copy and the paste.

For paste. to address space mapped to another
system, OS control over that mapping is deemed to
be a sufficient check on the configuration of the
channel to the other system, so that a unique data
storage interrupt type is not required.

Programming Note

Programming Note

Programming Note
Chapter 4. Storage Control Instructions 1067

Version 3.1

The Copy-Paste Facility is the only means to address
an accelerator. If any other storage access (implicit or
explicit, instruction or data) addresses an accelerator, a
Machine Check exception will result. Unlike other
Machine Check exceptions, this one will generally be
presented with ordering and priority similar to that for a
storage protection exception.

Copy X-form

copy RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
copy_buffer  memory(EA,128)||MEMmetadata(EA,128)

Let the effective address (EA) be the sum (RA|0)+(RB).

The 128 bytes in storage, and associated metadata,
addressed by EA is loaded into the copy buffer.

If the EA is not a multiple of 128, the system alignment
error handler is invoked.

If the specified block is in storage that is Caching Inhib-
ited, the system data storage error handler is invoked

When successful, this instruction is treated as a Load
(see Section 4.3, “Cache Management Instructions”),
except that the data transfer ordering is described in
Section 1.7.1.1, “Storage Ordering of Copy/Paste-Initi-
ated Data Transfers”.

Special Registers Altered:
None

Paste X-form

paste. RA,RB,L

if there was a copy-paste sequence error or a
translation conflict
 CR00b000||XERSO
else
 if RA = 0 then b  0
 else b  (RA)
 EA  b +(RB)
 if L=1 then
 copy_buffer.md0 /* clear metadata in buffer
 post(MEM(EA,128)||MEMmetadata(EA,128))copy_buffer
 wait for completion status
 if there was a data transfer problem
 CR00b000||XERSO
 else
 CR00b001||XERSO
clear the state of the Copy-Paste Facility

If there was a copy-paste sequence error or a transla-
tion conflict, set CR0 to indicate failure. Otherwise,
continue as follows.

Let the effective address (EA) be the sum (RA|0)+(RB).

If L=1, then set metadata bits in the copy buffer to zero.

The physical target of the operation, and by implication
the function to be performed, is determined by the real
address that is translated from EA. If the real address
is in the platform’s system memory, a simple copy is
performed. If the real address has an associated map-
ping to another system, the copy buffer is transmitted to
the other system. If the real address is control memory
for an accelerator, the contents of the copy buffer is
queued to the accelerator. There is a wait for comple-
tion status on the data transfer. CR0 is set as follows
based on the completion status.

The state of the Copy-Paste Facility is cleared.

If MSRPR=1, paste. with L=0 is an invalid form.

If the EA is not a multiple of 128, the system alignment
error handler is invoked.

If the specified block is in storage that is Caching Inhib-
ited, the system data storage error handler is invoked.

A failure of a data transfer may be the result of a
shortage of the resources required to complete the
operation. (Such failures should only take place for
accelerator invocations.) When the resources are
known to be shared by multiple programs, a
credit-based system is frequently used to improve
quality of service. If such a credit system is in use,
or if the resources are not shared, the program
should continually repeat the copy/paste. pair until
it succeeds. However, if no credit system is in use
for shared resources, it may be appropriate to
apply some sort of backoff algorithm after having
retried the copy/paste. pair a few times.

Accelerator address space is to be marked No-exe-
cute by the hypervisor, so that an instruction fetch
will violate storage protection rather than causing a
Machine Check.

31 /// 1 RA RB 774 /
0 6 9 10 11 16 21 31

Programming Note

Programming Note

31 /// L RA RB 902 1
0 6 9 10 11 16 21 31

CR0 Description

0b000||XERSO Data transfer failed due to a
sequence error or a conflict with
tlbie or some implementa-
tion-specific problem.

0b001||XERSO Data transfer successful.
Power ISA™ II1068

Version 3.1
If the associated copy specified an accelerator or the
paste. specifies an accelerator that was not properly
configured, the data storage error handler will be
invoked.

When successful, this instruction is treated as a Store
(see Section 4.3, “Cache Management Instructions”),
except that the data transfer ordering is described in
Section 1.7.1.1, “Storage Ordering of Copy/Paste-Initi-
ated Data Transfers”.

Special Registers Altered:
CR0

Extended Mnemonics:

Extended mnemonic for paste.:

Copy-Paste Abort X-form

cpabort

clear the state of the Copy-Paste Facility

The cpabort instruction causes a data transfer to fail if
one is in progress.

Any pending errors in the Copy-Paste Facility are
cleared and the state is reset to prepare for a new
copy.

Special Registers Altered:
NoneExtended: Equivalent to:

paste. RA,RB paste. RA,RB,1

31 /// /// /// 838 /
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1069

Version 3.1
4.5 Atomic Memory Operations

The Atomic Memory Operation (AMO) facility may be
used to optimize performance when many software
threads are manipulating shared control structures con-
currently. In such situations, accessing the shared data
frequently involves transfering the data from one pro-
cessor’s cache to another. The latency of such trans-
fers can become the limiting factor in the performance
of some environments. Rather than moving the data to
the work, AMOs move the work to the data. The men-
tal model is of an agent consisting of an execution unit
and a work queue near memory that receives atomic
update requests from all the processors in the system.

Despite that AMOs are performed at memory, their
function is only defined for storage that is not Caching
Inhibited. This is done so that software can transpar-
ently access the same data using normal loads and
stores. But furthermore, AMOs generally behave as
typical explicit storage accesses performed by the
thread, with respect to storage access ordering. The
few complications are described below. Since the
performance advantage of AMOs derives from avoiding
time of flight through cache hierarchies, software
should avoid frequent mixing of normal loads and
stores and AMOs to the same storage locations.
AMOs are also restricted to storage that is not Guarded
and storage that is not Write Through Required to limit
implementation complexity.

The facility specifies a set of atomic update operations
that a processor may send, accompanied by operands
from GPRs, to the memory to be performed. The oper-
ations are expressed using the Load Atomic (LAT) and
Store Atomic (STAT) instructions. Each of these
instructions performs an atomic update operation (load
followed by some manipulation and a store) on some
location in storage. As a result, these instructions are
considered to be both fixed-point Load instructions and
fixed-point Store instructions, and any reference else-
where in the architecture to fixed-point Load or
fixed-point Store instructions apply to these instructions
as well, unless otherwise stated or obvious from con-
text. For example, in order to perform an AMO, it is
necessary to have both read and write access to the
storage location. Another example is that the DAWR
will detect a match if either Data Read or Data Write is
selected. Yet another example is that a Trace interrupt
will indicate both a Load and a Store instruction have
been executed. Barrier action will be based on whether
the barrier would give a load or a store the stronger
ordering. The difference between the Load Atomic
instructions and the Store Atomic instructions is simply
that the Load Atomic instructions return a result to a
GPR, while the Store Atomic instructions do not. In the
RTL in the following subsections, the “lat” and “stat”
functions represent the manipulations performed by the
memory agent. The parameters shown are the maxi-
mum storage footprint, the maximum list of registers,

and the function code that are provided to the agent. If
the specified registers wrap (e.g. RT=R31 and
RT+1=R0), the wrapping is permitted. Such an instruc-
tion is not an invalid form. Destructive encodings are
also permitted (i.e. a LAT specified with RT=RA).

Except in this section, references to “atomic update” in
Books I-III imply use of the Load And Reserve and
Store Conditional instructions unless otherwise stated
or obvious from context.

4.5.1 Load Atomic
The Atomic Loads perform an atomic update to an
aligned memory location and return a value to a GPR.
The manipulation performed on the memory value and
the value that is returned in the GPR are determined by
the function code (FC) specified by the instruction. The
name of each function and its associated RTL are
shown in Figure 3.

The best performance for the Atomic Memory
Operations will be realized when the targeted stor-
age locations are accessed only using AMOs. If it
is necessary to perform other I=0 loads and stores
to those addresses, the result will still be correct,
but performance will suffer. In such circumstances,
it is not helpful to performance to flush the data to
memory using dcbf.

Note that the descriptions of AMO operations are
Endian independent. The only effect of Endian on
these operations is the obvious one that byte signif-
icance within an individual datum reflects the
Endian mode.

Programming Note

Programming Note
Power ISA™ II1070

Version 3.1
Function Code GPR operands Storage operands Function name and RTL

00000 RT, RT+1 mem(EA,s) Fetch and Add
 t  mem(EA, s)
 t2  t + (RT+1)
 mem(EA,s)  t2
 RT  t

00001 RT, RT+1 mem(EA,s) Fetch and XOR
 t  mem(EA, s)
 t2  t ⊕ (RT+1)
 mem(EA,s)  t2
 RT  t

00010 RT, RT+1 mem(EA,s) Fetch and OR
 t  mem(EA, s)
 t2  t | (RT+1)
 mem(EA,s)  t2
 RT  t

00011 RT, RT+1 mem(EA,s) Fetch and AND
 t  mem(EA, s)
 t2  t & (RT+1)
 mem(EA,s)  t2
 RT  t

00100 RT, RT+1 mem(EA,s) Fetch and Maximum Unsigned
 t  mem(EA, s)
 if (RT+1) >u t then mem(EA,s)  (RT+1)
 RT  t

00101 RT, RT+1 mem(EA,s) Fetch and Maximum Signed
 t  mem(EA, s)
 if (RT+1) > t then mem(EA,s)  (RT+1)
 RT  t

00110 RT, RT+1 mem(EA,s) Fetch and Minimum Unsigned
 t  mem(EA, s)
 if (RT+1) <u t then mem(EA,s)  (RT+1)
 RT  t

00111 RT, RT+1 mem(EA,s) Fetch and Minimum Signed
 t  mem(EA, s)
 if (RT+1) < t then mem(EA,s)  (RT+1)
 RT  t

01000 RT, RT+1 mem(EA,s) Swap
 t  mem(EA, s)
 mem(EA,s)  (RT+1)
 RT  t

10000 RT, RT1, RT+2 mem(EA,s) Compare and Swap Not Equal
 t  mem(EA, s)
 if t != (RT+1) then mem(EA,s)  (RT+2)
 RT  t

11000 RT mem(EA,s)

mem(EA+s, s)

Fetch and Increment Bounded
 t  mem(EA, s)
 t2  mem(EA+s, s)
 if t != t2 then
 mem(EA,s)  t+1
 RT  t
 else RT  1 << (s*8-1)
Chapter 4. Storage Control Instructions 1071

Version 3.1
Figure 3. Load Atomic function codes

11001 RT mem(EA,s)

mem(EA+s, s)

Fetch and Increment Equal
 t  mem(EA, s)
 t2  mem(EA+s, s)
 if t = t2 then
 mem(EA,s)  t+1
 RT  t
 else RT  1 << (s*8-1)

11100 RT mem(EA-s,s)

mem(EA, s)

Fetch and Decrement Bounded
 t  mem(EA, s)
 t2  mem(EA-s, s)
 if t != t2 then
 mem(EA,s)  t-1
 RT  t
 else RT  1 << (s*8-1)

Notes:
s = operand size in number of bytes
Function codes not listed in this table are considered invalid.
For word atomics, only the least significant word of each source register is used, and the least significant word of

the target register is updated with the result, while the upper word is set to zero.
Power ISA™ II1072

Version 3.1
Load Word Atomic X-form

lwat RT,RA,FC

if RA=0 then EA  0
else EA  (RA)
(RT32:63,mem(EA,4)) lat(mem(EA-4,12), RT+132:63,
RT+232:63, FC)
RT0:310

Let the effective address (EA) be (RA). The least sig-
nificant word of RT and the word of storage at EA are
updated as specified by load atomic function code FC.
The most significant word of RT is set to zero. Input
operands are function code specific, and may include
the least significant words of RT+1 and RT+2, and
mem(EA-4,12)

Figure 3 contains the valid function codes. An attempt
to execute lwat specifying an invalid function code will
cause the system data storage error handler to be
invoked.

EA must be a multiple of 4, and the portion of
mem(EA-4,12) accessed by the instruction must be
contained within an aligned 32-byte block of storage. If
either of these requirements is not satisfied, the system
alignment error handler is invoked.

Special Registers Altered:
None

Load Doubleword Atomic X-form

ldat RT,RA,FC

if RA=0 then EA  0
else EA  (RA)
(RT,mem(EA,8)) lat(mem(EA-8,24), RT+1, RT+2, FC)

Let the effective address (EA) be (RA). RT and the
doubleword of storage at EA are updated as specified
by load atomic function code FC. Input operands are
function code specific, and may include RT+1, RT+2,
and mem(EA-8,24)

Figure 3 contains the valid function codes. An attempt
to execute ldat specifying an invalid function code will
cause the system data storage error handler to be
invoked.

EA must be a multiple of 8, and the portion of
mem(EA-8,24) accessed by the instruction must be
contained within an aligned 32-byte block of storage. If
either of these requirements is not satisfied, the system
alignment error handler is invoked.

Special Registers Altered:
None

31 RT RA FC 582 /
0 6 11 16 21 31

31 RT RA FC 614 /
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1073

Version 3.1
4.5.2 Store Atomic
The Atomic Stores perform an atomic update to an
aligned memory location. The manipulation performed

on the memory value is determined by the function
code (FC) specified by the instruction. The name of
each function and its associated RTL are shown in
Figure 4.

Figure 4. Store Atomic function codes

Function Code GPR operands Storage operands Function name and RTL

00000 RS mem(EA,s) Store Add
 t  mem(EA, s)
 t2  t + (RS)
 mem(EA,s)  t2

00001 RS mem(EA,s) Store XOR
 t  mem(EA, s)
 t2  t ⊕ (RS)
 mem(EA,s)  t2

00010 RS mem(EA,s) Store OR
 t  mem(EA, s)
 t2  t | (RS)
 mem(EA,s)  t2

00011 RS mem(EA,s) Store AND
 t  mem(EA, s)
 t2  t & (RS)
 mem(EA,s)  t2

00100 RS mem(EA,s) Store Maximum Unsigned
 t  mem(EA, s)
 if (RS) >u t then mem(EA,s)  (RS)

00101 RS mem(EA,s) Store Maximum Signed
 t  mem(EA, s)
 if (RS) > t then mem(EA,s)  (RS)

00110 RS mem(EA,s) Store Minimum Unsigned
 t  mem(EA, s)
 if (RS) <u t then mem(EA,s)  (RS)

00111 RS mem(EA,s) Store Minimum Signed
 t  mem(EA, s)
 if (RS) < t then mem(EA,s)  (RS)

11000 RS mem(EA,s)

mem(EA+s, s)

Store Twin
 t  mem(EA, s)
 t2  mem(EA+s, s)
 if t = t2 then
 mem(EA,s)  (RS)
 mem(EA+s,s)  (RS)

Notes:
s = operand size in number of bytes
Function codes not listed in this table are considered invalid.
For word atomics, only the least significant word of each source register is used.
Power ISA™ II1074

Version 3.1
Store Word Atomic X-form

stwat RS,RA,FC

if RA=0 then EA  0
else EA  (RA)
mem(EA,8) stat(mem(EA,8), RS32:63, FC)

Let the effective address (EA) be (RA). Four or eight
bytes of storage at EA are updated as specified by
store atomic function code FC. Input operands are
function code specific, and may include RS32:63 and
mem(EA,8).

Figure 4 contains the valid function codes. An attempt
to execute stwat specifying an invalid function code will
cause the system data storage error handler to be
invoked.

EA must be a multiple of 4, and the portion of
mem(EA,8) accessed by the instruction must be con-
tained within an aligned 32-byte block of storage. If
either of these requirements is not satisfied, the system
alignment error handler is invoked.

Special Registers Altered:
None

Store Doubleword Atomic X-form

stdat RS,RA,FC

if RA=0 then EA  0
else EA  (RA)
mem(EA,16) stat(mem(EA,16), RS, FC)

Let the effective address (EA) be (RA). Eight or sixteen
bytes of storage at EA are updated as specified by
store atomic function code FC. Input operands are
function code specific, and may include RS and
mem(EA,16).

Figure 4 contains the valid function codes. An attempt
to execute stdat specifying an invalid function code will
cause the system data storage error handler to be
invoked.

EA must be a multiple of 8, and the portion of
mem(EA,16) accessed by the instruction must be con-
tained within an aligned 32-byte block of storage. If
either of these requirements is not satisfied, the system
alignment error handler is invoked.

Special Registers Altered:
None

31 RS RA FC 710 /
0 6 11 16 21 31

31 RS RA FC 742 /
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1075

Version 3.1
4.6 Synchronization Instructions

The synchronization instructions are used to ensure
that certain instructions have completed before other

instructions are initiated, or to control storage access
ordering, or to support debug operations.

4.6.1 Instruction Synchronize
Instruction

Instruction Synchronize XL-form

isync

Executing an isync instruction ensures that all instruc-
tions preceding the isync instruction have completed
before the isync instruction completes, and that no
subsequent instructions are initiated until after the
isync instruction completes. It also ensures that all
instruction cache block invalidations caused by icbi
instructions preceding the isync instruction have been
performed with respect to the processor executing the
isync instruction, and then causes any prefetched
instructions to be discarded.

Except as described in the preceding sentence, the
isync instruction may complete before storage
accesses associated with instructions preceding the
isync instruction have been performed.

This instruction is context synchronizing (see Book III).

Special Registers Altered:
None

4.6.2 Load And Reserve and Store
Conditional Instructions
The Load And Reserve and Store Conditional instruc-
tions can be used to construct a sequence of instruc-
tions that appears to perform an atomic update
operation on an aligned storage location. See
Section 1.7.2, “Atomic Update” for additional informa-
tion about these instructions.

The Load And Reserve and Store Conditional instruc-
tions are fixed-point Storage Access instructions; see
Section 3.3.1, “Fixed-Point Storage Access Instruc-
tions”, in Book I.

The storage location specified by the Load And
Reserve and Store Conditional instructions must be in
storage that is Memory Coherence Required if the loca-
tion may be modified by another processor or mecha-
nism. If the specified location is in storage that is Write
Through Required or Caching Inhibited, the system
data storage error handler is invoked.

The Load And Reserve instructions include an Exclu-
sive Access hint (EH), which can be used to indicate
that the instruction sequence being executed is imple-
menting one of two types of algorithms:

Atomic Update (EH=0)
This hint indicates that the program is using a fetch and
operate (e.g., fetch and add) or some similar algorithm
and that all programs accessing the shared variable
are likely to use a similar operation to access the
shared variable for some time.

Exclusive Access (EH=1)
This hint indicates that the program is attempting to
acquire a lock and if it succeeds, will perform another
store to the lock variable (releasing the lock) before
another program attempts to modify the lock variable.

19 /// /// /// 150 /
0 6 11 16 21 31

The Memory Coherence Required attribute on
other processors and mechanisms ensures that
their stores to the reservation granule will cause
the reservation created by the Load And Reserve
instruction to be lost.

Programming Note
Power ISA™ II1076

Version 3.1

Load Byte And Reserve Indexed X-form

lbarx RT,RA,RB,EH

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
RESERVE  1
RESERVE_LENGTH  1
RESERVE_ADDR  real_addr(EA)
RT  560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+(RB).
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

This instruction creates a reservation for use by a
stbcx. or waitrsv instruction. A real address computed
from the EA as described in Section 1.7.2.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation. A length of
1 byte is associated with the reservation, and replaces
any length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the byte in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the byte in storage addressed by EA
regardless of the result of the correspond-
ing stbcx. instruction.

1 Other programs will not attempt to modify
the byte in storage addressed by EA until
the program that has acquired the lock
performs a subsequent store releasing the
lock.

Special Registers Altered:
None

Because the Load And Reserve and Store Condi-
tional instructions have implementation dependen-
cies (e.g., the granularity at which reservations are
managed), they must be used with care. The oper-
ating system should provide system library pro-
grams that use these instructions to implement the
high-level synchronization functions (Test and Set,
Compare and Swap, locking, etc.; see Appendix B)
that are needed by application programs. Applica-
tion programs should use these library programs,
rather than use the Load And Reserve and Store
Conditional instructions directly.

EH = 1 should be used when the program is obtain-
ing a lock variable which it will subsequently
release before another program attempts to per-
form a store to it. When contention for a lock is sig-
nificant, using this hint may reduce the number of
times a cache block is transferred between proces-
sor caches.
EH = 0 should be used when all accesses to a
mutex variable are performed using an instruction
sequence with Load And Reserve followed by
Store Conditional (e.g., emulating atomic update
primitives such as “Fetch and Add;” see
Appendix B). The processor may use this hint to
optimize the cache to cache transfer of the block
containing the mutex variable, thus reducing the
latency of performing an operation such as ‘Fetch
and Add’.

Warning: On some processors that comply with
versions of the architecture that precede Version
2.00, executing a Load And Reserve instruction in
which EH = 1 will cause the illegal instruction error
handler to be invoked.

Programming Note

Programming Note

Programming Note

31 RT RA RB 52 EH
0 6 11 16 21 31

lbarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lbarx
mnemonic with four operands as the basic form,
and a lbarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
Chapter 4. Storage Control Instructions 1077

Version 3.1
Load Halfword And Reserve Indexed
X-form

lharx RT,RA,RB,EH

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
RESERVE  1
RESERVE_LENGTH  2
RESERVE_ADDR  real_addr(EA)
RT  480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+(RB).
The halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

This instruction creates a reservation for use by a
sthcx. or waitrsv instruction. A real address computed
from the EA as described in Section 1.7.2.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation. A length of
2 bytes is associated with the reservation, and replaces
any length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the halfword in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the halfword in storage addressed by EA
regardless of the result of the correspond-
ing sthcx. instruction.

1 Other programs will not attempt to modify
the halfword in storage addressed by EA
until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 2. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

Load Word And Reserve Indexed X-form

lwarx RT,RA,RB,EH

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
RESERVE  1
RESERVE_LENGTH  4
RESERVE_ADDR  real_addr(EA)
RT  320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

This instruction creates a reservation for use by a
stwcx. or waitrsv instruction. A real address com-
puted from the EA as described in Section 1.7.2.1 is
associated with the reservation, and replaces any
address previously associated with the reservation. A
length of 4 bytes is associated with the reservation, and
replaces any length previously associated with the res-
ervation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the word in
storage addressed by EA before some other processor
attempts to modify it.

0 Other programs might attempt to modify
the word in storage addressed by EA
regardless of the result of the correspond-
ing stwcx. instruction.

1 Other programs will not attempt to modify
the word in storage addressed by EA until
the program that has acquired the lock
performs a subsequent store releasing the
lock.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

31 RT RA RB 116 EH
0 6 11 16 21 31

lharx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lharx
mnemonic with four operands as the basic form,
and a lharx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note

31 RT RA RB 20 EH
0 6 11 16 21 31

lwarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lwarx
mnemonic with four operands as the basic form,
and a lwarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
Power ISA™ II1078

Version 3.1
Store Byte Conditional Indexed X-form

stbcx. RS,RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
if RESERVE then
 if RESERVE_LENGTH = 1 &
 RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 1)  (RS)56:63
 undefined_case  0
 store_performed  1
 else
 z  smallest real page size supported by
 implementation
 if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
 undefined_case  1
 else
 undefined_case  0
 store_performed  0
else
 undefined_case  0
 store_performed  0
if undefined_case then
 u1  undefined 1-bit value
 if u1 then
 MEM(EA, 1)  (RS)56:63
 u2  undefined 1-bit value
 CR0  0b00 || u2 || XERSO
else
 CR0  0b00 || store_performed || XERSO
RESERVE  0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 1 byte, and the real storage location
specified by the stbcx. is the same as the real storage
location specified by the lbarx instruction that estab-
lished the reservation, (RS)56:63 are stored into the
byte in storage addressed by EA.

If a reservation exists, and either the length associated
with the reservation is not 1 byte or the real storage
location specified by the stbcx. is not the same as the
real storage location specified by the lbarx instruction
that established the reservation, the following applies.
Let z denote the smallest real page size supported by
the implementation. If the real storage location speci-
fied by the stbcx. is in the same aligned z-byte block of
real storage as the real storage location specified by
the lbarx instruction that established the reservation, it
is undefined whether (RS)56:63 are stored into the byte
in storage addressed by EA. Otherwise, no store is per-
formed.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether

the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

Special Registers Altered:
CR0

31 RS RA RB 694 1
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1079

Version 3.1
Store Halfword Conditional Indexed
X-form

sthcx. RS,RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
if RESERVE then
 if RESERVE_LENGTH = 2 &
 RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 2)  (RS)48:63
 undefined_case  0
 store_performed  1
 else
 z  smallest real page size supported by
 implementation
 if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
 undefined_case  1
 else
 undefined_case  0
 store_performed  0
else
 undefined_case  0
 store_performed  0
if undefined_case then
 u1  undefined 1-bit value
 if u1 then
 MEM(EA, 2)  (RS)48:63
 u2  undefined 1-bit value
 CR0  0b00 || u2 || XERSO
else
 CR0  0b00 || store_performed || XERSO
RESERVE  0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 2 bytes, and the real storage location
specified by the sthcx. is the same as the real storage
location specified by the lharx instruction that estab-
lished the reservation, (RS)48:63 are stored into the
halfword in storage addressed by EA.

If a reservation exists, and either the length associated
with the reservation is not 2 bytes or the real storage
location specified by the sthcx. is not the same as the
real storage location specified by the lharx instruction
that established the reservation, the following applies.
Let z denote the smallest real page size supported by
the implementation. If the real storage location speci-
fied by the sthcx. is in the same aligned z-byte block of
real storage as the real storage location specified by
the lharx instruction that established the reservation, it
is undefined whether (RS)48:63 are stored into the half-
word in storage addressed by EA. Otherwise, no store
is performed.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,

per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 2. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RS RA RB 726 1
0 6 11 16 21 31
Power ISA™ II1080

Version 3.1
Store Word Conditional Indexed X-form

stwcx. RS,RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
if RESERVE then
 if RESERVE_LENGTH = 4 &
 RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 4)  (RS)32:63
 undefined_case  0
 store_performed  1
 else
 z  smallest real page size supported by
 implementation
 if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
 undefined_case  1
 else
 undefined_case  0
 store_performed  0
else
 undefined_case  0
 store_performed  0
if undefined_case then
 u1  undefined 1-bit value
 if u1 then
 MEM(EA, 4)  (RS)32:63
 u2  undefined 1-bit value
 CR0  0b00 || u2 || XERSO
else
 CR0  0b00 || store_performed || XERSO
RESERVE  0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 4 bytes, and the real storage location
specified by the stwcx. is the same as the real storage
location specified by the lwarx instruction that estab-
lished the reservation, (RS)32:63 are stored into the
word in storage addressed by EA.

If a reservation exists, and either the length associated
with the reservation is not 4 bytes or the real storage
location specified by the stwcx. is not the same as the
real storage location specified by the lwarx instruction
that established the reservation, the following applies.
Let z denote the smallest real page size supported by
the implementation. If the real storage location speci-
fied by the stwcx. is in the same aligned z-byte block of
real storage as the real storage location specified by
the lwarx instruction that established the reservation, it
is undefined whether (RS)32:63 are stored into the word
in storage addressed by EA. Otherwise, no store is per-
formed.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether

the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RS RA RB 150 1
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1081

Version 3.1
4.6.2.1 64-Bit Load And Reserve and Store Conditional Instructions

Load Doubleword And Reserve Indexed
X-form

ldarx RT,RA,RB,EH

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
RESERVE  1
RESERVE_LENGTH  8
RESERVE_ADDR  real_addr(EA)
RT  MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

This instruction creates a reservation for use by a
stdcx. or waitrsv instruction. A real address computed
from the EA as described in Section 1.7.2.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation. A length of
8 bytes is associated with the reservation, and replaces
any length previously associated with the reservation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the double-
word in storage addressed by EA before some other
processor attempts to modify it.

0 Other programs might attempt to modify
the doubleword in storage addressed by
EA regardless of the result of the corre-
sponding stdcx. instruction.

1 Other programs will not attempt to modify
the doubleword in storage addressed by
EA until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

Store Doubleword Conditional Indexed
X-form

stdcx. RS,RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
if RESERVE then
 if RESERVE_LENGTH = 8 &
 RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 8)  (RS)
 undefined_case  0
 store_performed  1
 else
 z  smallest real page size supported by
 implementation
 if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
 undefined_case  1
 else
 undefined_case  0
 store_performed  0
else
 undefined_case  0
 store_performed  0
if undefined_case then
 u1  undefined 1-bit value
 if u1 then
 MEM(EA, 8)  (RS)
 u2  undefined 1-bit value
 CR0  0b00 || u2 || XERSO
else
 CR0  0b00 || store_performed || XERSO
RESERVE  0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 8 bytes, and the real storage location
specified by the stdcx. is the same as the real storage
location specified by the ldarx instruction that estab-
lished the reservation, (RS) is stored into the double-
word in storage addressed by EA.

If a reservation exists, and either the length associated
with the reservation is not 8 bytes or the real storage
location specified by the stdcx. is not the same as the
real storage location specified by the ldarx instruction
that established the reservation, the following applies.
Let z denote the smallest real page size supported by
the implementation. If the real storage location speci-
fied by the stdcx. is in the same aligned z-byte block of
real storage as the real storage location specified by
the ldarx instruction that established the reservation, it
is undefined whether (RS) is stored into the double-
word in storage addressed by EA. Otherwise, no store
is performed.

If a reservation does not exist, no store is performed.

31 RT RA RB 84 EH
0 6 11 16 21 31

ldarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a ldarx
mnemonic with four operands as the basic form,
and a ldarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note

31 RS RA RB 214 1
0 6 11 16 21 31
Power ISA™ II1082

Version 3.1
CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,
per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0
Chapter 4. Storage Control Instructions 1083

Version 3.1
4.6.2.2 128-bit Load And Reserve and Store Conditional Instructions
For lqarx, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA
and the odd-numbered GPR is loaded with the double-
word addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

In the preferred form of the Load Quadword instruction
RA ≠ RTp+1 and RB ≠ RTp+1.

For stqcx., the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Lit-
tle-Endian mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

Load Quadword And Reserve Indexed
X-form

lqarx RTp,RA,RB,EH

if RA = 0 then b  0
else b  (RA)
EA  b +(RB)
RESERVE  1
RESERVE_LENGTH  16
RESERVE_ADDR  real_addr(EA)
RTp  MEM(EA, 16)

Let the effective address (EA) be the sum (RA|0)+(RB).
The quadword in storage addressed by EA is loaded
into RTp.

This instruction creates a reservation for use by a
stqcx. or waitrsv instruction. A real address computed
from the EA as described in Section 1.7.2.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation. A length of
16 bytes is associated with the reservation, and
replaces any length previously associated with the res-
ervation.

The value of EH provides a hint as to whether the pro-
gram will perform a subsequent store to the double-
word in storage addressed by EA before some other
processor attempts to modify it.

0 Other programs might attempt to modify
the doubleword in storage addressed by
EA regardless of the result of the corre-
sponding stqcx. instruction.

1 Other programs will not attempt to modify
the doubleword in storage addressed by
EA until the program that has acquired the
lock performs a subsequent store releas-
ing the lock.

EA must be a multiple of 16. If it is not, either the sys-
tem alignment error handler is invoked or the results
are boundedly undefined.

If RTp is odd, RTp=RA, or RTp=RB the instruction form
is invalid. If RTp=RA or RTp=RB, an attempt to execute
this instruction will invoke the system illegal instruction
error handler. (The RTp=RA case includes the case of
RTp=RA=0.)

Special Registers Altered:
None

31 RTp RA RB 276 EH
0 6 11 16 21 31

lqarx serves as both a basic and an extended
mnemonic. The Assembler will recognize a lqarx
mnemonic with four operands as the basic form,
and a lqarx mnemonic with three operands as the
extended form. In the extended form the EH oper-
and is omitted and assumed to be 0.

Programming Note
Power ISA™ II1084

Version 3.1
Store Quadword Conditional Indexed
X-form

stqcx. RSp,RA,RB

if RA = 0 then b  0
else b  (RA)
EA  b + (RB)
if RESERVE then
 if RESERVE_LENGTH = 16 &
 RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 16)  (RSp)
 undefined_case  0
 store_performed  1
 else
 z  smallest real page size supported by
 implementation
 if RESERVE_ADDR ÷ z = real_addr(EA) ÷ z then
 undefined_case  1
 else
 undefined_case  0
 store_performed  0
else
 undefined_case  0
 store_performed  0
if undefined_case then
 u1  undefined 1-bit value
 if u1 then
 MEM(EA, 16)  (RSp)
 u2  undefined 1-bit value
 CR0  0b00 || u2 || XERSO
else
 CR0  0b00 || store_performed || XERSO
RESERVE  0

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists, the length associated with the
reservation is 16 bytes, and the real storage location
specified by the stqcx. is the same as the real storage
location specified by the lqarx instruction that estab-
lished the reservation, (RSp) is stored into the quad-
word in storage addressed by EA.

If a reservation exists, and either the length associated
with the reservation is not 16 bytes or the real storage
location specified by the stqcx. is not the same as the
real storage location specified by the lqarx instruction
that established the reservation, the following applies.
Let z denote the smallest real page size supported by
the implementation. If the real storage location speci-
fied by the stqcx. is in the same aligned z-byte block of
real storage as the real storage location specified by
the lqarx instruction that established the reservation, it
is undefined whether (RSp) is stored into the quadword
in storage addressed by EA. Otherwise, no store is per-
formed.

If a reservation does not exist, no store is performed.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if,

per the preceding description, it is undefined whether
the store is performed, the value of n is undefined (and
need not reflect whether the store was performed).

CR0LT GT EQ SO = 0b00 || n || XERSO

The reservation is cleared.

EA must be a multiple of 16. If it is not, either the sys-
tem alignment error handler is invoked or the results
are boundedly undefined.

If RSp is odd, the instruction form is invalid.

Special Registers Altered:

CR0

31 RSp RA RB 182 1
0 6 11 16 21 31
Chapter 4. Storage Control Instructions 1085

Version 3.1
4.6.3 Memory Barrier Instructions
The Memory Barrier instructions can be used to control
the order in which storage accesses and data transfers
are performed. Additional information about these

instructions and about related aspects of storage man-
agement can be found in Book III.

Synchronize X-form

sync L,SC

if SC¹0 then switch(SC)
 case(1): stncisync
 case(2): stcisync
 case(3): stsync
else switch(L)
 case(0): hwsync
 case(1): lwsync
 case(2): ptesync
 case(4): phwsync
 case(5): plwsync

The sync instruction creates a memory barrier (see
Section 1.7.1). The set of storage accesses and/or data
transfers that is ordered by the memory barrier
depends on the contents of the L and SC fields as fol-
lows.

SC≠0
 SC=1 (“store not caching inhibited sync”)

The memory barrier provides an ordering
function for the storage accesses caused by
Store and dcbz instructions that are executed
by the processor executing the sync instruc-
tion and for which the specified storage loca-
tion is in storage that is not Caching Inhibited.
The applicable pairs are all pairs ai,bj of such
storage accesses.

 SC=2 (“store caching inhibited sync”)
The memory barrier provides an ordering
function for the storage accesses caused by
Store and dcbz instructions that are executed
by the processor executing the sync instruc-
tion and for which the specified storage loca-
tion is in storage that is Caching Inhibited.
The applicable pairs are all pairs ai,bj of such
storage accesses.

 SC=3 (“store sync”)
The memory barrier provides an ordering
function for the storage accesses caused by
Store and dcbz instructions that are executed
by the processor executing the sync instruc-
tion. The applicable pairs are all pairs ai,bj of
such storage accesses.

SC=0

 L=0 (“heavyweight sync”)
The memory barrier provides an ordering
function for the storage accesses and data
transfers associated with all instructions that
are executed by the processor executing the
sync instruction with the exception of dcbfps
and dcbstps. The applicable pairs are all pairs
ai,bj of such storage accesses and data trans-
fers in which bj is a data access or data trans-
fer, except that if ai is the storage access
caused by an icbi instruction then bj may be
performed with respect to the processor exe-
cuting the sync instruction before ai is per-
formed with respect to that processor.

 L=1 (“lightweight sync”)
The memory barrier provides an ordering
function for the storage accesses caused by
Load, Store, and dcbz instructions that are
executed by the processor executing the sync
instruction and for which the specified storage
location is in storage that is Memory Coher-
ence Required and is neither Write Through
Required nor Caching Inhibited. The applica-
ble pairs are all pairs ai,bj of such storage
accesses except those in which ai is an
access caused by a Store or dcbz instruction
and bj is an access caused by a Load instruc-
tion.

 L=2 (“ptesync”)
The set of storage accesses that is ordered by
the memory barrier is described in
Section 6.9.2 of Book III, as are additional
properties of the sync instruction with L=2.

 L=4 (“persistent heavyweight sync”)
The ordering done by the memory barrier is
the same as for sync with L=0, but extended
by adding accesses caused by dcbfps and
dcbstps to both the set A and the set B of the
barrier. In addition, the memory barrier
ensures that all stores for which the modifica-
tions are written to persistent storage by pre-
ceding dcbfps and dcbstps instructions have
updated persistent storage before any data
access or data transfer caused by subsequent
instructions is initiated.

 L=5 (“persistent lightweight sync”)
The ordering done by the memory barrier is
the same as for sync with L=1, but extended
by adding accesses caused by dcbfps and
dcbstps to both the set A and the set B of the
barrier. In addition, the memory barrier
ensures that all stores for which the modifica-

31 // L /// SC ///

16

598 /

0 6 8 11 14 21 31
Power ISA™ II1086

Version 3.1
tions are written to persistent storage by pre-
ceding dcbfps and dcbstps instructions have
updated persistent storage before any store in
set B updates persistent storage.

The ordering done by the memory barrier is cumulative
(regardless of the L and SC values).

If L=0 or L=4 (or L=2), the sync instruction has the fol-
lowing additional properties.

 Executing the sync instruction ensures that all
instructions preceding the sync instruction have
completed before the sync instruction completes,
and that no subsequent instructions are initiated
until after the sync instruction completes.

 The sync instruction is execution synchronizing
(see Book III). However, address translation and
reference and change recording (see Book III)
associated with subsequent instructions may be
performed before the sync instruction completes.

 The memory barrier provides the additional order-
ing function such that if a given instruction that is
the result of a store in set B is executed, all appli-
cable storage accesses in set A have been per-
formed with respect to the processor executing the
instruction to the extent required by the associated
memory coherence properties. The single excep-
tion is that any storage access in set A that is
caused by an icbi instruction executed by the pro-

cessor executing the sync instruction (P1) may not
have been performed with respect to P1 (see the
description of the icbi instruction on page 1052).

The cumulative properties of the memory barrier
apply to the execution of the given instruction as
they would to a load that returned a value that was
the result of a store in set B.

The L values 3, 6, and 7 are reserved.

The sync instruction may complete before storage
accesses associated with instructions preceding the
sync instruction have been performed.

Figure 5 shows the valid combinations of SC and L val-
ues. Instructions that use any of these combinations
will execute correctly on processors that comply with
versions of the architecture that precede Version 3.1 (in
which versions the L field is two bits long, the SC field
does not exist, and bits 8 and 14:15 of the sync instruc-
tion are reserved) and on processors that comply with
Version 3.1 and subsequent versions of the architec-
ture. If any other combination is used, the instruction
form is invalid.

Figure 5. Interpretation of the L and SC fields

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Synchronize:

Except in the sync instruction description in this sec-
tion, references to “sync” in Books I-III imply L=0

Section 1.8 contains a detailed description of
how to modify instructions such that a
well-defined result is obtained.

Programming Note

SC L Intended barrier for processors
that comply with V. 3.1 or later

Intended barrier for processors
that comply with V. 3.0C or earlier

1 1 stncisync lwsync
2 0 stcisync hwsync
3 0 stsync hwsync
0 0 hwsync hwsync
0 1 lwsync lwsync
0 2 ptesync ptesync
0 4 phwsync hwsync*
0 5 plwsync lwsync*

* depends on details of the bus interface design to have proper persistent storage semantics

Extended: Equivalent to:
sync sync 0,0
sync x sync x,0
hwsync sync 0,0

lwsync sync 1,0
ptesync sync 2,0
phwsync sync 4,0
plwsync sync 5,0
stncisync sync 1,1
stcisync sync 0,2
stsync sync 0,3

Extended: Equivalent to:
Chapter 4. Storage Control Instructions 1087

Version 3.1
unless otherwise stated or obvious from context; the
appropriate extended mnemonics are used when other
L values are intended. Throughout Books I-III, refer-
ences to the L field imply SC=0 unless otherwise stated
or obvious from context. The SC field is mentioned
explicitly, or the appropriate extended mnemonics are
used, when non-zero SC values are intended. Some
programming examples and recommendations assume
a programming model that does not include the
store-specific variants of sync. Improved performance
may be achieved through the use of store-specific
memory barriers in some cases.

Enforce In-order Execution of I/O X-form

eieio

The eieio instruction creates a memory barrier (see
Section 1.7.1, “Storage Access Ordering”), which pro-
vides an ordering function for the storage accesses
caused by Load, Store, and dcbz instructions executed
by the processor executing the eieio instruction. These
storage accesses are divided into the two sets listed
below. The storage access caused by a dcbz instruc-
tion is ordered as a store.

1. Loads and stores to storage that is both Caching
Inhibited and Guarded, and stores to main storage
caused by stores to storage that is Write Through
Required.

The applicable pairs are all pairs ai,bj of such
accesses.

2. Stores to storage that is Memory Coherence
Required and is neither Write Through Required
nor Caching Inhibited.

The applicable pairs are all pairs ai,bj of such
accesses.

The operations caused by the stream variants of the
dcbt and dcbtst instructions (i.e., the providing of
hints) are ordered by eieio as a third set of operations,
the operations caused by tlbie and tlbsync instructions
(see Book III) are ordered by eieio as a fourth set of
operations, and the operations caused by slbieg or
slbiag and slbsync instructions (see Book III) are
ordered by eieio as a fifth set of operations.

Each of the five sets of storage accesses or operations
is ordered independently of the other four sets. The
ordering done by eieio's memory barrier for the second
set is cumulative; the ordering done by eieio's memory
barrier for the other four sets is not cumulative.

The eieio instruction may complete before storage
accesses associated with instructions preceding the
eieio instruction have been performed. The eieio
instruction may complete before operations caused by
dcbt and dcbtst instructions preceding the eieio
instruction have been performed

Special Registers Altered:
None

sync serves as both a basic and an extended mne-
monic. The Assembler will recognize a sync mne-
monic with two operands as the basic form, and a
sync mnemonic with one operand or with no oper-
and as an extended form. In the extended form
with one operand the SC operand is omitted and
assumed to be 0. In the extended form with no
operand the L and SC operands are omitted and
assumed to be 0.

The sync instruction can be used to ensure that all
stores into a data structure, caused by Store
instructions executed in a “critical section” of a pro-
gram, will be performed with respect to another
processor before the store that releases the lock is
performed with respect to that processor; see
Section B.2, “Lock Acquisition and Release, and
Related Techniques” on page 1109.

The memory barrier created by a sync instruction
with L=1 (or with SC≠0) does not order implicit stor-
age accesses or instruction fetches. The memory
barrier created by a sync instruction with L=0 (or
L=2) orders implicit storage accesses and instruc-
tion fetches associated with instructions preceding
the sync instruction but not those associated with
instructions following the sync instruction.

In order to obtain the best performance across the
widest range of implementations, the programmer
should use the sync instruction with L=1 or with
SC≠0, or the eieio instruction, if any of these is suf-
ficient for his needs; otherwise he should use sync
with L=0 (or with L=4 or L=5 if he needs to order
accesses to persistent storage). sync with L=2
should not be used by application programs.

The functions provided by sync with L=1 and with
SC≠0 are a strict subset of those provided by sync
with L=0. (The functions provided by sync with L=2
are a strict superset of those provided by sync with
L=4; see Book III.)

Programming Note

Programming Note

Programming Note

31 /// /// /// 854 /
0 6 11 16 21 31
Power ISA™ II1088

Version 3.1

The eieio instruction is intended for use in doing
memory-mapped I/O). Because loads, and sepa-
rately stores, to storage that is both Caching Inhib-
ited and Guarded are performed in program order
(see Section 1.7.1, “Storage Access Ordering” on
page 1034), eieio is needed for such storage only
when loads must be ordered with respect to stores.

For the eieio instruction, accesses in set 1, ai and
bj need not be the same kind of access or be to
storage having the same storage control attributes.
For example, ai can be a load to Caching Inhibited,
Guarded storage, and bj a store to Write Through
Required storage.

If stronger ordering is desired than that provided by
eieio, the sync instruction must be used, with the
appropriate value in the L field.

The functions provided by eieio for its second set
are a strict subset of those provided by sync with
L=1.

Programming Note

Programming Note
Chapter 4. Storage Control Instructions 1089

Version 3.1
4.6.4 Wait Instruction

The wait instruction is used to stop instruction fetching
and execution until certain events occur. These events
include exceptions (see Section 1.2.1 of Book III),

event-based branch exceptions (see Section 1.1), the
passage of a specified amount of time, and the modifi-
cation of a storage location.

Wait X-form

wait WC,PL

The wait instruction causes instruction fetching and
execution to be suspended under certain conditions,
depending on the values of the WC and PL fields.
Instruction fetching and execution are resumed when
the events specified by the WC field occur or in the rare
case of an implementation-dependent event.

The values of the WC field are as follows.

0 Resume instruction fetching and execution
when an exception or event-based branch
exception occurs.

1 Resume instruction fetching and execution
when an exception or event-based branch
exception occurs, or when a reservation made
by the processor does not exist (see Section
1.7.2.1).

2 Resume instruction fetching and execution
when an exception or event-based branch
exception occurs, or when the amount of time
specified by the PL field has passed.

3 Reserved.

The values of the PL field are as follows.

0b00 A short wait time is specified.

0b01:11 Reserved.

If WC=0, or if WC=1 and a reservation made by the
processor exists, or if WC=2 and a value for PL that is
not reserved is specified, the following applies.
 Upon completion of the instruction, instruction

fetching and execution is suspended.
 Instruction fetching and execution resumes when

any of the following conditions are met.

- An exception or event-based branch excep-
tion occurs.

- WC=1 and a reservation made by the proces-
sor does not exist.

- WC=2 and the specified amount of time has
passed.

- An implementation-dependent event occurs.

If WC=1 and a reservation made by the processor does
not exist, or if WC=2 and a reserved value of PL is
specified, the instruction is treated as a no-op.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for wait:

Except in this section, references to “wait” in Books I-III
include all defined forms of wait unless otherwise
stated or obvious from context.

31 ?? / WC /// PL /// 30 /
0 6 8 9 11 14 16 21 31

Because the waiting begins when the instruction
completes, if the waiting is ended by an exception
that causes a change of control flow (interrupt,
event-based branch), the SPR that is set to reflect
the point in the instruction stream at which the
change of control flow occurred (e.g., SRR0 for a
Decrementer interrupt) will contain the EA of the
instruction following the wait instruction.

Bits 6 and 7 of the wait instruction may be used in
some implementations for an implementa-
tion-dependent field. Unless the intention is to use
the implementation-dependent field, these bits
must be coded zero.

Extended: Equivalent to:
wait wait 0,0
wait 0 wait 0,0
wait 1 wait 1,0
waitrsv wait 1,0
pause_short wait 2,0

wait serves as both a basic and an extended mne-
monic. The Assembler will recognize a wait mne-
monic with two operands as the basic form and a
wait mnemonic with one operand or with no oper-
and as an extended form. In the extended form with
one operand the PL operand is omitted and
assumed to be 0. In the extended form with no
operand the WC and PL operands are omitted and
assumed to be 0.

Engineering NoteProgramming NoteProgramming Note

Engineering NoteProgramming NoteProgramming Note

Engineering NoteProgramming NoteProgramming Note
Power ISA™ II1090

Version 3.1

The wait instruction frees computational resources
which might be allocated to another program or
converted into power savings.

Since exceptions corresponding to system-caused
interrupts (see Section 7.4 of Book III) may occur at
any time, including immediately prior to the wait
instruction, applications should not depend on
them to cause wait to resume. In order to ensure
timely resumption, therefore, applications should
execute wait only in order to suspend processing
until an event-based branch exception or loss of
reservation occurs or a specified amount of time
has passed.

Also, since exceptions corresponding to interrupts
can cause wait to resume at any time without any
EBB exception or loss of reservation having
occurred, and in consideration of the possibility of
resuming because of an implementation-depen-
dent event, programs that execute wait should
check that the expected condition has actually
occurred after the wait instruction completes. If the
expected condition has not occurred, wait should
be re-executed. An example code usage is shown
below.

while (¬expected condition), wait

Applications that execute wait in order to suspend
processing until an external event-based branch
exception occurs (see Section 6.2) should enable
external event-based branch exceptions (by setting
BESCREE=1) and disable event-based branches
(by setting BESCRGE=0) before executing wait. If
BESCRGE=1, then the expected event-based
branch exception may cause the corresponding
event-based branch to occur immediately prior to
execution of the wait instruction. This will result in a
hang condition since the EBB exception that was
expected to cause wait to resume will have already
occurred.

Engineering NoteProgramming NoteProgramming Note

Programming Note

Programming Note
Chapter 4. Storage Control Instructions 1091

Version 3.1
Power ISA™ II1092

Version 3.1
Chapter 5. Time Base

The Time Base (TB) is a 64-bit register (see Figure 6)
containing a 64-bit unsigned integer that is incremented
periodically as described below.

Figure 6. Time Base

The Time Base monotonically increments until its value
becomes 0xFFFF_FFFF_FFFF_FFFF (264 - 1); at the
next increment its value becomes
0x0000_0000_0000_0000. There is no interrupt or
other indication when this occurs.

The suggested frequency at which the time base incre-
ments is 512 MHz, however, variation from this rate is
allowed provided the following requirements are met.

- The contents of the Time Base differ by no
more than +/- four counts from what they
would be if they incremented at the required
frequency.

- Bit 63 of the Time Base is set to 1 between
30% and 70% of the time over any time inter-
val of at least 16 counts.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock.
The Time Base update frequency is not required to be
constant. What is required, so that system software
can keep time of day and operate interval timers, is one
of the following.

 The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

 The update frequency of the Time Base is under
the control of the system software.

TBU TBL
0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

If the operating system initializes the Time Base on
power-on to some reasonable value and the
update frequency of the Time Base is constant, the
Time Base can be used as a source of values that
increase at a constant rate, such as for time stamps
in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0). If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

Programming Note
Chapter 5. Time Base 1093

Version 3.1
5.1 Time Base Instructions
Move From Time Base XFX-form

mftb RT,TBR
[Phased-Out]

This instruction behaves as if it were an mfspr instruc-
tion; see the mfspr instruction description in
Section 3.3.18 of Book I.

Special Registers Altered:

None

Extended Mnemonics:

Extended mnemonics for Move From Time Base:

31 RT tbr 371 /
0 6 11 21 31

Extended: Equivalent to:

mftb Rx mftb Rx,268
mfspr Rx,268

mftbu Rx mftb Rx,269
mfspr Rx,269

New programs should use mfspr instead of mftb
to access the Time Base.

mftb serves as both a basic and an extended mne-
monic. The Assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form. In the extended form the TBR
operand is omitted and assumed to be 268 (the
value that corresponds to TB).

Programming Note

Programming Note

The mfspr instruction can be used to read the Time
Base on all processors that comply with Version
2.01 of the architecture or with any subsequent
version.

It is believed that the mfspr instruction can be used
to read the Time Base on most processors that
comply with versions of the architecture that pre-
cede Version 2.01. Processors for which mfspr
cannot be used to read the Time Base include the
following.

- 601
- POWER3

(601 implements neither the Time Base nor mftb,
but depends on software using mftb to read the
Time Base, so that the attempt causes the Illegal
Instruction error handler to be invoked and thereby
permits the operating system to emulate the Time
Base.)

Programming Note
Power ISA™ II1094

Version 3.1
Programming Note

Since the update frequency of the Time Base is imple-
mentation-dependent, the algorithm for converting the
current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base increments
at the constant rate of 512 MHz. (Note, however, that
programs should allow for the possibility that some
implementations may not increment the least-signifi-
cant 4 bits of the Time Base at a constant rate.) What is
wanted is the pair of 32-bit values comprising a POSIX
standard clock:1 the number of whole seconds that
have passed since 00:00:00 January 1, 1970, UTC,
and the remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

 The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a simple
64-bit subtraction will make it so).

 The integer constant ticks_per_sec contains the
value 512,000,000, which is the number of times
the Time Base is updated each second.

 The integer constant ns_adj contains the value

 × 232 / 2 = 4194304000

which is the number of nanoseconds per tick of the
Time Base, multiplied by 232 for use in mulhwu
(see below), and then divided by 2 in order to fit, as
an unsigned integer, into 32 bits.

When the processor is in 64-bit mode, The POSIX
clock can be computed with an instruction sequence
such as this:

mfspr Ry,268 # Ry = Time Base
lwz Rx,ticks_per_sec
divdu Rz,Ry,Rx # Rz = whole seconds
stw Rz,posix_sec
mulld Rz,Rz,Rx # Rz = quotient * divisor
sub Rz,Ry,Rz # Rz = excess ticks
lwz Rx,ns_adj
slwi Rz,Rz,1 # Rz = 2 * excess ticks
mulhwu Rz,Rz,Rx # mul by (ns/tick)/2 * 232

stw Rz,posix_ns# product[0:31] = excess ns

Non-constant update frequency
In a system in which the update frequency of the Time
Base may change over time, it is not possible to con-
vert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time of
day that the update frequency was last changed. Each
time the update frequency changes, either the system
software is notified of the change via an interrupt (see
Book III), or the change was instigated by the system
software itself. At each such change, the system soft-
ware must compute the current time of day using the
old update frequency, compute a new value of
ticks_per_sec for the new frequency, and save the time
of day, Time Base value, and tick rate. Subsequent
calls to compute Time of Day use the current Time
Base Value and the saved value.

1. Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System Interface (POSIX) --
Part 1: System Application Program Interface (API) - Amendment 1: Real-time Extension [C Language]. Institute of Electrical and Electronics Engi-
neers, Inc., Feb. 1992.

1,000,000,000
512,000,000

Chapter 5. Time Base 1095

Version 3.1
Power ISA™ II1096

Version 3.1
Chapter 6. Event-Based Branch Facility

6.1 Event-Based Branch Over-
view
The Event-Based Branch facility allows application pro-
grams to enable hardware to change the effective
address of the next instruction to be executed when
certain events occur to an effective address specified
by the program.

The operation of the Event-Based Branch facility is
summarized as follows:
 The Event-Based Branch facility is available only

when the system software has made it available.
See Section 10.5 of Book III for additional informa-
tion.

 When the Event-Based Branch facility is available,
event-based branches are caused by event-based
exceptions. Event-based exceptions can be
enabled to occur by setting bits in the BESCR.

 When an event-based exception occurs, the bit in
the BESCR control field corresponding to the
event-based exception is set to 0 and the bit in the
Event Status field in the BESCR corresponding to
the event-based exception is set to 1.

 If the global enable bit in the BESCR is set to 1
when any of the bits in the status field are set to 1
(i.e., when an event-based exception exists), an
event-based branch occurs.

 The event-based branch causes the following to
occur.

- The global enable bit is set to 0.

- Bits 0:61 of the EBBRR are set to the effective
address of the instruction that would have
attempted to execute next if the event-based
branch did not occur.

- Instruction fetch and execution continues at
the effective address contained in the EBBHR.

 The event-based branch handler performs the
necessary processing in response to the event,
and then executes an rfebb instruction in order to
resume execution at the instruction at the address
indicated in the EBBRR. See the Programming
Notes in Section 6.3 for an example sequence of
operations of the event-based branch handler.

Additional information about the Event-Based Branch
facility is given in Section 4.4 of Book III.

6.2 Event-Based Branch Regis-
ters

6.2.1 Branch Event Status and
Control Register
The Branch Event Status and Control Register
(BESCR) is a 64-bit register that contains control and
status information about the Event-Based Branch facil-
ity.

Since system software controls the availability of
the Event-Based Branch facility (see Section 10.5
of Book III), an interface must be provided that
enables applications to request access to the facil-
ity and determine when it is available.

In order to initialize the Event-Based Branch facility
for Performance Monitor event-based exceptions,
software performs the following operations.
 Software requests control of the Event-Based

Branch facility from the system software.
 Software requests the system software to ini-

tialize the Performance Monitor as desired.
 Software sets the EBBHR to the effective

address of the event-based branch handler.
 Software enables Performance Monitor

event-based exceptions by setting BESCRPME
PMEO = 1 0, and also sets MMCR0PMAE PMAO
= 1 0. See Section 10.4.4 of Book III for the
description of MMCR0.

 Software sets the GE bit in the BESCR to
enable event-based branches.

Initializing the Event-Based Branch facility for
External EBB exceptions follows a similar process
except that EBB exceptons for these facilities are
controlled by different bits in the BESCR.

Programming Note

Programming Note
Chapter 6. Event-Based Branch Facility 1097

Version 3.1
Figure 7. Branch Event Status and Control
Register (BESCR)

Figure 8. Branch Event Status and Control
Register Upper (BESCRU)

System software controls whether or not event-based
branches occur regardless of the contents of the
BESCR. See Section 10.4.4 of Book III and
Section 7.2.13 of Book III.

The entire BESCR can be read or written using SPR
806. Individual bits of the BESCR can be set or reset
using two sets of additional SPR numbers.
 When mtspr indicates SPR 800 (Branch Event

Status and Control Set, or BESCRS), the bits in
BESCR which correspond to “1” bits in the source
register are set to 1; all other bits in the BESCR
are unaffected. SPR 801 (BESCRSU) provides the
same capability to each of the upper 32 bits of the
BESCR.

 When mtspr indicates SPR 802 (Branch Event
Status and Control Reset, or BESCRR), the bits in
BESCR which correspond to “1” bits in the source
register are set to 0; all other bits in the BESCR
are unaffected. SPR 803 (BESCRRU) provides the
same capability to each of the upper 32 bits of the
BESCR.

When mfspr indicates any of the above SPR numbers,
the current value of the register is returned.

0 Global Enable (GE)
0 Event-based branches are disabled
1 Event-based branches are enabled.

When an event-based branch occurs, GE is
set to 0 and is not altered by hardware until
rfebb 1 is executed or software sets GE=1
and another event-based branch occurs.

1:31 Event Control
1:29 Reserved

30 External Event-Based Exception
Enable (EE)
0 External event-based (EBB) excep-

tions are disabled.
1 External EBB exceptions are

enabled until an external
event-based exception occurs, at
which time:
- EE is set to 0
- EEO is set to 1

External event-based exceptions exist in any
privilege state when an external EBB input
from the platform is active. See the system
documentation for information about the exter-
nal EBB input.

31 Performance Monitor Event-Based
Exception Enable (PME)
0 Performance Monitor event-based

exceptions are disabled.
1 Performance Monitor event-based

exceptions are enabled until a Per-
formance Monitor event-based
exception occurs, at which time:
- PME is set to 0
- PMEO is set to 1

See Chapter 10 of Book III for information
about Performance Monitor event-based
exceptions and about the effects of this bit on
the Performance Monitor.

32:33 Reserved

34:63 Event Status
34:61Reserved
62 External Event-Based Exception

Occurred (EEO)
0 An external EBB exception has not

occurred since the last time soft-
ware set this bit to 0.

1 An external EBB exception has
occurred since the last time soft-
ware set this bit to 0.

GE Event Control // Event Status
0 1 32 34 63

GE Event Control
0 1 31

Event-based branch handlers typically reset event
status bits upon entry, and enable event enable bits
after processing an event. Execution of rfebb then
re-enables the GE bit so that additional
event-based branches can occur.

Programming Note

Performance Monitor event-based excep-
tions can only occur in problem state. See
Section 10.2 of Book III.

Bits 32:33 must contain 0b00 when rfebb
is executed; otherwise the instruction is
treated as if the instruction form were
invalid.

Programming Note

Programming Note
Power ISA™ II1098

Version 3.1

63 Performance Monitor Event-Based
Exception Occurred (PMEO)
0 A Performance Monitor

event-based exception has not
occurred since the last time soft-
ware set this bit to 0.

1 A Performance Monitor
event-based exception has
occurred since the last time soft-
ware set this bit to 0.

This bit is set to 1 by the hardware when a
Performance Monitor event-based exception
occurs. This bit can be set to 0 only by the
mtspr instruction.

See Chapter 10 of Book III for information
about Performance Monitor event-based
exceptions and about the effects of this bit on
the Performance Monitor.

6.2.2 Event-Based Branch Han-
dler Register
The Event-Based Branch Handler Register (EBBHR) is
a 64-bit register register that contains the 62 most sig-
nificant bits of the effective address of the instruction
that is executed next after an event-based branch
occurs. Bits 62:63 must be available to be read and
written by software.

Figure 9. Event-Based Branch Handler Register
(EBBHR)

6.2.3 Event-Based Branch Return
Register
The Event-Based Branch Return Register (EBBRR) is
a 64-bit register that contains the 62 most significant
bits of an instruction effective address as specified
below.

Figure 10. Event-Based Branch Return Register
(EBBRR)

When an event-based branch occurs, bits 0:61 of the
EBBRR are set to the effective address of the instruc-
tion that would have attempted to execute next if the
event-based branch did not occur.

Bits 62:63 are reserved.

As part of processing an External EBB
exception, it may also be necessary to
perform additional operations to manage
the external EBB input from the system.
See the system documentation for details.

After handling an event-based branch, software
should set the “exception occurred” bit(s) corre-
sponding to the event-based exception(s) that have
occurred to 0. See the Programming Notes in Sec-
tion 6.3 for additional information.

Effective Address
0 62 63

Programming Note

Programming Note

The EBBHR can be used by software as a scratch-
pad register after entry into an event-based branch
handler, provided that its contents are restored
prior to executing rfebb 1. An example of such
usage is as follows. In the example, SPRG3 is
used to contain a pointer to a storage area where
private application data may be saved, however,
refer to the applicable operating system documen-
tation to determine if an alternate register or stor-
age area should be used.

E:mtspr EBBHR, r1 // Save r1 in EBBHR
mfspr r1, SPRG3 // Move SPRG3 to r1
std r2, r1,offset1 // Store r2
mfspr EBBHR,r2 // Copy original contents
 // of r1 to r2
std r2,offset2(r1) // save original r1
.. // Store rest of state

 ... // Process event(s)
 ... // Restore all state except
 // r1,r2
 r2 = &E // Generate original value
 // of EBBHR in r2
 mtspr EBBHR,r2 // Restore EBBHR
 ld r2 offset1(r1) // restore r2
 ld r1 offset2(r1) // restore r1
 rfebb 1 // Return from handler

Effective Address //
0 62 63

Programming Note
Chapter 6. Event-Based Branch Facility 1099

Version 3.1
6.3 Event-Based Branch Instruc-
tions
Return from Event-Based Branch XL-form

rfebb S

BESCRGE S
NIA iea EBBRR0:61 || 0b00

BESCRGE is set to S.

If there are no pending event-based exceptions, then
the next instruction is fetched from the address
EBBRR0:61 || 0b00 (when MSRSF=1) or 320 ||
EBBRR32:61 || 0b00 (when MSRSF=0). If one or more
pending event-based exceptions exist, an event-based
branch is generated; in this case the value placed into
EBBRR by the Event-Based Branch facility is the
address of the instruction that would have been exe-
cuted next had the event-based branch not occurred.

If BESCR32:33≠0b00 the instruction is treated as if the
instruction form were invalid.

See Section 4.4 of Book III for additional information
about this instruction.

Special Registers Altered:

BESCR
MSR (See Book III)

Extended Mnemonics:

19 /// /// /// S 146 /
0 6 11 16 20 21 31

Extended: Equivalent to:
rfebb rfebb 1

rfebb serves as both a basic and an extended
mnemonic. The Assembler will recognize an rfebb
mnemonic with one operand as the basic form, and
an rfebb mnemonic with no operand as the
extended form. In the extended form, the S oper-
and is omitted and assumed to be 1.

Programming Note

When an event-based branch occurs, the
event-based branch handler can execute the fol-
lowing sequence of operations. This sequence of
operations assumes that the handler routine has
access to a stack or other area in memory in which
state information from the main program can be
stored. Note also that in this example, the handler
entry point is labeled “E,” r1 and r2 are used as
scratch registers, and both external EBB and Per-
formance Monitor EBB exceptions are enabled.
E:Save state // This is the entry pt
mfspr r1, BESCR // Check event status
if r163=1, then
Process PM exception

 r2  0x0000 0000 0000 0001
 mtspr BESCRR, r2 //Reset PMEO status bit
 r2  0x0000 0001 0000 0000
 mtspr BESCRS, r1 //Re-enable PM exceptions
 //Note: The PMAE bit of MMCR0 must also
 // be enabled. See Book III.
if r162=1, then
Process external exception

 r2  0x0000 0000 0000 0002
 mtspr BESCRR, r2 //Reset EEO status bit
 r2  0x0000 0002 0000 0000

 // De-activate external EBB
 input from platform

 mtspr BESCRS, r1 //Re-enable external EBB
 exceptions
 // . . .

 //Other exceptions
 //are processed similarly.
 // . . .

Restore state
rfebb 1 // return & global enable

Note that before resetting the BESCREEO, the
external EBB input from the platform should be
deactivated, and additional operations to manage
the external EBB input may be required. See the
system documentation for details.

In the above sequence, if other exceptions occur
after they are enabled, another event-based branch
will occur immediately after rfebb is executed.

Programming Note
Power ISA™ II1100

Version 3.1
Chapter 7. Branch History Rolling Buffer

The Branch History Rolling Buffer (BHRB) is a buffer
containing an implementation-dependent number of
entries, referred to as BHRB Entries (BHRBEs), that
contain information related to branches that have been
taken. Entries are numbered from 0 through n, where n
is implementation-dependent but no more than 1023.
Entry 0 is the most-recently written entry. The BHRB is
read by means of the mfbhrbe instruction.

System software typically controls the availability of the
BHRB as well as the number of entries that it contains.
If the BHRB is accessed when it is unavailable, the sys-
tem facility unavailable error handler is invoked.

Various events or actions by the system software may
result in the BHRB occasionally being cleared. If BHRB
entries are read after this has occurred, 0s will be
returned. See the description of the mfbhrbe instruc-
tion for additional information.

The BHRB is typically used in conjunction with Perfor-
mance Monitor event-based branches. (See Chapter 6
of Book II.) When used in conjunction with this facility,
BESCRPME is set to 1 to enable Performance Monitor
event-based exceptions, and Performance Monitor
alerts are enabled to enable the writing of BHRB
entries. When a Performance Monitor alert occurs, Per-
formance Monitor alerts are disabled, BHRB entries are
no longer written, and an event-based branch occurs.
(See Chapter 10 of Book III for additional information
on the Performance Monitor.) The event-based branch
handler can then access the contents of the BHRB for
analysis.

When the BHRB is written by hardware, only those
Branch instructions that meet the filtering criteria are
written. See Section 10.4.7 of Book III.

The following paragraphs describe the entries written
into the BHRB for various types of Branch instructions
for which the branch was taken. In some circum-
stances, however, the hardware may be unable to
make the entry even though the following paragraphs
require it. In such cases, the hardware sets the EA field
to 0, and indicates any missed entries using the T and
P fields. (See Section 7.1.)

When an I-form or B-form Branch instruction is entered
into the BHRB, bits 0:61 of the effective address of the
Branch instruction are written into the next available
entry, except that the entry may or may not be written in
the following cases.

 The effective address of the branch target exceeds
the effective address of the Branch instruction by
4.

 The instruction is a B-form Branch, the effective
address of the branch target exceeds the effective
address of the Branch instruction by 8, and the
instruction immediately following the Branch
instruction is not another Branch instruction.

The determination of whether the effective address of
the branch target exceeds the effective address of the
Branch instruction by 4 or 8 is made modulo 264.

When an XL-form Branch instruction is entered into the
BHRB, bits 0:61 of the effective address of the Branch
instruction are written into the next available entry if
allowed by the filtering mode; subsequently, bits 0:61 of
the effective address of the branch target are written
into the following entry.

The cases described above, for which the BHRBE
need not be written, are cases for which some
implementations may optimize the execution of the
Branch instruction (first case) or of the Branch
instruction and the following instruction (second
case) in a manner that makes writing the BHRBE
difficult. Such implementations may provide a
means by which system software can disable
these optimizations, thereby ensuring that the cor-
responding BHRBEs are written normally.

Programming Note
Chapter 7. Branch History Rolling Buffer 1101

Version 3.1
7.1 Branch History Rolling Buf-
fer Entry Format
Branch History Rolling Buffer Entries (BHRBEs) have
the following format.

Figure 11. Branch History Rolling Buffer Entry
0:61 Effective Address (EA)

When this field is set to a non-zero value, it
contains bits 0:61 of the effective address of
the instruction indicated by the T field; other-
wise this field indicates that the entry is a
marker with the meaning specified by the T
and P fields.

When the EA field contains a non-zero value, bits 62:63
have the following meanings.

62 Target Address (T)
0 The EA field contains bits 0:61 of the

effective address of a Branch instruction
for which the branch was taken.

1 The EA field contains bits 0:61 of the
branch effective address of the branch tar-
get of an XL-form Branch instruction for
which the branch was taken.

63 Prediction (P)
When T=0, this field has the following mean-
ing.

0 The outcome of the Branch instruction
was correctly predicted.

1 The outcome of the Branch instruction
was mispredicted.

When T=1, this field has the following mean-
ing.
0 The Branch instruction was predicted to

be taken and the target address was pre-
dicted correctly, or the target address was
not predicted because the branch was
predicted to be not taken.

1 The target address was mispredicted.

When the EA field contains a zero value, bits 62:63
specify the type of marker as described below.

Value Meaning
00 This entry either is not implemented or has

been cleared. There are no valid entries
beyond the current entry.

01-11 Reserved.

 Effective Address T P
0 62 63

It is expected that programs will not contain Branch
instructions with instruction or target effective
address equal to 0. If such instructions exist, pro-
grams cannot distinguish between entries that are
markers and entries that correspond to instructions
with instruction or target effective address 0.

Programming Note
Power ISA™ II1102

Version 3.1
7.2 Branch History Rolling Buffer Instructions

The Branch History Rolling Buffer instructions enable
application programs to clear and read the BHRB. The
availability of these instructions is controlled by the sys-
tem software. (See Chapter 10 of Book III.) When an
attempt is made to execute these instructions when

they are unavailable, the system facility unavailable
error handler is invoked.

Clear BHRB X-form

clrbhrb

for n = 0 to (number_of_BHRBEs implemented - 1)
 BHRB(n)  0

All BHRB entries are set to 0s.

Special Registers Altered:
None.

Move From Branch History Rolling Buffer
Entry XFX-form

mfbhrbe RT,BHRBE

n  BHRBE0:9
If n < number of BHRBEs implemented then
 RT  BHRBE(n)
else
 RT  640

The BHRBE field denotes an entry in the BHRB. If the
designated entry is within the range of BHRB entries
implemented and Performance Monitor alterts are dis-
able (see Section 10.5 of Book III), the contents of the
designated BHRB entry are placed into register RT;
otherwise, 640s are placed into register RT.

In order to ensure that the current BHRB contents are
read by this instruction, one of the following must have
occurred prior to this instruction and after all previous
Branch and clrbhrb instructions have completed.
 an event-based branch has occurred
 an rfebb (see Chapter 6 of Book II) has been exe-

cuted
 a context synchronizing event (see Section 1.5 of

Book III) other than isync (see Section 4.6.1 of
Book II) has occurred.

Special Registers Altered:
None

31 /// /// /// 430 /
0 6 11 16 21 31 31 RT BHRBE 302 /

0 6 11 21 31

In order to read all the BHRB entries containing
information about taken branches, software should
read the entries starting from entry number 0 and
continuing until an entry containing all 0s is read or
until all implemented BHRB entries have been
read.

Since the number of BHRB entries may decrease
or the BHRB may be cleared at any time, if a given
entry, m, is read as not containing all 0s and is read
again subsequently, the subsequent read may
return all 0s even though the program has not exe-
cuted clrbhrb.

Programming Note
Chapter 7. Branch History Rolling Buffer 1103

Version 3.1
Power ISA™ II1104

Version 3.1
Appendix A. Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-
tions. This appendix defines extended mnemonics and

symbols related to instructions defined in Book II.
Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Data Cache Block Touch [for
Store] Mnemonics
The TH field in the Data Cache Block Touch and Data
Cache Block Touch for Store instructions control the
actions performed by the instructions. Extended mne-
monics are provided that represent the TH value in the
mnemonic rather than requiring it to be coded as a
numeric operand.

A.2 Data Cache Block Flush
Mnemonics
The L field in the Data Cache Block Flush instruction
controls the scope of the flush function performed by
the instruction, or the scope of the store function when
L=6. Extended mnemonics are provided that represent

the L value in the mnemonic rather than requiring it to
be coded as a numeric operand.
Note: dcbf serves as both a basic and an extended
mnemonic. The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form. In the extended form the L operand is omitted
and assumed to be 0.

A.3 Or Mnemonics
The three register fields in the or instruction can be
used to specify a hint indicating how the processor
should handle stores caused by previous Store or dcbz
instructions. An extended mnemonic is supported that
represents the operand values in the mnemonic rather
than requiring them to be coded as numeric operands.

A.4 Load And Reserve
Mnemonics
The EH field in the Load And Reserve instructions pro-
vides a hint regarding the type of algorithm imple-
mented by the instruction sequence being executed.
Extended mnemonics are provided that allow the EH
value to be omitted and assumed to be 0b0.

Note: lbarx, lharx, lwarx, ldarx, and lqarx serve as
both basic and extended mnemonics. The Assembler
will recognize these mnemonics with four operands as
the basic form, and these mnemonics with three oper-

dcbtct RA,RB,TH (equivalent to: dcbt for TH val-
ues of 0b00000 - 0b00111);

 other TH values are invalid.
dcbtds RA,RB,TH (equivalent to: dcbt for TH val-

ues of 0b00000 or 0b01000
- 0b01111);

 other TH values are invalid.
dcbtt RA,RB (equivalent to: dcbt for TH

value of 0b10000)
dcbna RA,RB (equivalent to: dcbt for TH

value of 0b10001)
dcbtstct RA,RB,TH (equivalent to: dcbtst for TH

values of 0b00000 or
0b00000 - 0b00111);

 other TH values are invalid.
dcbtstds RA,RB,TH (equivalent to: dcbtst for TH

values of 0b00000 or
0b01000 - 0b01111);

 other TH values are invalid.
dcbtstt RA,RB (equivalent to: dcbtst for TH

value of 0b10000)

dcbf RA,RB (equivalent to: dcbf RA,RB,0)
dcbfl RA,RB (equivalent to: dcbf RA,RB,1)
dcbflp RA,RB (equivalent to: dcbf RA,RB,3)
dcbfps RA,RB (equivalent to: dcbf RA,RB,4)
dcbstps RA,RB (equivalent to: dcbf RA,RB,6)

miso (equivalent to: or 26,26,26)
Appendix A. Assembler Extended Mnemonics 1105

Version 3.1
ands as the extended form. In the extended form the
EH operand is omitted and assumed to be 0.

A.5 Synchronize Mnemonics
The L and SC fields in the Synchronize instruction con-
trol the scope of the synchronization function per-
formed by the instruction. Extended mnemonics are
provided that represent the L and SC values in the
mnemonic rather than requiring them to be coded as
numeric operands.

Note: sync serves as both a basic and an extended
mnemonic. The Assembler will recognize a sync mne-
monic with two operands as the basic form, and a sync
mnemonic with one operand or with no operand as an
extended form. In the extended form with one operand
the SC operand is omitted and assumed to be 0. In the
extended form with no operand the L and SC operands
are omitted and assumed to be 0.

A.6 Wait Mnemonics
The WC field in the wait instruction determines the
conditions under which instruction execution resumes.
Extended mnemonics are provided that represent the
WC and PL values in the mnemonic rather than requir-
ing them to be coded as numeric operands.

Note: wait serves as both a basic and an extended
mnemonic. The Assembler will recognize a wait mne-
monic with two operands as the basic form and a wait
mnemonic with one operand or with no operand as an
extended form. In the extended form with one operand
the PL operand is omitted and assumed to be 0. In the
extended form with no operand the WC and PL oper-
ands are omitted and assumed to be 0.

A.7 Move To/From Time Base
Mnemonics
The tbr field in the Move From Time Base instruction
specifies whether the instruction reads the entire Time
Base or only the high-order half of the Time Base.

A.8 Return From Event-Based
Branch Mnemonic
The S field in the Return from Event-Based Branch
instruction specifies the value to which the instruction
sets the GE field in the BESCR. Extended mnemonics
are provided that represent the S value in the mne-
monic rather than requiring it to be coded as a numeric
operand.

Note: rfebb serves as both a basic and an extended
mnemonic. The Assembler will recognize this mne-
monic with one operand as the basic form, and this
mnemonic with no operands as the extended form. In
the extended form the S operand is omitted and
assumed to be 1.

lbarx RT,RA,RB (equivalent to: lbarx RT,RA,RB,0)
lharx RT,RA,RB (equivalent to: lharx RT,RA,RB,0)
lwarx RT,RA,RB (equivalent to: lwarx RT,RA,RB,0)
ldarx RT,RA,RB (equivalent to: ldarx RT,RA,RB,0)
lqarx RT,RA,RB (equivalent to: lqarx RT,RA,RB,0)

sync (equivalent to: sync 0,0)
sync x (equivalent to: sync x,0)
hwsync (equivalent to: sync 0,0)
lwsync (equivalent to: sync 1,0)
ptesync (equivalent to: sync 2,0)
phwsync (equivalent to: sync 4,0)
plwsync (equivalent to: sync 5,0)
stncisync (equivalent to: sync 1,1)
stcisync (equivalent to: sync 0,2)
stsync (equivalent to: sync 0,3)

wait (equivalent to: wait 0,0)

waitrsv (equivalent to: wait 1,0)
pause_short (equivalent to: wait 2,0)

mftb Rx (equivalent to: mftb Rx,268)
 or: mfspr Rx,268

mftbu Rx (equivalent to: mftb Rx,269)
 or: mfspr Rx,269

rfebb (equivalent to: rfebb 1)
Power ISA™ II1106

Version 3.1
Appendix B. Programming Examples for Sharing
Storage

This appendix gives examples of how dependencies
and the Synchronization instructions can be used to
control storage access ordering when storage is shared
between programs.

Many of the examples use extended mnemonics (e.g.,
bne, bne-, cmpw) that are defined in Appendix C of
Book I.

Many of the examples use the Load And Reserve and
Store Conditional instructions, in a sequence that
begins with a Load And Reserve instruction and ends
with a Store Conditional instruction (specifying the
same storage location as the Load Conditional) fol-
lowed by a Branch Conditional instruction that tests
whether the Store Conditional instruction succeeded.

In these examples it is assumed that contention for the
shared resource is low; the conditional branches are
optimized for this case by using “+” and “-” suffixes
appropriately.

The examples deal with words; they can be used for
doublewords by changing all word-specific mnemonics
to the corresponding doubleword-specific mnemonics
(e.g., lwarx to ldarx, cmpw to cmpd).

In this appendix it is assumed that all shared storage
locations are in storage that is Memory Coherence
Required, and that the storage locations specified by
Load And Reserve and Store Conditional instructions
are in storage that is neither Write Through Required
nor Caching Inhibited.

B.1 Atomic Update Primitives
This section gives examples of how the Load And
Reserve and Store Conditional instructions can be
used to emulate atomic read/modify/write operations.

An atomic read/modify/write operation reads a storage
location and writes its next value, which may be a func-
tion of its current value, all as a single atomic operation.
The examples shown provide the effect of an atomic
read/modify/write operation, but use several instruc-
tions rather than a single atomic instruction.

Fetch and No-op
The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded are
returned in GPR 4.

loop:
lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if

still reserved
bne- loop #loop if lost reservation

Note:

1. The stwcx., if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx. While the store is redundant with
respect to the value in the location, its success
ensures that the value loaded by the lwarx is still
the current value at the time the stwcx. is exe-
cuted.

Fetch and Store
The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in GPR
5.

loop:
lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if

still reserved
bne- loop loop if lost reservation
Appendix B. Programming Examples for Sharing Storage 1107

Version 3.1
Fetch and Add
The “Fetch and Add” primitive atomically increments a
word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is in
GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
add r0,r4,r5#increment word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Fetch and AND
The “Fetch and AND” primitive atomically ANDs a
value into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into it
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
and r0,r4,r5#AND word
stwcx. r0,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

Note:

1. The sequence given above can be changed to per-
form another Boolean operation atomically on a
word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set
This version of the “Test and Set” primitive atomically
loads a word from storage, sets the word in storage to a
nonzero value if the value loaded is zero, and sets the
EQ bit of CR Field 0 to indicate whether the value
loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (nonzero)
is in GPR 4, and the old value is returned in GPR 5.

loop:
lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word not equal to 0
bne- exit
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

exit: ...

Compare and Swap
The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if they
are equal stores the value from a second register into
the word in storage, if they are unequal loads the word
from storage into the first register, and sets the EQ bit
of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in GPR
4 and the old value is returned there, and the new value
is in GPR 5.

loop:
lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #1st 2 operands equal?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if still res’ved
bne- loop #loop if lost reservation

exit:
mr r4,r6 #return value from storage

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction. Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for peda-
gogical reasons. It is useful on machines that lack
the better synchronization facilities provided by
lwarx and stwcx.. A major weakness of a Sys-
tem/370-style Compare and Swap instruction is
that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted. The
bne- is needed only if the application requires that
if the EQ bit of CR Field 0 on exit indicates “not
equal” then (r4) and (r6) are in fact not equal. The
mr is needed only if the application requires that if
the comparands are not equal then the word from
storage is loaded into the register with which it was
compared (rather than into a third register). If
either or both of these instructions is omitted, the
resulting Compare and Swap does not obey Sys-
tem/370 semantics.
Power ISA™ II1108

Version 3.1
B.2 Lock Acquisition and Release, and Related Techniques

This section gives examples of how dependencies and
the Synchronization instructions can be used to imple-

ment locks, import and export barriers, and similar con-
structs.

B.2.1 Lock Acquisition and Import
Barriers
An “import barrier” is an instruction or sequence of
instructions that prevents storage accesses caused by
instructions following the barrier from being performed
before storage accesses that acquire a lock have been
performed. An import barrier can be used to ensure
that a shared data structure protected by a lock is not
accessed until the lock has been acquired. A sync
instruction can be used as an import barrier, but the
approaches shown below will generally yield better per-
formance because they order only the relevant storage
accesses.

B.2.1.1 Acquire Lock and Import
Shared Storage
If lwarx and stwcx. instructions are used to obtain the
lock, an import barrier can be constructed by placing an
isync instruction immediately following the loop con-
taining the lwarx and stwcx.. The following example
uses the “Compare and Swap” primitive to acquire the
lock.

In this example it is assumed that the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in
GPR 6, and the address of the shared data structure is
in GPR 9.

loop:
lwarx r6,0,r3,1 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne- wait # lock not free
stwcx. r5,0,r3 #try to set lock
bne- loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9)#load shared data
.
.

wait... #wait for lock to free

The hint provided with lwarx indicates that after the
program acquires the lock variable (i.e., stwcx. is suc-
cessful), it will release it (i.e., store to it) prior to another
program attempting to modify it.

The second bne- does not complete until CR0 has
been set by the stwcx.. The stwcx. does not set CR0
until it has completed (successfully or unsuccessfully).
The lock is acquired when the stwcx. completes suc-
cessfully. Together, the second bne- and the subse-

quent isync create an import barrier that prevents the
load from “data1” from being performed until the branch
has been resolved not to be taken.

If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used instead of the isync
instruction. If lwsync is used, the load from “data1”
may be performed before the stwcx.. But if the stwcx.
fails, the second branch is taken and the lwarx is
re-executed. If the stwcx. succeeds, the value
returned by the load from “data1” is valid even if the
load is performed before the stwcx., because the
lwsync ensures that the load is performed after the
instance of the lwarx that created the reservation used
by the successful stwcx..

B.2.1.2 Obtain Pointer and Import
Shared Storage
If lwarx and stwcx. instructions are used to obtain a
pointer into a shared data structure, an import barrier is
not needed if all the accesses to the shared data struc-
ture depend on the value obtained for the pointer. The
following example uses the “Fetch and Add” primitive to
obtain and increment the pointer.

In this example it is assumed that the address of the
pointer is in GPR 3, the value to be added to the pointer
is in GPR 4, and the old value of the pointer is returned
in GPR 5.

loop:
lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5#increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the
pointer value has been loaded into GPR 5 by the
lwarx. The load from “data1” may be performed before
the stwcx.. But if the stwcx. fails, the branch is taken
and the value returned by the load from “data1” is dis-
carded. If the stwcx. succeeds, the value returned by
the load from “data1” is valid even if the load is per-
formed before the stwcx., because the load uses the
pointer value returned by the instance of the lwarx that
created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne-
and the subsequent lwz, but no isync is needed if all
accesses to the shared data structure depend on the
value returned by the lwarx.
Appendix B. Programming Examples for Sharing Storage 1109

Version 3.1
B.2.2 Lock Release and Export
Barriers
An “export barrier” is an instruction or sequence of
instructions that prevents the store that releases a lock
from being performed before stores caused by instruc-
tions preceding the barrier have been performed. An
export barrier can be used to ensure that all stores to a
shared data structure protected by a lock will be per-
formed with respect to any other processor before the
store that releases the lock is performed with respect to
that processor.

B.2.2.1 Export Shared Storage and
Release Lock
A sync instruction can be used as an export barrier
independent of the storage control attributes (e.g.,
presence or absence of the Caching Inhibited attribute)
of the storage containing the shared data structure.
Because the lock must be in storage that is neither
Write Through Required nor Caching Inhibited, if the
shared data structure is in storage that is Write
Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data
structure is in storage that is Caching Inhibited, the
address of the lock is in GPR 3, the value indicating
that the lock is free is in GPR 4, and the address of the
shared data structure is in GPR 9.

stw r7,data1(r9)#store shared data (last)
sync #export barrier
stw r4,lock(r3)#release lock

The sync ensures that the store that releases the lock
will not be performed with respect to any other proces-
sor until all stores caused by instructions preceding the
sync have been performed with respect to that proces-
sor.

B.2.2.2 Export Shared Storage and
Release Lock using lwsync
If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used as the export barrier.
Using lwsync rather than sync will yield better perfor-
mance in most systems.

In this example it is assumed that the shared data
structure is in storage that is neither Write Through
Required nor Caching Inhibited, the address of the lock
is in GPR 3, the value indicating that the lock is free is
in GPR 4, and the address of the shared data structure
is in GPR 9.

stw r7,data1(r9)#store shared data (last)
lwsync #export barrier
stw r4,lock(r3)#release lock

The lwsync ensures that the store that releases the
lock will not be performed with respect to any other pro-
cessor until all stores caused by instructions preceding
the lwsync have been performed with respect to that
processor.

B.2.3 Safe Fetch
If a load must be performed before a subsequent store
(e.g., the store that releases a lock protecting a shared
data structure), a technique similar to the following can
be used.

In this example it is assumed that the address of the
storage operand to be loaded is in GPR 3, the contents
of the storage operand are returned in GPR 4, and the
address of the storage operand to be stored is in GPR
5.

lwz r4,0(r3)#load shared data
cmpw r4,r4 #set CR0 to “equal”
bne- $-8 #branch never taken
stw r7,0(r5)#store other shared data

An alternative is to use a technique similar to that
described in Section B.2.1.2, by causing the stw to
depend on the value returned by the lwz and omitting
the cmpw and bne-. The dependency could be created
by ANDing the value returned by the lwz with zero and
then adding the result to the value to be stored by the
stw. If both storage operands are in storage that is nei-
ther Write Through Required nor Caching Inhibited,
another alternative is to replace the cmpw and bne-
with an lwsync instruction.
Power ISA™ II1110

Version 3.1
B.3 List Insertion
This section shows how the lwarx and stwcx. instruc-
tions can be used to implement simple insertion into a
singly linked list. (Complicated list insertion, in which
multiple values must be changed atomically, or in which
the correct order of insertion depends on the contents
of the elements, cannot be implemented in the manner
shown below and requires a more complicated strategy
such as using locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called the
“parent element”, is stored into the new element, so
that the new element points to the next element in the
list; this store is performed unconditionally. Then the
address of the new element is conditionally stored into
the parent element, thereby adding the new element to
the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new ele-
ment is in GPR 4, and the next element pointer is at off-
set 0 from the start of the element. It is also assumed
that the next element pointer of each list element is in a
reservation granule separate from that of the next ele-
ment pointer of all other list elements.

loop:
lwarx r2,0,r3 #get next pointer
stw r2,0(r4)#store in new element
lwsync or sync #order stw before stwcx
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, if two list elements have next
element pointers in the same reservation granule then,
in a multiprocessor, “livelock” can occur. (Livelock is a
state in which processors interact in a way such that no
processor makes forward progress.)

If it is not possible to allocate list elements such that
each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,0(r3)#get next pointer
loop1:

mr r5,r2 #keep a copy
stw r2,0(r4)#store in new element
sync #order stw before stwcx.

and before lwarx
loop2:

lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bne- loop1 # else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the
fact that each processor re-executes the stw only if
some other processor has made forward progress.

B.4 Notes
The following notes apply to Section B.1 through Sec-
tion B.3.

1. To increase the likelihood that forward progress is
made, it is important that looping on lwarx/stwcx.
pairs be minimized. For example, in the “Test and
Set” sequence shown in Section B.1, this is
achieved by testing the old value before attempting
the store; were the order reversed, more stwcx.
instructions might be executed, and reservations
might more often be lost between the lwarx and
the stwcx.

2. The manner in which lwarx and stwcx. are com-
municated to other processors and mechanisms,
and between levels of the storage hierarchy within
a given processor, is implementation-dependent.
In some implementations performance may be
improved by minimizing looping on a lwarx instruc-
tion that fails to return a desired value. For exam-
ple, in the “Test and Set” sequence shown in
Section B.1, if the programmer wishes to stay in
the loop until the word loaded is zero, he could
change the “bne- exit” to “bne- loop”. However, in
some implementations better performance may be
obtained by using an ordinary Load instruction to
do the initial checking of the value, as follows.

loop:
 lwz r5,0(r3)#load the word
 cmpwi r5,0 #loop back if word
 bne- loop # not equal to 0
 lwarx r5,0,r3 #try again, reserving
 cmpwi r5,0 # (likely to succeed)
 bne- loop
 stwcx.r4,0,r3 #try to store non-0
 bne- loop #loop if lost reserv’n

3. In a multiprocessor, livelock is possible if there is a
Store instruction (or any other instruction that can
clear another processor’s reservation; see Section
1.7.2.1) between the lwarx and the stwcx. of a
lwarx/stwcx. loop and any byte of the storage
location specified by the Store is in the reservation
granule. For example, the first code sequence
shown in Section B.3 can cause livelock if two list
elements have next element pointers in the same
reservation granule.
Appendix B. Programming Examples for Sharing Storage 1111

Version 3.1
Power ISA™ II1112

Version 3.1
Book III:

Power ISA Operating Environment Architecture
 Book III: Power ISA Operating Environment Architecture 1113

Version 3.1
Power ISA™ III1114

Version 3.1
Chapter 1. Introduction

1.1 Overview
Chapter 1 of Book I describes computation modes,
document conventions, a general systems overview,
instruction formats, and storage addressing. This chap-
ter augments that description as necessary for the
Power ISA Operating Environment Architecture.

1.2 Document Conventions
The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

 For “system alignment error handler” substitute
“Alignment interrupt”.

 For “system data storage error handler” substitute
“Data Storage interrupt”, “Hypervisor Data Storage
interrupt”, or “Data Segment interrupt”, as appro-
priate.

 For “system error handler” substitute “interrupt”.

 For “system floating-point enabled exception error
handler” substitute “Floating-Point Enabled Excep-
tion type Program interrupt”.

 For “system illegal instruction error handler” substi-
tute “Hypervisor Emulation Assistance interrupt”.

 For “system instruction storage error handler” sub-
stitute “Instruction Storage interrupt”, “Hypervisor
Instruction Storage interrupt”, or “Instruction Seg-
ment interrupt”, as appropriate.

 For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt”.

 For “system service program” substitute “System
Call interrupt” or “System Call Vectored interrupt”,
as appropriate.

 For “system trap handler” substitute “Trap type
Program interrupt”.

 For “system facility unavailable error handler” sub-
stitute “Facility Unavailable interrupt” or “Hypervi-
sor Facility Unavailable interrupt.”

1.2.1 Definitions and Notation
The definitions and notation given in Book I and Book II
are augmented by the following.

 Threaded processor, single-threaded proces-
sor, thread

A threaded processor implements one or more
“threads”, where a thread corresponds to the Book
I/II concept of “processor”. That is, the definition of
“thread” is the same as the Book I definition of
“processor”, and “processor” as used in Books I
and II can be thought of as either a single-threaded
processor or as one thread of a multi-threaded
processor. Except where the meaning is clear in
context or the number of threads does not matter,
the only unqualified uses of “processor” in Book III
are in resource names (e.g. Processor Identifica-
tion Register); such uses should be regarded as
meaning “threaded processor”. The threads of a
multi-threaded processor typically share certain
resources, such as the hardware components that
execute certain kinds of instructions (e.g.,
Fixed-Point instructions), certain caches, the
address translation mechanism, and certain hyper-
visor and ultravisor resources.

 real page
A unit of real storage that is aligned at a boundary
that is a multiple of its size. The real page size is
4KB.

 context of a program
The state (e.g., privilege and relocation) in which
the program executes. The context is controlled by
the contents of certain System Registers, such as
the MSR and PTCR, of certain lookaside buffers,
such as the SLB and TLB, and of the Page Table.

 performed
The definition of “performed” given in Section 1.1
of Book II is extended to apply to implicit storage
accesses and to invalidations of entries in caches
of information derived from address translation
tables, as follows.

- The definition of “load is performed” applies to
accesses for performing address translation.
Chapter 1. Introduction 1115

Version 3.1
- The definition of “store is performed” applies
to accesses for recording reference and
change information.

- A TLB entry invalidation by thread T1 is per-
formed with respect to thread T2 when the
instruction that requested the invalidation has
caused the specified entry, if present, to be
made invalid in T2’s TLB, and similarly for
invalidations of entries in other caches of
information derived from tables used in
address translation.

 exception
An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.

 interrupt
The act of changing the machine state in response
to an exception, as described in Chapter
7. “Interrupts” on page 1247.

- ultravisor interrupt
An interrupt that forces the thread into ultravi-
sor state by explicitly setting MSRS HV PR to
0b110 (see Section 4.2.1).

- hypervisor interrupt
An interrupt that forces the thread into hyper-
visor state by explicitly setting MSRHV PR to
0b10 and is not an ultravisor interrupt.

All interrupts explicitly set MSRPR to 0.

 trap interrupt
An interrupt that results from execution of a Trap
instruction.

 “must”
If software that runs in hypervisor state violates a
rule that is stated using the word “must” (e.g., “this
field must be set to 0”), and the rule pertains to the
contents of a hypervisor resource, to executing an
instruction that can be executed only in hypervisor
state, or to accessing storage in real addressing
mode, the results are undefined, and may include
altering resources belonging to other partitions,
causing the system to “hang”, etc. The same is
true for software that runs in ultravisor state and
violates a “must” rule pertaining to an ultravisor
resource or instruction.

 hardware
Any combination of hard-wired implementation,
emulation assist, or interrupt for software assis-
tance. In the last case, the interrupt may be to an
architected location or to an implementa-
tion-dependent location. Any use of emulation
assists or interrupts to implement the architecture
is implementation-dependent.

 ultravisor privileged
A term used to describe an instruction or facility
that is available when and only when the thread is
in ultravisor state.

 hypervisor privileged
A term used to describe an instruction or facility
that is available when and only when the thread is
in hypervisor state.

 privileged
A term used to describe an instruction or facility
that is available when and only when the thread is
in privileged state.

 privileged state and supervisor mode
Used interchangeably to refer to a state in which
privileged facilities are available.

 problem state and user mode
Used interchangeably to refer to a state in which
privileged facilities are not available.

 /, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected stor-
age table.

 ?, ??, ???, ... denotes a field that is implementa-
tion-dependent in an instruction, in a register, or in
an architected storage table.

1.2.2 Reserved Fields
Book I's description of the handling of reserved bits in
System Registers, and of reserved values of defined
fields of System Registers, applies also to the SLB.
Book I's description of the handling of reserved values
of defined fields of System Registers applies also to
architected storage tables (e.g., the Page Table).

Because ultravisor state is also a hypervisor
state, hypervisor privileged instructions and
facilities are also available when the thread is
in ultravisor state. (The distinct privilege states
in which a hypervisor privileged instruction or
facility is available are: hypervisor non-ultravi-
sor state, and ultravisor state.)

Because hypervisor state is also a privileged
state, privileged instructions and facilities are
also available when the thread is in hypervisor
state (and when the thread is in ultravisor
state). (The distinct privilege states in which a
privileged instruction or facility is available are:
privileged non-hypervisor state, hypervisor
non-ultravisor state, and ultravisor state.)

Programming Note

Programming Note
Power ISA™ III1116

Version 3.1
Software should set reserved fields in the SLB and in
architected storage tables to zero, because these fields
may be assigned a meaning in some future version of
the architecture.

Some fields of certain architected storage tables may
be written to automatically by the hardware, e.g., Refer-
ence and Change bits in the Page Table. When the
hardware writes to such a table, the following rules are
obeyed.

 Unless otherwise stated, no defined field other
than the one(s) specifically being updated are
modified.

 Contents of reserved fields are either preserved or
written as zero.

1.2.3 Deviations from the Sequen-
tial Execution Model
Additional exceptions to the rule that the thread obeys
the sequential execution model, beyond those
described in Section 2.2 of Book I and in the bullet
defining “program order” in Section 1.1 of Book II, are
the following.

 A System Reset or asynchronous Machine Check
interrupt may occur. The determination of whether
an instruction is required by the sequential execu-
tion model is not affected by the potential occur-
rence of a System Reset or asynchronous
Machine Check interrupt. (The determination is
affected by the potential occurrence of any other
kind of interrupt.)

 A context-altering instruction is executed (Chapter
12. “Synchronization Requirements for Context
Alterations” on page 1333). The context alteration
need not take effect until the required subsequent
synchronizing operation has occurred.

 A Reference and Change bit is updated by the
thread. The update need not be performed with
respect to that thread until the required subse-
quent synchronizing operation has occurred.

 A Branch instruction is executed and the branch is
taken. The update of the Come-From Address
Register (see Section 9.2 of Book III) need not
occur until a subsequent context synchronizing
operation has occurred.

1.2.4 Restricting Out-of-Order
Execution
Because some classes of security exploits use
side-effects of out-of-order execution to infer behavior
of or receive information from programs, it may some-

times be necessary to limit out-of-order execution
beyond what's necessary to maintain the appearance
of compliance with the sequential execution model.
This may include restrictions on the otherwise-permit-
ted deviations from the sequential execution model
described in Section 1.2.3 and Section 6.5. The Or
Immediate instruction described in Section 5.4.3 can be
used to create a barrier to out-of-order execution.

1.3 General Systems Overview
The hardware contains the sequencing and processing
controls for instruction fetch, instruction execution, and
interrupt action. Most implementations also contain
data and instruction caches. Instructions that the pro-
cessing unit can execute fall into the following classes:

 instructions executed in the Branch Facility
 instructions executed in the Fixed-Point Facility
 instructions executed in the Floating-Point Facility
 instructions executed in the Vector Facility

Almost all instructions executed in the Branch Facility,
Fixed-Point Facility, Floating-Point Facility, and Vector
Facility are nonprivileged and are described in Book I.
Book II may describe additional nonprivileged instruc-
tions (e.g., Book II describes some nonprivileged
instructions for cache management). Instructions
related to the privileged state, control of hardware
resources, control of the storage hierarchy, and all
other privileged instructions are described here or are
implementation-dependent.

1.4 Exceptions
The following augments the exceptions defined in Book
I that can be caused directly by the execution of an
instruction:

 the execution of a floating-point instruction when
MSRFP=0 (Floating-Point Unavailable interrupt)

 an attempt to modify a hypervisor resource when
the thread is in privileged but non-hypervisor state
(see Chapter 2), or an attempt to execute a hyper-
visor-only instruction (e.g., tlbie) when the thread
is in privileged but non-hypervisor state

 an attempt to modify an ultravisor resource when
the thread is in privileged but non-ultravisor state
(see Chapter 3), or an attempt to execute an ultra-
visor-only instruction (e.g., urfid, msgsndu,
msgclru) when the thread is in privileged but
non-ultravisor state

 the execution of a traced instruction (Trace inter-
rupt)

 the execution of a Vector instruction when the vec-
tor facility is unavailable (Vector Unavailable inter-
rupt)
Chapter 1. Introduction 1117

Version 3.1
1.5 Synchronization
The synchronization described in this section refers to
the state of the thread that is performing the synchroni-
zation.

1.5.1 Context Synchronization
An instruction or event is context synchronizing if it sat-
isfies the requirements listed below. Such instructions
and events are collectively called context synchronizing
operations. The context synchronizing operations are
the isync instruction, the System Linkage instructions,
the mtmsr[d] instructions with L=0, and most interrupts
(see Section 7.4).

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetching
mechanism to any instruction execution mecha-
nism) to be halted.

2. The operation is not initiated or, in the case of
isync, does not complete, until all instructions that
precede the operation have completed to a point at
which they have reported all exceptions they will
cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in
the context (privilege, relocation, storage protec-
tion, etc.) in which they were initiated, except that
the operation has no effect on the context in which
the associated Reference and Change bit updates
are performed.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is an
interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see Sec-
tion 7.9).

5. The operation ensures that the instructions that fol-
low the operation will be fetched and executed in
the context established by the operation. (This
requirement dictates that any prefetched instruc-
tions be discarded and that any effects and side
effects of executing them out-of-order also be dis-
carded, except as described in Section 6.5, “Per-
forming Operations Out-of-Order”.)

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.5.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

Item 2 permits a choice only for isync (and
[p]hwsync and ptesync; see Section 1.5.2)
because all other execution synchronizing opera-
tions also alter context.

Programming Note
Power ISA™ III1118

Version 3.1
1.5.2 Execution Synchronization
An instruction is execution synchronizing if it satisfies
items 2 and 3 of the definition of context synchroniza-
tion (see Section 1.5.1). [p]hwsync and ptesync are
treated like isync with respect to item 2. The execution
synchronizing instructions are [p]hwsync, ptesync,
the mtmsr[d] instructions with L=1, and all context syn-
chronizing instructions.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction does not ensure
that the instructions following that instruction will
execute in the context established by that instruc-
tion. This new context becomes effective some-
time after the execution synchronizing instruction
completes and before or at a subsequent context
synchronizing operation.

Programming Note
Chapter 1. Introduction 1119

Version 3.1
Power ISA™ III1120

Version 3.1
Chapter 2. Logical Partitioning (LPAR) and Thread Control

2.1 Overview
The Logical Partitioning (LPAR) facility permits threads
and portions of real storage to be assigned to logical
collections called partitions, such that a program exe-
cuting on a thread in one partition cannot interfere with
any program executing on a thread in a different parti-
tion. This isolation can be provided for both problem
state and privileged non-hypervisor state programs, by
using a layer of trusted software, called a hypervisor
program (or simply a “hypervisor”), and the resources
provided by this facility to manage system resources.
(A hypervisor is a program that runs in hypervisor state;
see below.)

The number of partitions supported is implementa-
tion-dependent.

A thread is assigned to one partition at any given time.
A thread can be assigned to any given partition without
consideration of the physical configuration of the sys-
tem (e.g., shared registers, caches, organization of the
storage hierarchy), except that threads that share cer-
tain hypervisor resources may need to be assigned to
the same partition; see Section 2.6. The registers and
facilities used to control Logical Partitioning are listed
below and described in the following subsections.

Except in the following subsections, references to the
“operating system” in this document include the hyper-
visor unless otherwise stated or obvious from context.

2.2 Logical Partitioning Control
Register (LPCR)
The contents of the LPCR control a number of aspects
of the operation of the thread with respect to a logical
partition. Below are shown the bit definitions for the
LPCR.

Bit Description
0:3 Virtualization Control (VC)

Controls the virtualization of partition memory
for partitions that use HPT translation. This
field contains three subfields, VPM, ISL, and

KBV. Accesses that are initiated in hypervisor
state (i.e., MSRHV PR=0b10) are performed as
if VPM=0 and KBV=0. (ISL applies regardless
of privilege.)

0 Reserved

1 Virtualized Partition Memory (VPM)

Controls whether VPM mode is enabled
when address translation is enabled as
specified below.

0 - VPM mode disabled
1 - VPM mode enabled

When address translation is disabled, VPM
mode is enabled. See Section 6.7.2, “Virtu-
alized Partition Memory (VPM) Mode”, and
Section 6.7.3.3, “Virtual Real Mode
Addressing Mechanism”, for additional
information on VPM mode.

2 Ignore SLB Large Page Specification
(ISL)

Controls whether ISL mode is enabled as
specified below.

0 - ISL mode disabled
1 - ISL mode enabled

When ISL mode is enabled and address
translation is enabled, address translation
is performed as if the contents of SLBL||LP
and PRTESTPS were 0b000. When address
translation is disabled, the setting of the ISL
bit has no effect. ISL mode has no effect on
SLB, TLB, and ERAT entry invalidations

VPM must be set to zero by hypervi-
sors that use HPT translation and want
to receive storage interrupts from appli-
cations running directly under them as
DSIs and ISIs (instead of HDSIs and
HISIs).

Programming Note
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1121

Version 3.1
caused by slbie, slbieg, slbia, slbiag,
tlbie, and tlbiel.

3 Key-Based Virtualization (KBV)

Controls whether Key-Based Virtualization
is enabled as specified below.

0 - KBV is disabled
1 - KBV is enabled

When KBV is enabled and
MSRHV||PR≠0b10, Virtual Page Class Key
Storage Protection exceptions that occur
on storage operand accesses when
VPM=0 cause Hypervisor Data Storage
interrupts.

4:8 Reserved

9:11 Default Prefetch Depth (DPFD)

The DPFD field is used as the default prefetch
depth for data stream prefetching when
DSCRDPFD=0; see page 1054.

12:16 Reserved

17:19 Power-saving mode Exit Cause Enable
(Upper Section) (PECEU)

 17 Hypervisor Virtualization Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, Hypervisor Virtualiza-
tion exceptions are not enabled to cause
exit from power-saving mode.

1 When the stop instruction is executed
with PSSCREC=1, Hypervisor Virtualiza-
tion exceptions are enabled to cause exit
from power-saving mode.

 18:19 Reserved

20:36 Reserved

37 Hypervisor Alternate Interrupt Location
(HAIL)

Controls the effective address offset, or alter-
nate effective address for System Call Vec-
tored, of the interrupt handler and the
relocation mode in which it begins execution
for all interrupts received in hypervisor state
except those subject to the overrides
described below.
0 The interrupt is taken with MSRIR DR =

0b00 and no effective address offset or
alternate effective address.

1 The interrupt is taken with MSRIR DR =
0b11. If the interrupt is not System Call
Vectored , an effective address offset of
0xc000_0000_0000_4000 is applied.
System Call Vectored uses an alternate
effective address of
0xc000_0000_0000_3||LEV||0b0_0000.

The overrides mentioned above are as fol-
lows. The list should be read from the top
down; the first item matching a given situation
applies.
 If the interrupt is received in ultravisor

state, the interrupt is taken as if
LPCRHAIL=0.

 Machine Check, System Reset, and
Hypervisor Maintenance interrupts are
taken as if LPCRHAIL=0.

 If the interrupt occurs when MSRHV=1
and either MSRIR=0 or MSRDR=0, the
interrupt is taken as if LPCRHAIL=0.

38 Interrupt Little-Endian (ILE)

The contents of the ILE bit are copied into
MSRLE by interrupts that set MSRHV to 0 (see

Specifying that L||LP=0b000 in PATEPS
has the same effect on address transla-
tion when translation is disabled as
enabling ISL mode when translation is
enabled.

ISL mode is needed when a partition is
running with address translation enabled
because translation uses the SLB, and
the contents of the SLB are controlled by
the operating system and should not be
modified by the hypervisor. ISL mode is
not needed when a partition is running
with address translation disabled since
Virtual Real Mode address translation
uses PATEPS, which is not visible to the
operating system and is in complete con-
trol of the hypervisor.

Any PTE with a base page size of 4K sat-
isfies the page size portion of the match
criteria for HPT search.

Key-Based Virtualization provides an
efficient means for the hypervisor to
intercept storage references, e.g.
MMIO, that must be emulated. (The
corresponding behavior for instruction
fetching is not desired.) Virtual Page
Class Key Storage Protection excep-
tions not handled by the hypervisor
should be reflected to the operating
system at its Data Storage interrupt
vector with the hypervisor having set
DSISR42.

Programming Note

Programming Note
Power ISA™ III1122

Version 3.1
Section 7.5), to establish the Endian mode for
the interrupt handler.

39:40 Alternate Interrupt Location (AIL)

Controls the effective address offset, or alter-
nate effective address for System Call Vec-
tored, of the interrupt handler and the
relocation mode in which it begins execution
for all interrupts received in privileged
non-hypervisor state except those subject to
the overrides described below.
0 The interrupt is taken with MSRIR DR =

0b00 and no effective address offset or
alternate effective address.

1 Reserved
2 Reserved
3 The interrupt is taken with MSRIR DR =

0b11. If the interrupt is not System Cal
Vectored, an effective address offset of
0xc000_0000_0000_4000 is applied.
System Call Vectored uses an alternate
effective address of
0xc000_0000_0000_3 || LEV || 0b0_0000.

The overrides mentioned above are as fol-
lows. The list should be read from the top
down; the first item matching a given situation
applies.

 If the interrupt occurs when MSRIR=0

or MSRDR=0, the interrupt is taken as
if LPCRAIL=0.



41 Use Process Table (UPRT)

Controls whether Process Tables are used.
For a radix-using partition, UPRT must be set
to 1. For a paravirtualized HPT partition,
UPRT is set to 1 when the operating system
does not require the use of the legacy soft-
ware-managed SLB.
0 Process Table is not used. (Soft-

ware-managed SLB in use, for paravirtu-
alized HPT partition.)

1 Process Table is used. (Segment Table in
use, for paravirtualized HPT partition.)

42 Enhanced Virtualization (EVIRT)

Controls whether Enhanced Virtualization is
enabled, as specified below.
0 Enhanced Virtualization is disabled:

attempts to execute hypervisor-privileged
instructions or access hypervisor
resources, or PTCR, DAWRn, DAWRXn,
or CIABR when they are ultravisor
resources, in privileged non-hypervisor
state cause a Privileged Instruction type
Program interrupt; attempts to access
undefined SPR numbers (using mtspr or
mfspr) other than 0, 4, 5, and 6 in privi-
leged state are treated as no-ops.

1 Enhanced Virtualization is enabled:
attempts to execute hypervisor-privileged
instructions or access hypervisor
resources, or PTCR, DAWRn, DAWRXn,
or CIABR when they are ultravisor
resources, in privileged non-hypervisor
state cause a Hypervisor Emulation Assis-
tance interrupt; attempts to access unde-
fined SPR numbers (using mtspr or
mfspr) other than 0, 4, 5, and 6 in privi-
leged state cause a Hypervisor Emulation
Assistance interrupt.

All accesses to the reserved noop SPRs (808-811)
are always treated as noops, independent of the
value of EVIRT.

43 Host Radix (HR)

Indicates whether the hypervisor uses Radix
Tree translation for the partition, as specified
below.
0 hypervisor uses HPT translation for this

partition.
1 hypervisor uses Radix Tree translation for

this partition.

The hypervisor must program HR to match the
Host Radix bit in the Partition Table Entry for
the partition indicated by LPIDR. If the values
do not match and the thread is not in hypervi-
sor real addressing mode or ultravisor real
addressing mode, the results are undefined.

The POWER9 processor operates as
though LPCRUPRT=0 for partitions that
use HPT translation, requiring operating
systems to fully manage the SLB in soft-
ware. Nonetheless, operating systems
may need to maintain segment tables for
use by accelerators.

Programming Note

Running with LPCREVIRT=1 facilitates
support of nested hypervisors (hypervi-
sors that run with MSRHV PR=0b00 and
have their use of hypervisor resources vir-
tualized by a higher level hypervisor); see
the relevant Programming Note in
Section 7.5.18, “Hypervisor Emulation
Assistance Interrupt”. It also permits emu-
lation of new SPRs on designs that do not
support them in hardware.

Programming Note
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1123

Version 3.1

44 Reserved

45 Online (ONL)

0 The PURR and SPURR do not increment.
1 The PURR and SPURR increment.

46 Large Decrementer (LD)

0 Large Decrementer mode is not enabled.
1 Large Decrementer mode is enabled.

See Section 8.4 for additional information.

47:51 Power-saving mode Exit Cause Enable
(Lower Section) (PECEL)

47 Privileged Doorbell Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, Directed Privileged
Doorbell exceptions are not enabled to
cause exit from power-saving mode

1 When the stop instruction is executed
with PSSCREC=1, Directed Privileged
Doorbell exceptions are enabled to cause
exit from power-saving mode.

48 Hypervisor Doorbell Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, Directed Hypervisor

Doorbell exceptions are not enabled to
cause exit from power-saving mode

1 When the stop instruction is executed
with PSSCREC=1, Directed Hypervisor
Doorbell exceptions are enabled to cause
exit from power-saving mode.

49 External Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, External exceptions
are not enabled to cause exit from
power-saving mode.

1 When the stop instruction is executed
with PSSCREC=1, External exceptions
are enabled to cause exit from power-sav-
ing mode.

50 Decrementer Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, Decrementer excep-
tions are not enabled to cause exit from
power-saving mode.

1 When the stop instruction is executed
with PSSCREC=1, Decrementer excep-
tions are enabled to cause exit from
power-saving mode. (Decrementer excep-
tions do not occur if the state of the Decre-
menter is not maintained and updated as
if the thread was not in power-saving
mode.)

51 Other Exit Enable
0 When the stop instruction is executed

with PSSCREC=1, Machine Check,
Hypervisor Maintenance, and certain
implementation-specific exceptions are
not enabled to cause exit from power-sav-
ing mode.

1 When the stop instruction is executed
with PSSCREC=1, Machine Check,
Hypervisor Maintenance, and certain
implementation-specific exceptions are
enabled to cause exit from power-saving
mode.

If the state of the PECE field is lost during power-saving
mode, implementations must provide the means to exit
power-saving mode upon the occurrence of a System
Reset exception and any of the exceptions that were
enabled by the PECE field when the stop instruction
was executed. In addition, they may also exit
power-saving mode on exceptions that were disabled
by the PECE field as well. See Section 7.5.1 and Sec-
tion 7.5.2 for additional information about exit from
power-saving mode.

52 Mediated External Exception Request
(MER)

0 A Mediated External exception is not
requested.

HR is duplicated in the LPCR because
there are times such as immediately after
a partition swap when it is difficult for
hardware to quickly access the PATE.

The translation mode for the hypervisor is
the same as the translation mode of the
partition the hypervisor is serving. This is
necessary for consistent, well-defined
behavior when a hypervisor concurrently
serves partitions using both translation
modes, and it creates a requirement that
HR=1 in the PATE for LPID=0 when Radix
Tree Translation partitions exist in the sys-
tem, because of the effLPID construct.
The architecture may refer to the transla-
tion mode of the hypervisor rather than
the HR value for the partition when the
relationship to the hypervisor matters.

Typically, the hypervisor sets the ONL bit
to 0 when the thread is not in a power sav-
ing mode, is not performing useful work,
and is available for use. The hypervisor
may take the state of the ONL bit into
account when making course-grain load
balancing and power management deci-
sions.

Programming Note

Programming Note
Power ISA™ III1124

Version 3.1
1 A Mediated External exception is
requested.

The exception effects of this bit are said to be
consistent with the contents of this bit if one of
the following statements is true.
- LPCRMER = 1 and a Mediated External

exception exists.
- LPCRMER = 0 and a Mediated External

exception does not exist.

A context synchronizing instruction or event
that is executed or occurs when LPCRMER = 0
ensures that the exception effects of
LPCRMER are consistent with the contents of
LPCRMER. Otherwise, when an instruction
changes the contents of LPCRMER, the excep-
tion effects of LPCRMER become consistent
with the new contents of LPCRMER reason-
ably soon after the change.

53 Guest Translation Shootdown Enable
(GTSE)

Controls whether the operating system is per-
mitted to use tlbie, slbieg, and slbiag directly,
or must issue a system call to the hypervisor.
0 Guest is not permitted to use tlbie,

slbieg, slbiag, tlbsync, and slbsync.
1 Guest is permitted to use tlbie, slbieg,

slbiag, tlbsync, and slbsync.

54 Translation Control (TC)

0 The secondary Page Table search is
enabled.

1 The secondary Page Table search is dis-
abled.

55:58 Reserved

59 Hypervisor External Interrupt Control
(HEIC)

0 Direct External interrupts can occur in
hypervisor state.

1 Direct External interrupts cannot occur in
hypervisor state.

60 Logical Partitioning Environment Selector
(LPES)

0 External interrupts set the HSRRs, set
MSRHV to 1, and leave MSRRI
unchanged.

1 External interrupts set the SRRs, set
MSRRI to 0, and leave MSRHV
unchanged.

61 Reserved

62 Hypervisor Virtualization Interrupt Condi-
tionally Enable (HVICE)

0 Hypervisor Virtualization interrupts are
disabled.

1 Hypervisor Virtualization interrupts are
enabled if permitted by MSREE, MSRHV,
and MSRPR; see Section 7.5.21.

63 Hypervisor Decrementer Interrupt Condi-
tionally Enable (HDICE)

0 Hypervisor Decrementer interrupts are
disabled.

1 Hypervisor Decrementer interrupts are
enabled if permitted by MSREE, MSRHV,
and MSRPR; see Section 7.5.12 on
page 1275.

LPCRMER provides a means for the
hypervisor to direct an external exception
to a partition independent of the partition's
MSREE setting. (When MSREE=0, it is
inappropriate for the hypervisor to deliver
the exception.) Using LPCRMER, the parti-
tion can be interrupted upon enabling
external interrupts. Without using
LPCRMER, the hypervisor must check the
state of MSREE whenever it gets control,
which will result in less timely delivery of
the exception to the partition.

An operating system that uses HPT trans-
lation must know whether VPM is active in
order to invalidate the translation for a
specific page using tlbie[l]. See the
related Programming Notes in the
descriptions of tlbie and tlbiel.

Programming Note

Programming Note

By setting HEIC=1, the Hypervisor Inter-
rupt Virtualization handler can prevent
External interrupts from occurring during
the Hypervisor Virtualization interrupt han-
dler. See Section 7.5.7.1.

LPES = 1 should be used by operating
systems not running under a hypervisor,
so that external interrupts are directed to
the SRRs rather than to the HSRRs.

In versions of the architecture that pre-
cede Version 2.07, LPES was a two-bit
field, in which the second bit controlled
significant aspects of storage accessing
and interrupt handling.

Programming Note

Programming Note

Programming Note
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1125

Version 3.1
See Section 7.5 on page 1260 for a description of how
the setting of LPES affects the processing of interrupts.

2.3 Hypervisor Real Mode Offset
Register (HRMOR)
The layout of the Hypervisor Real Mode Offset Register
(HRMOR) is shown in Figure 1 below.

Figure 1. Hypervisor Real Mode Offset Register

All other fields are reserved.

The supported HRMO values are the non-negative
multiples of 2r, where r is an implementation-dependent
value and 12 ≤ r ≤ 26.

The contents of the HRMOR affect how some storage
accesses are performed as described in Section 6.7.3
on page 1180 and Section 6.7.5 on page 1184.

2.4 Logical Partition
Identification Register (LPIDR)
The layout of the Logical Partition Identification Regis-
ter (LPIDR) is shown in Figure 2 below.

Figure 2. Logical Partition Identification Register

The contents of the LPIDR identify the partition to
which the thread is assigned, affecting some aspects of
translation. The number of LPIDR bits supported is
implementation-dependent.

2.5 Processor Compatibility
Register (PCR)
The layout of the Processor Compatibility Register
(PCR) is shown in Figure 3 below.

Figure 3. Processor Compatibility Register

High-order PCR bits are assigned to control the avail-
ability of facilities. Low-order PCR bits are assigned to
control the availability of resources that are new in a
specified version of the Architecture. The two types of
bits can interact. For example, if a facility is created in
one version and extended in the next, the high-order bit
enables the portion of the facility that was defined in the
version of the architecture enabled in the low-order bits.

Each defined bit in the PCR controls whether certain
instructions, SPRs, and other related facilities are avail-
able in problem state. Except as specified elsewhere in
this section, the PCR has no effect on facilities when
the thread is not in problem state, or on privileged facil-
ities when the thread is in problem state. Facilities that
are made unavailable by the PCR are treated as fol-
lows when the thread is in problem state.

- Except for mffsl, mffsce, mffsdrn, mffsdrni,
mffsrn, and mffsrni, non-privileged instruc-
tions are treated as illegal instructions.

- mffsl, mffsce, mffsdrn, mffsdrni, mffsrn,
and mffsrni perform as if they are an mffs
instruction.

- SPRs are treated as if they were not defined
for the implementation.

- The “reserved SPRs” (see Section 1.3.3 of
Book I) are treated as not defined for the
implementation.

- Fields in instructions are treated as if they
were 0s except for the L field in paste.

- Values of fields in instructions cause the
instruction to be treated as an invalid form of
the instruction.

- Unless the third item of this list applies, bits in
system registers read back 0s for mfspr and
mtspr operations have no effect on their val-
ues, except as described immediately below
for bits 44:45 of the XER.

For bits 44:45 of the XER, two pairs of bits are
provided, an “OV32-CA32” bit pair for
XEROV32 and XERCA32 and a “reserved” bit
pair for legacy XER bits 44:45 behavior.

Which bit pair is read by mfxer is controlled by
the PCR. mtxer writes to both bit pairs, inde-
pendent of the PCR. mcrxr reads the
"OV32-CA32" bit pair.

// HRMO
0 4 63

Bits Name Description
4:63 HRMO Real Mode Offset

LPID
32 63

Bits Name Description
32:63 LPID Logical Partition Identifier

Radix tree translation assigns special meaning to
LPID=0, specifically indicating the hypervisor’s own
partition. When HR=1, LPIDR should not be set to
zero except when MSRHV=1.

HPT translation provides special functionality for
LPID=0 when HV=1, as described in Section 6.9.3.
A partition that uses HPT translation and requires
the services of an adjunct should not be assigned
LPID=0.

Programming Note

facility bits → ← version bits

///

M
M

A

/// v3
.0

v2
.0

7

///

0 3 4 59 60 61 63
Power ISA™ III1126

Version 3.1
Each bit in the “OV32-CA32” bit pair is implic-
itly set by instructions that implicitly set their
respective XEROV or XERCA, independent of
the PCR. The “reserved” bit pair for bits 44:45
of the XER are not altered by these instruc-
tions, independent of the PCR.

A defined bit in the PCR may also control whether cer-
tain instructions, SPRs, and other related facilities are
available in a privileged state (MSRPR=0). Affected
facilities will be specifically annotated.

A PCR bit may also determine how an instruction field
value is interpreted or may define other behavior as
specified in the bit definitions below.

As described in more detail below, the value 1 in a
defined bit in the PCR makes the affected resources
unavailable and the value 0 makes them available.

The initial state of the PCR is all 0s. In this state, all
instructions and facilities supported by the processor
are available in all privilege states.

The PCR has no effect on the setting of the MSR and
[H]SRR1 by interrupts (and of the Count Register by
the System Call Vectored interrupt), and by the rfscv,

[h]rfid and mtmsr[d] instructions, except as specified
elsewhere in this section.

When facilities that have enable bits in the MSR,
FSCR, HFSCR, or MMCR0 are made unavailable by
the value in the PCR, they become unavailable in prob-
lem state as specified above regardless of whether
they are enabled by the corresponding MSR, FSCR,
HFSCR, or MMCR0 bit; facility availability interrupts
(e.g. [Hypervisor] Facility Available, Vector Unavailable,
etc.) do not occur as a result of problem state accesses
even if the corresponding field in the MSR, [H]FSCR, or
MMCR0 makes them unavailable in problem state.

The "reserved" bit pair does not conform
to the usual rules for reading (mfspr)
reserved bits in registers (see
Section 1.3.3 of Book I) because some
early implementations used bits 44:45 of
the XER for implementation-specific pur-
poses. On these implementations, and on
subsequent implementations that imple-
mented versions of the architecture that
precede V. 3.0, mfxer returned the con-
tents of the bits, despite that the bits were
defined as reserved.

When a bit in a system register is made unavailable
by the PCR, mtspr operations performed on the
register in problem state have no effect on the
value of the bit regardless of the privilege state in
which the register may subsequently be read.

Hypervisors written for a given version of the archi-
tecture generally cannot support facilities that are
defined in a subsequent version of the architecture
if those facilities have new state that would need to
be preserved across context switches. (In the
absence of such state, support may or may not be
possible.) Therefore, hypervisors will set to 1 all
PCR bits that are reserved in the given version of
the architecture.

Programming Note

Programming Note

Programming Note

Facilities that can be disabled in problem state by
the PCR that also have enable bits in either the
MSR or [H]FSCR include the BHRB instructions,
event-based branch instructions, TAR, DSCR at
SPR 3, SIER, MMCR2, the event-based branch
instructions, and certain Floating-Point, Vector, and
VSX instructions. When any of these facilities are
made unavailable in problem state by the PCR, the
corresponding [Hypervisor] Facility Unavailable,
Floating-Point Unavailable, Vector, or VSX unavail-
able interrupts do not occur when the facility is
accessed in problem state. Note, however, that the
PCR does not affect privileged accesses, and thus
any Hypervisor Facility Unavailable, Floating-Point
Unavailable, Vector unavailable, or VSX unavail-
able interrupts that are specified to occur as a
result of privileged accesses occur regardless of
the PCR value.

Programming Note
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1127

Version 3.1

Because the PCR has no effect on privileged
instructions except as specified above, privileged
instructions that are available on newer implemen-
tations but not available on older implementations
will behave differently when the thread is in prob-
lem state. On older implementations, a Hypervisor
Emulation Assistance interrupt will occur because
the instruction is undefined; on newer implementa-
tions, a Privileged Instruction type Program inter-
rupt will occur because the instruction is
implemented.

In future versions of the architecture, in general the
lowest-order reserved bit of the PCR will be used to
control the availability of the instructions and
related resources that are new in that version of the
architecture; the name of the bit will correspond to
the previous version of the architecture (i.e., the
newest version in which the instructions and
related resources were not available).

In these future versions of the architecture, there
will be a requirement that if any bit of the low-order
defined bits is set to 1 then all higher-order bits of
the defined low-order bits must also be set to 1,
and the architecture version with which the imple-
mentation appears to comply, in problem state, will
be the version corresponding to the name of the
lowest-order 1 bit in the set of defined low-order
PCR bits, or the current architecture version if none
of these bits are 1. Also, in general the high-
est-order reserved bits will be used to control the
availability of sets of instructions and related
resources having the requirement that their avail-
ability be independent of versions of the architec-
ture.

Programming Note
Power ISA™ III1128

Version 3.1
The bit definitions for the PCR are shown below.

Bit Description
0:2 Reserved

3 Matrix-Multiply Accelerator (MMA)

This bit controls the availability of the instruc-
tions listed in Table 1 on page 1130 for all priv-
ilege states.

0 The instructions listed in Table 1 are avail-
able if the v3.0 bit is also set to 0.

1 The instructions listed in Table 1 are not
available.

4:58 Reserved

59 Version 3.0 (v3.0)

When MSRPR=1 (i.e., problem state), this bit
controls the availability of the following
instructions, facilities, and behaviors that were
newly available in problem state in the version
of the architecture subsequent to Version 3.0.

- The instructions listed in Table 2 on
page 1131

- The value 0 in bit 10 of the paste. instruc-
tion. When this value is unavailable,
attempt to execute a paste. instruction
with bit 10 set to 0 causes a Hypervisor
Emulation Assistance interrupt in all privi-
lege levels. (Although the L field is new, it
has behavior more like a new value of a
field because its pre-existing value was 1
instead of 0, and there is a need to treat
the new value as causing an illegal
instruction behavior instead of being
ignored.)

- The ability to perform a data transfer from
one storage location to another or to
another system. When this function is
unavailable, attempting to use it in any
privilege state causes a DSI or HDSI on
the paste. instruction, setting
[H]DSISR60, as would occur under Ver-
sion 3.0 of the architecture. See the lat-
est revision of Version 3.0 of the
architecture for details.

- SIER2, SIER3 and MMCR3

0 The instructions, behaviors, and facilities
listed above are available.

Any word in storage fetched as an instruc-
tion having a primary opcode of 0b000001
is treated as the prefix of a prefixed
instruction and the next sequential word in
storage is treated as the suffix of that pre-
fixed instruction.

1 The instructions, behaviors, and facilities

listed above are unavailable.

Any word in storage fetched as an instruc-
tion having a primary opcode of 0b000001
is treated as an illegal word instruction.

Because this bit affects whether prefixed
instructions are treated as illegal word instruc-
tions, it may affect how the Hypervisor Emula-
tion Assist interrupt sets HSRR134 and HEIR.

If this bit is set to 1, then the MMA bit must
also be set to 1.

When MSRPR=1 and MMCR0PMCC=0b00,
this bit controls whether read permission on
Group B Performance Monitor registers (i.e.,
SIER, SIAR, SDAR, and MMCR1 at SPR
numbers 768, 780, 781 and 782, respectively)
specified in Version 3.0 of the architecture is
further conditional on MMCR0PMCCEXT bit or
not.

0 mfspr availability on the mentioned regis-
ters is conditional on MMCR0PMCCEXT bit.

1 mfspr on the mentioned registers is avail-
able in problem state without further con-
ditions.

60 Version 2.07 (v2.07)

When MSRPR=1 (i.e., problem state), this bit
controls the availability of the following
instructions, facilities, and behaviors that were
newly available in problem state in the version
of the architecture subsequent to Version
2.07.

- The instructions listed in Table 3 on
page 1134

- scv

0 The instructions, behaviors, and facilities
listed above are available.

mfxer reads the contents of the
“OV32-CA32” bit pair for XER bits 44:45.

1 The instructions, behaviors, and facilities
listed above are unavailable.

mfxer reads the contents of the
“reserved” bit pair for XER bits 44:45.

When MSRPR=0 (i.e., privileged or hypervi-
sor-privileged state), this bit controls the avail-
ability of the mcrxrx instruction and which bit
pair is read by mfxer for XER bits 44:45.

0 mcrxrx is available.

mfxer reads the contents of the
“OV32-CA32” bit pair for XER bits 44:45.

1 mcrxrx is unavailable.
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1129

Version 3.1
mfxer reads the contents of the
“reserved” bit pair for XER bits 44:45.

If this bit is set to 1, then the v3.0 bit must also
be set to 1.

61:63 Reserved

pmxvbf16ger2 Prefixed Masked VSX Vector bfloat16
GER (Rank-2 Update)

pmxvbf16ger2nn Prefixed Masked VSX Vector bfloat16
GER (Rank-2 Update) (Negative Multiply,
Negative Accumulate)

pmxvbf16ger2np Prefixed Masked VSX Vector bfloat16
GER (Rank-2 Update) (Negative Multiply,
Positive Accumulate)

pmxvbf16ger2pn Prefixed Masked VSX Vector bfloat16
GER (Rank-2 Update) (Positive Multiply,
Negative Accumulate)

pmxvbf16ger2pp Prefixed Masked VSX Vector bfloat16
GER (Rank-2 Update) (Positive Multiply,
Positive Accumulate)

pmxvf16ger2 Prefixed Masked VSX Vector
Half-Precision GER (Rank-2 Update)

pmxvf16ger2nn Prefixed Masked VSX Vector
Half-Precision GER (Rank-2 Update)
(Negative Multiply, Negative Accumulate)

pmxvf16ger2np Prefixed Masked VSX Vector
Half-Precision GER (Rank-2 Update)
(Negative Multiply, Positive Accumulate)

pmxvf16ger2pn Prefixed Masked VSX Vector
Half-Precision GER (Rank-2 Update)
(Positive Multiply, Negative Accumulate)

pmxvf16ger2pp Prefixed Masked VSX Vector
Half-Precision GER (Rank-2 Update)
(Positive Multiply, Positive Accumulate)

pmxvf32ger Prefixed Masked VSX Vector
Single-Precision GER (Rank-1 Update)

pmxvf32gernn Prefixed Masked VSX Vector
Single-Precision GER (Rank-1 Update)
(Negative Multiply, Negative Accumulate)

pmxvf32gernp Prefixed Masked VSX Vector
Single-Precision GER (Rank-1 Update)
(Negative Multiply, Positive Accumulate)

pmxvf32gerpn Prefixed Masked VSX Vector
Single-Precision GER (Rank-1 Update)
(Positive Multiply, Negative Accumulate)

pmxvf32gerpp Prefixed Masked VSX Vector
Single-Precision GER (Rank-1 Update)
(Positive Multiply, Positive Accumulate)

pmxvf64ger Prefixed Masked VSX Vector
Double-Precision GER (Rank-1 Update)

pmxvf64gernn Prefixed Masked VSX Vector
Double-Precision GER (Rank-1 Update)
(Negative Multiply, Negative Accumulate)

Table 1: v3.1 instructions controlled by the MMA bit
(Sheet 1 of 4)

pmxvf64gernp Prefixed Masked VSX Vector
Double-Precision GER (Rank-1 Update)
(Negative Multiply, Positive Accumulate)

pmxvf64gerpn Prefixed Masked VSX Vector
Double-Precision GER (Rank-1 Update)
(Positive Multiply, Negative Accumulate)

pmxvf64gerpp Prefixed Masked VSX Vector
Double-Precision GER (Rank-1 Update)
(Positive Multiply, Positive Accumulate)

pmxvi16ger2 Prefixed Masked VSX Vector Signed
Halfword GER (Rank-2 Update)

pmxvi16ger2pp Prefixed Masked VSX Vector Signed
Halfword GER (Rank-2 Update) (Positive
Multiply, Positive Accumulate)

pmxvi16ger2s Prefixed Masked VSX Vector Signed
Halfword GER (Rank-2 Update) with
Saturate

pmxvi16ger2spp Prefixed Masked VSX Vector Signed
Halfword GER (Rank-2 Update) with
Saturate (Positive Multiply, Positive
Accumulate)

pmxvi4ger8 Prefixed Masked VSX Vector Signed
Nibble GER (Rank-8 Update)

pmxvi4ger8pp Prefixed Masked VSX Vector Signed
Nibble GER (Rank-8 Update) (Positive
Multiply, Positive Accumulate)

pmxvi8ger4 Prefixed Masked VSX Vector Signed/
Unsigned Byte GER (Rank-4 Update)

pmxvi8ger4pp Prefixed Masked VSX Vector Signed/
Unsigned Byte GER (Rank-4 Update)
(Positive Multiply, Positive Accumulate)

pmxvi8ger4spp Prefixed Masked VSX Vector Signed/
Unsigned Byte GER (Rank-4 Update)
with Saturate (Positive Multiply, Positive
Accumulate)

xvbf16ger2 VSX Vector bfloat16 GER (Rank-2
Update)

xvbf16ger2nn VSX Vector bfloat16 GER (Rank-2
Update) (Negative Multiply, Negative
Accumulate)

xvbf16ger2np VSX Vector bfloat16 GER (Rank-2
Update) (Negative Multiply, Positive
Accumulate)

xvbf16ger2pn VSX Vector bfloat16 GER (Rank-2
Update) (Positive Multiply, Negative
Accumulate)

xvbf16ger2pp VSX Vector bfloat16 GER (Rank-2
Update) (Positive Multiply, Positive
Accumulate)

xvf16ger2 VSX Vector Half-Precision GER (Rank-2
Update)

xvf16ger2nn VSX Vector Half-Precision GER (Rank-2
Update) (Negative Multiply, Negative
Accumulate)

Table 1: v3.1 instructions controlled by the MMA bit
(Sheet 2 of 4)
Power ISA™ III1130

Version 3.1
xvf16ger2np VSX Vector Half-Precision GER (Rank-2
Update) (Negative Multiply, Positive
Accumulate)

xvf16ger2pn VSX Vector Half-Precision GER (Rank-2
Update) (Positive Multiply, Negative
Accumulate)

xvf16ger2pp VSX Vector Half-Precision GER (Rank-2
Update) (Positive Multiply, Positive
Accumulate)
xvf32ger|VSX Vector Single-Precision
GER (Rank-1 Update)

xvf32gernn VSX Vector Single-Precision GER
(Rank-1 Update) (Negative Multiply,
Negative Accumulate)

xvf32gernp VSX Vector Single-Precision GER
(Rank-1 Update) (Negative Multiply,
Positive Accumulate)

xvf32gerpn VSX Vector Single-Precision GER
(Rank-1 Update) (Positive Multiply,
Negative Accumulate)

xvf32gerpp VSX Vector Single-Precision GER
(Rank-1 Update) (Positive Multiply,
Positive Accumulate)

xvf64ger VSX Vector Double-Precision GER
(Rank-1 Update)

xvf64gernn VSX Vector Double-Precision GER
(Rank-1 Update) (Negative Multiply,
Negative Accumulate)

xvf64gernp VSX Vector Double-Precision GER
(Rank-1 Update) (Negative Multiply,
Positive Accumulate)

xvf64gerpn VSX Vector Double-Precision GER
(Rank-1 Update) (Positive Multiply,
Negative Accumulate)

xvf64gerpp VSX Vector Double-Precision GER
(Rank-1 Update) (Positive Multiply,
Positive Accumulate)

xvi16ger2 VSX Vector Signed Halfword GER
(Rank-2 Update)

xvi16ger2pp VSX Vector Signed Halfword GER
(Rank-2 Update) (Positive Multiply,
Positive Accumulate)

xvi16ger2s VSX Vector Signed Halfword GER
(Rank-2 Update) with Saturate

xvi16ger2spp VSX Vector Signed Halfword GER
(Rank-2 Update) with Saturate (Positive
Multiply, Positive Accumulate)

xvi4ger8 VSX Vector Signed Nibble GER (Rank-8
Update)

xvi4ger8pp VSX Vector Signed Nibble GER (Rank-8
Update) (Positive Multiply, Positive
Accumulate)

xvi8ger4 VSX Vector Signed/Unsigned Byte GER
(Rank-4 Update)

Table 1: v3.1 instructions controlled by the MMA bit
(Sheet 3 of 4)

xvi8ger4pp VSX Vector Signed/Unsigned Byte GER
(Rank-4 Update) (Positive Multiply,
Positive Accumulate)

xvi8ger4spp VSX Vector Signed/Unsigned Byte GER
(Rank-4 Update) with Saturate (Positive
Multiply, Positive Accumulate)

xxmfacc VSX Move From ACC
xxmtacc VSX Move To ACC
xxsetaccz VSX Set ACC to Zero

brd Byte-Reverse Doubleword
brh Byte-Reverse Halfword
brw Byte-Reverse Word
cfuged Centrifuge Doubleword
cntlzdm Count Leading Zeros Doubleword under

bit Mask
cnttzdm Count Trailing Zeros Doubleword under

bit Mask
dcffixqq DFP Convert From Fixed Quadword

Quad
dctfixqq DFP Convert To Fixed Quadword Quad
lxvkq Load VSX Vector Special Value

Quadword
lxvp Load VSX Vector Paired
lxvpx Load VSX Vector Paired Indexed
lxvrbx Load VSX Vector Rightmost Byte

Indexed
lxvrdx Load VSX Vector Rightmost Doubleword

Indexed
lxvrhx Load VSX Vector Rightmost Halfword

Indexed
lxvrwx Load VSX Vector Rightmost Word

Indexed
mtvsrbm Move to VSR Byte Mask
mtvsrbmi Move To VSR Byte Mask Immediate
mtvsrdm Move to VSR Doubleword Mask
mtvsrhm Move to VSR Halfword Mask
mtvsrqm Move to VSR Quadword Mask
mtvsrwm Move to VSR Word Mask
paddi Prefixed Add Immediate
pdepd Parallel Bits Deposit Doubleword
pextd Parallel Bits Extract Doubleword
plbz Prefixed Load Byte & Zero
pld Prefixed Load Doubleword
plfd Prefixed Load Floating Double
plfs Prefixed Load Floating Single

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 1 of 6)

Table 1: v3.1 instructions controlled by the MMA bit
(Sheet 4 of 4)
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1131

Version 3.1
plha Prefixed Load Halfword Algebraic
plhz Prefixed Load Halfword & Zero
plq Prefixed Load Quadword
plwa Prefixed Load Word Algebraic
plwz Prefixed Load Word & Zero
plxsd Prefixed Load VSX Scalar Doubleword
plxssp Prefixed Load VSX Scalar Single
plxv Prefixed Load VSX Vector
plxvp Prefixed Load VSX Vector Paired
pnop Prefixed No-Operation
pstb Prefixed Store Byte
pstd Prefixed Store Doubleword
pstfd Prefixed Store Floating Double
pstfs Prefixed Store Floating Single
psth Prefixed Store Halfword
pstq Prefixed Store Quadword
pstw Prefixed Store Word
pstxsd Prefixed Store VSX Scalar Doubleword
pstxssp Prefixed Store VSX Scalar

Single-Precision
pstxv Prefixed Store VSX Vector
pstxvp Prefixed Store VSX Vector Paired
setbc Set Boolean Condition
setbcr Set Boolean Condition Reverse
setnbc Set Negative Boolean Condition
setnbcr Set Negative Boolean Condition Reverse
stxvp Store VSX Vector Paired
stxvpx Store VSX Vector Paired Indexed
stxvrbx Store VSX Vector Rightmost Byte

Indexed
stxvrdx Store VSX Vector Rightmost Doubleword

Indexed
stxvrhx Store VSX Vector Rightmost Halfword

Indexed
stxvrwx Store VSX Vector Rightmost Word

Indexed
vcfuged Vector Centrifuge Doubleword
vclrlb Vector Clear Leftmost Bytes
vclrrb Vector Clear Rightmost Bytes
vclzdm Vector Count Leading Zeros Doubleword

under bit Mask
vcmpequq[.] Vector Compare Equal Quadword
vcmpgtsq[.] Vector Compare Greater Than Signed

Quadword
vcmpgtuq[.] Vector Compare Greater Than Unsigned

Quadword
vcmpsq Vector Compare Signed Quadword
vcmpuq Vector Compare Unsigned Quadword

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 2 of 6)

vcntmbb Vector Count Mask Bits Byte
vcntmbd Vector Count Mask Bits Doubleword
vcntmbh Vector Count Mask Bits Halfword
vcntmbw Vector Count Mask Bits Word
vctzdm Vector Count Trailing Zeros Doubleword

under bit Mask
vdivesd Vector Divide Extended Signed

Doubleword
vdivesq Vector Divide Extended Signed

Quadword
vdivesw Vector Divide Extended Signed Word
vdiveud Vector Divide Extended Unsigned

Doubleword
vdiveuq Vector Divide Extended Unsigned

Quadword
vdiveuw Vector Divide Extended Unsigned Word
vdivsd Vector Divide Signed Doubleword
vdivsq Vector Divide Signed Quadword
vdivsw Vector Divide Signed Word
vdivud Vector Divide Unsigned Doubleword
vdivuq Vector Divide Unsigned Quadword
vdivuw Vector Divide Unsigned Word
vexpandbm Vector Expand Byte Mask
vexpanddm Vector Expand Doubleword Mask
vexpandhm Vector Expand Halfword Mask
vexpandqm Vector Expand Quadword Mask
vexpandwm Vector Expand Word Mask
vextddvlx Vector Extract Double Doubleword to

VSR Left-Indexed
vextddvrx Vector Extract Double Doubleword to

VSR Right-Indexed
vextdubvlx Vector Extract Double Unsigned Byte to

Vector Register Left-Indexed
vextdubvrx Vector Extract Double Unsigned Byte to

Vector Register Right-Indexed
vextduhvlx Vector Extract Double Unsigned Halfword

to Vector Register Left-Indexed
vextduhvrx Vector Extract Double Unsigned Halfword

to Vector Register Right-Indexed
vextduwvlx Vector Extract Double Unsigned Word to

Vector Register Left-Indexed
vextduwvrx Vector Extract Double Unsigned Word to

Vector Register Right-Indexed
vextractbm Vector Extract Byte Mask
vextractdm Vector Extract Doubleword Mask
vextracthm Vector Extract Halfword Mask
vextractqm Vector Extract Quadword Mask
vextractwm Vector Extract Word Mask
vextsd2q Vector Extend Sign Doubleword to

Quadword

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 3 of 6)
Power ISA™ III1132

Version 3.1
vgnb Vector Gather every Nth Bit
vinsblx Vector Insert Byte from GPR Left-Indexed
vinsbrx Vector Insert Byte from GPR

Right-Indexed
vinsbvlx Vector Insert Byte from VSR Left-Indexed
vinsbvrx Vector Insert Byte from VSR

Right-Indexed
vinsd Vector Insert Doubleword from GPR
vinsdlx Vector Insert Doubleword from GPR

Left-Indexed
vinsdrx Vector Insert Doubleword from GPR

Right-Indexed
vinshlx Vector Insert Halfword from GPR

Left-Indexed
vinshrx Vector Insert Halfword from GPR

Right-Indexed
vinshvlx Vector Insert Halfword from VSR

Left-Indexed
vinshvrx Vector Insert Halfword from VSR

Right-Indexed
vinsw Vector Insert Word from GPR
vinswlx Vector Insert Word from GPR

Left-Indexed
vinswrx Vector Insert Word from GPR

Right-Indexed
vinswvlx Vector Insert Word from VSR

Left-Indexed
vinswvrx Vector Insert Word from VSR

Right-Indexed
vmodsd Vector Modulo Signed Doubleword
vmodsq Vector Modulo Signed Quadword
vmodsw Vector Modulo Signed Word
vmodud Vector Modulo Unsigned Doubleword
vmoduq Vector Modulo Unsigned Quadword
vmoduw Vector Modulo Unsigned Word
vmsumcud Vector Multiply-Sum & write Carry-out

Unsigned Doubleword
vmulesd Vector Multiply Even Signed Doubleword
vmuleud Vector Multiply Even Unsigned

Doubleword
vmulhsd Vector Multiply High Signed Doubleword
vmulhsw Vector Multiply High Signed Word
vmulhud Vector Multiply High Unsigned

Doubleword
vmulhuw Vector Multiply High Unsigned Word
vmulld Vector Multiply Low Doubleword
vmulosd Vector Multiply Odd Signed Doubleword
vmuloud Vector Multiply Odd Unsigned

Doubleword
vpdepd Vector Parallel Bits Deposit Doubleword

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 4 of 6)

vpextd Vector Parallel Bits Extract Doubleword
vrlq Vector Rotate Left Quadword
vrlqmi Vector Rotate Left Quadword then Mask

Insert
vrlqnm Vector Rotate Left Quadword then AND

with Mask
vsldbi Vector Shift Left Double by Bit Immediate
vslq Vector Shift Left Quadword
vsraq Vector Shift Right Algebraic Quadword
vsrdbi Vector Shift Right Double by Bit

Immediate
vsrq Vector Shift Right Quadword
vstribl[.] Vector String Isolate Byte Left-justified
vstribr[.] Vector String Isolate Byte Right-justified
vstrihl[.] Vector String Isolate Halfword

Left-justified
vstrihr[.] Vector String Isolate Halfword

Right-justified
xscmpeqqp VSX Scalar Compare Equal

Quad-Precision
xscmpgeqp VSX Scalar Compare Greater Than or

Equal Quad-Precision
xscmpgtqp VSX Scalar Compare Greater Than

Quad-Precision
xscvqpsqz VSX Vector Convert Quad-Precision to

Signed Quadword
xscvqpuqz VSX Vector Convert Quad-Precision to

Unsigned Quadword
xscvsqqp VSX Vector Convert Signed Quadword to

Quad-Precision
xscvuqqp VSX Vector Convert Unsigned Quadword

to Quad-Precision
xsmaxcqp VSX Scalar Maximum Type-C

Quad-Precision
xsmincqp VSX Scalar Minimum Type-C

Quad-Precision
xvcvbf16sp VSX Vector Convert bfloat16 to

Single-Precision format
xvcvspbf16 VSX Vector Convert with round

Single-Precision to bfloat16 format
xvtlsbb VSX Vector Test Least-Significant Bit by

Byte Operation
xxblendvb VSX Vector Blend Variable Byte
xxblendvd VSX Vector Blend Variable Doubleword
xxblendvh VSX Vector Blend Variable Halfword
xxblendvw VSX Vector Blend Variable Word
xxeval VSX Vector Evaluate
xxgenpcvbm VSX Vector Generate PCV from Byte

Mask
xxgenpcvdm VSX Vector Generate PCV from

Doubleword Mask

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 5 of 6)
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1133

Version 3.1
xxgenpcvhm VSX Vector Generate PCV from Halfword
Mask

xxgenpcvwm VSX Vector Generate PCV from Word
Mask

xxpermx VSX Vector Permute Extended
xxsplti32dx VSX Vector Splat Immediate32

Doubleword Indexed
xxspltidp VSX Vector Splat Immediate

Double-Precision
xxspltiw VSX Vector Splat Immediate Word

addpcis Add PC Immediate Shifted Prefix
bcdcfn. Decimal Convert From National
bcdcfsq. Decimal Convert From Signed Quadword
bcdcfz. Decimal Convert From Zoned
bcdcpsgn. Decimal CopySign
bcdctn. Decimal Convert To National
bcdctsq. Decimal Convert To Signed Quadword
bcdctz. Decimal Convert To Zoned
bcds. Decimal Shift
bcdsetsgn. Decimal Set Sign
bcdsr. Decimal Shift and Round
bcdtrunc. Decimal Truncate
bcdus. Decimal Unsigned Shift
bcdutrunc. Decimal Unsigned Truncate
cmpeqb Compare Equal Byte
cmprb Compare Ranged Byte
cnttzd[.] Count Trailing Zeros Doubleword
cnttzw[.] Count Trailing Zeros Word
copy Copy
cpabort Copy-Paste Abort
darn Deliver a Random Number
dtstsfi DFP Test Significance Immediate
dtstsfiq DFP Test Significance Immediate Quad
extswsli[.] Extend Sign Word and Shift Left

Immediate
ldat Load Doubleword Atomic
lwat Load Word Atomic
lxsd Load VSX Scalar Doubleword
lxsibzx Load VSX Scalar as Integer Byte & Zero

Indexed
lxsihzx Load VSX Scalar as Integer Halfword &

Zero Indexed
lxssp Load VSX Scalar Single
lxv Load VSX Vector

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 1 of 6)

Table 2: Instructions controlled by the v3.0 bit
 (Sheet 6 of 6)

lxvb16x Load VSX Vector Byte*16 Indexed
lxvh8x Load VSX Vector Halfword*8 Indexed
lxvl Load VSX Vector with Length
lxvll Load VSX Vector Left-justified with

Length
lxvwsx Load VSX Vector Word & Splat Indexed
lxvx Load VSX Vector Indexed
maddhd Multiply-Add High Doubleword
maddhdu Multiply-Add High Doubleword Unsigned
maddld Multiply-Add Low Doubleword
mcrxrx Move XER to CR Extended
mffscdrn Move From FPSCR Control & set DRN
mffscdrni Move From FPSCR Control & set DRN

Immediate
mffsce Move From FPSCR & Clear Enables
mffscrn Move From FPSCR Control & set RN
mffscrni Move From FPSCR Control & set RN

Immediate
mffsl Move From FPSCR Lightweight
mfvsrld Move From VSR Lower Doubleword
modsd Modulo Signed Doubleword
modsw Modulo Signed Word
modud Modulo Unsigned Doubleword
moduw Modulo Unsigned Word
mtvsrdd Move To VSR Double Doubleword
mtvsrws Move To VSR Word & Splat
paste. Paste
setb Set Boolean
stdat Store Doubleword Atomic
stwat Store Word Atomic
stxsd Store VSX Scalar Doubleword
stxsibx Store VSX Scalar as Integer Byte

Indexed
stxsihx Store VSX Scalar as Integer Halfword

Indexed
stxssp Store VSX Scalar Single
stxv Store VSX Vector
stxvb16x Store VSX Vector Byte*16 Indexed
stxvh8x Store VSX Vector Halfword*8 Indexed
stxvl Store VSX Vector with Length
stxvll Store VSX Vector Left-justified with

Length
stxvx Store VSX Vector Indexed
vabsdub Vector Absolute Difference Unsigned

Byte
vabsduh Vector Absolute Difference Unsigned

Halfword
vabsduw Vector Absolute Difference Unsigned

Word

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 2 of 6)
Power ISA™ III1134

Version 3.1
vbpermd Vector Bit Permute Doubleword
vclzlsbb Vector Count Leading Zero

Least-Significant Bits Byte
vcmpneb[.] Vector Compare Not Equal Byte
vcmpneh[.] Vector Compare Not Equal Halfword
vcmpnew[.] Vector Compare Not Equal Word
vcmpnezb[.] Vector Compare Not Equal or Zero Byte
vcmpnezh[.] Vector Compare Not Equal or Zero

Halfword
vcmpnezw[.] Vector Compare Not Equal or Zero Word
vctzb Vector Count Trailing Zeros Byte
vctzd Vector Count Trailing Zeros Doubleword
vctzh Vector Count Trailing Zeros Halfword
vctzlsbb Vector Count Trailing Zero

Least-Significant Bits Byte
vctzw Vector Count Trailing Zeros Word
vextractd Vector Extract Doubleword
vextractub Vector Extract Unsigned Byte
vextractuh Vector Extract Unsigned Halfword
vextractuw Vector Extract Unsigned Word
vextsb2d Vector Extend Sign Byte To Doubleword
vextsb2w Vector Extend Sign Byte To Word
vextsh2d Vector Extend Sign Halfword To

Doubleword
vextsh2w Vector Extend Sign Halfword To Word
vextsw2d Vector Extend Sign Word To Doubleword
vextublx Vector Extract Unsigned Byte

Left-Indexed
vextubrx Vector Extract Unsigned Byte

Right-Indexed
vextuhlx Vector Extract Unsigned Halfword

Left-Indexed
vextuhrx Vector Extract Unsigned Halfword

Right-Indexed
vextuwlx Vector Extract Unsigned Word

Left-Indexed
vextuwrx Vector Extract Unsigned Word

Right-Indexed
vinsertb Vector Insert Byte
vinsertd Vector Insert Doubleword
vinserth Vector Insert Halfword
vinsertw Vector Insert Word
vmul10cuq Vector Multiply-by-10 & write Carry

Unsigned Quadword
vmul10ecuq Vector Multiply-by-10 Extended & write

Carry Unsigned Quadword
vmul10euq Vector Multiply-by-10 Extended Unsigned

Quadword
vmul10uq Vector Multiply-by-10 Unsigned

Quadword

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 3 of 6)

vnegd Vector Negate Doubleword
vnegw Vector Negate Word
vpermr Vector Permute Right-indexed
vprtybd Vector Parity Byte Doubleword
vprtybq Vector Parity Byte Quadword
vprtybw Vector Parity Byte Word
vrldmi Vector Rotate Left Doubleword then

Mask Insert
vrldnm Vector Rotate Left Doubleword then AND

with Mask
vrlwmi Vector Rotate Left Word then Mask Insert
vrlwnm Vector Rotate Left Word then AND with

Mask
vslv Vector Shift Left Variable
vsrv Vector Shift Right Variable
wait Wait
xsabsqp VSX Scalar Quad-Precision Absolute
xsaddqp[o] VSX Scalar Quad-Precision Add [& round

to Odd]
xscmpexpdp VSX Scalar Double-Precision Compare

Exponents
xscmpexpqp VSX Scalar Quad-Precision Compare

Exponents
xscmpoqp VSX Scalar Quad-Precision Compare

Ordered
xscmpuqp VSX Scalar Quad-Precision Compare

Unordered
xscpsgnqp VSX Scalar Quad-Precision CopySign
xscvdpqp VSX Scalar Quad-Precision Convert

From Double-Precision
xscvqpdp[o] VSX Scalar round & Convert

Quad-Precision to Double-Precision
[using round to Odd]

xscvqpsdz VSX Scalar truncate & Convert
Quad-Precision to Signed Doubleword

xscvqpswz VSX Scalar truncate & Convert
Quad-Precision to Signed Word

xscvqpudz VSX Scalar truncate & Convert
Quad-Precision to Unsigned Doubleword

xscvqpuwz VSX Scalar truncate & Convert
Quad-Precision to Unsigned Word

xscvsdqp VSX Scalar Convert Signed Doubleword
format to Quad-Precision format

xscvsphp VSX Scalar round & Convert
Double-Precision to Half-Precision

xscvudqp VSX Scalar Convert Unsigned
Doubleword format to Quad-Precision
format

xsdivqp[o] VSX Scalar Quad-Precision Divide [&
round to Odd]

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 4 of 6)
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1135

Version 3.1
2.6 Other Hypervisor Resources
In addition to the resources described in the preceding
sections, all hypervisor privileged instructions as well
as the following resources are hypervisor resources,
accessible to software only when the thread is in hyper-
visor state except as noted below.

 All implementation-specific resources except for
privileged non-hypervisor implementation-specific
SPRs. (See Section 5.4.4 for the list of the imple-
mentation-specific SPRs that are allowed to be
privileged non-hypervisor SPRs.) Implementa-
tion-specific registers include registers (e.g., “HID”
registers) that control hardware functions or affect
the results of instruction execution. Examples
include resources that disable caches, disable
hardware error detection, set breakpoints, control
power management, or significantly affect perfor-
mance.

 ME bit of the MSR

 SPRs defined as hypervisor-privileged in Section
5.4.4. (Note: Although the Time Base, the PURR,
and the SPURR can be altered only by a hypervi-
sor program, the Time Base can be read by all pro-
grams and the PURR and SPURR can be read
when the thread is in privileged state.)

The contents of a hypervisor resource can be modified
by the execution of an instruction (e.g., mtspr) only in
hypervisor state (MSRHV PR = 0b10). An attempt to
modify the contents of a given hypervisor resource,
other than MSRME, in privileged but non-hypervisor
state (MSRHV PR = 0b00) causes a Privileged Instruc-
tion type Program Interrupt when LPCREVIRT=0 and a

xsiexpdp VSX Scalar Double-Precision Insert
Exponent

xsiexpqp VSX Scalar Quad-Precision Insert
Exponent

xsmaddqp[o] VSX Scalar Quad-Precision Multiply-Add
[& round to Odd]

xsmsubqp[o] VSX Scalar Quad-Precision
Multiply-Subtract [& round to Odd]

xsmulqp[o] VSX Scalar Quad-Precision Multiply [&
round to Odd]

xsnabsqp VSX Scalar Quad-Precision Negative
Absolute

xsnegqp VSX Scalar Quad-Precision Negate
xsnmaddqp[o] VSX Scalar Quad-Precision Negative

Multiply-Add [& round to Odd]
xsnmsubqp[o] VSX Scalar Quad-Precision Negative

Multiply-Subtract [& round to Odd]
xsrqpi VSX Scalar Round to Quad-Precision

Integer
xsrqpix VSX Scalar Round to Quad-Precision

Integer with Inexact
xsrqpxp VSX Scalar Quad-Precision Round to

Double-Extended-Precision
xssqrtqp[o] VSX Scalar Quad-Precision Square Root

[& round to Odd]
xssubqp[o] VSX Scalar Quad-Precision Subtract [&

round to Odd]
xststdcdp VSX Scalar Double-Precision Test Data

Class
xststdcqp VSX Scalar Quad-Precision Test Data

Class
xststdcsp VSX Scalar Single-Precision Test Data

Class
xsxexpdp VSX Scalar Double-Precision Extract

Exponent
xsxexpqp VSX Scalar Quad-Precision Extract

Exponent
xsxsigdp VSX Scalar Double-Precision Extract

Significand
xsxsigqp VSX Scalar Quad-Precision Extract

Significand
xvcvhpsp VSX Vector Convert Half-Precision to

Single-Precision
xvcvsphp VSX Vector round & Convert

Single-Precision to Half-Precision
xviexpdp VSX Vector Double-Precision Insert

Exponent
xviexpsp VSX Vector Single-Precision Insert

Exponent
xvtstdcdp VSX Vector Double-Precision Test Data

Class
xvtstdcsp VSX Vector Single-Precision Test Data

Class

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 5 of 6)

xvxexpdp VSX Vector Double-Precision Extract
Exponent

xvxexpsp VSX Vector Single-Precision Extract
Exponent

xvxsigdp VSX Vector Double-Precision Extract
Significand

xvxsigsp VSX Vector Single-Precision Extract
Significand

xxbrd VSX Vector Byte-Reverse Doubleword
xxbrh VSX Vector Byte-Reverse Halfword
xxbrq VSX Vector Byte-Reverse Quadword
xxbrw VSX Vector Byte-Reverse Word
xxextractuw VSX Vector Extract Unsigned Word
xxinsertw VSX Vector Insert Word
xxperm VSX Vector Permute
xxpermr VSX Vector Permute Right-indexed
xxspltib VSX Vector Splat Immediate Byte

Table 3: Instructions controlled by the v2.07 bit
 (Sheet 6 of 6)
Power ISA™ III1136

Version 3.1
Hypervisor Emulation Assistance interrupt when
LPCREVIRT=1. An attempt to modify MSRME in privi-
leged but non-hypervisor state is ignored (i.e., the bit is
not changed).

2.7 Sharing Hypervisor and
Ultravisor Resources
Shared SPRs are SPRs that are accessible to multiple
threads. Changes to shared SPRs made by one thread
are immediately readable (using mfspr) by all other
threads sharing the SPR.

The LPIDR and DPDES must appear to software to be
shared among threads of a sub-processor (see Section
2.8). If the implementation does not support sub-pro-
cessors, the LPIDR and DPDES must be shared
among all threads of the multi-threaded processor.

Certain additional hypervisor and ultravisor resources,
and the PVR, may be shared among threads. Pro-
grams that modify these resources must be aware of
this sharing, and must allow for the fact that changes to
these resources may affect more than one thread.

The following additional resources may be shared
among threads.
 HRMOR (see Section 2.3)
 LPIDR (see Section 2.4)
 PCR (see Section 2.5)
 URMOR (see Section 3.2)
 PVR (see Section 5.3.1)
 RPR (see Section 5.3.7)
 PTCR (see Section 6.7.6.1)
 AMOR (see Section 6.7.13.1)
 HMEER (see Section 7.2.11)
 Time Base (see Section 8.2)
 Virtual Time Base (see Section 8.3)
 Hypervisor Decrementer (see Section 8.5)
 certain implementation-specific registers or imple-

mentation-specific fields in architected registers

The set of resources that are shared is implementa-
tion-dependent.

Threads that share any of the resources listed above,
with the exception of the PTCR, the PVR, the URMOR,
and the HRMOR, must be in the same partition.

For each field of the LPCR, except the AIL, EVIRT,
ONL, HDICE, MER,PECE, HEIC, and HVICE fields,
software must ensure that the contents of the field are

identical among all threads that are in the same parti-
tion and are not in hypervisor state.

Software must ensure that the contents of UILE and
SMFCTRLE are identical among all threads in the sys-
tem that have completed ultravisor initialization. The
contents of the D and UDEE fields of SMFCTRL may
differ among threads.

2.8 Sub-Processors
Hardware is allowed to sub-divide a multi-threaded pro-
cessor into “sub-processors” that appear to privileged
programs as multi-threaded processors with fewer
threads. Such a multi-threaded processor appears to
the hypervisor as a processor with a number of threads
equal to the sum of all sub-processor threads, and in
which the LPIDR for each sub-processor must appear
to be shared among all threads of that sub-processor.

2.9 Thread Identification Regis-
ter (TIR)
The TIR is a 64-bit read-only register that contains the
thread number, which is a binary number correspond-
ing to the thread.

For implementations that do not support sub-proces-
sors, the thread number of a thread is unique among all
thread numbers of threads on the multi-threaded pro-
cessor.

For implementations that support sub-processors, the
value of this register depends on whether it is read in
hypervisor or privileged, non-hypervisor state as fol-
lows.

- When this register is read in privileged,
non-hypervisor state, the thread number is
unique among all thread numbers of threads
on the sub-processor.

- When this register is read in hypervisor state,
the thread number is unique among all thread
numbers of threads on the multi-threaded pro-
cessor.

Threads are numbered sequentially, with valid values
ranging from 0 to t-1, where t is the number of threads
implemented. A thread for which TIR = n is referred to
as “thread n.”

The layout of the TIR is shown below.

Figure 4. Thread Identification Register

Access to the TIR is privileged.

Because the SPRs listed above are privileged for
writing, an attempt to modify the contents of any of
these SPRs in problem state (MSRPR=1) using
mtspr causes a Privileged Instruction type Pro-
gram exception, and similarly for MSRME.

Programming Note

TIR
0 63
Chapter 2. Logical Partitioning (LPAR) and Thread Control 1137

Version 3.1
Since the thread number contained in this register is
different if it is read in hypervisor state from when it is
read in privileged, non-hypervisor state in implementa-
tions that support sub-processors, the following con-
ventions are used.

- The value returned in privileged, non-hypervi-
sor state is referred to as the “privileged
thread number.”

- The value returned in hypervisor state is
referred to as the “hypervisor thread number.”

2.10 Hypervisor Interrupt Lit-
tle-Endian (HILE) Bit
The Hypervisor Interrupt Little-Endian (HILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the HILE bit are copied
into MSRLE by interrupts that result in MSRS HV being
equal to 0b01 (see Section 7.5), to establish the Endian
mode for the interrupt handler. The HILE bit is set, by
an implementation-dependent method, only during sys-
tem initialization.

The contents of the HILE bit must be the same for all
threads under the control of a given instance of the
hypervisor; otherwise all results are undefined.
Power ISA™ III1138

Version 3.1
Chapter 3. Ultravisor and Secure Memory Facility (SMF)

3.1 Overview
The Secure Memory Facility (SMF) provides secure
isolation of partitions from one another and from higher
privilege system software. SMF functionality is imple-
mented using a combination of hardware facilities and
firmware that runs at a privilege level above the hyper-
visor. SMF targets a threat model in which the hypervi-
sor can be compromised such that its inherent isolation
capabilities can no longer be counted on. Maintaining
the security of data is the sole objective of the ultravi-
sor. It has no role in platform management and is not
expected to deal with denial of service attacks. Refer-
ences elsewhere in the Books to “secure systems”
apply more generally, and do not necessarily imply that
the system uses SMF.

The SMF protection mechanism is based on the
assignment of partitions to security domains. The
hypervisor is in one security domain, along with all pro-
cesses that run directly under the hypervisor and all
partitions that do not take advantage of the SMF secu-
rity capabilities. Each of the secure partitions is
assigned to its own security domain so that its data and
instructions can be protected from access by other
security domains. A partition is identified as secure
when MSRS=1. Each location in main storage has an
associated Secure Memory property, memSM. Memory
with memSM=1 may be referred to as “secure memory.”
Memory with memSM=0 may be referred to as “ordinary
memory.” The granularity and method with which main
storage is mapped for the Secure Memory property is
implementation specific. The Secure Memory property
is commonly cached in the TLB and in implementa-
tion-specific lookaside buffers. When secure data are
to be shared with untrusted software, the standard syn-
chronization associated with PTE updates is used to
regulate access. For example, prior to sharing secure
data, the PTEs used to access the data are marked
invalid and the corresponding TLB entires invalidated
by the ultravisor using the standard invalidation
sequence. (See Section 6.10.1.2.) The data are then
encrypted and made available in ordinary memory
(either memSM is turned off or the data are moved to
ordinary memory). Finally the PTEs that will be used to
access the data in ordinary memory are marked valid.

(The last step may be done lazily.) Software running
with MSRS=0 is prohibited from accessing secure
memory. Software running with MSRS=1 may access
both secure and ordinary memory.

SMF firmware runs in ultravisor state, a privilege level
above that of the hypervisor. That firmware, along with
the SMF hardware, is responsible for maintaining isola-
tion of secure partitions from each other and from the
hypervisor. This is accomplished by direct ultravisor
management of the partition-scoped translation tables
in secure memory for secure partitions. The ultravisor
itself runs only in (ultravisor) real addressing mode.
Security is the result of proper management of the par-
tition-scoped translation together with the hardware
enforcement of the access restriction for secure mem-
ory. With this hybrid approach, firmware has the ability
to enable secure memory sharing between secure par-
titions and ordinary memory sharing between a given
secure partition and the hypervisor, e.g. for system
calls. The ultravisor can access any architecture
resource or facility.

The hypervisor is expected to cooperate in the man-
agement of secure partitions by using ultravisor calls to
dispatch them and to manage their storage allocations.
To protect against programming errors and malicious
hypervisor behavior, mtmsr[d], rfid, hrfid, and rfscv
preserve MSRS and hypervisor interrupts from secure
partitions are always received in ultravisor state.

The purpose of intercepting hypervisor interrupts is to
protect the state of the secure partition from the hyper-
visor. The ultravisor’s interrupt handler provides a
‘shim’ that saves and clears the processing state, and
then transfers control to the hypervisor to handle the
exception condition itself. The ultravisor will restore the
secure partition state when it services the ultravisor call
to (re-) dispatch the secure partition. Note that the
ultravisor’s goal is merely to protect the security of

The ultravisor will commonly use a no-execute pro-
tection setting to prevent a secure partition from
executing instructions from any ordinary memory
mapped into its address space.

Programming Note
Chapter 3. Ultravisor and Secure Memory Facility (SMF) 1139

Version 3.1
data, and not to provide broader system management
oversight.

3.2 Ultravisor Real Mode Offset
Register (URMOR)
The layout of the Ultravisor Real Mode Offset Register
(URMOR) is shown in Figure 5 below..

Figure 5. Ultravisor Real Mode Offset Register

All other fields are reserved.

The supported URMO values are the non-negative
multiples of 2r, where r is the same implementa-
tion-dependent value that constrains the HRMO field of
the HRMOR.

The contents of the URMOR affect how some storage
accesses are performed as described in Sections 6.7.3
and 6.7.5.

3.3 Ultravisor Interrupt Lit-
tle-Endian (UILE) Bit
The Ultravisor Interrupt Little-Endian (UILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the UILE bit are copied
into MSRLE by interrupts that result in MSRS HV being
equal to 0b11 (see Section 7.5), to establish the Endian
mode for the interrupt handler. The UILE bit is set, by
an implementation-dependent method, only during sys-
tem initialization.

The contents of the UILE bit must be the same for all
threads in the system; otherwise all results are unde-
fined.

3.4 Secure Memory Facility Con-
trol Register (SMFCTRL)
The Secure Memory Facility Control Register (SMFC-
TRL) is shown in Figure 6 below.

Figure 6. Secure Memory Facility Control Register
(SMFCTRL)

Bit Description
0 SMF Enable (E)

0 SMF functionality including secure mem-
ory checking is disabled.

1 SMF functionality including secure mem-
ory checking is enabled.

When SMFCTRLE=1, writing the PTCR is
ultravisor privileged.

1 Debug enable (D)
0 Ultravisor debug mode is disabled.
1 Ultravisor debug mode is enabled.

In ultravisor debug mode, CIABR, DAWRn,
and DAWRXn are ultravisor privileged. See
Chapter 9 for a description of how instruction
and data address tracing work in ultravisor
debug mode.

2 Ultravisor Doorbell Exit Enable (UDEE)
0 When the stop instruction is executed

with PSSCREC=1, Directed Ultravisor
Doorbell exceptions are not enabled to
cause exit from power-saving mode

1 When the stop instruction is executed
with PSSCREC=1, Directed Ultravisor
Doorbell exceptions are enabled to cause
exit from power-saving mode.

3:61 Reserved

62:63 Implementation-specific use

SMFCTRLE must be set to 1 prior to exiting ultravisor
state if the system will use the SMF facilities. (When
SMFCTRLE=0 and MSRS=0, there is no way to
achieve MSRS=1 without a reboot.)

If SMFCTRLE=0, SMFCTRLD and SMFCTRLUDEE
must be set to zero. References to SMFCTRLD=1 or
SMFCTRLUDEE=1 elsewhere in the architecture
assume SMFCTRLE=1 unless otherwise stated or obvi-
ous from context.

// URMO
 0 4 63

Bit(s) Name Description
4:63 URMO Real Mode Offset

E D UDEE /// ??

0 1 2 3 62 63

The two useful runtime states with respect to SMF
operation are (1) MSRS=0 and SMFCTRLE=0
(SMF permanently disabled) and (2) SMFCTRLE=1
(SMF enabled). Very limited verification may be
performed on the state with MSRS=1 and SMFC-
TRLE=0 and around state changes of SMFC-
TRLE. Therefore, software should change the
value of SMFCTRLE at most once, making the
change prior to the first dispatch of a partition, and
spending as little time as possible in the state with
MSRS=1 and SMFCTRLE=0.

Programming Note
Power ISA™ III1140

Version 3.1
3.4.1 Enabling SMF and Secure
Memory Enforcement
The SMFCTRLE bit enables SMF functionality. When
SMFCTRLE=1, certain facilities are ultravisor resources
instead of hypervisor resources and secure memory
checking is enabled.

Independent of the basic feature enablement above,
SMF has state transition rules that facilitate the protec-
tion of security domains. (While these rules are nomi-
nally independent of the value of SMFCTRLE, some
transitions cannot happen when SMFCTRLE=0. Spe-
cifically, ultravisor interrupts cannot occur when SMFC-
TRLE=0.)
 All interrupts that are not ultravisor interrupts pre-

serve MSRS. (Ultravisor interrupts necessarily set
MSRS to 1.)

 mtmsr[d], rfid, hrfid, and rfscv are not permitted
to change MSRS

Table 4 summarizes the effect of the SMFCTRLE bit
and the MSRS HV PR bits on various facilities.
Chapter 3. Ultravisor and Secure Memory Facility (SMF) 1141

Version 3.1
Table 4: Ultravisor Resource Behavior

facility MSRS HV PR SMFCTRLE LPCREVIRT behavior
mtspr or mfspr specifying
URMOR, USRR0, USRR1,
USPRG0, USPRG1, or
SMFCTRL;
urfid, msgsndu, msgclru

110 dc dc execution allowed
all xxx
except 110**

dc dc Privileged Instruction type Program inter-
rupt to xx0

mtspr specifying PTCR 110 dc dc execution allowed
010 0 dc execution allowed

1 dc HEAI to 010
x00 dc 0 Privileged Instruction type Program inter-

rupt to x00
1 HEAI to x10

xx1** dc dc Privileged Instruction type Program inter-
rupt to xx0

mtspr or mfspr specifying
DAWRn, DAWRXn or CIABR
when SMFCTRLD=1

110 1 dc execution allowed
010 1 dc HEAI to 010
x00 1 0 Privileged Instruction type Program inter-

rupt to x00
1 HEAI to x10

xx1** 1 dc Privileged Instruction type Program inter-
rupt to xx0

sc 2 instruction dc** 0 dc hypervisor call, but with SRR1 showing
LEV=2

dc** 1 dc ultravisor call
memSM evaluation and
match

dc** 0 dc disabled
dc** 1 dc enabled*

* memSM evaluation may be avoided when MSRS=1, depending on translation cache design
dc = don’t care
** The encoding MSRS HV PR=0b111 is reserved and must not be used.

Access to memory by mechanisms outside the
core must also enforce secure memory access
restrictions. Facilities that translate addresses or
otherwise use real addresses to access memory
must check memSM against PATES for the partition
on behalf of which they access memory.

Such mechanisms will require a means to evaluate
memSM and a proxy for SMFCTRLE to provide the
same enablement function for secure memory
access enforcement as in the core.

In addition or as an alternative, TCE tables may be
managed by the ultravisor and used to identify
regions of memory that I/O devices may access.

Programming Note
Power ISA™ III1142

Version 3.1
Chapter 4. Branch Facility

4.1 Branch Facility Overview
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Branch Facility that are not covered in Book I.

4.2 Branch Facility Registers

4.2.1 Machine State Register
The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the thread. On inter-
rupt, the MSR bits are altered in accordance with
Figure 67 on page 1261. The MSR can also be modi-
fied by the mtmsr[d], rfscv, rfid, hrfid, and urfid
instructions. It can be read by the mfmsr instruction.

Figure 7. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description
0 Sixty-Four-Bit Mode (SF)

0 The thread is in 32-bit mode.
1 The thread is in 64-bit mode.

Software must ensure that SF=1 whenever
the thread is in ultravisor state.

1:2 Reserved

 3 Hypervisor State (HV)

0 The thread is not in hypervisor state.
1 If MSRPR=0, the thread is in hypervisor

state; otherwise the thread is not in hyper-
visor state.

4 Reserved

5 Software must ensure that this bit contains 0;
otherwise the results of executing all instruc-
tions are boundedly undefined.

MSR
0 63

The privilege state of the thread is deter-
mined by MSRS, MSRHV, and MSRPR, as
follows.

S HV PR

0 x 1 problem
1 0 1 problem
x x 0 privileged
x 1 0 hypervisor
1 1 0 ultravisor
1 1 1 reserved

Hypervisor state is also a privileged state
(MSRPR = 0). All references to “privileged
state” in the Books include hypervisor
state unless otherwise stated or obvious
from context. Ultravisor state is also a
hypervisor state (MSRHV PR = 0b10). All
references to “hypervisor state” in the
Books include ultravisor state unless oth-
erwise stated or obvious from context.

MSRHV can be set to 1 only by the Sys-
tem Call instruction and some interrupts. It
can be set to 0 only by rfid, hrfid, and
urfid.

It is possible to run an operating system in
an environment that lacks a hypervisor, by
always having MSRHV = 1 and using
MSRHV PR = 0b10 for the operating sys-
tem (effectively, the OS runs in hypervisor
state) and MSRHV PR = 0b11 for applica-
tions. In this use, MSRS would be 0, and
the environment would also lack an ultra-
visor.

Programming Note
Chapter 4. Branch Facility 1143

Version 3.1

6:37 Reserved

38 Vector Available (VEC)

0 The thread cannot execute any vector
instructions, including vector loads,
stores, and moves.

1 The thread can execute vector instruc-
tions unless they have been made
unavailable by some other register.

39 Reserved

40 VSX Available (VSX)

0 The thread cannot execute any VSX
instructions, including VSX loads, stores,
and moves.

1 The thread can execute VSX instructions
unless they have been made unavailable
by some other register.

41 Secure (S)

0 The thread is not in Secure state. It may
not access Secure memory. The thread is
not in ultravisor state.

1 The thread is in Secure state. If
MSRHV=1 and MSRPR=0, the thread is in
ultravisor state; otherwise the value does
not affect privilege. The state with
MSRHV=1 and MSRPR=1 is reserved.
Software must not set MSRS HV PR =
0b111. References elsewhere in this doc-
ument to MSRHV PR=0b11 assume
MSRS=0 unless otherwise stated or obvi-
ous from context.

42:47 Reserved

48 External Interrupt Enable (EE)

0 External, Decrementer, Performance
Monitor, and Privileged Doorbell interrupts
are disabled.

1 External, Decrementer, Performance
Monitor, and Privileged Doorbell interrupts
are enabled.

This bit also affects whether Hypervisor Dec-
rementer, Hypervisor Maintenance, Directed
Hypervisor Doorbell, and Directed Ultravisor
Doorbell interrupts are enabled; see
Section 7.5.12 on page 1275, Section 7.5.19
on page 1284, Section 7.5.20 on page 1284,
and Section 7.5.28 on page 1288.

49 Problem State (PR)

0 The thread is in privileged state.
1 If MSRS HV ≠ 0b11, the thread is in prob-

lem state.

50 Floating-Point Available (FP)

0 The thread cannot execute any float-
ing-point instructions, including float-
ing-point loads, stores, and moves.

1 The thread can execute floating-point
instructions unless they have been made
unavailable by some other register.

51 Machine Check Interrupt Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

This bit is a hypervisor resource; see Chapter
2., “Logical Partitioning (LPAR) and Thread
Control”, on page 1121.

52 Floating-Point Exception Mode 0 (FE0)

See below.

53:54 Trace Enable (TE)

00 Trace Disabled: The thread executes
instructions normally.

This bit is initialized to 0 by hardware at
system bringup. The handling of this bit
by interrupts and by the rfid, hrfid, urfid,
and rfscv instructions is such that, unless
software deliberately sets the bit to 1, the
bit will continue to contain 0.

An application binary interface defined to
support Vector-Scalar operations should
also specify a requirement that MSRFP and
MSRVEC be set to 1 whenever MSRVSX is set
to 1.

MSRS can be set to 1 only by the System
Call instruction and some interrupts. It
can be set to 0 only by urfid.

Any instruction or event that causes
MSRS HV PR to be set to 0b110 also
causes MSRIR and MSRDR to be set to 0.

Programming Note

Programming Note

Programming Note

Any instruction that sets MSRPR to 1 also
sets MSREE, MSRIR, and MSRDR to 1.

The state with MSRS HV PR=0b111 is
reserved.

The only instructions that can alter
MSRME are rfid, hrfid, and urfid.

Programming Note

Programming Note
Power ISA™ III1144

Version 3.1
01 Branch Trace: The thread generates a
Branch type Trace interrupt after complet-
ing the execution of a branch instruction,
whether or not the branch is taken.

10 Single Step Trace: The thread generates
a Single-Step type Trace interrupt after
successfully completing the execution of
the next instruction, unless that instruction
is a urfid, hrfid, rfid, rfscv, or a
Power-Saving Mode instruction, all of
which are never traced. Successful com-
pletion means that the instruction caused
no other interrupt.

11 Reserved.

Branch tracing need not be supported. If the
function is not implemented, the 0b01 bit
encoding is treated as reserved.

55 Floating-Point Exception Mode 1 (FE1)

See below.

56:57 Reserved

58 Instruction Relocate (IR)

0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

59 Data Relocate (DR)

0 Data address translation is disabled.
Effective Address Overflow (EAO) (see
Book I) does not occur.

1 Data address translation is enabled. EAO
causes a Data Storage interrupt.

60 Reserved

61 Performance Monitor Mark (PMM)

This bit is used by software in conjunction with
the Performance Monitor, as described in
Chapter 10.

See the Programming Note in the defini-
tion of MSRS and in the definition of
MSRPR.

Before hypervisor support was added to
the architecture, “translation is disabled”
for MSRIR=0 truly meant that no transla-
tion was performed for instruction
addresses, and correspondingly for
MSRDR=0 for data addresses. The archi-
tecture continues to use “translation is dis-
abled” to refer to MSRIR=0 and MSRDR=0
despite that the behavior today is more
complicated. When MSRHV IR=0b10, it is
still true that no translation is performed
for instruction addresses, and corre-
spondingly for data addresses if MSRHV
DR=0b10. But in privileged non-hypervi-
sor state when MSRIR=0 or MSRDR=0,
limited translation is performed under con-
trol of the hypervisor. For an HPT transla-
tion guest, translation is performed as
described in Section 6.7.3.3, with storage
exceptions directed to the hypervisor. For
a Radix Tree Translation guest, only parti-
tion-scoped translation is performed, with
storage exceptions directed to the hyper-
visor.

Programming Note

Programming Note

See the second Programming Note in the
definition of MSRIR and the Programming
Notes in the definition of MSRS and in the
definition of MSRPR.

Programming Note
Chapter 4. Branch Facility 1145

Version 3.1

62 Recoverable Interrupt (RI)

0 Interrupt is not recoverable.
1 Interrupt is recoverable.

Additional information about the use of this bit
is given in Sections 7.4.3, “Interrupt Process-
ing” on page 1256, 7.5.1, “System Reset Inter-
rupt” on page 1262, and 7.5.2, “Machine
Check Interrupt” on page 1264.

63 Little-Endian Mode (LE)

0 The thread is in Big-Endian mode.
1 The thread is in Little-Endian mode.

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details see
Book I.

Software can use this bit as a pro-
cess-specific marker which, in conjunction
with MMCR0FCM0 FCM1 (see
Section 10.4.4) and MMCR2 (see
Section 10.4.6), permits events to be
counted on a process-specific basis. (The
bit is saved by interrupts and restored by
rfid.)

Common uses of the PMM bit include the
following.

 All counters count events for a few
selected processes. This use
requires the following bit settings.
- MSRPMM=1 for the selected pro-

cesses, MSRPMM=0 for all other
processes

- MMCR0FCM0=1
- MMCR0FCM1=0
- MMCR2 = 0x0000

 All counters count events for all but a
few selected processes. This use
requires the following bit settings.
- MSRPMM=1 for the selected pro-

cesses, MSRPMM=0 for all other
processes

- MMCR0FCM0=0
- MMCR0FCM1=1
- MMCR2 = 0x0000

Notice that for both of these uses a mark
value of 1 identifies the “few” processes
and a mark value of 0 identifies the
remaining “many” processes. Because
the PMM bit is set to 0 when an interrupt
occurs (see Figure 67 on page 1261),
interrupt handlers are treated as one of
the “many”. If it is desired to treat interrupt
handlers as one of the “few”, the mark
value convention just described would be
reversed.

If only a specific counter n is to be frozen,
MMCR0FCM0 FCM1 is set to 0b00, and
MMCR2FCnM0 and MMCR2FCnM1 instead
of MMCR0FCM0 and MMCR0FCM1 are set
to the values described above.

Programming Note

The only instructions that can alter MSRLE
are rfid, hrfid, urfid, and rfscv.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

Programming Note
Power ISA™ III1146

Version 3.1
4.2.2 Processor Stop Status and Control Register (PSSCR)
The layout of the PSSCR is shown below.

Figure 8. Processor stop Status and Control
Register

The contents of the PSSCR control the operation of the
stop instruction and provide status indicating the level
of power saving that was entered while in power-saving
mode.

All fields of this register can be read and written by the
hypervisor using either hypervisor SPR 855 or privi-
leged SPR 823. A subset of the fields of this register
can be read and written in privileged non-hypervisor
state using privileged SPR 823, as specified below.
Fields that can only be read or written by the hypervisor
are indicated below; all other fields can be read or writ-
ten in either privileged non-hypervisor or hypervisor
states. When a field that is accessible only to the hyper-
visor is accessed in privileged non-hypervisor state,
writes have no effect and reads return 0s regardless of
the value of the field.

The bits and their meanings are as follows.

0:3 Power-Saving Level Status (PLS)

Hardware sets this field to the highest
power-saving level that the thread entered
between the time when the stop instruction is
executed and when the thread exits
power-saving mode. See the description of
the SD field for the value returned in this field
when the PSSCR is read.

4:40 Reserved

41 Status Disable (SD)

This field is accessible only to the hypervisor.

0 The current value of the PLS field is
returned in the PLS field when reading the
PSSCR (using mfspr).

1 0’s are returned in the PLS field when
reading the PSSCR (using mfspr).

42 Enable State Loss (ESL)

This field is accessible only to the hypervisor.

0 State loss while in power-saving mode is
controlled by the RL, MTL, and PSLL
fields.

1 Non-hypervisor state loss is allowed while
in power-saving mode in addition to state
loss controlled by the RL, MTL, and PSLL
fields.

If this field is set to 1 when the stop instruction
is executed in privileged non-hypervisor state,
a Hypervisor Facility Unavailable interrupt
occurs. See Section 7.5.26.

For power-saving levels that allow loss of the
LPCR, implementations must provide the
means to exit power-saving mode upon the
occurrence of a System Reset exception and
any of the exceptions that were enabled by
the PECE field when the stop instruction was
executed. For this case, the implementation is
also allowed to exit on the occurrence of any
exceptions that were disabled by the PECE as
well.

For power-saving levels that allow loss of
SMFCTRL, implementations must provide the
means to exit power-saving mode upon the
occurrence of a Directed Ultravisor Doorbell
exception if SMFCTRLUDEE was set to 1 when
stop was executed. For this case, the imple-
mentation is also allowed to exit on the occur-
rence of a Directed Ultravisor Doorbell

exception if SMFCTRLUDEE was set to 0 when stop was executed.

PLS / / / SD ES

L
EC PSLL / / / TR MTL RL

0 4 41 42 43 44 48 54 56 60

Since the power-saving level entered
during power-saving mode may vary with
time, the PLS field may not indicate the
power-saving level that existed at exit
from power-saving mode.

Programming Note

Before dispatching an OS, the hypervisor
may initialize this field to 1 in order to pre-
vent the OS from reading the Power-Sav-
ing Level Status (PLS) field. This may be
necessary in secure systems since an OS
may be capable of detecting the presence
of another OS on the same processor by
observing the state of the PLS field after
exiting power-saving mode.

Programming Note
Chapter 4. Branch Facility 1147

Version 3.1

43 Exit Criterion (EC)

This field is accessible only to the hypervisor.

0 Hardware will exit power-saving mode
when the exception corresponding to any
system-caused interrupt occurs.
Power-saving mode is exited either at the
instruction following the stop (if MSREE=0)
or in the corresponding interrupt handler
(if MSREE=1).

1 If SMFCTRLUDEE was set to 1 when stop
was executed and SMFCTRLUDEE was
not lost, hardware will exit power-saving
mode when a Directed Ultravisor Doorbell
exception occurs. If LPCRPECE is not lost,
hardware will exit power-saving mode
when a System Reset exception or one of
the events specified in LPCRPECE occurs.
If the event is a Machine Check exception,
then a Machine Check interrupt occurs;
otherwise a System Reset interrupt
occurs, and the contents of SRR1 indicate
the event that caused exit from
power-saving mode.

When the stop instruction is executed in
hypervisor state, the hypervisor must set the
ESL field to the same value as this field. Also,
if the RL or MTL fields are set to values that
allow state loss, then fields ESL and EC must
both be set to 1. Other combinations of the
values of the ESL, EC, RL, and MTL fields are
reserved for future use.

If this field is set to 1 when the stop instruction
is executed in privileged non-hypervisor state,
a Hypervisor Facility Unavailable interrupt
occurs. See Section 7.5.26.

44:47 Power-Saving Level Limit (PSLL)

This field is accessible only to the hypervisor.

This field limits the power-saving level that
may be entered or transitioned into when the
stop instruction is executed in privileged
non-hypervisor state; when the stop instruc-
tion is executed in hypervisor state, this field is
ignored.

48:53 Reserved

54:55 Transition Rate (TR)

This field is used to specify the relative rate at
which the power-saving level increases during
power-saving mode. The rate of power-saving
level increase corresponding to each value is
implementation-dependent, and monotonically
increasing with the value specified.

56:59 Maximum Transition Level (MTL)

If the value of this field is greater than the
value of the Power-Saving Level Limit (PSLL)
field when stop is executed in privileged
non-hypervisor state, a Hypervisor Facility
Unavailable interrupt occurs. See
Section 7.5.26 of Book III.

Otherwise, if the value of this field is greater
than the value of the RL field, the power-sav-
ing level is allowed to increase from the value
in the RL field up to the value of this field
during power-saving mode.

If this field is less than or equal to the value of
the PSLL field when stop is executed in privi-
leged non-hypervisor state, this field is used to
specify the maximum power-saving level that
can be reached during power-saving mode
provided that the value of this field is greater
than the value of the RL field. If this field is
less than the Requested Level (RL) field when
stop is executed hardware is not allowed to
increase the power-saving level during
power-saving mode beyond the value indi-
cated in the RL field.

60:63 Requested Level (RL)

When state loss occurs, thread resources
such as SPRs, GPRs, address translation
resources, etc. may be powered off or
allocated to other threads during
power-saving mode. The amount of state
loss for various combinations of ESL, RL,
and MTL values is implementation depen-
dent, subject to the restrictions specified
in Section 4.3.2.

Other combinations of the values of the
ESL, EC, RL, and MTL fields may be
allowed in a future version of the architec-
ture in order to provide additional function-
ality.

Programming Note

Architecture Note

In order to enable an OS to enter
power-saving mode without hypervisor
involvement, both the EC and ESL bits
must be set to 0s. When this is done, OS
execution of the stop instruction will not
cause hypervisor involvement provided
that bits RL and and MTL are less than or
equal to PSLL. See Section 7.5.26 for
details.

Programming Note
Power ISA™ III1148

Version 3.1
This field is used to specify the power-saving
level that is to be entered when the stop
instruction is executed.

If the value of this field is greater than the
value of the Power-Saving Level Limit (PSLL)
field when stop is executed in privileged
non-hypervisor state, a Hypervisor Facility
Unavailable interrupt occurs.

The Hypervisor Facility Unavailable inter-
rupt occurs when a privileged non-hyper-
visor program executes stop when
PSSCRRL > PSSCRPSLL so that the
Hypervisor may decide whether or not to
allow the requested loss of state to occur.

If the hypervisor decides that some loss of
state is acceptable, it may choose to
re-execute stop after either setting PSS-
CRMTL to a value that causes state loss,
or setting both PSSCRRL and PSSCRMTL
to values that cause state loss. When the
thread exits power-saving mode, the
hypervisor can quickly determine whether
any resources were actually lost and need
to be restored.

Programming Note
Chapter 4. Branch Facility 1149

Version 3.1
4.3 Branch Facility Instructions

4.3.1 System Linkage Instructions
These instructions provide the means by which a pro-
gram can call upon the system to perform a service,
and by which the system can return from performing a
service or from processing an interrupt.

The System Call instruction is described in Book I, but
only at the level required by an application program-
mer. A complete description of this instruction appears
below.

System Call SC-form

sc LEV

SRR0 iea CIA + 4
SRR133:36 42:47  0
SRR10:32 37:41 48:63  MSR0:32 37:41 48:63
MSR  new_value (see below)
NIA  0x0000_0000_0000_0C00

The effective address of the instruction following the
System Call instruction is placed into SRR0. Bits 0:32,
37:41, and 48:63 of the MSR are placed into the corre-
sponding bits of SRR1, and bits 33:36 and 42:47 of
SRR1 are set to zero.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in
Section 7.5, “Interrupt Definitions” on page 1260. The
setting of the MSR is affected by the contents of the
LEV field. LEV values greater than 2 are reserved. Bits
0:4 of the LEV field (instruction bits 20:24) are treated
as a reserved field.

The interrupt causes the next instruction to be fetched
from effective address 0x0000_0000_0000_0C00.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

17 /// /// // LEV // 1 /
0 6 11 16 20 27 30 31

If LEV=1, the hypervisor is invoked.

If LEV=2 and SMFCTRLE = 1, the ultravisor is
invoked.

If LEV=2 and SMFCTRLE = 0, the hypervisor is
invoked. However, such invocation should be con-
sidered a programming error.

Executing this instruction with LEV=1 or LEV=2 is
the only way that executing an instruction can
cause a transition from non-hypervisor state to
hypervisor state on the thread that executed the
instruction. Executing this instruction with LEV=2
when SMFCTRLE=1 is the only way that executing
an instruction can cause a transition from non-ultra-
visor state to ultravisor state on the thread that exe-
cuted the instruction.

In correct use, this instruction is used to “call up”
one privilege level (application program calls oper-
ating system, operating system calls hypervisor,
hypervisor calls ultravisor). However, it is possible
for a program to call up more than one level (e.g.,
for an application program to call the hypervisor).
An attempt to call up more than one level should be
considered a programming error.

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

Programming NoteProgramming Note

Programming Note
Power ISA™ III1150

Version 3.1
System Call Vectored SC-form

scv LEV

LR  CIA + 4
CTR33:36 42:47  undefined
CTR0:32 37:41 48:63  MSR0:32 37:41 48:63
MSR  new_value (see below)
NIA  (see below)

The effective address of the instruction following the
System Call Vectored instruction is placed into the Link
Register. Bits 0:32, 37:41, and 48:63 of the MSR are
placed into the corresponding bits of Count Register,
and bits 33:36 and 42:47 of Count Register are set to
undefined values.

Then a System Call Vectored interrupt is generated.
The interrupt causes the MSR to be altered as
described in Section 7.5.

The interrupt causes the next instruction to be fetched
as specified in LPCRAIL or LPCRHAIL as appropriate
(see Section 2.2).

The SRRs are not affected.

This instruction is context synchronizing.

Special Registers Altered:
LR CTR MSR

Return From System Call Vectored
XL-form

rfscv

MSR48  CTR48 | CTR49
MSR58  (CTR58 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR59  (CTR59 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR0:2 4:32 37:40 49:50 52:57 60:63CTR0:2 4:32 37:40 49:50 52:57 60:63
NIA iea LR0:61 || 0b00

 The result of ORing bits 48 and 49 of the Count Regis-
ter is placed into MSR48. The result of ANDing bit 41 of
the MSR with bit 3 of the MSR and with the comple-
ment of bit 49 of the Count Register is complemented
and then ANDed with the result of ORing bits 58 and 49
of the Count Register and placed into MSR58. The
result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of the Count

Register is complemented and then ANDed with the
result of ORing bits 59 and 49 of the Count Register
and placed into MSR59. Bits 0:2, 4:32, 37:40, 49:50,
52:57, and 60:63 of the Count Register are placed into
the corresponding bits of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address LR0:61
|| 0b00 (when SF=1 in the new MSR value) or 320 ||
LR32:61 || 0b00 (when SF=0 in the new MSR value). If
the new MSR value enables one or more pending
exceptions, the interrupt associated with the highest
priority pending exception is generated; in this case the
value placed into SRR0, HSRR0, or USRR0 by the
interrupt processing mechanism (see Section 7.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

17 /// /// // LEV // 0 1
0 6 11 16 20 27 30 31

19 /// /// /// 82 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRHV, MSRS, or
MSRME.

Programming Note
Chapter 4. Branch Facility 1151

Version 3.1
Return From Interrupt Doubleword
XL-form

rfid

MSR51  (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3  MSR3 & SRR13
MSR48  SRR148 | SRR149
MSR58  (CTR58 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR59  (CTR59 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR0:2 4:32 37:40 49:50 52:57 60:63SRR10:2 4:32 37:40 49:50 52:57 60:63
NIA iea SRR00:61 || 0b00

If MSR3=1 then bits 3 and 51 of SRR1 are placed into
the corresponding bits of the MSR. The result of ORing
bits 48 and 49 of SRR1 is placed into MSR48. The
result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of SRR1 is
complemented and then ANDed with the result of
ORing bits 58 and 49 of SRR1 and placed into MSR58.
The result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of SRR1 is
complemented and then ANDed with the result of
ORing bits 59 and 49 of SRR1 and placed into MSR59.
Bits 0:2, 4:32, 37:40, 49:50, 52:57, and 60:63 of SRR1
are placed into the corresponding bits of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
SRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || SRR032:61 || 0b00 (when SF=0 in the new MSR
value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0, HSRR0, or USRR0
by the interrupt processing mechanism (see Section
7.4.3) is the address of the instruction that would have
been executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

Hypervisor Return From Interrupt
Doubleword XL-form

hrfid

MSR48  HSRR148 | HSRR149
MSR58  (CTR58 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR59  (CTR59 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR0:32 37:40 49:57 60:63  HSRR10:32 37:40 49:57 60:63
NIA iea HSRR00:61 || 0b00

 The result of ORing bits 48 and 49 of HSRR1 is placed
into MSR48. The result of ANDing bit 41 of the MSR
with bit 3 of HSRR1 and with the complement of bit 49
of HSRR1 is complemented and then ANDed with the
result of ORing bits 58 and 49 of HSRR1 and placed
into MSR58. The result of ANDing bit 41 of the MSR
with bit 3 of HSRR1 and with the complement of bit 49
of HSRR1 is complemented and then ANDed with the
result of ORing bits 59 and 49 of HSRR1 and placed
into MSR59. Bits 0:32, 37:40, 49:57, and 60:63 of
HSRR1 are placed into the corresponding bits of the
MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
HSRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || HSRR032:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into SRR0, HSRR0, or
USRR0 by the interrupt processing mechanism (see
Section 7.4.3) is the address of the instruction that
would have been executed next had the interrupt not
occurred.

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
MSR

19 /// /// /// 18 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

Programming Note

19 /// /// /// 274 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

Programming Note
Power ISA™ III1152

Version 3.1
Ultravisor Return From Interrupt
Doubleword XL-form

urfid

MSR48 ← USRR148 | USRR149
MSR58 ← (USRR158 | USRR149)
 & ¬(USRR141 & USRR13 & (¬USRR149))
MSR59 ← (USRR159 | USRR149)
 & ¬(USRR141 & USRR13 & (¬USRR149))
MSR0:32 37:41 49:57 60:63 ← USRR10:32 37:41 49:57 60:63
NIA ←iea USRR00:61 || 0b00

 The result of ORing bits 48 and 49 of USRR1 is placed
into MSR48. The result of ANDing bit 41 of USRR1 with
bit 3 of USRR1 and with the complement of bit 49 of
USRR1 is complemented and then ANDed with the
result of ORing bits 58 and 49 of USRR1 and placed
into MSR58. The result of ANDing bit 41 of USRR1 with
bit 3 of USRR1 and with the complement of bit 49 of
USRR1 is complemented and then ANDed with the
result of ORing bits 59 and 49 of USRR1 and placed
into MSR59. Bits 0:32, 37:41, 49:57, and 60:63 of
USRR1 are placed into the corresponding bits of the
MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
USRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || USRR032:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into SRR0, HSRR0, or
USRR0 by the interrupt processing mechanism (see
Section 7.4.3) is the address of the instruction that
would have been executed next had the interrupt not
occurred.

This instruction is ultravisor privileged and context syn-
chronizing.

Special Registers Altered:
MSR

19 /// /// /// 306 /
0 6 11 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
sets MSRS HV PR to 0b110, it also sets MSRIR and
MSRDR to 0.

Programming Note
Chapter 4. Branch Facility 1153

Version 3.1
4.3.2 Power-Saving Mode
Power-Saving Mode is a mode in which the thread
does not execute instructions and may consume less
power than it would if it were not in power-saving mode.

There are 16 levels of power savings, designated as
levels 0-15. For each power-saving level, the power
consumed may be less than or equal to the power con-
sumed in the next-lower level, and the time required for
the thread to exit power-saving mode and resume exe-
cution may be greater than or equal that of the
next-lower level.

When the thread is in power-saving mode, some
resource state may be lost. The state that may be lost
while in each power-saving level is implementation
dependent, with the following restrictions.
 For PSSCRESL = 0 and power-saving level 0000,

no thread state is lost.
 There must be a power-saving level in which the

Decrementer and all hypervisor resources are
maintained as if the thread was not in power-sav-
ing mode, and in which sufficient information is
maintained to allow the hypervisor to resume exe-
cution.

 The amount of state loss in a given level is less
than or equal to the amount of state loss in the
next higher level.

 The state of all read-only resources, SMFCTRLE,
and the URMOR in an SMF-enabled system or the
HRMOR in an SMF-disabled system is always
maintained.

For the power-saving level corresponding to the
second item above, if the state of the Decrementer
were not maintained and updated as if the thread
was not in power-saving mode, Decrementer
exceptions would not reliably cause exit from this
power-saving level even if Decrementer exceptions
were enabled to cause exit.

Programming Note
Power ISA™ III1154

Version 3.1
4.3.2.1 Power-Saving Mode Instruction
The stop instruction is used to stop instruction fetching
and execution and put the thread into power-saving
mode. The thread remains in power-saving mode until

a system reset exception or an event that is enabled to
cause exit from power-saving mode occurs. (See the
definition of PSSCREC in Section 4.2.2.)

stop XL-form

stop

The thread is placed into power-saving mode and exe-
cution is stopped.

The power-saving level that is entered is determined by
the contents of the PSSCR (see Section 4.2.2). The
thread state that is maintained depends on the
power-saving level that is entered. The thread state
that is maintained at each power-saving level is imple-
mentation-dependent, subject to the restrictions speci-
fied in Section 4.3.2.MSREE=0) or in the corresponding
interrupt handler (if MSREE=1).

The thread remains in power-saving mode until either a
System Reset exception or certain other events occur.
The events that may cause exit from power-saving
mode are specified by PSSCREC, LPCRPECE, and
SMFCTRLUDEE. If the event that causes the exit is a
System Reset, Machine Check, or Hypervisor Mainte-
nance exception, resource state that would be lost if
the exception occurred when the thread was not in
power-saving mode may be lost.

This instruction should not be executed in ultravisor
state because that scenario may not be thoroughly ver-
ified.

This instruction is privileged and context synchronizing.

Special Registers Altered:
None

4.3.2.2 Entering and Exiting
Power-Saving Mode
Before software executes the stop instruction, the
PSSCR is initialized. If the stop instruction is to be
used by the OS, the hypervisor initializes the fields that
are accessible only to the hypervisor before dispatch-
ing the OS. These fields include the SD, ESL, EC, and
PSLL fields. See the Programming Notes for these
fields in Section 4.2.2 for additional information.

If the stop instruction is to be executed by the hypervi-
sor when PSSCREC=1, LPCRPECE and SMFCTR-
LUDEE must be set to the desired value (see Sections

2.2 and 3.4). Depending on the implementation and the
power-saving level to be entered, it may also be neces-
sary to save the state of certain resources and perform
synchronization procedures to ensure that all stores
have been performed with respect to other threads or
mechanisms that use the storage areas before execut-
ing the stop. See the the User’s Manual for the imple-
mentation for details.

Software must also specify the requested and maxi-
mum power-saving level limit fields (i.e RL and MTL
fields), and the Transition Rate (TR) field in the PSSCR
in order to bound the range of power-saving modes that
can be entered. If the value of the RL field is greater
than or equal to the value of the MTL field, the
power-saving level will not increase from the initial level
during power-saving mode.

After the thread has entered power-saving mode with
PSSCREC=0, any exception may cause exit from
power-saving mode. When an exception occurs,
power-saving mode is exited either at the instruction
following the stop (if MSREE=0) or in the corresponding
interrupt handler (if MSREE=1).

19 /// /// /// 370 /
0 6 11 16 21 31

If MSREE=1 when the stop instruction is executed,
then the interrupt corresponding to the exception
that was expected to cause exit from power-saving
mode may occur immediately prior to execution of
the stop instruction. If this occurs, the result may
be a software hang condition since the exception
that was expected to cause exit from power-saving
mode has already occurred.

The above software hang condition can be pre-
vented by setting MSREE=0 prior to executing
stop.

If stop was executed when PSSCREC=0, then
PSSCRESL must also be set to 0 and
PSSCRRL MTL must be set to values that do not
allow state loss. (See the definition of the EC bit
description in Section 4.3.2.) This guarantees that
the state of MSREE is not lost.

Programming Note

Programming Note
Chapter 4. Branch Facility 1155

Version 3.1

After the thread has entered power-saving mode with
PSSCREC=1, only the System Reset exception and the
exceptions enabled in LPCRPECE and SMFCTRLUDEE
will cause exit. If the event that causes exit is a
Machine Check exception, then a Machine Check inter-
rupt occurs; otherwise a System Reset interrupt occurs,
and the contents of SRR1 indicate the exception that
caused exit from power-saving mode. If state loss has
occurred in an SMF-enabled system, the interrupt is
taken in ultravisor state.

If the hypervisor has set PSSCRSD=0 prior to when the
stop instruction is executed, the instruction following
the stop may typically be a mfspr in order to read the
contents of PSSCRPLS to determine the maximum
power-saving level that was entered during power-sav-
ing mode.

If stop was executed when PSSCREC=0 and
MSREE=0 (in order to avoid the hang condition
described in a preceding Programming Note),
MSREE should be set to 1 after power-saving mode
is exited in order to take the interrupt corresponding
to the exception that caused exit from power-sav-
ing mode.

Programming Note
The ultravisor does not initiate power-saving.

If a secure partition attempts to execute stop with
parameters that allow state loss, the ultravisor gets
control via the Hypervisor Facility Unavailable inter-
rupt. It saves secure state and gives control to the
hypervisor’s Hypervisor Facility Unavailable inter-
rupt handler.

Upon exit from a state-losing power-saving mode in
an SMF-enabled system, the ultravisor gets control
at its Machine Check or System Reset interrupt
handler. It restores any ultravisor state that was
lost, and then services the Directed Ultravisor
Doorbell exception if that caused the wakeup. It
then restores the HRMOR and transfers control to
the hypervisor at the hypervisor’s Machine Check
interrupt handler if the ultravisor got control at the
ultravisor’s Machine Check interrupt handler, and
to the hypervisor’s System Reset interrupt handler
otherwise.. The hypervisor restores any lost hyper-
visor state, and then handles the exception (other
than Directed Ultravisor Doorbell exception) that
caused the wakeup. For this process to work, the
ultravisor must have stored a record of its state in
some known location prior to transferring control to
the hypervisor to execute stop. The hypervisor in
turn must have stored its HRMOR value in a loca-
tion known to the ultravisor. It must also have
stored a record of its state in some known location.

The only other function the ultravisor may need to
perform for a given power-saving mode transition is
to be a proxy accessing hypervisor state in the
platform that is mixed with ultravisor state and lack-
ing independent access control.

Programming Note
Power ISA™ III1156

Version 3.1
4.4 Event-Based Branch Facility and Instruction

The Event-Based Branch facility is described in Chap-
ter 6 of Book II, but only at the level required by the
application program.

Event-based branches can only occur in problem state
and when event-based branches and exceptions have
been enabled in the FSCR and HFSCR, and BES-
CRGE=1. Additionally, the following additional bits must
be set to one in order to enable EBB exceptions spe-
cific to a given function to occur.

- MMCR0EBE and BESCRPME must be set to 1
to enable Performance Monitor event-based
exceptions.

- BESCREE must be set to 1 to enable External
event-based exceptions.

If an event-based exception exists (as indicated by
BESCRPMEO=1 or BESCREEO=1) when MSRPR=0, the
corresponding event-based branch will occur when
MSRPR=1, FSCREBB=1, HFSCREBB=1, and BES-
CRGE=1.

Software EBB handlers should ensure that previ-
ous exceptions have been cleared (by setting
BESCRPMEO and/or BESCREEO to 0) before
re-enabling event-based branches (by setting BES-
CRGE to 1 or executing rfebb 1) in order to prevent
earlier exceptions from causing additional EBBs.

Programming Note
Chapter 4. Branch Facility 1157

Version 3.1
Power ISA™ III1158

Version 3.1
Chapter 5. Fixed-Point Facility

5.1 Fixed-Point Facility Over-
view
This chapter describes the details concerning the regis-
ters and the privileged instructions implemented in the
Fixed-Point Facility that are not covered in Book I.

5.2 Special Purpose Registers
Special Purpose Registers (SPRs) are read and written
using the mfspr (page 1173) and mtspr (page 1171)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

5.3 Fixed-Point Facility Regis-
ters

5.3.1 Processor Version Register
The Processor Version Register (PVR) is a 32-bit
read-only register that contains a value identifying the
version and revision level of the implementation. The
contents of the PVR can be copied to a GPR by the
mfspr instruction. Read access to the PVR is privi-
leged; write access is not provided.

Figure 9. Processor Version Register

The PVR distinguishes between implementations that
differ in attributes that may affect software. It contains
two fields.

Version A 16-bit number that identifies the version
of the implementation. Different version
numbers indicate major differences
between implementations.

Revision A 16-bit number that distinguishes between
implementations of the version. Different
revision numbers indicate minor differences
between implementations having the same

version number, such as clock rate and
Engineering Change level.

Version numbers are assigned by the Power ISA pro-
cess. Revision numbers are assigned by an implemen-
tation-defined process.

5.3.2 Processor Identification
Register
The Processor Identification Register (PIR) is a 32-bit
register that contains a 20-bit PROCID field that can be
used to distinguish the thread from other threads in the
system. The contents of the PIR can be copied to a
GPR by the mfspr instruction. Read access to the PIR
is privileged; write access is not provided.

Figure 10. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent.

The PIR is a hypervisor resource; see Chapter 2.

 Version Revision
32 48 63

/// PROCID
44 63

Bits Name Description
32:43 Reserved
44:63 PROCID Thread ID
Chapter 5. Fixed-Point Facility 1159

Version 3.1
5.3.3 Process Identification Reg-
ister
The layout of the Process Identification Register (PIDR)
is shown in Figure 11 below.

Figure 11. Process Identification Register

The contents of the PIDR identify the process to which
the thread is assigned. The value is used to perform
translation and manage the caching of translations.
The number of PIDR bits supported is implementa-
tion-dependent.

Access to the PIDR is privileged.

5.3.4 Control Register
The Control Register (CTRL) is a 32-bit register as
shown below.

Figure 12. Control Register

The field definitions for the CTRL are shown below.

Bit(s) Description
32:47 Reserved

48:55 Thread State (TS)

Problem State Access
Reserved

Privileged Non-hypervisor State Access
Bits 0:7 of this field are read-only bits that indi-
cate the state of CTRLRUN for threads with
privileged thread numbers 0 through 7,
respectively; bits corresponding to privileged
thread numbers higher than the maximum
privileged thread number supported are set to
0s.

Hypervisor State Access
Bits 0:7 of this field are read-only bits that indi-
cate the state of CTRLRUN for threads with

hypervisor thread numbers 0 through 7,
respectively; bits corresponding to hypervisor
thread numbers higher than the maximum
hypervisor thread number supported are set
to 0s.

56:62 Reserved

63 RUN

This bit controls an external I/O pin. This sig-
nal may be used for the following:

• driving the RUN Light on a system
operator panel

• Direct External exception routing
• Performance Monitor Counter incre-

menting (see Chapter 10)

The RUN bit can be used by the operating
system to indicate when the thread is doing
useful work.

Write access to the CTRL is privileged. Reads can be
performed in privileged or problem state.

5.3.5 Program Priority Register
Privileged programs may set a wider range of program
priorities in the PRI field of PPR and PPR32 than may
be set by problem state programs (see Chapter 3 of
Book II). Problem state programs may only set values
in the range of 0b001 to 0b100 unless the Problem
State Priority Boost register (see Section 5.3.6) allows
the value 0b101. Privileged programs may set values in
the range of 0b001 to 0b110. Hypervisor software may
also set 0b111. For all priorities except 0b101, if a pro-
gram attempts to set a value that is not allowed for its
privilege level, the PRI field remains unchanged. If a
problem state program attempts to set its priority value
to 0b101 when this priority value is not allowed for
problem state programs, the priority is set to 0b100.
The values and their corresponding meanings are as
follows.

Bit(s) Description
11:13 Program Priority (PRI)

001 very low
010 low
011 medium low
100 medium
101 medium high
110 high
111 very high

5.3.6 Problem State Priority Boost
Register
The Problem State Priority Boost (PSPB) register is a
32-bit register that controls whether problem state pro-

PID
32 63

Bit(s) Name Description
32:63 PID Process Identifier

Radix tree translation assigns special meaning to
PID=0, specifically indicating the operating sys-
tem’s kernel process. When GR=1, PIDR should
not be set to zero except when MSRPR=0.

/// TS /// RUN
32 48 56 63

Programming Note
Power ISA™ III1160

Version 3.1
grams have access to program priority medium high.
(See Section 3.1 of Book II.)

Figure 13. Problem State Priority Boost Register

A problem state program is able to set the program pri-
ority to medium high only when the PSPB of the thread
contains a non-zero value.

The maximum value to which the PSPB can be set
must be a power of 2 minus 1. Bits that are not required
to represent this maximum value must return 0s when
read regardless of what was written to them.

When the PSPB is set to a value less than its maxi-
mum value but greater than 0, its contents decrease
monotonically at the same rate as the SPURR until its
contents minus the amount it is to be decreased are 0
or less when a problem state program is executing on
the thread at a priority of medium high.When the con-
tents of the PSPB minus the amount it is to be
decreased are 0 or less, its contents are replaced by 0.

When the PSPB is set to its maximum value or 0, its
contents do not change until it is set to a different value.

Whenever the priority of a thread is medium high and
either of the following conditions exist, hardware
changes the priority to medium:

- the PSPB counts down to 0, or

- PSPB=0 and the privilege state of the thread
is changed to problem state (MSRPR=1).

5.3.7 Relative Priority Register
The Relative Priority Register (RPR) is a 64-bit register
that allows the hypervisor to control the relative priori-
ties corresponding to each valid value of PPRPRI.

Figure 14. Relative Priority Register

Each RPn field is defined as follows.

Bits Meaning
0:1 Reserved

2:7 Relative priority of priority level n: Specifies
the relative priority that corresponds to the pri-
ority corresponding to PPRPRI=n, where a
value of 0 indicates the lowest relative priority
and a value of 0b111111 indicates the highest
relative priority.

5.3.8 Software-use SPRs
Software-use SPRs are 64-bit registers provided for
use by software.

Figure 15. Software-use SPRs

SPRG0, SPRG1, and SPRG2 are privileged registers.
SPRG3 is a privileged register except that the contents
may be copied to a GPR in Problem state when
accessed using the mfspr instruction.

HSPRG0 and HSPRG1 are 64-bit registers provided
for use by hypervisor programs.

Figure 16. SPRs for use by hypervisor programs

PSPB
32 63

/ RP1 RP2 RP3 RP4 RP5 RP6 RP7
0 8 16 24 32 40 48 56

The hypervisor must ensure that the values of the
RPn fields increase monotonically for each n and
are of different enough magnitudes to ensure that
each priority level provides a meaningful difference
in priority.

SPRG0
SPRG1
SPRG2
SPRG3

0 63

Neither the contents of the SPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or more of the reg-
isters is likely to be needed by interrupt handlers
that run in privileged non-hypervisor state (e.g., as
scratch registers and/or pointers to per thread save
areas).

Operating systems must ensure that no sensitive
data are left in SPRG3 when a problem state pro-
gram is dispatched, and operating systems for
secure systems must ensure that SPRG3 cannot
be used to implement a “covert channel” between
problem state programs. These requirements can
be satisfied by clearing SPRG3 before passing
control to a program that will run in problem state.

HSPRG0
HSPRG1

0 63

Programming Note

Programming Note
Chapter 5. Fixed-Point Facility 1161

Version 3.1

USPRG0 and USPRG1 are 64-bit registers provided
for use by ultravisor programs.

Figure 17. SPRs for use by ultravisor programs

Neither the contents of the HSPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or both of the reg-
isters is likely to be needed by interrupt handlers
that run in hypervisor non-ultravisor state (e.g., as
scratch registers and/or pointers to per thread save
areas).

USPRG0
USPRG1

0 63

Neither the contents of the USPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or both of the reg-
isters is likely to be needed by interrupt handlers
that run in ultravisor state (e.g., as scratch registers
and/or pointers to per thread save areas).

Programming Note

Programming Note
Power ISA™ III1162

Version 3.1
5.4 Fixed-Point Facility Instructions

5.4.1 Fixed-Point Load and Store Caching Inhibited Instructions
The storage accesses caused by the instructions
described in this section are performed as though the
specified storage location is Caching Inhibited and
Guarded. The instructions can be executed only in
hypervisor state. Software must ensure that the speci-
fied storage location is not in the caches. If the speci-
fied storage location is in a cache, the results are
undefined.

The Fixed-Point Load and Store Caching Inhibited
instructions must be executed only when MSRDR=0.
The storage location specified by the instructions must
not be in storage specified by the Hypervisor Real
Mode Storage Control facility to be treated as

non-Guarded. If either of these conditions is violated,
the result is a Data Storage interrupt.

The Fixed-Point Load and Store Caching Inhibited
instructions are fixed-point Storage Access instructions;
see Section 3.3.1 of Book I.

The instructions described in this section can be
used to permit a control register on an I/O device to
be accessed without permitting the corresponding
storage location to be copied into the caches.

Programming Note
Chapter 5. Fixed-Point Facility 1163

Version 3.1
Load Byte and Zero Caching Inhibited
Indexed X-form

lbzcix RT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
RT ← 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Halfword and Zero Caching
Inhibited Indexed X-form

lhzcix RT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
RT ← 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Word and Zero Caching Inhibited
Indexed X-form

lwzcix RT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Load Doubleword Caching Inhibited
Indexed X-form

ldcix RT,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
RT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

31 RT RA RB 853 /
0 6 11 16 21 31

31 RT RA RB 821 /
0 6 11 16 21 31

31 RT RA RB 789 /
0 6 11 16 21 31

31 RT RA RB 885 /
0 6 11 16 21 31
Power ISA™ III1164

Version 3.1
Store Byte Caching Inhibited Indexed
 X-form

stbcix RS,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
MEM(EA, 1) ← (RS)56:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)56:63 are stored into the byte in stor-
age addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Halfword Caching Inhibited Indexed
 X-form

sthcix RS,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
MEM(EA, 2) ← (RS)48:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Word Caching Inhibited Indexed
 X-form

stwcix RS,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
MEM(EA, 4) ← (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Store Doubleword Caching Inhibited
Indexed X-form

stdcix RS,RA,RB

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + (RB)
MEM(EA, 8) ← (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

The storage access caused by this instruction is per-
formed as though the specified storage location is
Caching Inhibited and Guarded.

This instruction is hypervisor privileged.

Special Registers Altered:
None

31 RS RA RB 981 /
0 6 11 16 21 31

31 RS RA RB 949 /
0 6 11 16 21 31

31 RS RA RB 917 /
0 6 11 16 21 31

31 RS RA RB 1013 /
0 6 11 16 21 31
Chapter 5. Fixed-Point Facility 1165

Version 3.1
5.4.2 OR Instruction
or Rx,Rx,Rx can be used to set PPRPRI (see Section
5.3.5) as shown in Figure 18. For all priorities except
medium high, PPRPRI remains unchanged if the privi-
lege state of the thread executing the instruction is
lower than the privilege indicated in the figure. For pri-
ority medium high, PPRPRI is set to medium if the
thread executing the instruction is in problem state and
medium high priority is not allowed for problem state
programs. (The encodings available to problem state
programs, as well as encodings for additional shared
resource hints not shown here, are described in Chap-
ter 3 of Book II.)

Figure 18. Priority levels for or Rx,Rx,Rx

5.4.3 OR Immediate Instruction
ori R31,R31,0 is a no-op instruction that is also
execution serializing: that is, executing an ori
R31,R31,0 instruction ensures that all instructions
preceding the ori R31,R31,0 instruction have
completed before the ori R31,R31,0 instruction
completes, and that no subsequent instructions are
initiated, even out-of-order, until after the ori R31,R31,0
instruction completes.

The ori R31,R31,0 instruction may complete before
storage accesses associated with instructions preced-
ing the ori R31,R31,0 instruction have been performed.

Extended Mnemonics:

Additional extended mnemonic for the execution serial-
izing form of Or Immediate:

5.4.4 Move To/From System Reg-
ister Instructions
The Move To Special Purpose Register and Move
From Special Purpose Register instructions are
described in Book I, but only at the level available to an
application programmer. For example, no mention is
made there of registers that can be accessed only in
privileged state. The descriptions of these instructions
given below extend the descriptions given in Book I, but
do not list Special Purpose Registers that are imple-
mentation-dependent. In the descriptions of these
instructions given in below, the “defined” SPR numbers
are the SPR numbers shown in the Figure 19 for the
instruction and the implementation-specific SPR num-
bers that are implemented, and similarly for “defined”
registers. All other SPR numbers are undefined for the
instruction. (Implementation-specific SPR numbers
that are not implemented are considered to be unde-
fined.) When an SPR is defined for mtspr and unde-
fined for mfspr, or vice versa, a hyphen appears in the
column for the instruction for which the SPR number is
undefined.

SPR numbers that are not shown in Figure 19 and are
in the ranges shown below are reserved for implemen-
tation-specific uses.

848 - 863
880 - 895
976 - 991

1008 - 1023

Implementation-specific registers must be privileged.
SPR numbers for implementation-specific SPRs should
be registered in advance with the Power ISA archi-
tects.

Rx PPRPRI Priority Privileged
31 001 very low no
1 010 low no
6 011 medium low no
2 100 medium no
5 101 medium high no/yes1

3 110 high yes
7 111 very high hypv

1This value is privileged unless the Problem State Pri-
ority Boost register allows the priority value 0b101
(See Section 5.3.6.)

Extended: Equivalent to:
exser ori 31,31,0

Warning: Other forms of ori Rx,Rx,0 that are not
described in this section may also have
micro-architectural effects on program execution.
Use of these forms should be avoided except when
software needs the associated micro-architectural
effects. If a no-op is needed, the preferred no-op
(ori 0,0,0) should be used.

Programming Note
Power ISA™ III1166

Version 3.1
Figure 19. SPR encodings (Sheet 1 of 4)

decimal SPR1
Register Name Privileged Length

(bits)
Extended Mnemonics*

spr5:9 spr0:4 mtspr mfspr mtspr mfspr
1 00000 00001 XER no no 64 mtxer Rx mfxer Rx
3 00000 00011 DSCR no no 64 mtudscr mfudscr
8 00000 01000 LR no no 64 mtlr Rx mflr Rx
9 00000 01001 CTR no no 64 mtctr Rx mfctr Rx

13 00000 01101 AMR no4 no 64 mtuamr Rx mfuamr Rx
17 00000 10001 DSCR yes yes 64 mtdscr Rx mfdscr Rx
18 00000 10010 DSISR yes yes 32 mtdsisr Rx mfdsisr Rx
19 00000 10011 DAR yes yes 64 mtdar Rx mfdar Rx
22 00000 10110 DEC yes yes 64 mtdec Rx mfdec Rx
26 00000 11010 SRR0 yes yes 64 mtsrr0 Rx mfsrr0 Rx
27 00000 11011 SRR1 yes yes 64 mtsrr1 Rx mfsrr1 Rx
28 00000 11100 CFAR yes yes 64 mtcfar Rx mfcfar Rx
29 00000 11101 AMR yes4 yes 64 mtamr Rx mfamr Rx
48 00001 10000 PIDR yes yes 32 mtpidr Rx mfpidr Rx
61 00001 11101 IAMR yes7 yes 64 mtiamr Rx mfiamr Rx

136 00100 01000 CTRL - no 32 - mfctrl Rx

152 00100 11000 CTRL yes - 32 mtctrl Rx -
153 00100 11001 FSCR yes yes 64 mtfscr Rx mffscr Rx
157 00100 11101 UAMOR yes5 yes 64 mtuamor Rx mfuamor Rx
158 00100 11110 na yes - na - -
159 00100 11111 PSPB yes yes 32 mtpspb Rx mfpspb Rx
176 00101 10000 DPDES hypv2 yes 64 mtdpdes Rx mfdpdes Rx
180 00101 10100 DAWR0 hyp/ult13 hyp/ult13 64 mtdawr0 Rx mfdawr0 Rx
181 00101 10101 DAWR1 hypv2 hypv2 64 mtdawr1 Rx mfdawr1 Rx
186 00101 11010 RPR hypv2 hypv2 64 mtrpr Rx mfrpr Rx
187 00101 11011 CIABR hyp/ult13 hyp/ult13 64 mtciabr Rx mfciabr Rx
188 00101 11100 DAWRX0 hyp/ult13 hyp/ult13 32 mtdawrx0 Rx mfdawrx0 Rx
189 00101 11101 DAWRX1 hypv2 hypv2 32 mtdawrx1 Rx mfdawrx1 Rx
190 00101 11110 HFSCR hypv2 hypv2 64 mthfscr Rx mfhfscr Rx
256 01000 00000 VRSAVE no no 32 mtvrsave Rx mfvrsave Rx
259 01000 00011 SPRG3 - no 64 - mfusprg3
268 01000 01100 TB - no 64 - mftb Rx10

269 01000 01101 TBU - no 32 - mftbu Rx10

272-275 01000 100xx SPRG[n] n=0-3 yes yes 64 mtspgrn Rx mfspgrn Rx

284 01000 11100 TBL hypv2 - 32 mttbl Rx -
285 01000 11101 TBU hypv2 - 32 mttbu Rx -
286 01000 11110 TBU40 hypv - 64 mttbu40 Rx -
287 01000 11111 PVR - yes 32 - mfpvr Rx
304 01001 10000 HSPRG0 hypv2 hypv2 64 mthsprg0 Rx mfhsprg0 Rx
305 01001 10001 HSPRG1 hypv2 hypv2 64 mthsprg1 Rx mfhsprg1 Rx
306 01001 10010 HDSISR hypv2 hypv2 32 mthdisr Rx mfhdisr Rx
307 01001 10011 HDAR hypv2 hypv2 64 mthdar Rx mfhdar Rx
308 01001 10100 SPURR hypv2 yes 64 mtspurr Rx mfspurr Rx
309 01001 10101 PURR hypv2 yes 64 mtpurr Rx mfpurr Rx
310 01001 10110 HDEC hypv2 hypv2 64 mthdec Rx mfhdec Rx
313 01001 11001 HRMOR hypv2 hypv2 64 mthrmor Rx mfhrmor Rx
314 01001 11010 HSRR0 hypv2 hypv2 64 mthsrr0 Rx mfhsrr0 Rx
315 01001 11011 HSRR1 hypv2 hypv2 64 mthsrr1 Rx mfhsrr1 Rx
Chapter 5. Fixed-Point Facility 1167

Version 3.1
318 01001 11110 LPCR hypv2 hypv2 64 mtlpcr Rx mflpcr Rx
319 01001 11111 LPIDR hypv2 hypv2 32 mtlpidr Rx mflpidr Rx
336 01010 10000 HMER hypv2,3 hypv2 64 mthmer Rx mfhmer Rx
337 01010 10001 HMEER hypv2 hypv2 64 mthmeer Rx mfhmeer Rx
338 01010 10010 PCR hypv2 hypv2 64 mtpcr Rx mfpcr Rx
339 01010 10011 HEIR hypv2 hypv2 32 mtheir Rx mfheir Rx
349 01010 11101 AMOR hypv2 hypv2 64 mtamor Rx mfamor Rx
446 01101 11110 TIR - yes 64 - mftir Rx
464 01110 10000 PTCR hyp/ult12 hypv2 64 mtptcr Rx mfptcr Rx
496 01111 10000 USPRG0 ultv ultv 64 mtusprg0 Rx mfusprg0 Rx
497 01111 10001 USPRG1 ultv ultv 64 mtusprg1 Rx mfusprg1 Rx
505 01111 11001 URMOR ultv ultv 64 mturmor Rx mfurmor Rx
506 01111 11010 USRR0 ultv ultv 64 mtusrr0 Rx mfusrr0 Rx
507 01111 11011 USRR1 ultv ultv 64 mtusrr1 Rx mfusrr1 Rx
511 01111 11111 SMFCTRL ultv ultv 64 mtsmfctrl Rx mfsmfctrl Rx
736 10111 00000 SIER2 - no6 64 - mfusier2 Rx

mfsier2 Rx
737 10111 00001 SIER3 - no6 64 - mfusier3 Rx

mfsier3 Rx
738 10111 00010 MMCR3 - no6 64 - mfummcr3 Rx

mfmmcr3 Rx
752 10111 10000 SIER2 yes yes 64 mtsier2 Rx 12

753 10111 10001 SIER3 yes yes 64 mtsier3 Rx 12

754 10111 10010 MMCR3 yes yes 64 mtmmcr3 Rx 12

768 11000 00000 SIER - no6 64 - mfusier Rx
mfsier Rx

769 11000 00001 MMCR2 no6 no6 64 mtummcr2 Rx
mtmmcr2 Rx

mfummcr2 Rx
mfmmcr2 Rx

770 11000 00010 MMCRA no6 no6 64 mtummcra Rx mfummcra Rx
mfmmcra Rx

771 11000 00011 PMC1 no6 no6 32 mtupmc1 Rx mfupmc1 Rx
mfpmc1 Rx

772 11000 00100 PMC2 no6 no6 32 mtupmc2 Rx mfupmc2 Rx
mfpmc2 Rx

773 11000 00101 PMC3 no6 no6 32 mtupmc3 Rx mfupmc3 Rx
mfpmc3 Rx

774 11000 00110 PMC4 no6 no6 32 mtupmc4 Rx mfupmc4 Rx
mfpmc4 Rx

775 11000 00111 PMC5 no6 no6 32 mtupmc5 Rx mfupmc5 Rx
mfpmc5 Rx

776 11000 01000 PMC6 no6 no6 32 mtupmc6 Rx mfupmc6 Rx
mfpmc6 Rx

779 11000 01011 MMCR0 no6 no6 64 mtummcr0 Rx mfummcr0 Rx
mfmmcr0 Rx

780 11000 01100 SIAR - no6 64 - mfusiar Rx
mfsiar Rx

781 11000 01101 SDAR - no6 64 - mfusdar Rx
mfsdar Rx

782 11000 01110 MMCR1 - no6 64 - mfummcr1 Rx
mfmmcr1 Rx

784 11000 10000 SIER yes yes 64 mtsier Rx 11

785 11000 10001 MMCR2 yes yes 64 11 11

786 11000 10010 MMCRA yes yes 64 mtmmcra Rx 11

787 11000 10011 PMC1 yes yes 32 mtpmc1 Rx 11

788 11000 10100 PMC2 yes yes 32 mtpmc2 Rx 11

789 11000 10101 PMC3 yes yes 32 mtpmc3 Rx 11

Figure 19. SPR encodings (Sheet 2 of 4)

decimal SPR1
Register Name Privileged Length

(bits)
Extended Mnemonics*

spr5:9 spr0:4 mtspr mfspr mtspr mfspr
Power ISA™ III1168

Version 3.1
790 11000 10110 PMC4 yes yes 32 mtpmc4 Rx 11

791 11000 10111 PMC5 yes yes 32 mtpmc5 Rx 11

792 11000 11000 PMC6 yes yes 32 mtpmc6 Rx 11

795 11000 11011 MMCR0 yes yes 64 mtmmcr0 Rx 11

796 11000 11100 SIAR yes yes 64 mtsiar Rx 11

797 11000 11101 SDAR yes yes 64 mtsdar Rx 11

798 11000 11110 MMCR1 yes yes 64 mtmmcr1 Rx 11

800 11001 00000 BESCRS no no 64 mtbescrs Rx mfbescrs Rx
801 11001 00001 BESCRSU no no 32 mtbescrsu Rx mfbescrsu Rx
802 11001 00010 BESCRR no no 64 mtbescrr Rx mfbescrr Rx
803 11001 00011 BESCRRU no no 32 mtbescrru Rx mfbescrru Rx
804 11001 00100 EBBHR no no 64 mtebbhr Rx mfebbhr Rx
805 11001 00101 EBBRR no no 64 mtebbrr Rx mfebbrr Rx
806 11001 00110 BESCR no no 64 mtbescr Rx mfbescr Rx
808 11001 01000 reserved8 no no na - -
809 11001 01001 reserved8 no no na - -
810 11001 01010 reserved8 no no na - -
811 11001 01011 reserved8 no no na - -
815 11001 01110 TAR no no 64 mttar Rx mftar Rx
816 11001 10000 ASDR hypv2 hypv2 64 mtasdr Rx mfasdr Rx
823 11001 10111 PSSCR yes yes 64 mtpsscr Rx mfpsscr Rx
848 11010 10000 IC hypv2 yes 64 mtic Rx mfic Rx
849 11010 10001 VTB hypv2 yes 64 mtvtb Rx mfvtb Rx
855 11010 10111 PSSCR hypv3 hypv3 64 mthpsscr Rx mfhpsscr
896 11100 00000 PPR no no 64 mtppr Rx mfppr Rx
898 11100 00010 PPR32 no no 32 mtppr32 Rx mfppr32 Rx

1023 11111 11111 PIR - yes 32 - mfpir Rx

Figure 19. SPR encodings (Sheet 3 of 4)

decimal SPR1
Register Name Privileged Length

(bits)
Extended Mnemonics*

spr5:9 spr0:4 mtspr mfspr mtspr mfspr
Chapter 5. Fixed-Point Facility 1169

Version 3.1
- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 This register is a hypervisor resource, and can be accessed by this instruction only in hypervisor state (see

Chapter 2).
3 This register cannot be directly written. Instead, bits in the register corresponding to 0 bits in (RS) can be cleared

using mtspr SPR,RS.
4 The value specified in register RS may be masked by the contents of the [U]AMOR before being placed into the

AMR; see the mtspr instruction description.
5 The value specified in register RS may be ANDed with the contents of the AMOR before being placed into the

UAMOR; see the mtspr instruction description.
6 MMCR0PMCC and MMCR0PMCCEXT controls the availability of this SPR, and its contents depend on the privilege

state in which it is accessed. See Section 10.4.4 for details.
7 The value specified in Register RS may be masked by the contents of the AMOR before being placed into the

IAMR; see the mtspr instruction description.
8 Accesses to these SPRs are no-ops; see Section 1.3.3, “Reserved Fields, Reserved Values, and Reserved

SPRs” in Book I.
9 SPR numbers 777-778, 783, 793-794, and 799 are reserved for the Performance Monitor. All other SPR num-

bers that are not shown above and are not implementation-specific are reserved.
10 The mftb instruction is Phased-Out. Assemblers targeting Version 2.03 or later of the architecture should gener-

ate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding Assembler Note
in the mftb instruction description (see Section 5.1 of Book II).

11 No extended mnemonic is provided because previous versions of the architecture defined the obvious extended
mnemonic as resolving to the non-privileged SPR number, and because there is no software benefit in using the
privileged SPR number, rather than the non-privileged SPR number, for this function.

12 mtspr specifying this register is ultravisor privileged when SMFCTRLE=1; otherwise it is hypervisor privileged.
13 This register is ultravisor privileged when SMFCTRLD=1; otherwise it is hypervisor privileged.
*This figure also defines extended mnemonics for the mtspr and mfspr instructions, including the Special Purpose
Registers (SPRs) defined in Book I and for the Move From Time Base instruction defined in Book II.

The mtspr and mfspr instructions specify an SPR as a numeric operand; extended mnemonics are provided that
represent the SPR in the mnemonic rather than requiring it to be coded as an operand. Similar extended mnemon-
ics are provided for the Move From Time Base instruction, which specifies the portion of the Time Base as a
numeric operand.

Note: mftb serves as both a basic and an extended mnemonic. The Assembler will recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the extended form. In the
extended form the TBR operand is omitted and assumed to be 268 (the value that corresponds to TB)

Figure 19. SPR encodings (Sheet 4 of 4)

decimal SPR1
Register Name Privileged Length

(bits)
Extended Mnemonics*

spr5:9 spr0:4 mtspr mfspr mtspr mfspr
Power ISA™ III1170

Version 3.1
Move To Special Purpose Register
XFX-form

mtspr SPR,RS

n ← spr5:9 || spr0:4
switch (n)
 case(13): if MSRHV PR = 0b10 then
 SPR(13) ← (RS)
 else
 if MSRHV PR = 0b00 then
 SPR(13) ← ((RS) & AMOR) |
 ((SPR(13)) & ¬AMOR)
 else
 SPR(13) ← ((RS) & UAMOR) |
 ((SPR(13)) & ¬UAMOR)
 case(29,61):if MSRHV PR = 0b10 then
 SPR(n) ← (RS)
 else
 SPR(n) ← ((RS) & AMOR) |
 ((SPR(n)) & ¬AMOR)
 case (157): if MSRHV PR = 0b10 then
 SPR(157) ← (RS)
 else
 SPR(157) ← (RS) & AMOR
 case (336):SPR(336) ← (SPR(336)) & (RS)
 case (158, 808, 809, 810, 811):
 default: if length(SPR(n)) = 64 then
 SPR(n) ← (RS)
 else
 SPR(n) ← (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 19. If the SPR field con-
tains the value 158, the instruction is treated as a privi-
leged no-op. If the SPR field contains a value from 808
through 811, the instruction specifies a reserved SPR,
and is treated as a no-op; see Section 1.3.3,
“Reserved Fields, Reserved Values, and Reserved
SPRs” in Book I. Otherwise, the contents of register
RS are placed into the designated Special Purpose
Register, except as described in the next five para-
graphs. For Special Purpose Registers that are 32 bits
long, the low-order 32 bits of RS are placed into the
SPR.

When the designated SPR is the Authority Mask Regis-
ter (AMR), (using SPR 13 or SPR 29), or the desig-
nated SPR is the Instruction Authority Mask Register
(IAMR), and MSRHV PR=0b00, the contents of bit posi-
tions of register RS corresponding to 1 bits in the
Authority Mask Override Register (AMOR) are placed
into the corresponding bits of the AMR or IAMR,
respectively; the other AMR or IAMR bits are not modi-
fied.

When the designated SPR is the AMR, using SPR 13,
and MSRPR=1, the contents of bit positions of register
RS corresponding to 1 bits in the User Authority Mask

Override Register (UAMOR) are placed into the corre-
sponding bits of the AMR; the other AMR bits are not
modified.

When the designated SPR is the UAMOR and
MSRHV PR=0b00, the contents of register RS are
ANDed with the contents of the AMOR and the result is
placed into the UAMOR.

When the designated SPR is the Hypervisor Mainte-
nance Exception Register (HMER), the contents of reg-
ister RS are ANDed with the contents of the HMER and
the result is placed into the HMER.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 when the privilege state of the thread does
not permit the access causes one of the following.
• MSRPR=1: Privileged Instruction type Program

interrupt
• MSRHV PR=0b00 or MSRS HV PR=0b010 and the

SPR is always an ultravisor resource (independent
of the contents of SMFCTRL): Privileged Instruc-
tion type Program interrupt

• MSRHV PR=0b00 and the SPR is a hypervisor
resource (see Figure 19) or is PTCR, DAWRn,
DAWRXn, or CIABR when they are ultravisor privi-
leged for the operation:

- LPCREVIRT=0: Privileged Instruction type Pro-
gram interrupt

- LPCREVIRT=1: Hypervisor Emulation Assis-
tance interrupt

• MSRS HV PR=0b010 and the SPR is PTCR,
DAWRn, DAWRXn, or CIABR when they are ultra-
visor privileged for the operation: Hypervisor Emu-
lation Assistance interrupt

Execution of this instruction specifying an SPR number
that is undefined for the implementation causes one of
the following.
• if spr0=0:

- if MSRPR=1: Hypervisor Emulation Assistance
interrupt

- if MSRPR=0: Hypervisor Emulation Assistance
interrupt for SPR 0,4,5, and 6, and no opera-
tion (i.e., the instruction is treated as a no-op)
when LPCREVIRT=0 and Hypervisor Emula-
tion Assistance interrupt when LPCREVIRT=1
for all other SPRs

• if spr0=1:
- if MSRPR=1: Privileged Instruction type Pro-

gram interrupt

- if MSRPR=0: no operation (i.e., the instruction
is treated as a no-op) when LPCREVIRT=0 and
Hypervisor Emulation Assistance interrupt
when LPCREVIRT=1

31 RS spr 467 /
0 6 11 21 31
Chapter 5. Fixed-Point Facility 1171

Version 3.1
Special Registers Altered:
See Figure 19

For a discussion of software synchronization
requirements when altering certain Special Pur-
pose Registers, see Chapter 12. “Synchronization
Requirements for Context Alterations” on
page 1333.

Requiring that an attempt to execute an mtspr or
mfspr instruction with SPR=0 or an attempt to exe-
cute an mfspr instruction with SPR=4, 5, or 6
cause a Hypervisor Emulation Assistance interrupt
permits efficient emulation of mt/fspr specifying the
corresponding SPRs as defined in the POWER
Architecture.

Requiring that an attempt to execute an mtspr
instruction with SPR=4, 5, or 6 cause a Hypervisor
Emulation Assistance interrupt, even in privileged
state, makes the behavior be the same for both
instructions for all four SPR numbers, thereby sim-
plifying the architecture. (SPRs 4, 5, and 6 were
not defined for mtspr in the POWER Architecture.
The corresponding SPRs were privileged for writ-
ing, and mtspr to those SPRs used the corre-
sponding privileged SPR number.)

Programming Note

Programming Note
Power ISA™ III1172

Version 3.1
Move From Special Purpose Register
XFX-form

mfspr RT,SPR

n ← spr5:9 || spr0:4
switch (n)

 case(808, 809, 810, 811):
 default:
 if length(SPR(n)) = 64 then
 RT ← SPR(n)
 else
 RT ← 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 19. If the SPR field con-
tains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs” in Book I. Otherwise, the con-
tents of the designated Special Purpose Register are
placed into register RT. For Special Purpose Registers
that are 32 bits long, the low-order 32 bits of RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 when the privilege state of the thread does
not permit the access causes one of the following.
• MSRPR=1: Privileged Instruction type Program

interrupt
• MSRHV PR=0b00 or MSRS HV PR=0b010 and the

SPR is always an ultravisor resource (independent
of the contents of SMFCTRL): Privileged Instruc-
tion type Program interrupt

• MSRHV PR=0b00 and the SPR is a hypervisor
resource (see Figure 19) or is DAWRn, DAWRXn,
or CIABR when they are ultravisor privileged for
the operation:

- LPCREVIRT=0: Privileged Instruction type Pro-
gram interrupt

- LPCREVIRT=1: Hypervisor Emulation Assis-
tance interrupt

• MSRS HV PR=0b010 and the SPR is DAWRn,
DAWRXn, or CIABR when they are ultravisor privi-
leged for the operation: Hypervisor Emulation
Assistance interrupt

Execution of this instruction specifying an SPR number
that is not defined for the implementation causes one of
the following.
• if spr0=0:

- if MSRPR=1: Hypervisor Emulation Assistance
interrupt

- if MSRPR=0: Hypervisor Emulation Assistance
interrupt for SPRs 0, 4, 5, and 6, and no oper-
ation (i.e., the instruction is treated as a
no-op) when LPCREVIRT=0 and Hypervisor
Emulation Assistance interrupt when LPCRE-

VIRT=1 for all other SPRs
• if spr0=1:

- if MSRPR=1: Privileged Instruction type Pro-
gram interrupt

- if MSRPR=0: no operation (i.e., the instruction
is treated as a no-op) when LPCREVIRT=0 and
Hypervisor Emulation Assistance interrupt
when LPCREVIRT=1

Special Registers Altered:
None

31 RT spr 339 /
0 6 11 21 31

See the Notes that appear with mtspr.
Note
Chapter 5. Fixed-Point Facility 1173

Version 3.1
Move To Machine State Register X-form

mtmsr RS,L

if L = 0 then
 MSR48 ← (RS)48 | (RS)49
 MSR58  ((RS)58 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR59  ((RS)59 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR32:40 42:47 49:50 52:57 60:62
(RS)32:40 42:47 49:50 52:57 60:62
else
 MSR48 62 ← (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ANDing bit 41 of
the MSR with bit 3 of the MSR and with the com-
plement of bit 49 of register RS is complemented
and then ANDed with the result of ORing bits 58
and 49 of register RS and placed into MSR58. The
result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of register
RS is complemented and then ANDed with the
result of ORing bits 59 and 49 of register RS and
placed into MSR59. Bits 32:40, 42:47, 49:50,
52:57, and 60:62 of register RS are placed into the
corresponding bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsr instruction description in this sec-
tion, references to “mtmsr” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsr instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

31 RS /// L /// 146 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRS, MSRME, or
MSRLE. (This instruction does not alter MSRHV
because it does not alter any of the high-order 32
bits of the MSR.)

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

If MSREE=0 and an External, Decrementer, or Per-
formance Monitor exception is pending, executing
an mtmsrd instruction that sets MSREE to 1 will
cause the interrupt to occur before the next instruc-
tion is executed, if no higher priority exception
exists (see Section 7.9, “Interrupt Priorities” on
page 1290). Similarly, if a Hypervisor Decrementer
interrupt is pending, execution of the instruction by
the hypervisor causes a Hypervisor Decrementer
interrupt to occur if HDICE=1.

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 12.

mtmsr serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsr mnemonic with two operands as the basic
form, and an mtmsr mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

There is no need for an analogous version of the
mfmsr instruction, because the existing instruction
copies the entire contents of the MSR to the
selected GPR.

Programming Note

Programming Note

Programming Note

Programming Note
Power ISA™ III1174

Version 3.1
Move To Machine State Register
Doubleword X-form

mtmsrd RS,L

if L = 0 then
 MSR48 ← (RS)48 | (RS)49
 MSR58  ((RS)58 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR59  ((RS)59 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR0:2 4:40 42:47 49:50 52:57 60:62
 ← (RS)0:2 4 6:40 42:47 49:50 52:57 60:62
else
 MSR48 62 ← (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ANDing bit 41 of
the MSR with bit 3 of the MSR and with the com-
plement of bit 49 of register RS is complemented
and then ANDed with the result of ORing bits 58
and 49 of register RS and placed into MSR58. The
result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of register
RS is complemented and then ANDed with the
result of ORing bits 59 and 49 of register RS and
placed into MSR59. Bits 0:2, 4:40 42:47, 49:50,
52:57, and 60:62 of register RS are placed into the
corresponding bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

Except in the mtmsrd instruction description in this
section, references to “mtmsrd” in this document imply
either L value unless otherwise stated or obvious from
context (e.g., a reference to an mtmsrd instruction that
modifies an MSR bit other than the EE or RI bit implies
L=0).

31 RS /// L /// 178 /
0 6 11 15 16 21 31

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRHV, MSRS,
MSRME, or MSRLE.

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

If MSREE=0 and an External, Decrementer, or Per-
formance Monitor exception is pending, executing
an mtmsrd instruction that sets MSREE to 1 will
cause the interrupt to occur before the next instruc-
tion is executed, if no higher priority exception
exists (see Section 7.9, “Interrupt Priorities” on
page 1290). Similarly, if a Hypervisor Decrementer
interrupt is pending, execution of the instruction by
the hypervisor causes a Hypervisor Decrementer
interrupt to occur if HDICE=1.

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 12.

mtmsrd serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsrd mnemonic with two operands as the basic
form, and an mtmsrd mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

Programming Note

Programming Note

Programming Note
Chapter 5. Fixed-Point Facility 1175

Version 3.1
Move From Machine State Register
X-form

mfmsr RT

RT ← MSR

The contents of the MSR are placed into register RT.

This instruction is privileged.

Special Registers Altered:
None

31 RT /// /// 83 /
0 6 11 16 21 31
Power ISA™ III1176

Version 3.1
Chapter 6. Storage Control

6.1 Overview
A program references storage using the effective
address computed by the hardware when it executes a
Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 6.7.3, in
Section 6.7.7 and in the following sections. The real
address is what is presented to the storage subsystem.

For a complete discussion of storage addressing and
effective address calculation, see Section 1.10 of Book
I.

6.2 Storage Exceptions
A storage exception results when the sequential execu-
tion model requires that a storage access be performed
but the access is not permitted (e.g., is not permitted by
the storage protection mechanism), the access cannot
be performed because the effective address cannot be
translated to a real address, or the access matches
some tracking mechanism criteria (e.g., Data Address
Watchpoint).

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See Section of Book II, and Section
7.6 in this Book.

6.3 Instruction Fetch
Instructions are fetched under control of MSRIR.

MSRIR=0

The effective address of the instruction is inter-
preted as described in Section 6.7.3.

MSRIR=1

The effective address of the instruction is trans-
lated by the Address Translation mechanism
described beginning in Section 6.7.7.

6.3.1 Implicit Branch
Explicitly altering certain MSR bits (using mtmsr[d]), or
explicitly altering SLB entries, Page Table Entries, or
certain System Registers (including the HRMOR,
URMOR, and possibly other implementation-depen-
dent registers), may have the side effect of changing
the addresses, effective or real, from which the current
instruction stream is being fetched. This side effect is
called an implicit branch. For example, an mtmsrd
instruction that changes the value of MSRSF may
change the effective addresses from which the current
instruction stream is being fetched. The MSR bits and
System Registers (excluding implementation-depen-
dent registers) for which alteration can cause an
implicit branch are indicated as such in Chapter
12. “Synchronization Requirements for Context Alter-
ations” on page 1333. Implicit branches are not sup-
ported by the Power ISA. If an implicit branch occurs,
the results are boundedly undefined.

6.3.2 Address Wrapping Com-
bined with Changing MSR Bit SF
If the current instruction is at effective address 232 - 4
and is an mtmsrd instruction that changes the contents
of MSRSF, the effective address of the next sequential
instruction is undefined.

If the thread is in 32-bit mode, the current instruc-
tion is a word instruction at effective address 232-4
or a prefixed instruction at effective address 232-8,
and an interrupt occurs that is defined to set SRR0
or HSRR0 (or LR, for the System Call Vectored
interrupt) to the effective address of the next
sequential instruction, the contents of SRR0 or
HSRR0 (or LR), as appropriate to the interrupt, are
undefined.

Programming Note
Chapter 6. Storage Control 1177

Version 3.1
6.4 Data Access
Data accesses are controlled by MSRDR.

MSRDR=0

The effective address of the data is interpreted as
described in Section 6.7.3.

MSRDR=1

The effective address of the data is translated by
the Address Translation mechanism described in
Section 6.7.7.

6.5 Performing Operations
Out-of-Order
An operation is said to be performed “in-order” if, at the
time that it is performed, it is known to be required by
the sequential execution model. An operation is said to
be performed “out-of-order” if, at the time that it is per-
formed, it is not known to be required by the sequential
execution model.

Operations are performed out-of-order on the expecta-
tion that the results will be needed by an instruction that
will be required by the sequential execution model.
Whether the results are really needed is contingent on
everything that might divert the control flow away from
the instruction, such as Branch, Trap, System Call, and
Return From Interrupt instructions, and interrupts, and
on everything that might change the context in which
the instruction is executed.

Typically, operations are performed out-of-order when
resources are available that would otherwise be idle, so
the operation incurs little or no cost. If subsequent
events such as branches or interrupts indicate that the
operation would not have been performed in the
sequential execution model, any results of the opera-
tion are abandoned (except as described below).

In the remainder of this section, including its subsec-
tions, “Load instruction” includes the Cache Manage-
ment and other instructions that are stated in the
instruction descriptions to be “treated as a Load”, and
similarly for “Store instruction”.

A data access that is performed out-of-order may corre-
spond to an arbitrary Load or Store instruction (e.g., a
Load or Store instruction that is not in the instruction
stream being executed). Similarly, an instruction fetch
that is performed out-of-order may be for an arbitrary
instruction (e.g., the aligned word at an arbitrary loca-
tion in instruction storage).

Most operations can be performed out-of-order, as long
as the machine appears to follow the sequential execu-
tion model. Certain out-of-order operations are
restricted, as follows.

 Stores

Stores are not performed out-of-order (even if the
Store instructions that caused them were executed
out-of-order).

 Accessing Guarded Storage
The restrictions for this case are given in Section
6.8.1.1.

 Executing instructions subsequent to an ori
R31,R31,0 instruction
The restrictions for this case are given in Section
5.4.3.

The only permitted side effects of performing an opera-
tion out-of-order are the following.

 A Machine Check or Checkstop that could be
caused by in-order execution may occur
out-of-order.

 Reference and Change bits may be set as
described in Section 6.7.12.

 Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or execu-
tion of an arbitrary instruction may be fetched
out-of-order into that cache.

6.6 Invalid Real Address
A storage access (including an access that is per-
formed out-of-order; see Section 6.5) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist.

In the case that the accessed storage location does not
exist, the Checkstop state may be entered. See
Section 7.5.2 on page 1264.

In configurations supporting multiple partitions,
hypervisor software must ensure that a storage
access by a program in one partition will not cause
a Checkstop or other system-wide event that could
affect the integrity of other partitions (see Chapter
2). For example, such an event could occur if a real
address placed in a Page Table Entry does not
exist.

Programming Note
Power ISA™ III1178

Version 3.1
6.7 Storage Addressing

Storage Control Overview
 Host real address space size is 2m bytes, m≤60;

see Note 1.

 Guest real address space size is 2m bytes, m≤60;
see Notes 1 and 2.

 Real page size is 212 bytes (4 KB).

 Effective address space size is 264 bytes.

 For HPT translation, an effective address is trans-
lated to a virtual address via a segment descriptor
that was either bolted into the Segment Lookaside
Buffer (SLB) by software or found and installed into
the SLB via a hardware walk of the Segment
Table. After that, the virtual address is translated
to a host real address via a hardware walk of the
Page Table.
- Virtual address space size is 2n bytes,

65≤n≤78; see Note 3.
- Segment size is 2s bytes, s=28 or 40.
- 2n-40 ≤ number of virtual segments ≤ 2n-28;

see Note 3.
- Virtual page size is 2p bytes, where 12≤p, and

2p is no larger than either the size of the big-
gest segment or the real address space; a
size of 4 KB, 64 KB, and an implementa-
tion-dependent number of other sizes are sup-
ported; see Note 4. The Page Table specifies
the virtual page size. The SLB specifies the
base virtual page size, which is the smallest
virtual page size that the segment can con-
tain. The base virtual page size is 2b bytes.

- Segments contain pages of a single size, a
mixture of 4 KB and 64 KB pages, or a mixture
of page sizes that include implementa-
tion-dependent page sizes.
-

 For Radix Tree translation, an effective address is
translated to a (guest or host) real address via a
hardware walk of the Page Table..
- Virtual page size is 2p bytes, where 12≤p, and

2p is no larger than the size of the real
address space; a size of 4 KB, 64 KB, 2MB,
and an implementation-dependent number of
other sizes are supported; see Note 4. The
virtual page size is determined by the location
of the Page Table Entry in the Radix Tree.

Notes:

1. The value of m is implementation-dependent (sub-
ject to the maximum given above). When used to
address storage or to represent a guest real
address, the high-order 60-m bits of the “60-bit”
real address must be zeros.

2. The hypervisor may assign a guest real address
space size for each partition that uses Radix Tree
translation. Accesses to guest real storage out-
side this range but still mappable by the second
level Radix Tree will cause an HISI or HDSI.
Accesses to storage outside the mappable range
will have boundedly undefined results.

3. The value of n is implementation-dependent (sub-
ject to the range given above). In references to
78-bit virtual addresses elsewhere in this Book, the
high-order 78-n bits of the “78-bit” virtual address
are assumed to be zeros.

4. The supported values of p for the larger virtual
page sizes are implementation-dependent (subject
to the limitations given above).

6.7.1 32-Bit Mode
The computation of the 64-bit effective address is inde-
pendent of whether the thread is in 32-bit mode or
64-bit mode. In 32-bit mode (MSRSF=0), the high-order
32 bits of the 64-bit effective address are treated as
zeros for the purpose of addressing storage. This
applies to both data accesses and instruction fetches. It
applies independent of whether address translation is
enabled or disabled. This truncation of the effective
address is the only respect in which storage accesses
in 32-bit mode differ from those in 64-bit mode.

Note that without some of the reserved bits in the
Radix PTE, the RPN field cannot address the full
60-bit real address space. Similarly without some
of the reserved bits in the HPT PTE, the ARPN field
cannot address the full 60-bit real address space.

Note that without some of the reserved bits in the
HPT PTE, the AVA field cannot resolve the full
78-bit virtual address.

Treating the high-order 32 bits of the effective
address as zeros effectively truncates the 64-bit
effective address to a 32-bit effective address such
as would have been generated on a 32-bit imple-
mentation of the Power ISA. Thus, for example, the
ESID in 32-bit mode is the high-order four bits of
this truncated effective address; the ESID thus lies
in the range 0-15. When address translation is
enabled, these four bits would select a Segment
Register on a 32-bit implementation of the Power
ISA. The SLB entries that translate these 16 ESIDs
can be used to emulate these Segment Registers.

Programming Note

Programming Note
Chapter 6. Storage Control 1179

Version 3.1
6.7.2 Virtualized Partition Mem-
ory (VPM) Mode
VPM mode enables the hypervisor to reassign all or
part of a partition’s memory transparently so that the
reassignment is not visible to the partition. When this is
done, the partition’s memory is said to be “virtualized.”
This mode is only available within Paravirtualized HPT
translation mode. Radix Tree translation mode pro-
vides equivalent function by providing two levels of
translation with separate Page Tables for the operating
system and the hypervisor. (See Section 6.7.7 for a
more complete overview of the translation modes.) The
VPM field in the LPCR enables VPM mode when
address translation is enabled. VPM is always enabled
when address translation is disabled.

If the thread is not in hypervisor state, and either
address translation is enabled and VPM=1, or address
translation is disabled, conditions that would have
caused a Data Storage or an Instruction Storage inter-
rupt if the affected memory were not virtualized instead
cause a Hypervisor Data Storage or a Hypervisor
Instruction Storage interrupt respectively. Because the
Hypervisor Data Storage and Hypervisor Instruction
Storage interrupts always put the thread in hypervisor
state, they permit the hypervisor to handle the condition
if appropriate (e.g., to restore the contents of a page
that was reassigned), and to reflect it to the operating
system’s Data Storage or Instruction Storage interrupt
handler otherwise.

When address translation is enabled, VPM mode has
no effect on address translation. When address transla-
tion is disabled, addressing is controlled as specified in
Section 6.7.3.

6.7.3 Ultravisor Real, Hypervisor
Real, and Virtual Real Addressing
Modes
If a storage access is an instruction fetch performed
when instruction address translation is disabled, or if
the access is a data access performed when data
address translation is disabled, it is said to be per-
formed in “ultravisor real addressing mode” if the
thread is in ultravisor state, in “hypervisor real address-
ing mode” if the thread is in hypervisor non-ultravisor
state, and in “virtual real addressing mode” if the thread
is in privileged non-hypervisor state. Storage accesses
in ultravisor real, hypervisor real, and virtual real
addressing modes are performed in a manner that
depends on the contents of MSRS HV, PATEHR,
PATEPS, URMOR (see Chapter 3), HRMOR (see
Chapter 2), bit 0 of the effective address (EA0), and the
state of the Real Mode Storage Control Facility as
described below. Bits 1:3 of the effective address are
ignored.

MSRS HV=0b11
 If EA0=0, the Ultravisor Offset Real Mode Address

mechanism, described in Section 6.7.3.1, controls
the access.

 If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRS HV=0b01
 If EA0=0, the Hypervisor Offset Real Mode

Address mechanism, described in Section 6.7.3.1,
controls the access.

 If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRHV=0
 If PATEHR=0, the Virtual Real Mode Addressing

mechanism, described in Section 6.7.3.3, controls
the access.

 If PATEHR=1, partition-scoped translation is per-
formed on the effective address. (See
Section 6.7.11.3, “Obtaining Host Real Address,
Radix on Radix”.)

6.7.3.1 Ultravisor/Hypervisor Offset
Real Mode Address
If MSRHV = 1 and EA0 = 0, the access is controlled by
the contents of the Ultravisor Real Mode Offset Regis-
ter or the Hypervisor Real Mode Offset Register,
depending on the value of MSRS, as follows.

Ultravisor Real Mode Offset Register (URMOR)

When MSRS=1, bits 4:63 of the effective address
for the access are ORed with the 60-bit offset rep-
resented by the contents of the URMOR, and the
60-bit result is used as the real address for the
access.

Hypervisor Real Mode Offset Register (HRMOR)

When MSRS=0, bits 4:63 of the effective address
for the access are ORed with the 60-bit offset rep-
resented by the contents of the HRMOR, and the
60-bit result is used as the real address for the
access.

For each of the two registers, the supported offset val-
ues are all values of the form i×2r, where 0 ≤ i < 2j, and
j and r are implementation-dependent values having
the properties that 12 ≤ r ≤ 26 (i.e., the minimum offset
granularity is 4 KB and the maximum offset granularity
is 64 MB) and j+r = m, where the real address size sup-
ported by the implementation is m bits.
Power ISA™ III1180

Version 3.1

6.7.3.2 Storage Control Attributes for
Accesses in Ultravisor and Hypervisor
Real Addressing Modes
Storage accesses in ultravisor and hypervisor real
addressing modes are performed as though all of stor-
age had the following storage control attributes, except
as modified by the Hypervisor Real Mode Storage Con-
trol facility (see Section 6.7.3.2.1). (The storage control
attributes are defined in Book II.)

 not Write Through Required
 not Caching Inhibited, for instruction fetches
 not Caching Inhibited, for data accesses except

those caused by the Load/Store Caching Inhibited
instructions; Caching Inhibited, for data accesses
caused by the Load/Store Caching Inhibited
instructions

 Memory Coherence Required, for data accesses
 Guarded


Additionally, storage accesses in ultravisor and hypervi-
sor real addressing modes are performed as though all
storage was not No-execute.

6.7.3.2.1 Hypervisor Real Mode Storage Control
The Hypervisor Real Mode Storage Control facility pro-
vides a means of specifying portions of real storage
that are treated as neither Caching Inhibited nor
Guarded in ultravisor and hypervisor real addressing
modes (MSRHV PR=0b10, and MSRIR=0 or MSRDR=0,
as appropriate for the type of access). The remaining
portions are treated as Caching Inhibited and Guarded
in ultravisor and hypervisor real addressing modes.

The means is a hypervisor resource (see Chapter 2),
and may also be system-specific.

The facility divides real storage into history blocks, in
implementation-specific sizes. The history for instruc-
tion fetches is tracked separately from that for data
accesses. If there is no instruction fetch history for a
block and it is the target of an instruction fetch, the
access is performed as though the block is Guarded,
but the block is treated as not Guarded for subsequent
instruction fetches on a best effort basis, limited by the
amount of history that the facility can maintain. If there
is no data access history for a block and it is accessed
using a Load/Store Caching Inhibited instruction, the
access is performed as though the block is Guarded,
and the block is treated as Guarded for subsequent
accesses on a best effort basis, limited by the amount
of history that the facility can maintain. If there is no
data access history for a block and it is accessed using
any other Load or Store instruction, the access is per-
formed as though the block is Guarded, but the block is
treated as not Guarded for subsequent accesses on a
best effort basis, limited by the amount of history that
the facility can maintain. If the history causes a block to
be treated as Guarded, the block is also treated as
Caching Inhibited; if the history causes a block to be
treated as not Guarded, the block is also treated as not
Caching Inhibited.

If the storage location specified by a Load/Store Cach-
ing Inhibited instruction is in storage that is specified by
the Hypervisor Real Mode Storage Control facility to be
treated as not Guarded, a Data Storage interrupt
occurs. ("specified by the Hypervisor Real Mode Stor-
age Control facility" means "specified in a history
block".) The history can be erased using an slbia
instruction; see Section 6.9.3.2.

EA4:63-r should equal 60-r0. If this condition is satis-
fied, ORing the effective address with the offset
produces a result that is equivalent to adding the
effective address and the offset.

If m<60, EA4:63-m, URMOR4:63-m, and
HRMOR4:63-m must be zeros.

Because storage accesses in ultravisor and hyper-
visor real addressing modes do not use the SLB or
the Page Table, accesses in these modes bypass
all checking and recording of information contained
therein (e.g., storage protection checks that use
information contained therein are not performed,
and reference and change information is not
recorded).

Programming Note

Programming Note
Chapter 6. Storage Control 1181

Version 3.1

The facility does not apply to implicit accesses to the
Page Table performed during address translation or in
recording reference and change information. These
accesses are performed as described in Section
6.7.3.4.

6.7.3.3 Virtual Real Mode Addressing
Mechanism
If MSRHV=0, the partition is using Paravirtualized HPT
translation (PATEHR=0), and MSRDR=0 or MSRIR=0 as
appropriate for the type of access, the access is said to
be made in virtual real addressing mode and is con-
trolled by the mechanism specified below. The set of
storage locations accessible by code is referred to as
the Virtualized Real Mode Area (VRMA).

In virtual real addressing mode, address translation,
storage protection, and reference and change record-
ing are handled as follows.
 Address translation and storage protection are

handled as if address translation were enabled,
except that translation of effective addresses to vir-
tual addresses use the SLBE values in Figure 20
instead of the entry in the SLB corresponding to
the ESID. In this translation, bits 0:23 of the effec-
tive address are ignored (i.e., treated as if they
were 0s), bits 24:63-m may be ignored if m < 40,
and the Virtual Page Class Key Protection mecha-
nism does not apply.

 Reference and change recording are handled as if
address translation were enabled.

Figure 20. SLBE for VRMA

There are two cautions about mixing different types
of accesses (i.e. Load/Store Caching Inhibited
instructions vs. any other Load or Store instruction
vs. instruction fetches). The first is that if a Load or
Store instruction specifies a location in a block for
which history exists and was established by the
other type of Load/Store, the data access will per-
form less well than it otherwise would (another type
of Load/Store and history was established by Load/
Store Caching Inhibited) or will cause a Data Stor-
age interrupt (Load/Store Caching Inhibited and
history was established by another type of Load/
Store). The granularity for concern is the history
block. For this caution, instruction fetches are irrel-
evant because they have their own history mecha-
nism and are always intended to be treated as
neither Caching Inhibited nor Guarded.

The second caution is to avoid storage paradoxes
that result from a Caching Inhibited access to a
location that is held in a cache. The nature of this
caution and its solution are described in
Section 6.8.2.2, “Altering the Storage Control Bits”.
The minimum granularity for concern is the history
block, but may be larger, depending on extant
translations to the storage in question. Since the
consistency of instruction storage is managed by
software and ultravisor and hypervisor real mode
instruction fetches are always not Caching Inhib-
ited, instruction fetches are also irrelevant to this
caution.

The preceding capability can be used to improve
the performance of software that runs in ultravisor
and hypervisor real addressing modes, by causing
accesses to instructions and data that occupy
well-behaved storage to be treated as neither
Caching Inhibited nor Guarded.

Programming Note

Programming Note

The Virtual Page Class Key Protection mecha-
nism does not apply because the authority
mask that an OS has set for application pro-
grams executing with address translation
enabled may not be the same as the authority
mask required by the OS when address trans-
lation is disabled, such as when first entering
an interrupt handler.

 Field Value
ESID 360
V 1
B 0b01 - 1 TB
VSID 0b00 || 0x0_01FF_FFFF
Ks 0
Kp undefined
N 0
L PATEPS[0]
C 0
LP PATEPS[1:2]

The C bit in Figure 20 is set to 0 because the imple-
mentation-specific lookaside information associ-
ated with the VRMA is expected to be long-lived.
See the Programming Note about Class in
Section 6.7.8.1.

The 1 TB VSID 0x0_01FF_FFFF should not be
used by the operating system for purposes other
than mapping the VRMA when address translation
is enabled.

Programming Note

Programming Note

Programming Note
Power ISA™ III1182

Version 3.1

6.7.3.4 Storage Control Attributes for
Implicit Storage Accesses
Implicit accesses to the Partition Table and to a parti-
tion-scoped Page Table during address translation and
in recording reference and change information are per-
formed as though the storage occupied by the tables
had the following storage control attributes.

 not Write Through Required
 not Caching Inhibited
 Memory Coherence Required
 not Guarded


Implicit accesses to a Process Table, Segment table, or
process-scoped Page Table during address translation
and in recording reference and change information are
performed using the storage control attributes in the
partition-scoped Page Table Entry that maps the other
In-Memory Table Entry or the process-scoped Page
Table Entry that is being accessed. The storage control
attributes must be those described above.

6.7.4 Definitions
translation mode: Refers to either HPT translation or
Radix Tree translation. The translation mode is speci-
fied by the HR field in the Partition Table Entry corre-
sponding to the contents of the LPIDR.

process-scoped: Refers to translation performed
using tables pointed to by Process Table Entries: guest
Radix Tree translation, host Radix Tree translation for
quadrants 0 and 3 when MSRHV=1 , or Segment trans-
lation.

partition-scoped: Refers to translation performed
using table(s) found using the first doubleword of Parti-
tion Table Entries, either host Radix Tree translation or
HPT translation.

fully-qualified address: Refers to the address to be
translated, when qualified by the effective LPID and
effective PID.

guest real address: Refers to the input to the parti-
tion-scoped translation process when using nested
Radix Tree translation.

virtual address: Refers to the output of Segment
translation and input to HPT translation.

host real address: Refers to the output of the parti-
tion-scoped translation process in nested Radix Tree

translation or the output of the process-scoped transla-
tion in nested Radix Tree translation for quadrants 0
and 3 when MSRHV=1 . The simpler “real address” may
be used interchangeably.

Page Directory: A table within the Radix Tree transla-
tion structure that contains elements (“Page Directory
Entries”) that point to other tables, instead of containing
just Page Table Entries. The Page Directory that is at
the root of the Radix Tree is called the “Root Page
Directory.”

effLPID, effPID: This is shorthand for effective LPID
and effective PID. In certain circumstances, the value
used for the LPID and/or the PID is specified to be zero
instead of the actual register contents. “Effective” or
“eff” is used to indicate the possibility of such a substi-
tution. This value substitution happens only in Radix
Tree translation, and is based on the value of EA0:1
(see Section 6.7.5.1, “Effective Address Space Struc-
ture for Radix-using Partitions”). Value substitution
does not happen in HPT translation. When a guest
uses Radix Tree translation, PID substitution may take
place. When a host uses Radix Tree translation, both
PID and LPID substitution may take place. When a
host uses HPT translation, the only special significance
associated with LPIDR=0 is with regard to Segment
Table walk when MSRHV=1, as described later.

adjunct: An adjunct is a software entity that resides in
a partition along with an operating system and its appli-
cations in order to efficiently provide services (e.g.
device drivers) for the partition. The adjunct is man-
aged by the hypervisor. It runs in problem state with
MSRS HV PR=0b011, thereby restricting the resources it
can modify (MSRPR=1) and causing its interrupts to go
to the hypervisor (MSRS HV=0b01). It shares an HPT
with the partition it serves. The adjunct’s storage is kept
separate from the client partition’s storage using Virtual
Page Class Key protection. (The adjunct’s lightness of
weight derives from not requiring a full partition context
switch (SLB flush, TLB flush, LPID/PID change, etc.)
when the client partition invokes the services of the
adjunct.) Each hardware thread may have its own
unique translations for an adjunct. As a result, adjunct
segment descriptors cannot exist in the process’s Seg-
ment Table and must instead be bolted in the SLB man-
ually. The adjunct construct exists only with an HR=0
hypervisor and only for LPID≠0. The adjunct has its
own 64-bit EA space. Entry to an adjunct is only possi-
ble from hypervisor state. Prior to dispatching the
adjunct, the hypervisor must invalidate SLB entries that
map the effective address range that will be used by
the adjunct. Similarly, on exit from the adjunct, the
hypervisor must invalidate its SLB entries

Software should specify PTEB = 0b01 for all Page
Table Entries that map the VRMA in order to be
consistent with the values in Figure 20.

Programming Note
Chapter 6. Storage Control 1183

Version 3.1
6.7.5 Address Ranges Having
Defined Uses
The address ranges described below have uses that
are defined by the architecture.

 Fixed interrupt vectors

Except for the first 256 bytes, which are reserved
for software use, the real page beginning at real
address 0x0000_0000_0000_0000 is either used
for interrupt vectors or reserved for future interrupt
vectors.

 Implementation-specific use

The two contiguous real pages beginning at real
address 0x0000_0000_0000_1000 are reserved
for implementation-specific purposes.

 Offset Real Mode interrupt vectors

The real pages beginning at the real addresses
specified by the URMOR and the HRMOR are
used similarly to the page for the fixed interrupt
vectors.

 Relocated interrupt vectors

Depending on the values of MSRS HV IR DR when
the interrupt occurs and on the value of LPCRAIL
or LPCRHAIL as appropriate, the virtual page con-
taining the byte addressed by effective address
0xC000_0000_0000_4000 may be used similarly
to the page for the fixed interrupt vectors. (See
Section 2.2.)

 System Call Vectored interrupt vectors

Depending on the values of MSRS HV IR DR when
the interrupt occurs and on the value of LPCRAIL
or LPCRHAIL as appropriate, the virtual page con-
taining the effective address
0x0000_0000_0001_7000 or
0xc000_0000_0000_3000 contains the interrupt
vectors that are invoked by the System Call Vec-
tored instruction. (See Section 2.2.)

 Partition Table

A contiguous sequence of real pages beginning at
the real address specified by the PTCR contains
the Partition Table.

 Page Table

A contiguous sequence of real pages beginning at
the real address specified by the first doubleword
of the Partition Table Entry when HR=0 contains
the Page Table.

6.7.5.1 Effective Address Space Struc-
ture for Radix-using Partitions
When Radix Tree translation is in use but translation is
disabled (MSRIR=0 or MSRDR=0, as appropriate for the

type of access), MSRHV selects between parti-
tion-scoped translation of the real mode guest real
address, formed by treating EA0:1 as 0b00, and hyper-
visor or ultravisor real mode (see Section 6.7.3). When
Radix Tree translation is in use and translation is
enabled, EA0:1 together with MSRHV are used to select
one of as many as three distinct Radix Trees with which
to perform process-scoped translation, as a technique
to make system calls and interrupts more efficient by
avoiding the need to immediately change the contents
of the PIDR and LPIDR. (See Figure 21 for an illustra-
tion of the mappings.) Since there’s nothing to prevent
a process from generating any address in the 64b EA
space, the exceptional cases are defined as follows.
When a quadrant of the EA space has no associated
Radix Tree, access to it results in an Instruction Seg-
ment exception or Data Segment exception, as appro-
priate for the type of access. Similarly, reference to any
portion of these quadrants or the real mode guest real
address described above that is not mapped by a
Radix Tree (versus mapped by an invalid entry) will
cause an Instruction or Data Segment exception.

For guest and host applications, guest operating sys-
tems, and the hypervisor acting as an operating system
(LPIDR=0), quadrant 0 (EA0:1=0b00) is mapped by the
Radix Tree for the application and quadrant 3
(EA0:1=0b11) is mapped by the Radix Tree for the

Note that the quadrant structure is only available to
software running in 64b mode with address transla-
tion enabled. 32b software will only be able to
access storage mapped by its own Radix Tree.
When address translation is disabled and
HV||PR=0b00, the EA accesses storage mapped
into the guest real address space.

Warning: The functionality described in this sec-
tion, e.g. directing most hypervisor interrupts to the
LPID=0 translation tables, places great importance
on the correctness of the format of and mappings in
Partition Table Entry 0 and the tables it anchors.
An error in any of these structures could have
severe consequences including system checkstops
and hangs.

The intent is that the PIDR and LPIDR contents
indicate the process and partition on behalf of
which execution is taking place. For example,
when a guest process interrupts to the hypervisor,
execution to service the interrupt will generally be
on behalf of the guest partition. When execution
changes to be purely managing hypervisor
resources that are not directly tied to any partition,
the hypervisor should set LPIDR to 0.

Programming Note

Programming Note

Programming Note
Power ISA™ III1184

Version 3.1
direct supervisor of the application. Quadrants 1 and 2
have no associated Radix Tree for guest and host
applications and guest operating systems, but hold
echoes of quadrants 0 and 3 for the hypervisor acting
as an operating system.

For the hypervisor acting as a hypervisor (LPIDR≠0),
quadrant 3 is as described above. Quadrant 1
(EA0:1=0b01) is mapped by the Radix Tree for the
guest application and quadrant 2 (EA0:1=0b10) is
mapped by the Radix Tree for the guest operating sys-
tem, one of which experienced a hypervisor interrupt or
performed a system call to the hypervisor. Quadrant 0
has no associated Radix Tree.

When MSRHV=1 and EA0:1=0b00 or 0b11 (and the
quadrant is mapped by a Radix Tree), only pro-
cess-scoped translation is performed. When MSRHV=0
and MSRIR/DR=0, only partition-scoped translation is
performed. Otherwise, nested process- and parti-
tion-scoped translations are performed.

Figure 21. Effective address space structure when
using Radix Tree translation

6.7.6 In-Memory Tables
The In-Memory Tables are used to find the tables that
are used in the actual translation process for the parti-
tion and process that are executing. They enable hard-
ware, including accelerator hardware separate and
distinct from the Power ISA processors in the platform,
to perform the translation process largely without soft-
ware intervention. Description of the In-Memory Table
structure follows. Hardware may cache the contents of
the In-Memory Tables. Variants of tlbie[l] may be used
to manage the caching even though the In-Memory
Table contents are not cached in the TLB. When
“thread” is used in descriptions of the ordering of
accesses and operations (e.g. invalidations) related to
translation cache management, it should be under-
stood to include execution streams in accelerators
unless otherwise stated or obvious from context.

When an address in the In-Memory Table structure is
specified to be a virtual or guest real address, the
access to that address is considered to be performed
with translation on. For a host using HPT translation, a
base page size is specified for each such access to be
used in the HPT search. The hypervisor can override
the Segment Table Page Size in the Process Table
Entry (PRTESTPS, see Figure 24) using LPCRISL. The
base page size for the Process Table (PATEPRTPS) can
be safely altered by the hypervisor since the OS does
not have direct access to the Partition Table Entry. All
accesses to the In-Memory Tables, the Segment
Tables, and the guest Radix Tables that are performed
with translation on, including for instruction address
translation, are data accesses performed as if
MSRPR=0 for the purpose of determing storage protec-
tion, although instruction side translation exceptions
cause [H]ISI. (A specific example of the implications of
this is that tables used to translate instruction fetches
may be located in guarded or no-execute storage.)

6.7.6.1 Partition Table
The Partition Table Control Register (PTCR) is a 64-bit
register that contains the host real address of the base

Outboard accelerators may commonly be limited to
accessing quadrants 0 and 3 as a matter of plat-
form architecture. In such platforms, references to
quadrants 1 and 2 may be regarded as errors.

Programming Note

EA0:1=0b00

effPID=PIDR
effLPID=LPIDR

EA0:1=0b11

effPID=0
effLPID=0

Guest

EA0:1=0b10

effPID=0
effLPID=LPIDR

EA0:1=0b01

effPID=PIDR
effLPID=LPIDR

EA0:1=0b11

effPID=0
effLPID=0

EA0:1=0b00

effPID=PIDR
effLPID=0

Hypervisor

EA0:1=0b00

effPID=PIDR
effLPID=0

Host App

(when LPIDR=0)

EA0:1=0b11

effPID=0
effLPID=LPIDR

The descriptors in the entries in this section and its
subsections contain addresses that are properly
aligned so that no shifting is required. For exam-
ple, the minimum size of the Partition Table is 4KB,
so PATB has the thirteenth least significant address
bit as its least significant bit. To construct the real
address for a 4KB table, 12 zeros are appended on
the right, and an appropriate number of address
bits are removed from the left to match the real
address size (m) supported by the implementa-
tion. For an aligned 8K table, bit 51 of the PTCR
would be disregarded, and 13 zeros would be
appended.

Programming Note
Chapter 6. Storage Control 1185

Version 3.1
of the Partition Table and specifies its size. Software
must ensure that the contents of the PTCR are the
same for all processors in the system prior to enabling
translation or transferring control to a partition.

All other fields are reserved.

Figure 22. Partition Table Control Register

The Partition Table is composed of a pair of double-
words per partition. The first doubleword indicates
whether the partition uses HPT or Radix Tree transla-
tion and whether the partition is secure, and contains
the base of the host’s translation table structure in host
real memory. The first doubleword also contains the
size of the table structure and the size of the Root Page
Directory for a hypervisor using Radix Tree translation,
or the base page size for the VRMA for Paravirtualized
HPT translation. Additional details about the parame-
ters for HPT translation follow.

The HTABORG field contains the high-order 42 bits of
the 60-bit real address of the Page Table. The Page
Table is thus constrained to lie on a 218 byte (256 KB)
boundary. At least 11 bits from the hash function (see
Figure 31) are used to index into the Page Table. The
minimum size Page Table is 256 KB (211 PTEGs of 128
bytes each).

The Page Table can be any size 2n bytes where
18≤n≤46. As the table size is increased, more bits are
used from the hash to index into the table.

The HTABSIZE field contains an integer giving the
number of bits (in addition to the minimum of 11 bits)
from the hash that are used in the Page Table index.
This number must not exceed 28. HTABSIZE is used to
generate a mask of the form 0b00...011...1, which is a
string of 28 - HTABSIZE 0-bits followed by a string of
HTABSIZE 1-bits. The 1-bits determine which addi-
tional bits (beyond the minimum of 11) from the hash
are used in the index (see Figure 31).

On implementations that support a real address size of
only m bits, m<60, bits 0:59-m of the HTABORG field

are treated as reserved bits, and software must set
them to zeros.

Example:

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3. The HPT may begin on any 256KB boundary.

/// PATB // PATS
0 3 51 58 63

Partition Descriptor

Bit(s) Name Description
4:51 PATB Partition Table Base

59:63 PATS Partition Table Size=212+PATS

PATS≤24

If it becomes necessary to shrink the Partition
Table or to change PATB to point to a table that is
not identical to the existing one, it is necessary to
issue tlbie with RIC=2 to invalidate caching of out-
dated In-Memory Table Entries.

Programming Note

Let n equal the virtual address size (in bits) sup-
ported by the implementation. If n<67, software
should set the HTABSIZE field to a value that does
not exceed n-39. Because the high-order 78-n bits
of the VSID are assumed to be zeros, the hash
value used in the Page Table search will have the
high-order 67-n bits either all 0s (primary hash; see
Section 6.7.9.2) or all 1s (secondary hash). If
HTABSIZE > n-39, some of these hash value bits
will be used to index into the Page Table, with the
result that certain PTEGs will not be searched.

Programming Note
Power ISA™ III1186

Version 3.1
All other fields are reserved.

Figure 23. Partition Table Entry Variants

The second doubleword of the Partition Table Entry
contains the base of the partition’s Process Table,
which is a guest real address (or effective address
when effective LPID=0) for radix hypervisor and virtual

address for HPT hypervisor, and the size of the Pro-
cess Table. The Process Table is assumed to be
aligned. Software that uses Radix Tree translation
must set the low order PRTS bits of PRTB to 0s. When
Segment Tables are provided, the Process Table base
address is specified as a VSID with the assumption that
the Process Table is located at zero offset in the seg-
ment, and also includes the base page size used for
the HPT search, with the rest of the implied segment
descriptor being B=0b01 (1TB segment), Ks=Kp=0,
N=0, C=0, and virtual page class key protection does
not apply. The Partition Table Entry variants are illus-
trated in Figure 23.Notethat a configuration with HR=1
for a non-zero LPID and HR=0 for LPID=0 is consid-
ered an unsupported MMU configuration because it
would attempt to perform HPT translation in quadrants
0 and 3 when MSRHV=1. In addition, LPID=0 with
Radix Tree translation is an unsupported MMU configu-
ration when MSRHV=0.

6.7.6.2 Process Table
The Process Table is composed of a quadword Pro-
cess Table Entry per process in the partition. For parti-
tions that use HPT translation, the Process Table Entry
contains a Segment Table descriptor, which is com-
posed of the origin of the Segment Table in virtual
address space, the size of the segment and pages that
hold the table, the size of the table, and a valid bit that
is turned off while changes are made to the entry and
Segment Table. The translation of the base address of
the Segment Table is completed using an implied seg-
ment descriptor with Ks=Kp=0, N=0, C=0, and virtual
page class key protection does not apply. For partitions
that use Radix Tree translation, the Process Table
Entry contains a Radix Tree root descriptor. When run-
ning on a host that uses Radix Tree translation, there
are two cases. When effLPID=0, the RPDB is a host

 0 2 3 45 55 58 63

0 / S HTABORG // PS HTABSIZE
/ PRTB /// PRTPS PRTS

 0 38 55 58 63

Paravirtualized HPT Partition Table Entry

Bit(s) Name Description
0 HR Host Radix

0b0- hypervisor uses HPT
translation for this partition

0b1- hypervisor uses Radix
Tree translation for this partition

3 S Partition is Secure
4:45 HTABORG Hashed Page Table Base

56:58 PS Page Size (uses L||LP encoding
as in SLBE)

59:63 HTABSIZE HPT size = 2HTABSIZE+18

HTABSIZE ≤ 28
1:38 PRTB Process Table Base (when

UPRT=1)
56:58 PRTPS Process Table Page SIze (when

UPRT=1) (uses L||LP encoding
as in SLBE)

59:63 PRTS Process Table Size = 212+PRTS

PRTS≤24 (when UPRT=1)

 0 2 3 55 58 63

1 RTS1 S RPDB RTS2 RPDS
/ PRTB // PRTS

 0 3 51 58 63

Radix on Radix Partition Table Entry

Bit(s) Name Description
0 HR Host Radix

0b0- hypervisor uses HPT trans-
lation for this partition

0b1- hypervisor uses Radix Tree
translation for this partition

1:2 RTS1 Radix Tree Size[0:1]
3 S Partition is Secure

4:55 RPDB Root Page Directory Base
56:58 RTS2 Radix Tree Size[2:4] (number of

address bits mapped),
size=2RTS+31

59:63 RPDS Root Page Directory Size
= 2RPDS+3, RPDS≥5

4:51 PRTB Process Table Base
59:63 PRTS Process Table Size = 212+PRTS

PRTS≤24 (when UPRT=1)

The S bit in Partition Table Entries is provided for
use by outboard mechanisms that access stor-
age. The processor uses MSRS, not PATES, to
determine partition security.

The size of the Process Table is provided to sim-
plify hardware design and testing. The size
enables the hardware to mask address bits instead
of providing an adder. No size checking is pro-
vided. (An out-of-range PID will not produce an
exception simply because of its size.) Hypervisor
software may protect against such errors by the OS
by not providing a translation for virtual / guest real
addresses beyond the end of the Process Table.

Similarly, no size checking is provided for the Parti-
tion Table. (An out-of-range LPID will not produce
an exception simply because of its size.)

Programming Note
Chapter 6. Storage Control 1187

Version 3.1
real address. Otherwise, the address is a guest real
address and must undergo translation using the hyper-
visor’s Radix Tree for the partition (i.e. the “parti-
tion-scoped” tables, as defined later).

All other fields are reserved.

Figure 24. Process Table Entry Variants

6.7.7 Address Translation Over-
view
The effective address (EA) is the address generated by
the hardware for an instruction fetch or for a data
access. If address translation is enabled, this address
is passed to the Address Translation mechanism,
which attempts to convert the address to a real address
which is then used to access storage. If the effective
address cannot be translated, a storage exception (see
Section 6.2) occurs.

The architecture defines segment translation and two
types of page translation. Segment translation is
paired with HPT translation. The other supported “pair-
ing” is two level Radix Tree translation. Either of these
pairings can be used to translate an effective address
into a host real address. The In-Memory Tables
described above determine the translation mode used
by a partition, as well as the locations of the Page
Tables and Segment Tables, and the base page size for
the Segment Tables. When MSRHV=1 and/or MSRIR=0
or MSRDR=0 (as appropriate for the type of access),
the steps taken for a given mode vary. See Sections
6.7.11.3 and 6.7.11.4 for details.

The pairing of Segment translation and Hashed Page
Table (HPT) translation applies Segment translation to
an effective address to produce a virtual address as
described in Section 6.7.8, and HPT translation to the
virtual address to produce a host real address as
described in Section 6.7.9. Segment translations can
be established by both the guest and the hypervisor,
but the HPT translation is always managed by the
hypervisor with the guest typically giving direction via
system calls to the hypervisor in a paravirtualization
relationship. This mode is commonly referred to as
Paravirtualized HPT translation. The segment transla-
tion is managed on a per-process (“process-scoped”)
basis, mapping a smaller effective address space into a
large “partition-scoped” virtual address space, where
the segment can be used as a shared memory object.
There is also the possibility of thread-unique mappings.
In the basic version of HPT translation, storage excep-
tions are directed to the operating system, which in turn
issues system calls to the hypervisor. When Virtualized
Partition Memory is enabled, storage exceptions are
directed to the hypervisor, enabling a higher degree of
memory overcommitment as the hypervisor transpar-
ently steals pages from the partition. Figure 25 gives
an overview of the address translation process.

0 1 63

B STABORGU
STABORGL /// STABSIZE STPS V
0 3 55 59 62 63

DW Bit(s) Name Description
0 0:1 B Segment Table Segment

Size
2:63 STABORGU Segment Table Origin Upper

(VA0:61)
1 0:3 STABORGL Segment Table Origin Lower

(VA62:65)
56:59 STABSIZE Segment Table Size

= 212+STABSIZE,
STABSIZE ≤ 12

60:62 STPS Segment Table Page Size
(uses L||LP encoding as in
SLBE)

63 V Valid

0 2 3 55 58 63

/ RTS1 / RPDB RTS2 RPDS
///

0 63

DW Bit(s) Name Description
0 1:2 RTS1 Radix Tree Size[0:1]

3 / Reserved
4:55 RPDB Root Page Directory Base
56:58 RTS2 Radix Tree Size[2:4] (number of

address bits mapped),
size=2RTS+31

59:63 RPDS Root Page Directory Size
= 2RPDS+3, RPDS≥5
Power ISA™ III1188

Version 3.1

Figure 25. Address translation overview

In Paravirtualized HPT mode, the hypervisor also uses
the segment/HPT pairing, and can create a process
called an “adjunct”. To do so, it eliminates any poten-
tially conflicting guest segment mappings and creates
adjunct mappings prior to dispatching the adjunct.

In the other pairing, Radix Tree translation is used for
both the process-scoped and partition-scoped map-
pings. This mode is sometimes referred to as nested
Radix or Radix on Radix translation. Figure 26 gives
an overview of the address translation process for
Radix on Radix translation. Note that each level of the
guest Radix Tree produces a guest real address that
must itself undergo partition-scoped translation. See
Figure 37 for a detailed illustration of the entire pro-
cess.

Storage exceptions for process-scoped translation are
directed to the operating system, and storage excep-
tions for partition-scoped translation are directed to the
hypervisor. (In this categorization, single level transla-
tion is considered process-scoped translation except
when VPM is active, in which case it is treated like par-
tition-scoped translation.) As a result, for Radix on
Radix translation, the hypervisor can use the parti-
tion-scoped mapping to limit the size of the guest real
address space, and Virtualized Partition Memory is not

necessary to enable a higher degree of memory over-
commitment. If in Radix on Radix mode the guest real
address is outside the range covered by the parti-
tion-scoped Radix Tree, the results are boundedly
undefined.

The address specified in ASDR is the guest real
address or VSID for which translation has most imme-
diately failed except when the translation fails too early
to produce that value. HDAR will generally contain the
EA or lower VA bits for which translation has most
immediately failed. For example, in the case of a Page
Directory being paged out, the ASDR will contain the
guest real address of the Page Directory Entry (down to
bit 51), rather than the GRA of the datum being
accessed. Exceptions may be manifest in unexpected
ways. For example, an instruction fetch can fail to set a
Change bit in the host PTE mapping the guest PTE.
Similarly, the Reference bit update might fail for lack of
write authority on the PTE.

Figure 26. Address translation overview, Radix on
Radix

Translation Lookaside Buffer
Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons, the hardware usually

Real Address

Lookup in
Page Table

Lookup in SLB and possibly
Segment Table

Effective Address

Virtual Address

Host Real Address

Lookup in partition-
scoped Page Table

Lookup in process-scoped
Page Table

Effective Address

 Guest Real Address
Chapter 6. Storage Control 1189

Version 3.1
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table and, for
Radix Tree Translation, prior to searching the Page
Walk Cache. As a consequence, when software
makes changes to the Page Table it must perform the
appropriate TLB invalidate operations to maintain the
consistency of the TLB with the Page Table (see
Section 6.10). An implementation may associate each
of its TLB entries with the partition for which the TLB
entry was created, so that the entries can be retained
while other partitions are executing.

Page Walk Cache
For performance reasons, the hardware usually keeps
a Page Walk Cache (PWC) that holds Page Directory
Entries that represent partial tree traversals (one or
more levels) from recent Radix Tree translations. The
PWC is searched (perhaps iteratively, depending on
the design) with the goal of skipping some of the stor-
age accesses that would otherwise be needed to tra-
verse the Radix Tree. The internal structures of the
Radix Trees are considered to be managed separately
from the final translations. When software changes this
structure, it must perform appropriate invalidations to
the PWC to maintain the consistency of the PWC with
the Radix Tree (see Section 6.10). An implementation
may associate each of its PWC entries with the parti-
tion for which the PWC entry was created, so that the
entries can be retained while other partitions are exe-
cuting.

6.7.8 Segment Translation
Conversion of a 64-bit effective address to a virtual
address is done by searching the Segment Lookaside
Buffer (SLB) as shown in Figure 27. If no matching
translation is found in the SLB, LPCRUPRT=1, and
either MSRHV=0 or LPID=0, the Segment Table is
searched. For implicit accesses, implicit segment
descriptors are provided, as described elsewhere in
this chapter.

Figure 27. Translation of 64-bit effective address to
78 bit virtual address

6.7.8.1 Segment Lookaside Buffer
(SLB)
The Segment Lookaside Buffer (SLB) specifies the
mapping between Effective Segment IDs (ESIDs) and
Virtual Segment IDs (VSIDs). The number of SLB
entries is implementation-dependent, except that all
implementations provide at least 32 entries.

The first four entries, and when LPCRUPRT=0 all of the
entries, of the SLB are managed by software, using the
instructions described in Section 6.9.3.2. See Chapter
12. “Synchronization Requirements for Context Alter-
ations” on page 1333 for the rules that software must
follow when updating the SLB.

1. Page Table Entries may or may not be cached
in a TLB.

2. It is possible that the hardware implements
more than one TLB, such as one for data and
one for instructions. In this case the size and
shape of the TLBs may differ, as may the val-
ues contained therein.

3. Use the tlbie instruction to ensure that the TLB
no longer contains a mapping for a particular
page.

1. Page Directory Entries may or may not be
cached in a PWC.

2. It is possible that the hardware implements
more than one PWC, such as one for data and
one for instructions. In this case the size and
shape of the PWCs may differ, as may the val-
ues contained therein.

3. Use the tlbie instruction to ensure that the
PWC no longer contains information describ-
ing a particular portion of a Radix Tree.

Programming Notes

Programming Notes

Virtual Page Number (VPN)

64-bit Effective Address

ESID Page Byte

64-s s-p p

0 63-s 64-s 63-p 64-p 63

SLBE0

SLBEn

ESID V VSID KsKpNLC LP

0 35 37 39 88 89 93 95 96

Segment Lookaside Buf-
fer (SLB)

VSID Page Byte

s-p p

≈ ≈ ≈ ≈ ≈ ≈≈≈

B

78-s

VSID0:77-s

78-bit Virtual Address
Power ISA™ III1190

Version 3.1
SLB Entry
Each SLB entry (SLBE, sometimes referred to as a
“segment descriptor”) maps one ESID to one VSID.
Figure 28 shows the layout of an SLB entry

All other fields are reserved. B0 (SLBE37) is treated as
a reserved field.

Figure 28. SLB Entry

Instructions cannot be executed from a No-execute
(N=1) segment.

Segments may contain a mixture of page sizes. The L
and LP bits specify the base virtual page size for the
segment. The SLBL||LP encodings are those shown in
Figure 29. The base virtual page size (also referred to
as the “base page size”) is the smallest virtual page
size that can be used to map a given access, and in
most cases is the smallest virtual page size for the seg-
ment. (The exception is that multiple base virtual page
sizes can occur within the same segment when the
base page size specified for a given implicit access
(e.g. of one segment table) does not match the base
page size specified for another implicit access (e.g. of a
different segment table or the process table) or for
explicit accesses. References to the base page size
for a segment will be understood not to preclude or
functionally conflict with this possibility.) The base vir-
tual page size is 2b bytes. The actual virtual page size
(also referred to as the “actual page size” or “virtual
page size”) is specified by PTEL LP.

Figure 29. Page Size Encodings

For each SLB entry, software must ensure the following
requirements are satisfied.

- L||LP contains a value supported by the imple-
mentation.

- The base virtual page size selected by the L
and LP fields does not exceed the segment
size selected by the B field.

- If s=40, the following bits of the SLB entry con-
tain 0s.
- ESID24:35
- VSID38:49

The bits in the above two items are ignored by
the hardware.

The Class field of the SLBE is used in conjunction with
the slbie, slbieg, and slbia instructions (see Section
6.9.3.2). “Class” refers to a grouping of SLB entries and
implementation-specific lookaside information so that
only entries in a certain group need be invalidated and
others might be preserved. The Class value assigned
to an implementation-specific lookaside entry derived
from an SLB entry must match the Class value of that
SLB entry. The Class value assigned to an implemen-
tation-specific lookaside entry derived from real mode
address “translation,” SLS address translation, or
translations required to access the Segment Table
Entry Group is 0.

Software must ensure that the SLB contains at most
one entry that translates a given effective address, and
that if the SLB contains an entry that translates a given
effective address, then any previously existing transla-
tion of that effective address has been invalidated. An
attempt to create an SLB entry that violates this
requirement may cause a Machine Check.

ESID V B VSID KsKpNLC / LP
0 36 37 39 89 94 95 96

Bit(s) Name Description
0:35 ESID Effective Segment ID
36 V Entry valid (V=1) or invalid (V=0)

37:38 B Segment Size Selector
0b00 - 256 MB (s=28)
0b01 - 1 TB (s=40)
0b10 - reserved
0b11 - reserved

39:88 VSID Virtual Segment ID
89 Ks Supervisor (privileged) state stor-

age key (see Section 6.7.13.2)
90 Kp Problem state storage key (See

Section 6.7.13.2.)
91 N No-execute segment if N=1
92 L Virtual page size selector bit 0
93 C Class

95:96 LP Virtual page size selector bits 1:2

encoding base page size
0b000 4 KB
0b101 64 KB

additional
 values1

2b bytes, where b > 12 and b may differ
among encoding values

1 The “additional values” are implementation-depen-
dent, as are the corresponding base virtual page
sizes. Any values that are not supported by a given
implementation are reserved in that implementa-
tion.
Chapter 6. Storage Control 1191

Version 3.1

6.7.8.2 SLB Search
When the hardware searches the SLB, all entries are
tested for a match with the EA. For a match to exist, the
following conditions must be satisfied for indicated
fields in the SLBE.

 V=1
 ESID0:63-s=EA0:63-s, where the value of s is speci-

fied by the B field in the SLBE being tested

If no match is found, the search fails. If one match is
found, the search succeeds. If more than one match is
found, one of the matching entries is used as if it were
the only matching entry, or a Machine Check occurs.

If the SLB search succeeds, the virtual address (VA) is
formed from the EA and the matching SLB entry fields
as follows.

 VA=VSID0:77-s || EA64-s:63

The Virtual Page Number (VPN) is bits 0:77-p of the vir-
tual address. The value of p is the actual virtual page
size specified by the PTE used to translate the virtual
address (see Section 6.7.9.1). If SLBEN = 1, the N
(No-execute) value used for the storage access is 1.

If the SLB search fails and the state is not such that a
Segment Table search will be performed, a segment
fault occurs. This is an Instruction Segment exception
or a Data Segment exception, depending on whether
the effective address is for an instruction fetch or for a
data access.

6.7.8.3 Segment Table Description and
Search
The Segment Table is an aligned structure composed
of 16B segment descriptors organized into 128 byte
Segment Table Entry Groups (STEGs). Let q = STAB-
SIZE+12, log2(size of the Segment Table). The base of
the Segment Table in virtual address space is

STABORG0:77-q || q0. Software must set the low order
q-12 bits of STABORG to 0s. Primary and secondary
hashes are defined for 256MB and 1TB segments,
each mapping the ESID to an STEG. The appropriate
number (for the size of the Segment Table) of low order
ESID bits (their inverse, for the secondary hash)
directly select the STEG. The order of STEG specifica-
tion in the following subsections is the preferred order
for a serial search. Implementations may search the
STEGs in parallel. If no match is found, a segment
fault occurs. If a serial search is done, the search may
stop when a match has been found. If more than one
match is found, one of the matching entries is used as if
it were the only matching entry.

All other fields are reserved.

Figure 30. Segment Table Entry

6.7.8.3.1 Primary Hash for 256MB Segment
The STEG is located at host VA
STABORG0:77-q || EA43-q:35 || 0b0000000.
Each of the 8 STEs are searched to find a valid entry
(V=1, B=0b00) that matches the ESID (STEESID[0:35] =
EA0:35) of the access being translated.

6.7.8.3.2 Primary Hash for 1TB Segment
The STEG is located at host VA
STABORG0:77-q || EA31-q:23 || 0b0000000.
Each of the 8 STEs are searched to find a valid entry
(V=1, B=0b01) that matches the ESID (STEESID[0:23] =
EA0:23) of the access being translated.

6.7.8.3.3 Secondary Hash for 256MB Segment
The STEG is located at host VA
STABORG0:77-q || ¬EA43-q:35 || 0b0000000.

Class values should be assigned such that Class 0
is used for translations that are expected to be
long-lived and Class 1 is used for translations that
are expected to be short-lived. This assignment
facilitates use of the slbia instruction, for which
several IH values cause preferential invalidation of
Class 1 SLB entries and lookaside information
entries.

It is permissible for software to replace the contents
of a valid SLB entry without invalidating the transla-
tion specified by that entry provided the specified
restrictions are followed. See Chapter 12 Note 10.

Programming Note

Programming Note

ESID V // B VSID KsKpNLC / LP SW
0 35 36 63 65 115 120 121 123 127

Bit(s) Name Description
0:35 ESID Effective Segment ID
36 V Entry valid (V=1) or invalid (V=0)

64:65 B Segment Size Selector
0b00 - 256 MB (s=28)
0b01 - 1 TB (s=40)
0b10 - reserved
0b11 - reserved

66:115 VSID Virtual Segment ID
116 Ks Supervisor (privileged) state stor-

age key (see Section 6.7.13.2)
117 Kp Problem state storage key (See

Section 6.7.13.2.)
118 N No-execute segment if N=1
119 L Virtual page size selector bit 0
120 C Class

122:123 LP Virtual page size selector bits 1:2
124:127 SW available for software use
Power ISA™ III1192

Version 3.1
Each of the 8 STEs are searched to find a valid entry
(V=1, B=0b00) that matches the ESID (STEESID[0:35] =
EA0:35) of the access being translated.

6.7.8.3.4 Secondary Hash for 1TB Segment
The STEG is located at host VA
STABORG0:77-q || ¬EA31-q:23 || 0b0000000.
Each of the 8 STEs are searched to find a valid entry
(V=1, B=0b01) that matches the ESID (STEESID[0:23] =
EA0:23) of the access being translated.

6.7.9 Hashed Page Table Transla-
tion
In Paravirtualized HPT mode, conversion of a 78-bit vir-
tual address to a real address is done by searching the
Page Table as shown in Figure 31.
Chapter 6. Storage Control 1193

Version 3.1
Figure 31. Translation of 78-bit virtual address to 60-bit real address

Virtual Page Number (VPN) Byte

 78-p 77

78-bit Virtual Address

// xxx..............xx ///

0 4 1718 45 59 63

78-p p44 13 5

0 2728 38

Decode to Mask

0 27

39
28

28

28

0000000
28 71114

PTE0 PTE7PTEG 0

PTEG n

60-bit Real Address of Page Table Entry Group (PTEG)

2

16 bytes

128 bytes

HTABORG HTABSIZE

 Hash Function
(see Section 6.7.9.2)

AND

ADD

AVA B / ARPNHSW V key R C WIMG NL

p

57-p

Page Table Entry (PTE) 16 bytes

pp / pp

 Byte

0 1 2 44 52 5556 57

LP

61 62 63

(ARPN||LP)0:56-p

 ///

54

Page Table

60-bit Real Address

0 12 4 6 757 616263

key

*

.

77-b

The carry out from the adder
is added to bits HTABORG4:17
to form RA0:13 of the PTEG.

000
Power ISA™ III1194

Version 3.1
6.7.9.1 Hashed Page Table
The Hashed Page Table (HTAB) is a variable-sized
data structure that specifies the mapping between vir-
tual page numbers and real page numbers, where the
real page number of a real page is bits 0:47 of the
address of the first byte in the real page. The HTAB’s
size can be any size 2n bytes where 18≤n≤46. The
HTAB must be located in storage having the storage
control attributes that are used for implicit accesses to it
(see Section 6.7.3.4). The starting address must be a
multiple of 218 bytes.

The HTAB contains Page Table Entry Groups (PTEGs).
A PTEG contains 8 Page Table Entries (PTEs) of 16
bytes each; each PTEG is thus 128 bytes long. PTEGs
are entry points for searches of the Page Table.

See Section 6.10 for the rules that software must follow
when updating the Page Table.

Page Table Entry
Each Page Table Entry (PTE) maps one VPN to one
RPN. Figure 32 shows the layout of a PTE. This layout
is independent of the Endian mode of the thread.

All other fields are reserved.

Figure 32. Page Table Entry

Because the length of the Abbreviated Virtual Address
(AVA) field is only 45 bits, on implementations of this
version of the architecture the virtual address size can-
not exceed 68 bits (n ≤ 68). On implementations for
which n<68, bits 0:67-n of the AVA field must be zeros.

If b≤23, the AVA field contains bits 10:54 of the VA. Oth-
erwise bits 0:67-b of the AVA field contain bits 10:77-b
of the VA, and bits 68-b:44 of the AVA field must be
zero.

A virtual page is mapped to a sequence of 2p-12 contig-
uous real pages such that the low-order p-12 bits of the
real page number of the first real page in the sequence
are 0s.

PTEL LP specify both a base virtual page size (hence-
forth referred to as the “base page size”) and an actual
virtual page size (henceforth referred to as the “actual
page size” or “virtual page size”). The actual page size
is the size of the virtual page mapped by the PTE. The
base page size is the smallest actual page size that a
segment can contain for explicit accesses or for a given
implicit access, and plays a role in the placement of the
PTE in the HPT.

If PTEL=0, the base virtual page size and actual virtual
page size are 4KB, and ARPN concatenated with LP
(ARPN||LP) contains the page number of the real page
that maps the virtual page described by the entry.

The Page Table must be treated as a hypervisor
resource (see Chapter 2), and therefore must be
placed in real storage to which only the hypervisor
has write access. Moreover, the contents of the
Page Table must be such that non-hypervisor soft-
ware cannot modify storage that contains hypervi-
sor programs or data.

0 12 57 61 62 63

/ AVA SW L H V
pp / key B / ARPN LP key R C WIMG N pp
0 1 2 4 6 7 44 52 55 56 57 61 62 63

Dword Bit(s) Name Description
0 12:56 AVA Abbreviated Virtual Address

57:60 SW Available for software use
61 L Virtual page size

0b0 - 4 KB
0b1 - greater than 4KB

 (large page)
62 H Hash function identifier
63 V Entry valid (V=1) or invalid

(V=0)
1 0 pp Page Protection bit 0
 2:3 key KEY bits 0:1

4:5 B Segment Size
0b00 - 256 MB
0b01 - 1 TB
0b10 - reserved
0b11 - reserved

Programming Note

 7:43 ARPN Abbreviated Real Page
Number

44:51 LP Large page size selector
 52:54 key KEY bits 2:4
 55 R Reference bit
 56 C Change bit
 57:60 WIMG Storage control bits
 61 N No-execute page if N=1
 62:63 pp Page Protection bits 1:2

The H bit in the Page Table Entry should not be set
to one unless the secondary Page Table search
has been enabled.

The AVA field omits the low-order 23 bits of the VA.
These bits are not needed in the PTE, because the
low-order b of these bits are part of the byte offset
into the virtual page and, if b<23, the high-order
23-b of these bits are always used in selecting the
PTEGs to be searched (see Section 6.7.9.2).

Dword Bit(s) Name Description

Programming Note

Programming Note
Chapter 6. Storage Control 1195

Version 3.1
If PTEL=1, the base page size and actual page size are
specified by PTELP. In this case, the contents of PTELP
have the format shown in Figure 33. Bits labelled “r” are
bits of the real page number. Bits labelled “z” specify
the base page size and actual page size. The values
of the “z” bits used to specify each size are implemen-
tation-dependent. The values of the “z” bits used to
specify each size, along with all possible values of “r”
bits in the LP field, must result in LP values distinct
from other LP values for other sizes. Actual page sizes
4KB and 64KB are always supported; other actual page
sizes are implementation-dependent. If PTEL=1, the
actual page size must be greater than 4 KB. Which
combinations of different base page size and actual
page size are supported is implementation-dependent,
except that the combination of a base page size of 4
KB with an actual page size of 64 KB is always sup-
ported.

Figure 33. Format of PTELP when PTEL=1

There are at least 2 formats of PTELP that specify a
64 KB page. One format is used with SLBEL||LP =
0b000 and one format is used with SLBEL||LP = 0b101.

The actual page size selected by the LP field must not
exceed the segment size selected by the B field. Forms
of PTELP not supported by a given implementation are
treated as reserved values for that implementation.

The concatenation of the ARPN field and bits labeled
“r” in the LP field contain the high-order bits of the real
page number of the real page that maps the first 4KB of
the virtual page described by the entry.

The low-order p-12 bits of the real page number con-
tained in the ARPN and LP fields must be 0s and are
ignored by the hardware.

Instructions cannot be executed from a No-execute
(N=1) page.

Page Table Size
The number of entries in the Page Table directly affects
performance because it influences the hit ratio in the
Page Table and thus the rate of page faults. If the table
is too small, it is possible that not all the virtual pages
that actually have real pages assigned can be mapped
via the Page Table. This can happen if too many hash
collisions occur and there are more than 16 entries for
the same primary/secondary pair of PTEGs (when the
secondary Page Table search is enabled) or more than
8 entries for the same primary PTEG (when the sec-
ondary Page Table search is disabled).

While this situation cannot be guaranteed not to occur
for any size Page Table, making the Page Table larger
than the minimum size (see Section 6.7.6.1) will reduce
the frequency of occurrence of such collisions.

6.7.9.2 Page Table Search
When the hardware searches the Page Table, the
accesses are performed as described in
Section 6.7.3.4.

An outline of the HTAB search process is shown in
Figure 31. Up to two hash functions are used to locate
a PTE that may translate the given virtual address.

1. A 39-bit hash value is computed from the VA. The
value of s is the value specified in the SLBE that
was used to generate the virtual address; the
value of b is equal to log2(base page size specified

PTE LP actual page size
r r r r _ r r r z ≥8 KB
r r r r _ r r z z ≥16 KB
r r r r _ r z z z ≥32 KB
r r r r _z z z z ≥64 KB
r r r z _z z z z ≥128 KB
r r z z _z z z z ≥256 KB
r z z z _z z z z ≥512 KB
z z z z _z z z z ≥1 MB

The actual page size specified by a given PTELP
format is at least 212+(8-c), where c is the number of
r bits in the format.

Programming Note

Implementations often have TLBs and implementa-
tion-specific lookaside buffers (e.g. ERATs) used to
cache translations of recently used storage
addresses. Mapping virtual storage to large pages
may increase the effectiveness of such lookaside
buffers, improving performance, because it is pos-
sible for such buffers to translate a larger range of
addresses, reducing the frequency that the Page
Table must be searched to translate an address.

If large pages are not used, it is recommended that
the number of PTEGs in the Page Table be at least
half the number of real pages to be accessed. For
example, if the amount of real storage to be
accessed is 231 bytes (2 GB), then we have
231-12=219 real pages. The minimum recom-
mended Page Table size would be 218 PTEGs, or
225 bytes (32 MB).

Programming Note

Programming Note
Power ISA™ III1196

Version 3.1
in the SLBE that was used to translate the
address).Primary Hash:

If s=28, the hash value is computed by Exclusive
ORing VA11:49 with (11+b0||VA50:77-b)

If s=40, the hash value is computed by Exclusive
ORing the following three quantities: (VA24:37
||250), (0||VA0:37), and (b-10||VA38:77-b)

The 60-bit real address of a PTEG is formed by
concatenating the following values:
 Bits 0:27 of the 39-bit appropriate primary or

secondary hash value ANDed with the mask
generated from bits 59:63 of the first double-
word of the Partition Table Entry (HTABSIZE)
and then added to the value of bits 4:45 of the
first doubleword of the Partition Table Entry
(HTABORG).

 Bits 28:38 of the 39-bit hash value.
 Seven 0-bits.

This operation identifies a particular PTEG, called
the “primary PTEG”, whose eight PTEs will be
tested.

2. Secondary Hash:

If the secondary Page Table search is enabled
(LPCRTC=0), perform the secondary hash function
as follows; otherwise do not perform step 2 and
proceed to step 3 below.

If s=28, the hash value is computed by taking the
ones complement of the Exclusive OR of VA11:49
with (11+b0||VA50:77-b)

If s=40, the hash value is computed by taking the
ones complement of the Exclusive OR of the fol-
lowing three quantities: (VA24:37 ||250), (0||VA0:37),
and (b-10||VA38:77-b)

The 60-bit real address of a PTEG is formed by
concatenating the following values:
 Bits 0:27 of the 39-bit appropriate primary or

secondary hash value ANDed with the mask
generated from bits 59:63 of the first double-
word of the Partition Table Entry (HTABSIZE)
and then added to the value of bits 4:45 of the
first doubleword of the Partition Table Entry
(HTABORG).

 Bits 28:38 of the 39-bit hash value.
 Seven 0-bits.

This operation identifies the “secondary PTEG”.

3. As many as 8 PTEs in the primary PTEG and, if
the secondary Page Table search is enabled, 8
PTEs in the secondary PTEG are tested to deter-
mine if any translate the given virtual address. Let
q = minimum(54, 77-b). For a match to exist, the
following conditions must be satisfied, where
SLBE is the SLBE used to form the virtual address.
 PTEH=0 for the primary PTEG, 1 for the sec-

ondary PTEG
 PTEV=1

 PTEB=SLBEB
 PTEAVA[0:q-10]=VA10:q
 if b = 12 then

 (PTEL = 0) | (PTELP specifies the 4KB base
 page size)
else
 (PTEL = 1) & (PTELP specifies the base page
 size specified by SLBEL||LP)

If no match is found, the search fails. The result is
a page fault -- a [Hypervisor] Instruction Storage
exception or a [Hypervisor] Data Storage excep-
tion, depending on whether the effective address is
for an instruction fetch or for a data access. If one
match is found, the search succeeds. If more than
one match is found, one of the matching entries is
used as if it were the only matching entry, or a
Machine Check occurs.

If the Page Table search succeeds, the real address
(RA) is formed by concatenating the following values,
where the p value is the log2 (actual page size specified
by PTEL LP).
 three 0 bits
 bits 0:56-p of ARPN||LP from the matching PTE
 bits 64-p:63 of the effective address (the byte off-

set)

RA = 0b000 || (ARPN || LP)0:56-p || EA64-p:63

A TLB entry may be created as a result of the success-
ful HPT translation. Depending on the specific TLB
implementation, the scope of the entry may be the base
page size, the virtual page size, or any size in between.
In the absence of a TLB, software would be required to
create a PTE for each base page sized piece of storage
within the virtual page. The number of PTEs actually
created to map a virtual page will depend on the
scopes supported for TLB entries, the access pattern,
and the lifetime of the TLB entries. Hardware generally
will not create more than one TLB entry to translate a
given virtual address. Multiple matching TLB entries
may be created only if the Page Table contains PTEs
that map different-sized virtual pages that overlap in the
virtual address space. If a TLB search finds multiple
matching TLB entries created from such PTEs, one of
the matching TLB entries is used as if it were the only
matching entry, or a Machine Check occurs. Software
should scrupulously avoid creating such mappings.
Chapter 6. Storage Control 1197

Version 3.1

In Paravirtualized HPT mode, the N (No-execute)
value used for the storage access is the result of ORing
the N bit from the matching PTE with the N bit from the
SLB entry that was used to translate the effective
address.

6.7.10 Radix Tree Translation
Radix Tree translation uses a nested set of tables to
map storage with increasing granularity. Although
there is no requirement for an individual table to have
uniform content, Page Directories generally contain
pointers to other Page Directories or Page Tables
(Page Directory Entries, PDEs), while Page Tables are
the leaf tables that contain PTEs. Each Page Directory
Entry and Page Table Entry in the Radix Tree is 8 bytes
long. A Radix Tree root descriptor (RTRD) specifies
the size of the address being translated, the size of the
root table, and its location. RTRDs appear in variants
of the Partition and Process Table Entries. (See Fig-
ures 23 and 24.) The Root Page Directory Size
(RPDS) is specified as log2 (number of entries in the
table). That number of bits is taken from the most sig-
nificant end of the portion of the address being trans-
lated, as an index to choose an element in the Root
Page Directory. The entries in the Root Page Directory
each point to another page of entries, and give its size
in the Next Level Size field, PDENLS. The next most
significant NLS bits are taken from the address to
choose an entry in that table. The process continues
until an entry is found that has its Leaf bit set, indicating
it is a Page Table Entry. The base size of the page
mapped by the PTE is determined by the number of
bits remaining in the address after removing the bits
used to select the Page Directory and Page Table
Entries. An example with RPDS = 13 and PDENLS = 9
in each Page Directory is shown in Figure 34.

The sizes of table supported at each level of the Radix
Tree, as well as the ultimate page sizes supported, are
implementation specific with the following exceptions.
Implementations must support two Radix Tree configu-
rations that map 52 bit effective addresses: each start-
ing with a 64KB root page size followed by 2 levels of
4KB tables, ending with either a 256 byte table or a
4KB table. The former produces a page size of 64KB
and the latter a 4KB page size. In both cases, a leaf
node in the next to last level of table produces a 2MB
page size.

If PTEL = 0, the actual page size (and base page
size) are 4 KB. Otherwise the actual page size and
base page size are specified by PTELP.

Since hardware searches the Page Table using a
value of b equal to log2 (base page size specified in
the SLBE that was used to translate the address)
regardless of the actual page size, the hardware
Page Table search will identify different PTEs for
VAs in different 2b-byte blocks of the virtual page if
the actual page size is larger than the base page
size. Therefore, there may need to be a valid PTE
corresponding to each 2b-byte block of the virtual
page that is referenced. For an actual page size
that is larger than 223 (8 MB), the PTEAVA will differ
among some or all of these PTEs. Depending on
the Page Table size, some or all of these PTEs
may be in the same PTEG. Any such PTEs that are
in the same PTEG will differ in the value of PTEH or
PTEAVA or both.

All PTEs for the same virtual page should have the
same values in the Page Protection, KEY, ARPN,
WIMG, and N fields. A set of values from any one of
the PTEs that maps the virtual page may be used
for an access in the virtual page since lookaside
buffer information may be used to translate the vir-
tual address.

To avoid creating multiple matching PTEs, software
should not create PTEs for each of two different vir-
tual pages that overlap in the virtual address space.
If the virtual page sizes differ, two virtual pages
overlap if the values of virtual address bits 0:77-p
for both virtual pages are the same, where 2p is the
actual virtual page size of the larger page.

Because a segment may contain pages of different
sizes, the Page Table search uses the segment's
base page size (which is the same for all virtual
pages in the segment).
 The value of b used when searching the Page

Table to identify the PTEGs to be checked for
a match is log2(segment's base page size).

 A PTE (in the selected PTEGs) satisfies the
Page Table search only if the base page size
specified in the PTE is equal to the segment's
base page size.

The matching PTE supplies the actual page size,
2p; this value of p is used in forming the real
address.

A virtual page of 2p bytes in a segment with a base
page size of 2b bytes may be mapped by as many
as 2(p-b) PTEs.

Programming Note

Programming Note

To obtain the best performance, Page Table Entries
should be allocated beginning with the first empty
entry in the primary PTEG, or with the first empty
entry in the secondary PTEG if the primary PTEG
is full and the secondary Page Table search is
enabled (LPCRTC=0).

Programming Note
Power ISA™ III1198

Version 3.1
Figure 34. Four level Radix Tree walk translating a
52b EA with NLS=13 in the root PDE and
NLS=9 in the other PDEs.

6.7.10.1 Radix Tree Page Directory
Entry
.

Byte
p

p

56-p

 Byte 56-bit Real Address

Root Page Directory Base
40

13

Effective Page Number
2 + 10 + 40

0 1 2 11 12 24 25 33 34 42 43 51

 000
313

 56-bit Real Address of Root (Level 1) PDE Level 1

40

 Contents of Level 1 PDE

44

9

 000
39

 56-bit Real Address of Level 2 PDE Level 2

44

 Contents of Level 2 PDE

 000
39

 56-bit Real Address of Level 3 PDE Level 3

44

 Contents of Level 3 PDE

 000
39

 56-bit Real Address of PTE

44

 Contents of PTE

L=0,V=1

L=0,V=1

L=0,V=1

L=1,V=1

 Read Level 1 PDE PDE Access

 Read Level 2 PDE PDE Access

 Read Level 3 PDE PDE Access

 Read PTE PTE Access

LV

44

9LV

44

9LV

44

LV

quadrant select

V L / NLB /// NLS
 0 1 3 55 58 63
Chapter 6. Storage Control 1199

Version 3.1
All other fields are reserved.

Figure 35. Radix Tree Page Directory Entry

6.7.10.2 Radix Tree Page Table Entry
.

All other fields are reserved.

Figure 36. Radix Tree Page Table Entry

6.7.10.3 Nested Translation
When MSRHV=0 and translation is enabled, each guest
real address must undergo partition-scoped translation
using the hypervisor’s Radix Tree for the partition. See
Figure 37.

Bit(s) Name Description
0 V Valid
1 L Leaf (entry is a PTE)

4:55 NLB Next Level Base
59:63 NLS Next Level Size (size of next level

of table is 2NLS+3), NLS≥5

V L sw // RPN sw R C / ATT EAA
 0 1 2 6 51 54 55 56 57 59 63

Bit(s) Name Description
0 V Valid
1 L Leaf (entry is a PTE)
2 sw SW bit 0

7:51 RPN Real Page Number
52:54 sw SW bits 1:3

55 R Reference
56 C Change

58:59 Att Attributes (equivalent WIMG value)
0b00- normal memory (0010)
0b01- reserved
0b10- non-idempotent I/O (0111)
0b11- tolerant I/O (0110)

60:63 EAA Encoded Access Authority
0 Privilege (applies only to pro-

cess-scoped translation)
0 - problem state access permitted;
 privileged access controlled by
 key 0 of the [I]AMR
1 - privileged access only

1 Read
0 - loads not permitted
1 - loads permitted

2 Read/Write
0 - loads and stores not permitted
1 - loads and stores permitted

3 Execute
0 - instruction execution not permit-
ted
1 - instruction execution permitted
Power ISA™ III1200

Version 3.1
.

Figure 37. Radix on Radix Page Table search for a
52-bit EA depicting memory reads 1-24
numbered in sequence

When nested translation is being performed, there is
the potential for two different sets of protection settings
and two different sets of storage attributes. For protec-
tion settings, the least permissive values take effect.

For read, write, and execute authority, each is con-
trolled independently based on the least permissive
setting of the two translation mechanisms (including all
component authority mechanisms within each of them).
The Guarded attribute is controlled by the pro-
cess-scoped PTE. Mismatches of the Caching Inhib-
ited attribute have the following behavior. If the
process-scoped PTE specifies I=1 when the parti-

p

56-p

 Byte 56-bit Real Address

 56-bit Real Address of Root (Level 1) PDE Guest Level 1

 Contents of Level 1 PDE

 56-bit Real Address of Level 2 PDE Guest Level 2

 Contents of Level 2 PDE

 56-bit Real Address of Level 3 PDE Guest Level 3

 Contents of Level 3 PDE

 56-bit Real Address of PTE Guest

 Contents of PTE

L=0,V=1

L=0,V=1

L=0,V=1

L=1,V=1

 Read Level 1 PDE PDE Access

 Read Level 2 PDE PDE Access

 Read Level 3 PDE PDE Access

 Read PTE PTE Access

(#4)

(#5)

(#8)

(#9)

(#10)

(#13)

(#14)

(#15)

(#19)

(#20)

(#23)

(#24)

(#25)

(#22)

 (#6)

 (#11)

 (#16)

 (#21)

 Hypervisor Page
 Table Accesses

(#3)

(#2)

(#7)

(#12)

(#18)

(#17)

Guest Real Address
of Level 2 PDE

Guest Real Address
of Level 3 PDE

Guest Real Address
of PTE

Guest Real Address

Guest Real Address
of Level 1 PDE

44

9LV

44

9LV

44

9LV

44

LV

Root Page Directory Base
40

13

Process Table Entry

13 340

44 9

44 9

44 9

(#1)
Chapter 6. Storage Control 1201

Version 3.1
tion-scoped PTE specifies I=0, the result is I=0. The
reverse mismatch raises a data storage or instruction
storage exception, as appropriate for the access. The
results of these rules are shown in Table 5. Together
these rules can produce the WIMG=0b0011 state that
any individual Att value cannot express.

Unless otherwise stated or obvious from context, refer-
ences elsewhere in the Books to storage control attri-
butes for nested Radix Tree translations apply to the
result of combining the guest and host storage control
attributes as specified above. For example, the restric-
tions on the types of storage that can be accessed by
AMOs in Section 4.5 of Book II applies to the results of
the combining.

Table 5: Effective I and G attributes for nested
translation

Reference and Change bit recording is done in both the
process-scoped and partition-scoped Page Table
Entries. Recording is done as described in
Section 6.7.12, “Reference and Change Recording”.

For performance reasons, the result of each walk of a
Radix Tree may be cached in a TLB. Logically, the
result of each walk is cached separately. For nested
translation, the effective to guest real (process-scoped)
translation may be cached, as well as the parti-
tion-scoped translation for each guest real address pro-
duced by the translation process. A minimum of two
TLB accesses is required to complete a nested transla-
tion: one for the effective to guest real address and one
for the guest real to host real address. (An implemen-
tation may optimize the process, as long as the optimi-
zation can be managed correctly using the tlbie
instructions that software will use to manage the logical
model.)

6.7.11 Translation Process
As previously described, in its most complicated form
the translation process includes the following steps:
 use of the PTCR to find the required Partition Table

Entry
 use of the Partition Table Entry to find the parti-

tion-scoped Page Table
 use of the Partition Table Entry and the parti-

tion-scoped Page Table to find the required Pro-
cess Table Entry

 use of the Process Table Entry and parti-
tion-scoped Page Table to find the required Seg-
ment Table Entry or walk the process-scoped Page
Table (i.e. translate the effective address to a vir-
tual or guest real address), and

 use of the partition-scoped Page Table to translate
the virtual or guest real address.

Depending on the translation mode and process state,
some of these steps may be skipped. The following
subsections enumerate the cases and explain the
steps in more detail.

6.7.11.1 Fully-Qualified Address
The storage control facilities enable hardware to per-
form the entire translation process given a “fully-quali-
fied address” and context that makes it a unique input.
In addition to its normal use, the term “effective
address” is sometimes used as shorthand for the
fully-qualified address, and the architecture should be
read with this possibilty in mind. The following are the
components of the fully-qualified address.
 effLPID
 effPID
 EA

The additional context required to perform a translation
or match a cached translation may include the follow-
ing.
 PATEHR (selected using the value in LPIDR, not

effLPID)
 MSRHV PR IR DR

The translation mode is selected by the Host Radix bit
found in the Partition Table Entry. The Host Radix bit
indicates whether the partition is using HPT or Radix
Tree translation. Given the overall process, MSRHV PR
IR DR determine where and how the process is entered.

6.7.11.2 Finding the Page Tables
[The following description assumes that no legacy
mode is active, i.e. LPCRUPRT=1.]

The components of the fully-qualified address are used
to determine the table(s) used in the translation pro-
cess. The effective LPID and effective PID are used to
find the appropriate Page Table base address(es) using
the In-Memory Table structures. Some types of trans-

partition-
scoped Att 00 10 11

process-
scoped Att I/G 00 11 10

00 00 00 Att
mismatch

Att
mismatch

10 11 01 11 11
11 10 00 10 10

The mismatched Caching Inhibited attribute in the
lower left quadrant above is given defined behavior
instead of excepting in order to support frame buf-
fer emulation. For frame buffer emulation, the
guest believes it is writing to a frame buffer (I=1) in
address space that the hypervisor maps to normal
memory (I=0).

Programming Note
Power ISA™ III1202

Version 3.1
lation use process-scoped Page Tables, some use par-
tition-scoped Page Tables, and some use both.

Process-scoped table descriptors are found in the Pro-
cess Tables as follows. The Partition Table Entry
(PATE) host real address is calculated by adding the
Partition Table Base Address (PATB||120) in the PTCR
with 16 times the effective LPID. The second double-
word of the entry contains the base address of the Pro-
cess Table for the partition. The Process Table is
assumed to be aligned in effective (HR=1, effLPID=0),
virtual, or guest real address space. The Process
Table Entry (PRTE) host real address is calculated by
ORing the Process Table Base Address (PRTB||400 for
for an HPT host and PRTB||120 for a radix host) in the
PATE with 16 times the effective PID and then perform-
ing partition-scoped translation. (If the table is not
aligned or is not large enough to support the PID value,
an unreported error will most likely result.) The Pro-
cess Table Entry at that location contains a pro-
cess-scoped table base address, which is a guest real
address for a radix guest (HV=0), a host real address
for a radix host (HV=1), or a virtual address (all cases
using HPT translation). The virtual or guest real
address must be translated via the appropriate parti-
tion-scoped table.

Partition-scoped Page Table descriptors are found in
the Partition Table as follows. The Partition Table Base
Address is found in the PTCR. The effective LPID
(times 16 bytes per partition) is used to index off the
Partition Table Base Address to find the appropriate
Partition Table Entry. The first doubleword of the entry
contains the base address of the Page Table.

6.7.11.3 Obtaining Host Real Address,
Radix on Radix
The following cases exist.
 Guest access to quadrant 0 with translation on:

process-scoped translation is performed on
LPIDR||PIDR||EA, with the result subject to parti-
tion-scoped translation with effective LPID=LPIDR.

 Guest access to quadrant 3 with translation on:
process-scoped translation is performed on
LPIDR||0||EA, with the result subject to parti-
tion-scoped translation with effective LPID=LPIDR.

 Hypervisor access to quadrant 1 with translation
on: process-scoped translation is performed on
LPIDR||PIDR||EA, with the result subject to parti-
tion-scoped translation with effective LPID=LPIDR
if LPIDR≠0.

 Hypervisor access to quadrant 2 with translation
on: process-scoped translation is performed on
LPIDR||0||EA, with the result subject to parti-
tion-scoped translation with effective LPID=LPIDR
if LPIDR≠0.

 Guest OS access with translation off: parti-
tion-scoped translation is performed with effective
LPID = LPIDR.

 Hypervisor or host application access to quadrant
0 with translation on: process-scoped translation
is performed on 0||PIDR||EA.

 Hypervisor or host application access to quadrant
3 with translation on: process-scoped translation is
performed with 0||0||EA.

 Hypervisor or ultravisor real mode access: subject
to EA0 and either HRMOR or URMOR, as
described in Section 6.7.3.1.

The guest real or virtual address of the Process
Table, for a radix or HPT guest, respectively, may
be set via an hcall. The radix guest may choose to
map the Process Table into its own effective
address space. These matters are not visible to
the architecture.

Note that the sole purpose of partition-scoped
Page Table descriptor when LPID=0 for a radix
host is to translate the effective addresses of the
Process Table Entries for LPID=0. (If the Process
Table Base address for LPID=0 was a real address,
the Process Table would have to be in contiguous
real storage.) This descriptor will commonly be the
same as the descriptor found in the LPID=0, PID=0
Process Table Entry, both pointing to the hypervi-
sor’s own page trable, but it may be set up to point
to a table used solely to translate the addresses of
Process Table Entries.

Programming Note

Programming Note
Chapter 6. Storage Control 1203

Version 3.1
Figure 38. Radix on Radix translation, general case

6.7.11.4 Obtaining Host Real Address,
HPT
There are two scenarios for Paravirtualized HPT trans-
lation. The first is the legacy scenario with a native
HPT hypervisor. The second scenario is for a Radix
Tree translation hypervisor providing a Paravirtualized
HPT environment for the guest. In this latter scenario,
the LPID=0 Partition Table Entry will have HR=1. For
both scenarios the LPID value is always taken from
LPIDR and the PID value is always taken from PIDR,
even when MSRHV=1. In the latter scenario, the hyper-
visor will explicitly set LPIDR=0 when it wants to use its
Radix Tree(s).

When using Paravirtualized HPT translation, the pro-
cess-scoped Page Tables are replaced by Segment
Tables, and the description in Section 6.7.11.2, “Finding
the Page Tables” can be read with that substitution in
mind. The process-scoped translation is the effec-
tive-to-virtual translation described in Section 6.7.8.
In-Memory Table walks are processed via the
LPID=LPIDR partition-scoped HPT.

As with the previous enumerations, this is done from a
hardware point of view. As a result, it does not differen-
tiate the software cases for which Segment translation
should only be satisfied by bolted translations

The following cases exist.
 Guest access with translation on: process-scoped

translation is performed on LPIDR||PIDR||EA with

the result subject to partition-scoped translation
using parameters from the matching segment
descriptor.

 Hypervisor or adjunct access with translation on
and LPID≠0: process-scoped translation, limited to
an SLB search with no Segment Table walk, is per-
formed on LPIDR||PIDR||EA, with the result sub-
ject to partition-scoped translation using
parameters from the matching segment descriptor.

 Hypervisor or adjunct access with translation on
and LPID=0: process-scoped translation (with
Segment Table walk) is performed on
LPIDR||PIDR||EA, with the result subject to parti-
tion-scoped translation using parameters from the
matching segment descriptor.

 Guest OS access with translation off: subject to
VPM, as described in Section 6.7.3.3.

 Hypervisor or ultravisor real mode access: subject
to EA0 and either HRMOR or URMOR, as
described in Section 6.7.3.1.

Figure 39. Paravirtualized HPT translation

6.7.12 Reference and Change
Recording
When operating in Paravirtualized HPT mode, Refer-
ence (R) and Change (C) bits are updated in any one of
what could be multiple (because of the multiple base
size PTEs mapping a virtual page) Page Table Entries
that map the virtual page that is being accessed. When
operating in Radix on Radix mode, Reference (R) and

effLPID
Fully-qualified

address effPID EA

Lookup in
Partition Table

Process Table
Base Guest RA

Host Radix
Tree Base

Host Radix Tree Walk

Process Table Entry Guest RA

Guest Radix Tree Base GRA

2-D Radix Tree Walk

Host Radix Tree Walk

Guest Radix Tree Base RA

Process Table Entry Host RA

LPID
Fully-qualified

address PID EA

Lookup in Partition Table

HPT Base

HPT PTEG search

Process Table Entry Host VA

Process Table Entry Segment Table Base

Access Host VA

HPT PTEG search

Segment Table STEG search

Process Table
Base Host VA

STEG Host VA

HPT PTEG search

LPIDLPID
Fully-qualified

address PIDPID EAEA

Lookup in Partition Table

HPT Base

HPT PTEG search

Process Table Entry Host VA

Process Table Entry Segment Table Base

Access Host VA

HPT PTEG search

Segment Table STEG search

Process Table
Base Host VA

STEG Host VA

HPT PTEG search
Power ISA™ III1204

Version 3.1
Change (C) bits may be updated in multiple Page Table
Entries that are accessed as part of the translation pro-
cess. (For example, each access to a guest’s Page
Directory or Page Table Entry potentially sets a Refer-
ence bit in the partition-scoped table mapping it.) If the
storage operand of a Load or Store instruction crosses
a virtual page boundary, the accesses to the compo-
nents of the operand in each page are treated as sepa-
rate and independent accesses to each of the pages
for the purpose of setting the Reference and Change
bits.

For Radix Tree translation, hardware attempts to set
the Reference and Change bits atomically, as though
the PTE was read to perform the translation using a
Load And Reserve instruction, and conditional on the
translation being valid and correct (and on the exis-
tence of the reservation), the appropriate bit(s) are set
as though with a Store Conditional instruction. (“as
though” indicates that the reservation(s) held for this
purpose are distinct from one another and from the res-
ervation established by a Load And Reserve instruc-
tion.)If hardware is unable to set the bit(s) atomically, a
[Hypervisor] Data Storage or [Hypervisor] Instruction
Storage interrupt will be caused. For HPT translation,
hardware sets the Reference and Change bits as
though the PTE was read to perform the update using a
(simple) Load instruction and the appropriate bit(s) are
set as though with a (simple) Store instruction.

For both kinds of translation, setting the bits need not
be atomic with respect to performing the access that
causes the bits to be updated. The Reference bit must
contain 1 in order to load from the corresponding page.
The Change bit must contain 1 in order to store to the
corresponding page.

Reference and Change bits are set by the hardware as
described below. An attempt to access storage may
cause one or more of the bits to be set (as described
below) even if the access is not performed. The bits are
updated in the Page Table Entry if the new value would
otherwise be different from the old value for the virtual
page, as determined by examining either the Page
Table Entry or any lookaside information for the virtual
page (e.g., TLB) maintained by the hardware.

Reference Bit

The Reference bit is set to 1 if the corresponding
access (load, store, implicit access, or instruction
fetch) is required by the sequential execution
model and is performed. Otherwise the Reference
bit may be set to 1 if the corresponding access is
attempted, either in-order or out-of-order, even if
the attempt causes an exception, except that the
Reference bit is not set to 1 for the access caused
by an indexed Move Assist instruction for which
the XER specifies a length of zero.

Change Bit

The Change bit is set to 1 if a Store instruction is
executed and the store is performed or if an
implicit update is performed. Otherwise in general

The interrupt indicates to software that it must set
the appropriate bit(s) itself. Note that an instruction
fetch can cause a Change bit to be set, for example
in the host Page Table Entry that maps the guest
Page Table Entry if the instruction fetch causes the
Reference bit to be set in the guest Page Table
Entry.

Programming Note

The atomic setting of the Reference and Change
bits enables an optimized sampling of them, for
example when determining what pages to reclaim
for other uses. To accurately sample the bits under
HPT translation, it is necessary to first invalidate
the PTE and the corresponding TLB entries. The
optimized sequence eliminates the requirement for
the relatively expensive invalidation of the TLB
entries before sampling the bits. Instead, software
may simply load the PTE using a Load And
Reserve instruction, and then set the PTE invalid
using a Store Conditional instruction. The TLB
invalidation may be deferred indefinitely. The Ref-
erence and Change bits sampled in this manner
are accurate (if the store conditional succeeds)
because with the PTE marked invalid, it will be
impossible to access a page for which the appropri-
ate bit is not already set.

In nested Radix Tree translation, as many as three
Change bits may be set: in the process-scoped and
partition-scoped PTEs for the access itself, and in
the partition-scoped PTE that maps the pro-
cess-scoped PTE. Similarly, a large number of
Reference bits may be set, including for each parti-
tion-scoped PTE that maps a process-scoped PDE
or PTE.

Programming Note

Programming Note
Chapter 6. Storage Control 1205

Version 3.1
the Change bit may be set to 1 if a Store instruc-
tion is executed and the store is permitted by the
storage protection mechanism and, if the Store
instruction is executed out-of-order, the instruction
would be required by the sequential execution
model in the absence of the following kinds of
interrupts:
 system-caused interrupts (see Section 7.4 on

page 1255)
 Floating-Point Enabled Exception type Pro-

gram interrupts when the thread is in an
Imprecise mode.

The only exceptions to the preceding statement
are that the Change bit is not set to 1 if the instruc-
tion is a Store String Indexed instruction for which
the XER specifies a length of zero, if the instruction
is a Load Atomic or Store Atomic instruction with
an invalid function code, or if the instruction is a
Store Caching Inhibited instruction executed when
MSRDR=1.

When the hardware updates the Reference and
Change bits in a Page Table Entry, the accesses are
performed as described in Section 6.7.3.4, “Storage
Control Attributes for Implicit Storage Accesses” on
page 1183. These Reference and Change bit updates
are not necessarily immediately visible to software.
Executing a sync instruction ensures that all Reference
and Change bit updates associated with address trans-
lations that were performed, by the thread executing
the sync instruction, before the sync instruction is exe-
cuted will be performed with respect to that thread
before the sync instruction’s memory barrier is created.
There are additional requirements for synchronizing
Reference and Change bit updates in multi-threaded
systems; see Section 6.10, “Translation Table Update
Synchronization Requirements” on page 1241.

A virtual page in a segment with a smaller base
page size may be mapped by multiple PTEs. For
each access of a virtual page, hardware may
search the Page Table to update the R and C bits.
If lookaside buffer information for the virtual page
already indicates that all such bits to be set have
already been set in a PTE that maps the virtual
page, hardware need not make an update. Con-
sider the following sequence of events:

1. A virtual page is mapped by 2 PTEs A and B
and the R and C bits in both PTEs are 0.

2.A Load instruction accesses the virtual page and
the R bit is updated in PTE A.

3.A Load instruction accesses the virtual page and
the R bit is updated in PTE B.

4.A Store instruction accesses the virtual page and
the C bit is updated in PTE B.

5.The virtual page is paged out. Software must
examine both PTE A and B to get the state of
the R and C bits for the virtual page.

Furthermore, if in event 2, PTE A was not found, a
Data Storage interrupt or Hypervisor Data Storage
interrupt may occur. Subsequently, if in event 3 or
4, PTE B was not found, a Data Storage interrupt or
Hypervisor Data Storage interrupt may occur.

Programming Note

Even though the execution of a Store instruction
causes the Change bit to be set to 1, the store
might not be performed or might be only partially
performed in cases such as the following.

 A Store Conditional instruction (stwcx. or
stdcx.) or a Load Atomic or Store Atomic
instruction (e.g. Fetch and Increment
Bounded, Store Twin) is executed, but no store
is performed.

 The Store instruction causes a Data Storage
exception (all cases except Load Atomic or
Store Atomic with an invalid function code,
Store Caching Inhibited executed when
MSRDR=1, EAO, or storage protection viola-
tion, which do not store and are not permitted
to set the Change bit).

 The Store instruction causes an Alignment
exception.

 The Page Table Entry that translates the virtual
address of the storage operand is altered such
that the new contents of the Page Table Entry
preclude performing the store (e.g., the PTE is
made invalid, or the PP bits are changed).

For example, when executing a Store instruc-
tion, the thread may search the Page Table for
the purpose of setting the Change bit and then
re-execute the instruction. When reexecuting
the instruction, the thread may search the
Page Table a second time. If the Page Table
Entry has meanwhile been altered, by a pro-
gram executing on another thread, the second
search may obtain the new contents, which
may preclude the store.

 A system-caused interrupt occurs before the
store has been performed.

Programming Note
Power ISA™ III1206

Version 3.1

If software refers to a Page Table Entry when
MSRDR=1 or MSRHV=0, the Reference and Change
bits in the associated Page Table Entry are set as for
ordinary loads and stores. See Section 6.10 for the
rules software must follow when updating Reference
and Change bits.

Figure 40 on page 1207 summarizes the rules for set-
ting the Reference and Change bits. The table applies
to each atomic storage reference. It should be read
from the top down; the first line matching a given situa-
tion applies. For example, if stwcx. fails due to both a
storage protection violation and the lack of a reserva-
tion, the Change bit is not altered. The figure applies to
PTE(s) that map instructions or storage operands of
instructions. When Radix Tree translation is in use,
Reference and Change bits are set in other, parti-
tion-scoped, PTEs as described earlier in this section.

In the figure, the “Load-type” instructions are the Load
instructions described in Books I, II, and III, and the
Cache Management instructions that are treated as
Loads. The “Store-type” instructions are the Store
instructions described in Books I, II, and III, and the
Cache Management instructions that are treated as
Stores. The Load Atomic and Store Atomic instructions
are considered to be both loads and stores, and as a
result could match “Load-type” and “Store-type” entries
in the table. As a result, “Store-type” entries precede
“Load-type” entries in the table so that AMOs match
“Store-type” entries. The “ordinary” Load and Store
instructions are those described in Books I, II, and III.
“set” means “set to 1”.

Figure 40. Setting the Reference and Change bits

Because the sync instruction is execution synchro-
nizing, the set of Reference and Change bit
updates that are performed with respect to the
thread executing the sync instruction before the
memory barrier is created includes all Reference
and Change bit updates associated with instruc-
tions preceding the sync instruction.

Programming Note
Status of Access R C
Indexed Move Assist insn w 0 len in XER No No
Load or Store Atomic instruction with

invalid function code, Load or Store
Caching Inhibited executed when
MSRDR=1

Acc1 No

Storage protection violation Acc1 No
Out-of-order Store-type inst’n, excluding

dcbtst

 Would be required by the sequential
 execution model in the absence of
 system-caused or imprecise
 interrupts3 Acc Acc1 2

 All other cases Acc No
Out-of-order I-fetch or Load-type Inst’n

(including dcbtst)
Acc No

In-order Load-type or Store-type insn,
 access not performed4
 Store-type insn Acc Acc2

 Load-type insn Acc No
Other in-order access
 Other ordinary Store, dcbz Yes Yes
 icbi, icbt, dcbt, dcbtst, dcbst, dcbf Acc No
 I-fetch or ordinary Load Yes No
“Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.
2 If C is set, R is also set unless it is already set.
3 For Floating-Point Enabled Exception type Pro-

gram interrupts, “imprecise” refers to the exception
mode controlled by MSRFE0 FE1.

4 This case does not apply to the Touch instructions,
because they do not cause a storage access.
Chapter 6. Storage Control 1207

Version 3.1
6.7.13 Storage Protection
The storage protection mechanism provides a means
for selectively granting instruction fetch access, grant-
ing read access, granting write access, and prohibiting
access to areas of storage based on a number of con-
trol criteria.

The operation of the storage protection mechanism
depends on the value of one or more of the following.

- MSR bits HV, S, IR, DR, PR

- the key bits and N bit in the associated SLB
entry

- the page protection bits, key bits, N bit, and G
attribute in the associated PTE

- the AMR, IAMR, AMOR, and UAMOR

- the Secure Memory property

The storage protection mechanism consists of the Vir-
tual Page Class Key Protection mechanism described
in Section 6.7.13.1, the Basic Storage Protection mech-
anism described in Section 6.7.13.2 and Section
6.7.13.3, the Radix Tree Translation Storage Protection
mechanism described in Section 6.7.13.4, and the
Secure Memory Protection mechanism described in
Section 6.7.13.5.

In order for a storage access to be permitted, it must be
permitted by all of the mechanisms that apply to it. If
SMFCTRLE=1, each storage access is subject to
Secure Memory Protection independent of the transla-
tion mode of the access. In addition, each access is
subject to other protection mechanisms depending on
its translation mode, as listed below.

 MSRHV=1 and address translation is disabled:
Basic Storage Protection mechanism

 HR=0
- access to instruction or data when address

translation is enabled: Virtual Page Class Key
Protection mechanism and Basic Storage Pro-
tection mechanism

- all other cases (access to Process Table Entry
or Segment Table Entry when address trans-
lation is enabled; access to instruction or data
when MSRHV=0 and address translation is
disabled): Basic Storage Protection mecha-
nism

 HR=1

- access to instruction or data when address
translation is enabled and effLPID≠0: Radix
Tree Translation Storage Protection mecha-
nisms of both the process-scoped and parti-
tion-scoped PTEs, except that the Guarded
attribute (which affects storage protection for
instruction fetches) is determined solely by the
process-scoped PTE

- access to instruction or data when address
translation is enabled and effLPID=0: Radix
Tree Translation Storage Protection mecha-
nism of the process-scoped PTE

- all other cases (access to Process Table Entry
when address translation is enabled; access
to process-scoped PDE or process-scoped
PTE when address translation is enabled and
effLPID≠0; access to instruction or data when
MSRHV=0 and address translation is dis-
abled): Radix Tree Translation Storage Pro-
tection mechanism of the partition-scoped
PTE

If an access associated with an instruction fetch is not
permitted, an Instruction Storage exception or a Hyper-
visor Instruction Storage exception is generated. If an
access associated with a data access is not permitted,
a Data Storage exception or a Hypervisor Data Storage
exception is generated.

A protection domain is a maximal range of effective
addresses, virtual addresses, or guest real addresses
for which variables related to storage protection can be
independently specified (including by default, as in vir-
tual real, hypervisor real, and ultravisor real addressing
modes), or a maximal range of addresses, effective,
virtual, or guest real, for which variables related to stor-
age protection cannot be specified. Examples include:
a segment, a virtual page (including for the Virtualized
Real Mode Area), the Virtualized Real Mode Area, the
effective address range 0:260-1 in hypervisor and ultra-
visor real addressing modes, and a maximal range of
effective, virtual, or guest real addresses that cannot be
mapped to real addresses. A protection boundary is a
boundary between protection domains.

6.7.13.1 Virtual Page Class Key Protec-
tion
The Virtual Page Class Key Protection mechanism pro-
vides the means to assign virtual pages to one of 32
classes, and to modify data access permissions for
each class by modifying the Authority Mask Register
(AMR), shown in Figure 41, and to modify instruction
access permissions for each class by modifying the
Instruction Authority Mask Register (IAMR) shown in
Figure 42.

Because the assumed Ks and Kp values
are either 0 or irrelevant, these accesses
are always permitted by the Basic Storage
Protection mechanism.

Programming Note
Power ISA™ III1208

Version 3.1

Authority Mask Register

Figure 41. Authority Mask Register (AMR)

The access mask for each class defines the access
permissions that apply to loads and stores for which the
virtual address is translated using a Page Table Entry
that contains a Key field value equal to the class num-
ber. The access permissions associated with each
class are defined as follows, where AMR2n and
AMR2n+1 refer to the first and second bits of the access
mask corresponding to class number n.

- A store is permitted if AMR2n=0b0; otherwise
the store is not permitted.

- A load is permitted if AMR2n+1=0b0; otherwise
the load is not permitted.

The AMR can be accessed using either SPR 13 or
SPR 29. Access to the AMR using SPR 29 is privi-
leged.

Instruction Authority Mask Register

Figure 42. Instruction Authority Mask Register
(IAMR)

The access mask for each class defines the access
permissions that apply to instruction fetches for which
the virtual address is translated using a Page Table
Entry that contains a Key field value equal to the class
number. The access permission associated with each
class is defined as follows, where IAMR2n+1 refers to
the bit of the access mask corresponding to class num-
ber n.

- An instruction fetch is permitted if
IAMR2n+1=0b0; otherwise the instruction fetch
is not permitted.

Bit 0 of each key field is reserved

Access to the IAMR is privileged.

The Authority Mask Override Register (AMOR) and the
User Authority Mask Override Register (UAMOR),
shown in Figure 43 and Figure 44 respectively, can be
used to restrict modifications (mtspr) of the AMR. Also,
the AMOR can be used to restrict modifications of the
UAMOR and IAMR. Access to both the AMOR and
UAMOR is privileged. The AMOR is a hypervisor
resource.

Figure 43. Authority Mask Override Register
(AMOR)

Figure 44. User Authority Mask Override Register
(UAMOR)

The bits of the AMOR and UAMOR are in 1-1 corre-
spondence with the bits of the AMR (i.e., [U]AMORi
corresponds to AMRi). The AMOR affects modifications
of the AMR and UAMOR in privileged but non-hypervi-
sor state; the UAMOR affects modifications of the AMR
in problem state.

Similarly, the odd bits of the AMOR are in 1-1 corre-
spondence with the odd bits of the IAMR (i.e.,

If address translation is disabled for a given
access, the access is not affected by the Virtual
Page Class Key Protection mechanism even if the
access is made in virtual real addressing mode.

Key0 Key1 Key2 . . . Key29 Key30 Key31
0 2 4 6 58 60 62

Bits Name Description
0:1 Key0 Access mask for class number 0
2:3 Key1 Access mask for class number 1
… … …
2n:2n+1 Keyn Access mask for class number n
… … …
62:63 Key31 Access mask for class number 31

Because the AMR is part of the program context (if
address translation is enabled), and because it is
desirable for most application programmers not to
have to understand the software synchronization
requirements for context alterations (or the
nuances of address translation and storage protec-
tion), operating systems should provide a system
library program that application programs can use
to modify the AMR.

Programming Note

Programming Note

Key0 Key1 Key2 . . . Key29 Key30 Key31
0 2 4 6 58 60 62

Bits Name Description
0:1 Key0 Access mask for class number 0
2:3 Key1 Access mask for class number 1
… … …
2n:2n+1 Keyn Access mask for class number n
… … …
62:63 Key31 Access mask for class number 31

AMOR
0 63

UAMOR
0 63
Chapter 6. Storage Control 1209

Version 3.1
AMOR2j+1 corresponds to IAMR2j+1). The AMOR
affects modifications of the IAMR in privileged but
non-hypervisor state; the IAMR cannot be accessed in
problem state.
 When mtspr specifying the AMR (using either

SPR 13 or SPR 29) or the IAMR is executed in
privileged non-hypervisor state, the AMOR is used
as a mask that controls which bits of the resulting
AMR or IAMR contents come from register RS and
which AMR or IAMR bits are not modified.

 Similarly, when mtspr specifying the AMR (using
SPR 13) is executed in problem state, the UAMOR
is used as a mask that controls which bits of the
resulting AMR contents come from register RS and
which AMR bits are not modified.

 When mtspr specifying the UAMOR is executed in
privileged non-hypervisor state, the AMOR is
ANDed with the contents of register RS and the
result is placed into the UAMOR; the AMOR
thereby controls which bits of the resulting
UAMOR contents come from register RS and
which UAMOR bits are set to zero.

A complete description of these effects can be found in
the description of the mtspr instruction in Section
5.4.4.

Software must ensure that both bits of each even/odd
bit pair of the AMOR contain the same value. — i.e.,
the contents of register RS for mtspr specifying the
AMOR must be such that (RS)2n = (RS)2n+1 for every n
in the range 0:31 — and likewise for the UAMOR. If this
requirement is violated for the UAMOR the results of
accessing the UAMOR (including implicitly by the hard-
ware as described in the second item of the preceding
list) are boundedly undefined; if the requirement is vio-
lated for the AMOR the results of accessing the AMOR
(including implicitly by the hardware as described in the
first and third items of the list) are undefined.

The preceding requirement permits designs to
implement the AMOR and/or UAMOR as 32-bit
registers — specifically, to implement only the
even-numbered bits (or only the odd-numbered
bits) of the register — in a manner such that the
reduction, from the architecturally-required 64 bits
to 32 bits, is not visible to (correct) software. This
implementation technique saves space in the hard-
ware. (A design that uses this technique does the
appropriate “fan in/out” when the register is
accessed, to provide the appearance, to (correct)
software, of supporting all 64 bits of the register.)

Permitting designs to implement the [U]AMOR as
32-bit registers by virtue of the software require-
ment specified above, rather than by defining the
[U]AMOR as 32-bit registers, permits the architec-
ture to be extended in the future to support con-
trolling modification of the “read access” AMR bits
(the odd-numbered bits) independently from the
“write access” AMR bits (the even-numbered bits),
if that proves desirable. If this independent control
does prove desirable, the only architecture change
would be to eliminate the software requirement.

When modifying the AMOR and/or UAMOR, the
hypervisor should ensure that the two registers are
consistent with one another before giving control to
a non-hypervisor program. In particular, the hyper-
visor should ensure that if AMORi=0 then
UAMORi=0, for all i in the range 0:63. (Having
AMORi=0 and UAMORi=1 would permit problem
state programs, but not the operating system, to
modify AMR bit i.)

Programming Note

Programming Note
Power ISA™ III1210

Version 3.1
Programming Note

The Virtual Page Class Key Protection mechanism replaces the Data Address Compare mechanism that was defined
in versions of the architecture that precede Version 2.04 (e.g., the two facilities use some of the same resources, as
described below). However, the Virtual Page Class Key Protection mechanism can be used to emulate the Data
Address Compare mechanism. Moreover, programs that use the Data Address Compare mechanism can be modi-
fied in a manner such that they will work correctly both on implementations that comply with versions of the architec-
ture that precede Version 2.04 (and hence implement the Data Address Compare mechanism) and on
implementations that comply with Version 2.04 of the architecture or with any subsequent version (and hence instead
implement the Virtual Page Class Key Protection mechanism). The technique takes advantage of the facts that the
SPR number for privileged access to the AMR (29) is the same as the SPR number for the Data Address Compare
mechanism's ACCR (Address Compare Control Register), that KEY4 occupies the same bit in the PTE as the Data
Address Compare mechanism's AC (Address Compare) bit, and that the definition of ACCR62:63 is very similar to the
definition of each even-odd pair of AMR bits. The technique is as follows, where PTE1 refers to doubleword 1 of the
PTE.

- Set bits 2:3 and 62:63 of SPR 29 (which is
either the ACCR or the AMR) to x, where x is
the desired 2-bit value for controlling Data
Address Compare matches, and set bits 0:1 to
0s.

- Set PTE154 (which is either the AC bit or
KEY4) to the same value that the AC bit would
be set to, and set PTE12:3 (which are either
RPN bits, that correspond to a real address
size larger than the size supported by any
implementation that supports the Data
Address Compare mechanism, or KEY0:1)
and PTE152:53 (which are either reserved bits
or KEY2:3) to 0s.

- Use PTEKEY values 0 and 1 only for purposes
of emulating the Data Address Compare
mechanism, except that PTEKEY value 0 may

also be used for any virtual pages for which it
is desired that the Virtual Page Class Key Pro-
tection mechanism permit all accesses. Do
not use PTEKEY =31.

- When a Hypervisor Data Storage interrupt
occurs, if HDSISR42=1 then ignore the inter-
rupt for Cache Management instructions other
than dcbz. (These instructions can cause a
virtual page class key protection violation but
cannot cause a Data Address Compare
match.) Otherwise forward the interrupt to the
operating system, which will treat the interrupt
as if a Data Address Compare match had
occurred. (Note: Cases for which it is unde-
fined whether a Data Address Compare match
occurs do not necessarily cause a virtual page
class key protection violation.)

(Because privileged software can access the AMR using either SPR 13 or SPR 29, it might seem that, when SPR 13
was added to the architecture (in Version 2.06), SPR 29 should have been removed. SPR 29 is retained for two rea-
sons: first, to avoid requiring privileged software to change to use the newer SPR number; and second, to retain the
ability to emulate the Data Address Compare mechanism as described above.)
Chapter 6. Storage Control 1211

Version 3.1

6.7.13.2 Basic Storage Protection,
Address Translation Enabled
When address translation is enabled, , the Basic Stor-
age Protection mechanism is controlled by the follow-
ing.

An example of the use of the AMOR (and UAMOR)
is to support adjuncts (see Section 6.7.4, “Defini-
tions”), The hypervisor could use KEY value j for
all data virtual pages that only the adjunct must be
able to access. Before dispatching the partition for
the first time, the hypervisor would initialize the
three registers as follows.
AMR: all 0s except bits 2j and 2j+1, which would

contain 1s
UAMOR: all 0s
AMOR: all 1s except bits 2j and 2j+1, which would

contain 0s

Before dispatching the adjunct, the hypervisor
would set UAMOR to all 0s, and would set the AMR
to all 1s except bits 2j and 2j+1, which would be set
to 0s. (Because the adjunct would run in problem
state, there is no need for the hypervisor to modify
the AMOR, and the adjunct cannot modify the
UAMOR.) In addition, the hypervisor would prevent
the partition from modifying or deleting PTEs that
contain translations used by the adjunct.

(It may be desirable to avoid using KEY values 0,
1, and 31 for storage that only the adjunct can
access, because these KEY values may be needed
by the partition to emulate the Data Address Com-
pare mechanism, as described above. Also, old
software, that was written for an implementation
that complies with a version of the architecture that
precedes Version 2.04 (the version in which virtual
page class keys were added), effectively uses KEY
0 for all virtual pages.)

Programming Note
Initialization of the UAMOR to all 0s, by the hypervi-
sor before dispatching a partition for the first time,
as described in the preceding Programming Note,
permits operating systems (in partitions that run in
a compatibility mode corresponding to Version 2.06
of the architecture or a subsequent version) to
migrate gradually to supporting problem state
access to the AMR — specifically, to avoid having
to be changed immediately to modify the UAMOR
and to save the AMR contents when an interrupt
occurs from problem state. Relatedly, having the
UAMOR contain all 0s while an application pro-
gram is running protects old application programs
that are “AMR-unaware”. In the absence of pro-
gramming errors, such application programs would
not attempt to read or modify the AMR. However,
having the UAMOR contain all 0s protects such
programs against modifying the AMR inadvertently.

Permitting an “AMR-unaware” application program
to modify the AMR (inadvertently) is potentially
harmful for the obvious reasons. (The program
might set to 1 an AMR bit corresponding to
accesses that are necessary in order for the pro-
gram to work correctly.) Moreover, even for an
operating system that includes support for problem
state modification of the AMR, having the UAMOR
contain all 0s allows the operating system to avoid
saving and restoring the AMR for “AMR-unaware”
application programs. Such an operating system
would provide a system service program that
allows an application program to declare itself to be
“AMR-aware” — i.e., potentially to need to modify
the AMR. When an application program invokes
this service, the operating system would set the
UAMOR to the non-zero value appropriate to the
access authorities (load and/or store, for one or
more key values) that the application program is
allowed to modify, and thereafter would save and
restore the AMR (and preserve the UAMOR) for
this application program. (Having the UAMOR con-
tain all 0s does not prevent an “AMR-unaware” pro-
gram from reading the AMR, but inadvertent
reading of the AMR is likely to be much less harm-
ful than inadvertently modifying it.)

(For partitions that run in a compatibility mode cor-
responding to a version of the architecture that pre-
cedes Version 2.06, the PCR provides sufficient
protection to application programs.)

Programming Note
Power ISA™ III1212

Version 3.1
 MSRPR, which distinguishes between supervisor
(privileged) state and problem state

 Ks and Kp, the supervisor (privileged) state and
problem state storage key bits in the SLB entry
used to translate the effective address

 PP, page protection bits 0:2 in the Page Table
Entry used to translate the effective address

 For instruction fetches only:
- the N (No-execute) value used for the access

(see Sections 6.7.8.1 and 6.7.9.2)
- PTEG, the G (Guarded) bit in the Page Table

Entry used to translate the effective address

Using the above values, the following rules are applied.

1. For an instruction fetch, the access is not permit-
ted if the N value is 1 or if PTEG=1.

2. For any access except an instruction fetch that is
not permitted by rule 1, a “Key” value is computed
using the following formula:

Key  (Kp & MSRPR) | (Ks & ¬MSRPR)

Using the computed Key, Figure 45 is applied. An
instruction fetch is permitted for any entry in the
figure except “no access”. A load is permitted for
any entry except “no access”. A store is permitted
only for entries with “read/write”.

Figure 45. PP bit protection states, address
translation enabled

6.7.13.3 Basic Storage Protection,
Address Translation Disabled
When address translation is disabled, the Basic Stor-
age Protection mechanism is controlled by MSRHV,
which (when MSRPR=0) distinguishes between hyper-
visor state and privileged non-hypervisor state (see
Chapter 2 and Section 6.7.3, “Ultravisor Real, Hypervi-
sor Real, and Virtual Real Addressing Modes”). The
following rules apply.

1. If MSRHV=0, access authority is determined as
described in Section 6.7.3.3.

2. If MSRHV=1, the access is permitted.

6.7.13.4 Radix Tree Translation Storage
Protection
For Radix Tree translation, an attempt to fetch instruc-
tions from Guarded storage is a storage protection vio-
lation. In all other respects, the storage protection
mechanism for Radix Tree translation is completely dif-
ferent from what is provided for HPT translation.
EAA1:3 provide control over read, read/write, and exe-
cute access if the process has the appropriate privi-
lege. EAA0, together with key 0 in the AMR or IAMR,
provide three protection configurations for pro-
cess-scoped translation: (1) a mode that gives equiva-
lent access to privileged and problem state processes,
(2) a mode that gives access only to problem state, and
(3) a mode that gives access only to privileged pro-
cesses. (Note that privileged includes hypervisor privi-
leged.) For partition-scoped translation, including
translation of table entry addresses, either value of
EAA0 permits the access. See Figure 36 and Figure 46
for details. The choice of whether to limit access to
problem state for process-scoped protection of privi-
leged read and write is determined by key 0 of the
AMR. When bit 0 is 0, the privileged bit in the PTE is
ignored for a privileged store. When bit 0 is 1, the priv-
ileged bit must be 1 for a privileged store. Similarly
when bit 1 is 0, the privileged bit in the PTE is ignored
for a privileged load. When bit 1 is 1, the privileged bit
must be 1 for a privileged load. The choice of whether
to limit access to problem state for process-scoped pro-
tection of execute is determined by key 0 of the IAMR.
When bit 1 is 0, the privileged bit in the PTE is ignored
for an attempt to execute the instruction in privileged
state. When bit 1 is 1, the privileged bit must be 1 to
execute the instruction in priivleged state.

Key PP Access Authority
0 000 read/write
0 001 read/write
0 010 read/write
0 011 read only
0 110 read only
1 000 no access
1 001 read only
1 010 read/write
1 011 read only
1 110 no access

All PP encodings not shown above are reserved. The
results of using reserved PP encodings are bound-
edly undefined.
Chapter 6. Storage Control 1213

Version 3.1
Figure 46. Encoded Access Authority (aka page
protection)

6.7.13.5 Secure Memory Protection
When SMFCTRLE=1, Secure Memory Protection is
enabled. Each location in main storage has a Secure
Memory property memSM. memSM=1 indicates secure
memory. memSM=0 indicates ordinary memory. Gen-
erally, only secure partitions and the ultravisor may
access secure memory for explicit and implicit
accesses. The one exception is that the Partition Table
is commonly located in secure memory, but may be
accessed implicitly as part of the translation process for
software running with MSRS=0. The granularity and
method with which main storage is mapped for the
Secure Memory property is implementation specific.

For each kind of access to a host real address that can
cause a violation of Basic or Radix Tree Translation
Storage Protection, a Secure Memory Protection
exception is reported by the same type of interrupt as
its Basic or Radix Tree Translation Storage Protection
counterpart, except setting [H]DSISR or [H]SRR1 bit 43
instead of 36, as follows. For HPT translation, the
exception is reported as an ISI or DSI if the thread is in
hypervisor state, or if the thread is in non-hypervisor
state when IR or DR is 1 for the appropriate type of
access and VPM=0; otherwise as HISI or HDSI. For
Radix Tree translation, the exception is reported as an
ISI or DSI if effLPID=0; otherwise as HISI or HDSI. The

same reporting approach is used for accesses which
require translation but for which no Basic Storage Pro-
tection exception is possible. This includes accesses
to the Segment Table Entry Group and Process Table
Entry when HPT translation is in use.

In the preceding cases the host real address for the
access is a result of address translation. A Secure
Memory Protection exception can also be caused by
accesses to a host real address that is not the result of
address translation. (Such accesses cannot cause a
violation of Basic or Radix Tree Translation Storage
Protection.) These additional cases are reported as
follows. For a hypervisor real mode access the excep-
tion is reported as an ISI or DSI. For a process-scoped
radix tree access for effLPID=0 the exception is
reported as an ISI or DSI. For a PTEG access the
exception is reported as an ISI or DSI if MSRHV
PR=0b10; otherwise as HISI or HDSI. For a parti-
tion-scoped radix tree access the exception is reported
as an HISI or HDSI unless effLPID=0, in which case the
exception is reported as an ISI or DSI. These cases
also set [H]DSISR or [H]SRR1 bit 43 to 1.

6.8 Storage Control Attributes
This section describes aspects of the storage control
attributes that are relevant only to privileged software
programmers. The rest of the description of storage

Privilege
(EAA0)

Read
(EAA1)

Read/Write
(EAA2)

Execute
(EAA3)

Access Authority
problem state (MSRPR=1)

Access Authority
privileged state (MSRPR=0)

0 0 0 0 na na
0 0 0 1 e e*
0 0 1 0 rw rw*
0 0 1 1 rwe rwe*
0 1 0 0 r r*
0 1 0 1 re re*
0 1 1 0 rw rw*
0 1 1 1 rwe rwe*
1 0 0 0 na na
1 0 0 1 na e
1 0 1 0 na rw
1 0 1 1 na rwe
1 1 0 0 na r
1 1 0 1 na re
1 1 1 0 na rw
1 1 1 1 na rwe

Key:
na: no access
r : read
w : write
e : execute
* : For partition-scoped translation, including all translation of table entry
 addresses, all accesses in the entry are permitted.
 For process-scoped translation, each access in the entry is permitted if and only
 if the relevant bit of key 0 of the [I]AMR is 0.
Power ISA™ III1214

Version 3.1
control attributes may be found in Section 1.6 of Book II
and subsections.

6.8.1 Guarded Storage
Storage is said to be “well-behaved” if the correspond-
ing real storage exists and is not defective, and if the
effects of a single access to it are indistinguishable
from the effects of multiple identical accesses to it. Data
and instructions can be fetched out-of-order from
well-behaved storage without causing undesired side
effects.

Storage is said to be Guarded if any of the following
conditions is satisfied.

 MSR bit IR or DR is 1 for instruction fetches or
data accesses respectively, or MSRHV=0, and
either G=1 or Att=0b010 in the relevant Page Table
Entry.

 MSR bit IR or DR is 0 for instruction fetches or
data accesses respectively, MSRHV=1, and the
storage is specified by the Hypervisor Real Mode
Storage Control facility to be treated as Guarded
(see Section 6.7.3.2.1).

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a con-
trol register on an I/O device or may include locations
that do not exist, an out-of-order access to such stor-
age may cause an I/O device to perform unintended
operations or may result in a Machine Check.

The following rules apply to in-order execution of Load
and Store instructions for which the first byte of the
storage operand is in storage that is both Caching
Inhibited and Guarded.

 Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed and an External, Decrementer, Hypervi-
sor Decrementer, Performance Monitor, or Impre-
cise mode Floating-Point Enabled exception is
pending, the instruction completes before the inter-
rupt occurs.

 Load or Store instruction that causes an Alignment
exception, or that causes a [Hypervisor] Data Stor-
age exception for reasons other than Data
Address Watchpoint match.

The portion of the storage operand that is in Cach-
ing Inhibited and Guarded storage is not accessed.

(The corresponding rules for instructions that
cause a Data Address Watchpoint match are given
in Section 9.4.)

6.8.1.1 Out-of-Order Accesses to
Guarded Storage
In general, Guarded storage is not accessed
out-of-order. The only exceptions to this rule are the fol-
lowing.

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

Instruction Fetch

If MSRHV IR=0b10 then an instruction may be fetched if
any of the following conditions are met.

1. The instruction is in a cache. In this case it may be
fetched from the cache or from main storage.

2. The instruction is in a real page from which an
instruction has previously been fetched, except
that if that previous fetch was based on condition 1
then the previously fetched instruction must have
been in the instruction cache.

3. The instruction is in the same real page as an
instruction that is required by the sequential execu-
tion model, or is in the real page immediately fol-
lowing such a page.

6.8.2 Storage Control Bits
When the thread is not in hypervisor or ultravisor real
addressing mode, each storage access is performed
under the control of the Page Table Entry used to trans-
late the effective address. Each Page Table Entry con-
tains storage control bits that specify the presence or
absence of the corresponding storage control for all
accesses translated by the entry as shown in Figure 47
and Figure 48. In the following description, references
to individual WIMG bits apply to the corresponding
Radix Att encoding, or to the result of combining the
process-scoped and partition-scoped ATT encodings

Software should ensure that only well-behaved
storage is copied into a cache, either by accessing
as Caching Inhibited (and Guarded) all storage that
may not be well-behaved, or by accessing such
storage as not Caching Inhibited (but Guarded) and
referring only to cache blocks that are
well-behaved.

If a real page contains instructions that will be exe-
cuted when MSRIR=0 and MSRHV=1, software
should ensure that this real page and the next real
page contain only well-behaved storage (or that the
Hypervisor Real Mode Storage Control facility
specifies that this real page is not Guarded).

Programming Note
Chapter 6. Storage Control 1215

Version 3.1
(see Section 6.7.10.3), except where otherwise stated
or obvious from context.

Figure 47. Storage control bits, HPT PTE

Figure 48. Storage control bits, Radix PTE

When the thread is not in hypervisor or ultravisor real
addressing mode, instructions are not fetched from
storage for which the G bit in the Page Table Entry is
set to 1; see Section 6.7.13.

When the thread is in hypervisor or ultravisor real
addressing mode, the storage control attributes are
implicit; see Section 6.7.3.2.

In Sections 6.8.2.1 and 6.8.2.2, “access” includes
accesses that are performed out-of-order, and refer-
ences to W, I, M, and G bits include the values of those
bits that are implied when the thread is in hypervisor or
ultravisor real addressing mode.

6.8.2.1 Storage Control Bit Restrictions
Process- and partition-scoped Att combinations that
specify not Caching Inhibited for the process scope and
Caching Inhibited for the partition scope are not permit-
ted. See Table 5.

All combinations of W, I, M, and G values are permitted
except those for which both W and I are 1.

At any given time, the value of the W bit must be the
same for all accesses to a given real page.

At any given time, the value of the I bit must be the
same for all accesses to a given real page.

6.8.2.2 Altering the Storage Control
Bits
When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no thread
modifies any location in the page until after all copies of
locations in the page that are considered to be modified
in the data caches have been copied to main storage
using dcbst or dcbf[l] (or dcbstps or dcbfps).

When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf[l] (or dcbfps) and icbi before per-
mitting any other accesses to the page. Note that simi-
lar cache management is required before using the
Fixed-Point Load and Store Caching Inhibited instruc-
tions to access storage that has formerly been cached.
(See Section 5.4.1 on page 1163.)

Bit Storage Control Attribute
 W1 0 - not Write Through Required

1 - Write Through Required
 I 0 - not Caching Inhibited

1 - Caching Inhibited
 M2 0 - not Memory Coherence Required

1 - Memory Coherence Required
 G 0 - not Guarded

1 - Guarded
1 Support for the 1 value of the W bit is optional.

Implementations that do not support the 1 value
treat the bit as reserved and assume its value to
be 0.

2 Support for the 0 value of the M bit is optional,
implementations that do not support the 0 value
assume the value of the bit to be 1, and may either
preserve the value of the bit or write it as 1.

Att value Storage Type
 00 normal memory (WIMG=0010)
 01 reserved
 10 non-idempotent I/O (WIMG=0111)
 11 tolerant I/O (WIMG=0110)
W=0 always for Radix Tree translation
M=1 always for Radix Tree translation

In a system consisting of only a single-threaded
processor which has caches, correct coherent exe-
cution does not require storage to be accessed as
Memory Coherence Required, and accessing stor-
age as not Memory Coherence Required may give
better performance.

If an application program requests both the Write
Through Required and the Caching Inhibited attri-
butes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.

Programming Note

Programming Note
Power ISA™ III1216

Version 3.1

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this are system-dependent.

Additional requirements for changing the storage con-
trol bits in the Page Table are given in Section 6.10.

It is recommended that dcbf be used, rather than
dcbfl, when changing the value of the I or W bit
from 0 to 1. (dcbfl would have to be executed on all
threads for which the contents of the data cache
may be inconsistent with the new value of the bit,
whereas, if the M bit for the page is 1, dcbf need be
executed on only one thread in the system.)

For example, when changing the M bit in some
directory-based systems, software may be required
to execute dcbf[l] on each thread to flush all stor-
age locations accessed with the old M value before
permitting the locations to be accessed with the
new M value.

Programming Note

Programming Note
Chapter 6. Storage Control 1217

Version 3.1
6.9 Storage Control Instructions

6.9.1 Cache Management Instructions
This section describes aspects of cache management
that are relevant only to privileged software program-
mers.

For a dcbz instruction that causes the target block to
be newly established in the data cache without being
fetched from main storage, the hardware need not ver-
ify that the associated real address is valid. The exis-
tence of a data cache block that is associated with an
invalid real address (see Section 6.6) can cause a

delayed Machine Check interrupt or a delayed Check-
stop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are con-
sidered to be modified in the data cache have been
copied to main storage before the thread enters any
power conserving mode in which data cache contents
are not maintained.

6.9.2 Synchronize Instruction
The Synchronize instruction is described in
Section 4.6.3 of Book II, but only at the level required
by an application programmer. This section describes
properties of the instruction that are relevant only to
operating system, hypervisor, and ultravisor software
programmers.

The Synchronize instruction provides an ordering func-
tion for stores that are in set A of the memory barrier
created by the Synchronize instruction, relative to data
accesses caused by instructions that are executed on
other threads after the occurrence of the interrupt that
is caused by a msgsndp, msgsnd, or msgsndu
instruction that follows the Synchronize instruction.
The thread that is the target of the msgsndp, msgsnd,
or msgsndu instruction is here called the "target
thread".
 For msgsndp, and L = 0, 1, or 2 (or 4 or 5) for the

Synchronize instruction, the stores are performed
with respect to the target thread before any data
accesses caused by instructions that are executed
on the target thread after the corresponding
Directed Privileged Doorbell interrupt has
occurred.

 For msgsnd or msgsndu, and L = 0 or 2 (or 4) for
the Synchronize instruction, the stores are per-
formed with respect to any given other thread
before any data accesses caused by instructions
that are executed on the given thread after a
msgsync instruction is executed on that thread
after the corresponding Directed Hypervisor or
Ultravisor Doorbell interrupt has occurred on the
target thread.

Synchronize with L=1 (lwsync) or L=5
(plwsync) should not be used with msgsnd or
msgsndu. (If used, it will not have the desired
ordering effect.)

Programming Note

The msgsync instruction, which is needed when
msgsnd or msgsndu is used, is not needed when
msgsndp is used because msgsndp targets only
threads on the same multi-threaded processor as
the thread executing the msgsndp, while msgsnd
and msgsndu can target any thread in the system.
(If the target thread for msgsnd or msgsndu is on
the same multi-threaded processor as the thread
executing the msgsnd or msgsndu, in principle
the msgsync can be omitted. This optimization is
practical only when the msgsnd/msgsndu topol-
ogy is appropriately constrained, however, because
the Directed Hypervisor or Ultravisor Doorbell inter-
rupt provides no indication of which thread exe-
cuted the msgsnd or msgsndu that caused the
interrupt, so there is no easy way for the interrupt
handler to determine whether the msgsync can be
omitted.) msgsync is not needed or defined in V.
2.07 for a similar reason: msgsnd in V. 2.07 can
target only threads on the same multi-threaded pro-
cessor as the thread executing the msgsnd.

The ordering done by sync (and phwsync and
ptesync) provides the appearance of "causality"
across a sequence of msgsnd (or msgsndu)
instructions, as in the following example.
"msgsnd->T1" means "msgsnd instruction target-
ting thread T1". "<DHDI 0>" means "occurrence of
Directed Hypervisor Doorbell interrupt caused by
msgsnd executed on T0". On T0, register r1 is
assumed to contain the value 1.

 T0 T1 T2
 std r1,X <DHDI 0> <DHDI 1>
 sync msgsnd->T2 msgsync
 msgsnd->T1 ld r1,X

In this example, T2's load from X must return 1.

Programming Note
Power ISA™ III1218

Version 3.1
Another variant of the Synchronize instruction is
described below. It is designated the Page Table Entry
Synchronize instruction, and is specified by the
extended mnemonic ptesync (equivalent to sync with
L=2).

The ptesync instruction has all of the properties of
sync with L=4 and also the following additional proper-
ties.

 The memory barrier created by the ptesync
instruction provides an ordering function for the
storage accesses associated with all instructions
that are executed by the thread executing the pte-
sync instruction and, as elements of set A, for all
Reference and Change bit updates associated
with additional address translations that were per-
formed, by the thread executing the ptesync
instruction, before the ptesync instruction is exe-
cuted. The applicable pairs are all pairs ai,bj in
which bj is a data access and ai is not an instruc-
tion fetch.

 The ptesync instruction causes all Reference and
Change bit updates associated with address trans-
lations that were performed, by the thread execut-
ing the ptesync instruction, before the ptesync
instruction is executed, to be performed with
respect to that thread before the ptesync instruc-
tion’s memory barrier is created.

 The memory barrier created by the ptesync
instruction provides an ordering function for all
stores to the Partition Table, Process Tables, Seg-
ment Tables, Page Directories, and Page Tables
caused by Store instructions preceding the pte-
sync instruction with respect to invalidations, of
cached copies of information derived from these
tables, caused by slbieg, slbiag, and tlbie instuc-
tions following the ptesync instruction. The mem-
ory barrier ensures that all searches of these
tables by another thread, that are performed after
an invalidation caused by such an slbieg, slbiag,
or tlbie instruction has been performed with
respect to the other thread and that implicitly load
from the target location of such a store, will obtain
the value stored (or a value stored subsequently).

 The ptesync instruction provides an ordering func-
tion for all stores to the Partition Table, Process
Tables, Segment Tables, Page Directories, and
Page Tables caused by Store instructions preced-

ing the ptesync instruction with respect to
searches of these tables that are performed, by the
thread executing the ptesync instruction, after the
ptesync instruction completes. Executing a pte-
sync instruction ensures that all such searches
that implicitly load from the target location of such
a store will obtain the value stored (or a value
stored subsequently). Also, the memory barrier
created by the ptesync insruction ensures that all
searches of these tables by any other thread, that
are performed after a store in set B of the memory
barrier has been performed with respect to the
other thread and that implicitly load from the target
location of such a store, will obtain the value stored
(or a value stored subsequently).

 In conjunction with the tlbie and tlbsync instruc-
tions, the ptesync instruction provides an ordering
function for TLB invalidations and related storage
accesses on other threads as described in the tlb-
sync instruction description on page 1240.

Similarly, in conjunction with the slbieg or slbiag
and slbsync instructions, the ptesync instruction
provides an ordering function for SLB invalidations
and related storage accesses on other threads as
described in the slbsync instruction description on
page 1230.

6.9.3 Lookaside Buffer
Management
All implementations have a Segment Lookaside Buffer
(SLB). Independent of whether the executing partition
operates in a mode that uses hardware SLB loading
and bolting versus pure software loading (controlled by
the value of LPCRUPRT), software is responsible for
keeping the SLB current with the segment mapping for
the process that is executing. Proper management of
the SLB across context switches is described in pro-
gramming notes.

The next bullet is sufficient to order the stores
with respect to the invalidations on the thread
executing the ptesync instruction. That bullet
is also sufficient to provide the ordering with
respect to invalidations caused by slbie, slbia,
and tlbiel instructions, which affect only the
thread executing them.

Programming Note

For instructions following a ptesync instruction, the
memory barrier need not order implicit storage
accesses for purposes of address translation and
reference and change recording.

The functions performed by the ptesync instruction
may take a significant amount of time to complete,
so this form of the instruction should be used only if
the functions listed above are needed. Otherwise
sync with L=0 should be used (or sync with L=1 or
with SC≠0, or eieio, or sync with L=4 or L=5 if
appropriate).

Section 6.10, “Translation Table Update Synchroni-
zation Requirements” on page 1241 gives exam-
ples of uses of ptesync.

Programming Note
Chapter 6. Storage Control 1219

Version 3.1
For performance reasons, most implementations also
cache other information that is used in address transla-
tion. These caches may include: a Translation Loo-
kaside Buffer (TLB) which is a cache of recently used
Page Table Entries (PTEs); a cache of recently used
translations of effective addresses to real addresses; a
Page Walk Cache for Radix Tree translation; caching of
the In-Memory Tables; or any combination of these.
Lookaside information, including the SLB, is managed
using the instructions described in the subsections of
this section unless additional requirements are pro-
vided in implementation-specific documentation.

To simplify lookaside buffer management, hardware will
only perform speculative translation for the context that
is executing, in particular using the current effective val-
ues of LPID and PID. Except when LPIDR=0, no trans-
lations will be created and cached speculatively when
HR=0 and MSRHV=1. Furthermore, no translations will
be created and cached speculatively in hypervisor or
ultravisor real addressing mode. The limitation of
speculative behavior in these situations is to cache a
PATE when LPIDR is loaded and a PRTE when PIDR
is loaded.

Lookaside information derived from PTEs is not neces-
sarily kept consistent with the Page Table. When soft-
ware alters the contents of a PTE, in general it must
also invalidate all corresponding TLB entries and imple-
mentation-specific lookaside information; exceptions to
this rule are described in Section 6.10.1.2.

The effects of the slbie, slbieg, slbia, slbiag, and TLB
Management instructions on address translations, as
specified in Sections 6.9.3.2 for the SLB and
6.9.3.3 for the TLB, Page Walk Cache, and In-Mem-
ory Table caches, apply to all implementation-specific
lookaside information that is used in address transla-
tion. Unless otherwise stated or obvious from context,
references to SLB entry invalidation and TLB entry
invalidation elsewhere in the Books apply also to invali-
dation of Page Walk Cache content, In-Memory Table
cache content, and all implementation-specific loo-
kaside information that is derived from SLB entries and
PTEs, respectively.

All implementations provide a means by which software
can invalidate all implementation-specific lookaside
information that is derived from PTEs.

Implementation-specific lookaside information that con-
tains translations of effective addresses to real
addresses may include “translations” that apply in real
addressing mode. Because such “translations” are
affected by the contents of the LPCR, HRMOR, and
URMOR, when software alters the (relevant) contents
of these registers it must also invalidate the corre-
sponding implementation-specific lookaside informa-
tion. Software can invalidate all such lookaside
information by using the slbia instruction with
IH=0b000. However, performance is likely to be better if
other, appropriate, IH values are used to limit the
amount of lookaside information that is invalidated.

All implementations that have such lookaside informa-
tion provide a means by which software can invalidate
all such lookaside information.

For simplicity, elsewhere in the Books it is assumed
that the TLB exists.

6.9.3.1 Thread-Specific Segment
Translations
It is necessary to provide thread-specific temporary
ESID to VSID translations. These translations cannot
be placed in valid entries in the Segment Table
because the Segment Table has a process scope
rather than a thread scope. Instead, software will use
slbmte to install such translations in the SLB. All SLB
entries created using slbmte are considered to be
“software created.” Software created entries will only
translate accesses from the hardware thread by which
they are installed. When LPCRUPRT=1, they are also
considered to be “bolted.” Each thread has the ability
to bolt four entries.

6.9.3.2 SLB Management Instructions
The only functionality described in this section that is
relevant to Radix Tree translation is the use of slbia to
invalidate implementation-specific lookaside informa-

Speculative Segment Table walks are prohibited
when MSRHV=1 and LPIDR≠0 because adjunct
translations are thread-specific and bolted.

Speculative Segment Table walks are allowed
when MSRHV=1 and LPIDR=0 to improve perfor-
mance for "bare metal" operating systems (operat-
ing systems that run in hypervisor state). Bare
metal operating systems would use LPIDR=0.

Programming Note

Because the instructions used to manage TLBs,
SLBs, Page Walk Caches, caches of Partition and
Process Table Entries, and implementation-specific
lookaside information may be changed in a future
version of the architecture, it is recommended that
software “encapsulate” their use into subroutines.

The function of all the instructions described in
Sections 6.9.3.2 - 6.9.3.3 is independent of
whether address translation is enabled or disabled.

For a discussion of software synchronization
requirements when invalidating SLB and TLB
entries, see Chapter 12.

Programming Note

Programming Note
Power ISA™ III1220

Version 3.1
tion. The results of executing any other instruction in
this section when HR=1 are boundedly undefined.

Software establishes translations in the SLB using slb-
mte. Care must be taken to avoid creating multiple
effective-to-virtual translations for any given effective
address. Software-created entries will remain in the
SLB until invalidated using slbie or slbia (which also
invalidate related implementation-specific lookaside
information) or overwritten using slbmte. After updat-
ing a Segment Table Entry, software must use an slbie
or slbieg instruction to remove lookaside information
associated with the old contents of the entry. slbie
may be used to invalidate software-created entries, but
will not invalidate outboard translation caches. slbieg
does not invalidate software-created entries, but,
together with slbiag, is the only way to invalidate out-
board translation caches. When taking a PID or LPID
out of service with the intent of reusing it, software
should use slbiag to remove stale translations from
SLBs and ERATs in the “nest.” (Nest refers to the plat-
form external to the processor cores. Here the refer-
ence is to translations cached for use by accelerators.)
slbsync will establish order between slbieg and slbiag
instructions and a subsequent ptesync. ptesync must
also be used to synchronize the Segment Table update
prior to performing the lookaside management. When
performing a context switch, software must use an
slbia instruction to remove lookaside information asso-
ciated with the old context. slbmfee and slbmfev may
be used by the hypervisor to save software-created
entries. slbmte is used to restore software-created
entries. slbfee has no function when LPCRUPRT=1 for
the partition that is running.

SLB Invalidate Entry X-form

slbie RB

ea0:35  (RB)0:35
if, for SLB entry that translates
 or most recently translated ea,
 entry_class = (RB)36 and
 entry_seg_size = size specified in (RB)37:38
then for SLB entry (if any) that translates ea
 SLBEV  0
 all other fields of SLBE  undefined
else
 s  log_base_2(entry_seg_size)
 esid  (RB)0:63-s
 u  undefined 1-bit value
 if u then

 if an SLB entry translates esid
 SLBEV  0
 all other fields of SLBE  undefined

The operation performed by this instruction is based on
the contents of register RB. The contents of this regis-
ter shown below.

RB

RS0:31 PID
RS32:63 LPID
RB0:35 ESID
RB36 Class
RB37:38 B
RB39:63 must be 0b0 || 0x000000

Let the Effective Address (EA) be any EA for which
EA0:35 = (RB)0:35. Let the class be (RB)36. Let the
segment size be equal to the segment size specified in
(RB)37:38; the allowed values of (RB)37:38, and the cor-
respondence between the values and the segment
size, are the same as for the B field in the SLBE (see
Figure 28 on page 1191).

The class value and segment size must be the same as
the class value and segment size in the SLB entry that
translates the EA, or the values that were in the SLB
entry that most recently translated the EA if the transla-
tion is no longer in the SLB; if these values are not the
same, it is implementation-dependent whether the SLB
entry (or implementation-dependent translation infor-
mation) that translates the EA is invalidated, and the
next paragraph need not apply.

If the SLB contains only a single entry that translates
the EA, then that is the only SLB entry that is invali-
dated, except that it is implementation-dependent
whether an implementation-specific lookaside entry for

Accesses to a given SLB entry caused by the
instructions described in this section obey the
sequential execution model with respect to the con-
tents of the entry and with respect to data depen-
dencies on those contents. That is, if an instruction
sequence contains two or more of these instruc-
tions, when the sequence has completed, the final
contents of the SLB entry and of General Purpose
Registers is as if the instructions had been exe-
cuted in program order.

However, software synchronization is required in
order to ensure that any alterations of the entry
take effect correctly with respect to address trans-
lation; see Chapter 12.

Programming Note

31 /// /// RB 434 /
0 6 11 16 21 31

ESID C B 0s
0 36 37 39 63
Chapter 6. Storage Control 1221

Version 3.1
a real mode address “translation” is invalidated. If the
SLB contains more than one such entry, then zero or
more such entries are invalidated, and similarly for any
implementation-specific lookaside information used in
address translation; additionally, a machine check may
occur.

SLB entries are invalidated by setting the V bit in the
entry to 0, and the remaining fields of the entry are set
to undefined values.

This instruction terminates any Segment Table walks
being performed on behalf of the thread that executes
it.

The hardware ignores the contents of RB listed below
and software must set them to 0s.

- (RB)37
- (RB)39
- (RB)40:63
- If s = 40, (RB)24:35

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros.

This instruction is privileged.

Special Registers Altered:
None

SLB Invalidate Entry Global X-form

slbieg RS,RB

slbie does not affect SLBs on other threads.
Programming Note

The reason the class value specified by slbie must
be the same as the Class value that is or was in the
relevant SLB entry is that the hardware may use
these values to optimize invalidation of implemen-
tation-specific lookaside information used in
address translation. If the value specified by slbie
differs from the value that is or was in the relevant
SLB entry, these optimizations may produce incor-
rect results. (An example of implementation-spe-
cific address translation lookaside information is
the set of recently used translations of effective
addresses to real addresses that some implemen-
tations maintain in an Effective to Real Address
Translation (ERAT) lookaside buffer.) Note that
Radix Tree translations have no defined Class
value, so frequent translation mode transitions may
perform poorly under these optimizations.

When switching tasks in certain cases, it may be
advantageous to preserve some implementa-
tion-specific lookaside entries while invalidating
others. The slbia instruction specifying IH value
0b001 or 0b011 can be used for this purpose if SLB
class values are appropriately assigned, i.e., a
class value of 0 indicates that the entry should be
preserved and a class value of 1 indicates the entry
must be invalidated. Also, it is advantageous to
assign a class value of 1 to entries that need to be
invalidated via an slbie instruction while preserving
implementation-specific lookaside entries that are
derived from real mode address "translation," SLS
address translation, or translations required to
access the Segment Table Entry Group, since such
entries are assigned a class value of 0.

The B value in register RB may be needed for
invalidating ERAT entries corresponding to the
translation being invalidated.

When switching to execute an adjunct, a hypervisor
will disable translation and use slbie to be sure
there is no SLB entry mapping the effective
address space that will be used by the incoming
adjunct. It will then bolt an entry for the incoming
adjunct and transfer control to that adjunct. While
the thread is in hypervisor real addressing mode
and during adjunct execution, no speculative Seg-
ment Table walks will be performed.

Programming Note

Programming Note

Programming Note

31 RS /// RB 466 /
0 6 11 16 21 31
Power ISA™ III1222

Version 3.1
target_PID = RS0:31
if MSRHV=1 then target_LPID = RS32:63
else target_LPID = LPIDR
ea0:35  (RB)0:35
for each thread with LPIDR=target_LPID and
 PIDR=target_PID
 if, for each SLB entry that
 translates or most recently translated ea
 entry_class = (RB)36 and
 entry_seg_size = size specified in (RB)37:38
 then for SLB entry (if any)
 that translates ea and is not software-created
 SLBEV  0
 all other fields of SLBE undefined
 else
 s  log_base_2(entry_seg_size)
 esid  (RB)0:63-s
 u  undefined 1-bit value
 if u then

 if an SLB entry translates esid and the entry
 is not software-created
 SLBEV  0
 all other fields of SLBE undefined

The operation performed by this instruction is based on
the contents of registers RS and RB. The contents of
these registers are shown below.

RS

RB

RS0:31 PID
RS32:63 LPID
RB0:35 ESID
RB36 Class
RB37:38 B
RB39:63 must be 0b0 || 0x000000

Let the target PID be RS0:31. If the instruction is exe-
cuted in hypervisor state, let the target LPID be
RS32:63; otherwise let the target LPID be the contents
of LPIDR. Let the Effective Address (EA) be any EA for
which EA0:35 = (RB)0:35. Let the class be (RB)36. Let
the segment size be equal to the segment size speci-
fied in (RB)37:38; the allowed values of (RB)37:38, and
the correspondence between the values and the seg-
ment size, are the same as for the B field in the SLBE
(see Figure 28 on page 1191).

Only SLBs for threads running on behalf of target_LPID
and target_PID are searched. Software-created entries
are not invalidated. The class value and segment size
must be the same as the class value and segment size
in the SLB entry that translates the EA, or the values
that were in the SLB entry that most recently translated

the EA if the translation is no longer in the SLB; if these
values are not the same, it is implementation-depen-
dent whether the SLB entry (or implementation-depen-
dent translation information) that translates the EA is
invalidated, and the next paragraph need not apply.

If the SLB contains only a single entry that translates
the EA, then that is the only SLB entry that is invali-
dated, except that it is implementation-dependent
whether an implementation-specific lookaside entry for
a real mode address “translation” is invalidated. If the
SLB contains more than one such entry, then zero or
more such entries are invalidated, and similarly for any
implementation-specific lookaside information used in
address translation; additionally, a machine check may
occur.

SLB entries are invalidated by setting the V bit in the
entry to 0, and the remaining fields of the entry are set
to undefined values.

The hardware ignores the contents of RB listed below
and software must set them to 0s.

- (RB)37
- (RB)39
- (RB)40:63
- If s = 40, (RB)24:35

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros.

The operation performed by this instruction is ordered
by the eieio (or [p]hwsync or ptesync) instruction with
respect to a subsequent slbsync instruction executed
by the thread executing the slbieg instruction. The
operations caused by slbieg and slbsync are ordered
by eieio as a fifth set of operations, which is indepen-
dent of the other four sets that eieio orders.

This instruction is privileged except when
LPCRGTSE=0, making it hypervisor privileged.

Special Registers Altered:
None

PID LPID
0 32 63

ESID C B 0s
0 36 37 39 63

slbieg does affect SLBs on other threads.
Programming Note
Chapter 6. Storage Control 1223

Version 3.1

SLB Invalidate All X-form

slbia IH

switch (IH)
 case (0b000, 0b001, 0b010, 0b110):

 for each SLB entry except SLB entry 0
 SLBEV  0
 all other fields of SLBE  undefined
 case (0b011):
 for each SLB entry such that SLBEClass = 1
 SLBEV  0
 all other fields of SLBE  undefined
 case (0b100):
 for each SLB entry
 SLBEV  0
 all other fields of SLBE  undefined
 case (0b111):

slbia invalidates the contents of the SLB, and of imple-
mentation-specific lookaside information for effective to
real address translations, based on the contents of the
IH field as described below. SLB entries are invali-
dated by setting the V bit in the entry to 0. When an
SLB entry is invalidated, the remaining fields of the
entry are set to undefined values.

In the description of the IH values, “implementa-
tion-specific lookaside information” is shorthand for
“implementation-specific lookaside information for
effective to real address translations,” and “when
address translation was enabled” is shorthand for
“when MSRIR was equal to 1 or MSRDR was equal to 1,
as appropriate for the type of access,” and correspond-
ingly for “when address translation was disabled.” The
descriptions specify which entries must be invalidated;
additional entries may be invalidated except where the
description states that certain SLB entries are not inval-
idated.

0b000 All SLB entries except entry 0 are invalidated;
SLB entry 0 is not invalidated.
All implementation-specific lookaside informa-
tion is invalidated.

0b001 All SLB entries except entry 0 are invalidated;
SLB entry 0 is not invalidated.
All implementation-specific lookaside informa-
tion that was created when address transla-
tion was enabled and satisfies either of the
following conditions is invalidated.
 The information is for an SLB-derived

translation and has a Class value of 1.
 The information is for a Radix

Tree-derived translation for which
effPID≠0.

0b010 All SLB entries except entry 0 are invalidated;
SLB entry 0 is not invalidated.
All implementation-specific lookaside informa-
tion that was created when address transla-
tion was enabled is invalidated.

0b011 All SLB entries having a Class value of 1 are
invalidated; SLB entry 0 is not invalidated if it
has a Class value of 0.
All implementation-specific lookaside informa-
tion that was created when address transla-
tion was enabled and satisfies either of the
following conditions is invalidated.

The reason the class value specified by slbieg
must be the same as the Class value that is or was
in the relevant SLB entry is that the hardware may
use these values to optimize invalidation of imple-
mentation-specific lookaside information used in
address translation. If the value specified by slbieg
differs from the value that is or was in the relevant
SLB entry, these optimizations may produce incor-
rect results. (An example of implementation-spe-
cific address translation lookaside information is
the set of recently used translations of effective
addresses to real addresses that some implemen-
tations maintain in an Effective to Real Address
Translation (ERAT) lookaside buffer.) Note that
Radix Tree translations have no defined Class
value, so frequent translation mode transitions may
perform poorly under these optimizations.

When switching tasks in certain cases, it may be
advantageous to preserve some implementa-
tion-specific lookaside entries while invalidating
others. The slbia instruction specifying IH value
0b001 or 0b011 can be used for this purpose if SLB
class values are appropriately assigned, i.e., a
class value of 0 indicates that the entry should be
preserved and a class value of 1 indicates the entry
must be invalidated. Also, it is advantageous to
assign a class value of 1 to entries that need to be
invalidated via an slbieg instruction while preserv-
ing implementation-specific lookaside entries that
are derived from real mode address "translation,"
SLS address translation, or translations required to
access the Segment Table Entry Group, since such
entries are assigned a class value of 0.

The B value in register RB may be needed for
invalidating ERAT entries corresponding to the
translation being invalidated.

Use of slbieg to invalidate software-created seg-
ment descriptors is a programming error. The
architecture requires that bolted entries not be
invalidated by the instruction.

31 // IH /// /// 498 /
0 6 8 11 16 21 31

Programming Note

Programming Note

Programming Note
Power ISA™ III1224

Version 3.1
 The information is for an SLB-derived
translation and has a Class value of 1.

 The information is for a Radix
Tree-derived translation for which
effPID≠0.

0b100 All SLB entries are invalidated.
All implementation-specific lookaside informa-
tion is invalidated.

0b110 All SLB entries except entry 0 are invalidated;
SLB entry 0 is not invalidated.
All implementation-specific lookaside informa-
tion that satisfies any of the following condi-
tions is invalidated.
 The information is for an SLB-derived

or SLS translation.
 The information is for a Radix

Tree-derived translation for which
effLPID≠0 or effPID≠0.

 The information was created when
address translation was disabled and
MSRHV PR was equal to 0b00.

0b111 No SLB entries are invalidated.
All implementation-specific lookaside informa-
tion is invalidated.

All other IH values are reserved. If the IH field contains
a reserved value, the set of SLB entries and implemen-
tation-specific lookaside information that is invalidated
by the instruction is undefined.

When IH=0b000, 0b100, or 0b111, execution of this
instruction has the side effect of clearing the storage
access history associated with the Hypervisor Real
Mode Storage Control facility. See Section 6.7.3.2.1,
“Hypervisor Real Mode Storage Control” for more
details.

This instruction terminates any Segment Table walks
being performed on behalf of the thread that executes
it, and ensures that any new table walks will be per-
formed using the current PIDR value.

This instruction is privileged.

Special Registers Altered:
None

 In the preceding description, “SLB-derived transla-
tion” excludes any SLS translation, since SLS
translation does not use segmentation.

Programming Note

When performing a context switch between pro-
cesses, an HPT operating system will use mtPIDR
followed by slbia. The synchronization of the PID
value and termination of outstanding Segment
Table walks ensures that SLB will not contain multi-
ple entries mapping the same EA range (i.e. from
the former and new PIDs). Note that if this
sequence is performed with translation enabled,
care must be taken to avoid an implicit branch. (i.e.
the same translation(s) for the locations containing
the context switch routine must be valid for both
processes.)

For the corresponding situation when changing
partitions from or to a partition using HPT transla-
tion, hypervisor software should get all the affected
threads into real mode, execute mtLPIDR, and
then perform the slbia on all the affected threads.
(If the affected threads were not in real mode,
avoiding implicit branches due to the mtLPIDR
would be very difficult.)

slbia does not affect SLBs on other threads.

If slbia is executed when instruction address trans-
lation is enabled, software can ensure that attempt-
ing to fetch the instruction following the slbia does
not cause an Instruction Segment interrupt by plac-
ing the slbia and the subsequent instruction in the
effective segment mapped by SLB entry 0. (The
preceding assumes that no other interrupts occur
between executing the slbia and executing the
subsequent instruction. It also assumes that IH
values other than 0b011 and 0b100 are used.)

Programming Note

Programming Note

Programming Note
Chapter 6. Storage Control 1225

Version 3.1
 SLB Invalidate All Global X-form

slbiag RS, L

if L=0 then target_PID = RS0:31
if MSRHV=1 then target_LPID = RS32:63
else target_LPID = LPIDR
for each nest SLB
 for each SLBE with LPID=target_LPID and
 (PID=target_PID | L=1)
 SLBEV  0
 all other fields of SLBE undefined

The operation performed by this instruction is based on
the contents of register RS. The contents of this regis-
ter is shown below.

RS

RS0:31 PID
RS32:63 LPID

If L=0, let the target PID be RS0:31. If the instruction is
executed in hypervisor state, let the target LPID be
RS32:63; otherwise let the target LPID be the contents
of LPIDR.

All nest SLBs are searched. If L=0, each SLBE for pro-
cess PID in partition LPID is invalidated. If L=1, each
SLBE for partition LPID is invalidated.

SLB entries are invalidated by setting the V bit in the
entry to 0, and the remaining fields of the entry are set
to undefined values.

All implementation specific lookaside information asso-
ciated with SLB-derived translations for the target LPID
|| PID (L=0) or for the target LPID (L=1) is invalidated.
Additional implementation specific lookaside informa-
tion may be invalidated.

The operation performed by this instruction is ordered
by the eieio (or [p]hwsync or ptesync) instruction with
respect to a subsequent slbsync instruction executed
by the thread executing the slbiag instruction. The
operations caused by slbiag and slbsync are ordered
by eieio as a fifth set of operations, which is indepen-
dent of the other four sets that eieio orders.

This instruction is privileged except when
LPCRGTSE=0, making it hypervisor privileged.

Special Registers Altered:
None

Examples of the intended use of the IH values fol-
low.

0b000 This setting should be used by a bare
metal operating system or hypervisor to
make extensive translation changes with
address translation enabled and using
LPCRUPRT=0.

0b001 This setting should be used by an operat-
ing system that uses HPT translation and
manages the Class bit but doesn’t trust its
use to manage the SLB (an extension to
the longer-standing base function that
could have compatibility implications)
when switching tasks. Operating systems
that use Radix Tree translation may also
use this setting.

0b010 This setting should be used by an operat-
ing system that uses HPT translation and
does not manage the Class bit when
switching tasks.

0b011 This setting should be used by an operat-
ing system that uses HPT translation,
manages the Class bit and trusts its use to
manage the SLB when switching tasks.
Operating systems that use Radix Tree
translation may also use this setting.

0b100 This setting should be used by a bare
metal operating system or hypervisor to
make extensive translation changes with
address translation disabled or using
LPCRUPRT=1.

0b110 This setting should be used by the hyper-
visor when switching partitions when
LPCRUPRT=0 and address translation is
enabled.

0b111 This setting is provided mainly for use
prior to product shipment, but may provide
benefit in an environment that uses Radix
Tree translation if SLB invalidation is
much slower than ERAT invalidation.

slbia serves as both a basic and an extended mne-
monic. The Assembler will recognize an slbia mne-
monic with one operand as the basic form, and an
slbia mnemonic with no operand as the extended
form. In the extended form the IH operand is omit-
ted and assumed to be 0.

Programming Note

Programming Note

31 RS /// L /// 850 /
0 6 11 15 16 21 31

PID LPID
0 32 63
Power ISA™ III1226

Version 3.1

SLB Move To Entry X-form

slbmte RS,RB

When LPCRUPRT=0, this instruction is the sole means
for specifying Segment translations to the hardware.
When LPCRUPRT=1, Segment Table walks populate
the SLB, and this instruction is used only to bolt
thread-specific Segment translations.

The SLB entry specified by bits 52:63 of register RB is
loaded from register RS and from the remainder of reg-
ister RB. The contents of these registers are interpreted
as shown in Figure 49.

RS

RB

RS0:1 B
RS2:51 VSID
RS52 Ks
RS53 Kp
RS54 N
RS55 L
RS56 C
RS57 must be 0b0
RS58:59 LP
RS60:63 must be 0b0000
RB0:35 ESID
RB36 V
RB37:51 must be 0b000 || 0x000
RB52:63 index, which selects the SLB entry

Figure 49. GPR contents for slbmte

On implementations that support a virtual address size
of only n bits, n<78, (RS)2:79-n must be zeros.

When LPCRUPRT=1, the value of index must not
exceed 3. (RB)52:61 are ignored.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RS and RB listed
below and software must set them to 0s.

- (RS)57
- (RS)60:63
- (RB)37:51

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range 0:15).

slbiag does not affect SLBs on processor threads.

“g” (Global) in the name of the instruction reflects
the fact that a future version of the architecture may
extend the definition of slbiag to allow programs to
specify additional sets of SLBs that the instruction
affects, possibly including SLBs on processor
threads.

slbiag serves as both a basic and an extended
mnemonic. The Assembler will recognize an
slbiag mnemonic with two operands as the basic
form, and an slbiag mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

Programming Note

Programming Note

31 RS /// RB 402 /
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60 63

ESID V 0s index
0 36 37 52 63
Chapter 6. Storage Control 1227

Version 3.1
This instruction must not be used to load a segment
descriptor that is in the Segment Table when
LPCRUPRT=1, and cannot be used to invalidate the
translation contained in an SLB entry.

This instruction is privileged.

Special Registers Altered:
None

SLB Move From Entry VSID X-form

slbmfev RT,RB

This instruction is used to read software-loaded SLB
entries. When LPCRUPRT=0, the entry is specified by
bits 52:63 of register RB. When LPCRUPRT=1, only the
first four entries can be read, so bits 52:61 of register
RB are ignored. If the specified entry is valid (V=1), the
contents of the B, VSID, Ks, Kp, N, L, C, and LP fields
of the entry are placed into register RT. The contents of
these registers are interpreted as shown in Figure 50.

RT

RB

RT0:1 B
RT2:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57 set to 0b0
RT58:59 LP
RT60:63 set to 0b0000

RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 50. GPR contents for slbmfev

On implementations that support a virtual address size
of only n bits, n<78, RT2:79-n are set to zeros.

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RB0:51.

This instruction is privileged.

The use of the L field is implementation specific.

Special Registers Altered:
None

The reason slbmte must not be used to load seg-
ment descriptors that are in the Segment Table is
that there could be a race condition with hardware
loading the same segment descriptor, resulting in
duplicate SLB entries. Software must not allow
duplicate SLB entries to be created; see
Section 6.7.8.2, “SLB Search”.

The reason slbmte cannot be used to invalidate an
SLB entry is that it does not necessarily affect
implementation-specific address translation loo-
kaside information. slbie (or slbia) must be used
for this purpose.

Programming Note

31 RT /// L RB 851 /
0 6 11 15 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60 63

0s index
0 52 63
Power ISA™ III1228

Version 3.1
SLB Move From Entry ESID X-form

slbmfee RT,RB

This instruction is used to read software-loaded SLB
entries. When LPCRUPRT=0, the entry is specified by
bits 52:63 of register RB. When LPCRUPRT=1, only the
first four entries can be read, so bits 52:61 of register
RB are ignored. If the specified entry is valid (V=1), the
contents of the ESID and V fields of the entry are
placed into register RT. If LPCRUPRT=1, the value of
the BO field of the entry is also placed into register RT.
The contents of these registers are interpreted as
shown in Figure 51.

RT

RB

RT0:35 ESID
RT36 V
RT37 BO, entry is bolted
RT38:63 set to 0b000 || 0x00_0000
RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 51. GPR contents for slbmfee

If the SLB entry specified by bits 52:63 of register RB is
invalid (V=0), the contents of register RT are set to 0.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

The hardware ignores the contents of RB0:51.

This instruction is privileged.

The use of the L field is implementation specific.

Special Registers Altered:
None

SLB Find Entry ESID X-form

slbfee. RT,RB

The SLB is searched for an entry that matches the
effective address specified by register RB. When
LPCRUPRT=1, this instruction is nonfunctional. The
search is performed as if it were being performed for
purposes of address translation. That is, in order for a
given entry to satisfy the search, the entry must be
valid (V=1), and (RB)0:63-s must equal
SLBE[ESID0:63-s] (where 2s is the segment size
selected by the B field in the entry).If exactly one
matching entry is found, the contents of the B, VSID,
Ks, Kp, N, L, C, and LP fields of the entry are placed
into register RT. If no matching entry is found, register
RT is set to 0. If more than one matching entry is found,
either one of the matching entries is used, as if it were
the only matching entry, or a Machine Check occurs. If
a Machine Check occurs, register RT, and CR Field 0
are set to undefined values, and the description below
of how this register and this field is set does not apply.

The contents of registers RT and RB are interpreted as
shown in Figure 52.

RT

RB

RT0:1 B
RT2:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57 set to 0b0
RT58:59 LP
RT60:63 set to 0b0000
RB0:35 ESID
RB36:39 must be 0b0000
RB40:63 must be 0x000000

Figure 52. GPR contents for slbfee.

If s > 28, RT80-s:51 are set to zeros. On implementa-
tions that support a virtual address size of only n bits, n
< 78, RT2:79-n are set to zeros.

CR Field 0 is set as follows. j is a 1-bit value that is
equal to 0b1 if a matching entry was found. Otherwise, j
is 0b0. When LPCRUPRT≠0, j=0b0.

31 RT /// L RB 915 /
0 6 11 15 16 21 31

ESID V BO 0s
0 36 37 38 63

0s index
0 52 63

31 RT /// RB 979 1
0 6 11 16 21 31

B VSID KsKpNLC 0 LP 0s
0 2 52 57 58 60 63

ESID 0000 0s
0 36 40 63
Chapter 6. Storage Control 1229

Version 3.1
CR0LT GT EQ SO = 0b00 || j || XERSO

The hardware ignores the contents of RB36:38 40:63.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range
0-15).

This instruction is privileged.

Special Registers Altered:
CR0

SLB Synchronize X-form

slbsync

The slbsync instruction provides an ordering function
for the effects of all slbieg and slbiag instructions exe-
cuted by the thread executing the slbsync instruction,
with respect to the memory barrier created by a subse-
quent ptesync instruction executed by the same
thread. Executing a slbsync instruction ensures that all
of the following will occur.

 All SLB invalidations caused by slbieg and slbiag
instructions preceding the slbsync instruction will
have completed on any other thread before any
data accesses caused by instructions following the
ptesync instruction are performed with respect to
that thread.

 All storage accesses by other threads for which
the address was translated using the translations
being invalidated will have been performed with
respect to the thread executing the ptesync
instruction, to the extent required by the associ-
ated Memory Coherence Required attributes,
before the ptesync instruction’s memory barrier is
created.

The operation performed by this instruction is ordered
by the eieio (or [p]hwsync or ptesync) instruction with
respect to preceding slbieg and slbiag instructions
executed by the thread executing the slbsync instruc-
tion. The operations caused by slbieg or slbiag and
slbsync are ordered by eieio as a fifth set of opera-
tions, which is independent of the other four sets that
eieio orders.
The slbsync instruction may complete before opera-
tions caused by slbieg or slbiag instructions preceding
the slbsync instruction have been performed.

This instruction is privileged except when
LPCRGTSE=0, making it hypervisor privileged.

See Section 6.10 for a description of other require-
ments associated with the use of this instruction.

Special Registers Altered:
None

When LPCRUPRT=0, the hypervisor can use slbfee
to save the contents of any SLBE that the partition
has created to map an ESID that is needed by an
adjunct, and later use the saved contents to restore
the partition-created SLBE after the adjunct has
completed execution. The hypervisor must also
use slbie, twice, first to invalidate the partition-cre-
ated mapping and later to invalidate the adjunct’s
mapping.

When LPCRUPRT=1, the partition’s SLBE will be
restored from the Segment Table by hardware, on
demand, after the second slbie has been exe-
cuted. There is no need for the hypervisor to save
and restore the partition’s SLBE and hence no
need to use slbfee.

When the need for LPCRUPRT=0 has ended,
slbfee may be removed from the architecture. Pro-
grams that run with LPCRUPRT=1 should not use
slbfee.

Programming Note

31 /// /// /// 338 /
0 6 11 16 21 31

slbsync should not be used to synchronize the
completion of slbie.

Programming Note
Power ISA™ III1230

Version 3.1
6.9.3.3 TLB Management Instructions
In addition to managing the TLB, tlbie and tlbiel are
also used to manage the Page Walk Cache, In-Memory
Table caching, and implementation-specific lookaside
information that depends on the values of the PTEs.
The parameters described below specify the type of
translations to invalidate and the scope of the invalida-
tion to be performed.

Radix Invalidation Control (RIC) specifies whether to
invalidate the TLB, the Page Walk Cache, or both
together with partition and Process Table caching.
The RIC values and functions are as follows.

0 Just invalidate TLB.

1 Invalidate just Page Walk Cache.

2 Invalidate TLB, Page Walk Cache, and any
caching of Partition and Process Table Entries.

3 Invalidate a group of translations (just in the
TLB).

Process Scoped (PRS) specifies whether the transla-
tion(s) to be invalidated are partition scoped or process
scoped including, for RIC=2, whether process or Parti-
tion Table caching is being invalidated.

0 Invalidate partition-scoped translation(s).

1 Invalidate process-scoped translations.

Radix (R) specifies whether the translations to be inval-
idated are Radix Tree translations or HPT translations.
If the R value is incorrect for the target partition, the
results of the operation are boundedly undefined. (R is
ignored for invalidates with IS=3 and MSRHV=1
because they have the potential to target translations
for multiple partitions.)

0 Invalidate HPT translation(s).

1 Invalidate Radix Tree translations.

Invalidation Selector (IS) (found in RB) specifies the
scope of the context to be invalidated.

0 Invalidate just the target VA.

1 Invalidate matching PID.

2 Invalidate matching LPID.

3 If MSRHV=1, invalidate all entries, otherwise
invalidate matching LPID.

The IS≠0 RIC=2 variants of tlbie and tlbiel perform the
same TLB invalidations as the corresponding RIC=0
variants, but in addition invalidate Page Walk Cache
Entries and partition or Process Table caching associ-
ated with the specified LPID or LPID/PID. When RIC=1
and IS≠0, the Page Walk Cache Entries for the speci-
fied LPID or LPID/PID are invalidated while leaving the
corresponding TLB entries intact. The ability to target
an individual Page Walk Cache Entry or the set of

entries associated with a given Page Table Entry (i.e.
IS=0 for RIC=1 or RIC=2) is not supported by the
Power ISA. When RIC=3 and IS=0, tlbie invalidates a
series of consecutive translations for HPT translation.
For IS=0 invalidations of Radix Tree translations, the
use of tlbie[l] is limited to translations for quadrant 0.

When reassigning an LPID or PID, after updating the
Partition and/or Process Table(s) software must use a
tlbie instruction to remove lookaside information asso-
ciated with the old parition or process.

To invalidate TLB entries, software must supply an
effective page number for process-scoped Radix Tree
translations, a guest real page number for parti-
tion-scoped Radix Tree translations, and an abbrevi-
ated virtual page number for HPT translations. The
RTL, RB illustration, and verbal description for R=1
require the reader to make the appropriate mental sub-
stitution for partition-scoped invalidation. Note also that
where page size is specified to be a function of L and
AP, it may also be a function of L and LP. The architec-
ture allows for three independent sets of page sizes,
one for R=1, one for RIC=3 (requires R=0), and one for
all other cases. An implementation may choose to
have a single set of encodings work consistenty
between any two or all three states.

TLB Invalidate Entry X-form

tlbie RB,RS,RIC,PRS,R

IS  (RB)52:53
if MSRHV=1 then search_LPID=RS32:63
else search_LPID=LPIDRLPID
switch(IS)
 case (0b00):
 If RIC=0
 if R=0 then
 L  (RB)63
 if L = 0
 then
 base_pg_size = 4K
 actual_pg_size =
 page size specified in (RB)56:58
 i = 51
 else
 base_pg_size =
 base page size specified in (RB)44:51
 actual_pg_size =
 actual page size specified in (RB)44:51
 b  log_base_2(base_pg_size)
 p  log_base_2(actual_pg_size)
 i = max(min(43,63-b),63-p)
 sg_size segment size specified in (RB)54:55
 for each thread
 for each TLB entry
 if (entry_VA14:i+14 = (RB)0:i) &
 (entry_sg_size = sg_size) &

31 RS / RIC PRS R RB 306 /
0 6 11 12 14 15 16 21 31
Chapter 6. Storage Control 1231

Version 3.1
 (entry_base_pg_size = base_pg_size) &
 (entry_actual_pg_size =
 actual_pg_size) &
 (entry_LPID = search_LPID) &
 (entry_process_scoped = 0)
 then
 if ((L = 0)|(b ≥ 20)) then
 TLB entry  invalid
 else
 if (entry_VA58:77-b = (RB)56:75-b) then
 TLB entry  invalid
 else
 actual_pg_size =
 page size specified in (RB)56:58
 p  log_base_2(actual_pg_size)
 i = 63-p
 for each thread
 for each TLB entry
 if (entry_EA0:i = (RB)0:i) &
 (entry_actual_pg_size =
 actual_pg_size) &
 (entry_LPID = search_LPID) &
 (entry_process_scoped = PRS) &
 ((PRS = 0) |
 (entry_PID = (RS)0:31))
 then
 TLB entry  invalid
 else if RIC=3 then
 sg_size  segment size specified in (RB)54:55
 pg_size  f(GS)
 number_of_pgs  g(GS)
 p  log_base_2(pg_size)
 n  log_base_2(number_of_pgs)
 i  63-p
 va14:14+i  (RB)0:i-n ||

n0
 do j=n0 to n1 # j=0 to 2n-1, in binary
 for each thread
 for each TLB entry
 if (entry_VA14:14+i = (va14:14+i+j) &
 (entry_sg_size = sg_size) &
 (entry_base_pg_size = pg_size) &
 (entry_actual_pg_size = pg_size) &
 (entry_LPID = search_LPID) &
 (entry_process_scoped = 0)
 then TLB entry  invalid
 case (0b01):
 if RIC=0 | RIC=2 then
 for each TLB entry for each thread
 if (entry_LPID=search_LPID)
 &(entry_PID=RS0:31)
 &(entry_PRS=1)
 then TLB entry  invalid
 if RIC=1 | RIC=2 then
 for each thread
 invalidate process-scoped radix page walk
 caching associated with process RS0:31 in
 partition search_LPID
 if (RIC=2)&(PRS=1) then
 for each thread
 invalidate Process Table caching associated
 with process RS0:31 in partition search_LPID
 case (0b10):
 if RIC=0 | RIC=2 then
 if (PRS=0)&((MSRHV=1)|(R=0)) then
 for each partition-scoped TLB entry for each
 thread

 if entry_LPID=search_LPID
 then TLB entry  invalid
 if PRS=1 then
 for each process-scoped TLB entry for each
 thread
 if entry_LPID=search_LPID
 then TLB entry  invalid
 if RIC=1 | RIC=2 then
 for each thread
 if (PRS=0)&(MSRHV=1) then
 for each thread invalidate partition-
 scoped page walk caching associated with
 partition search_LPID
 if PRS=1 then
 for each thread invalidate process-scoped
 page walk caching associated with
 partition search_LPID
 if RIC=2 then
 if (PRS=0)&(MSRHV=1) then
 for each thread invalidate Partition Table
 caching associated with partition
 search_LPID
 if PRS=1 then
 for each thread invalidate Process Table
 caching associated with partition
 search_LPID
 case (0b11):
 if RIC=0 | RIC=2 then
 if MSRHV then
 for all threads
 if PRS=0 then
 all partition-scoped TLB entries
invalid
 else
 all process-scoped TLB entries invalid
 if (MSRHV=0)&(PRS=1) then
 for each process-scoped TLB entry for each
 thread
 if TLBELPID=search_LPID
 then TLB entry  invalid
 if (MSRHV=0)&(PRS=0)&(R=0) then
 for each partition-scoped TLB entry for
 each thread
 if TLBELPID=search_LPID
 then TLB entry invalid
 if RIC=1 | RIC=2 then
 if MSRHV then
 if PRS=0 then
 for all threads
 invalidate all partition-scoped
 page walk caching
 else
 for all threads
 invalidate all process-scoped
 page walk caching
 if (MSRHV=0) & (PRS=1) then
 for each thread invalidate process-scoped
 page walk caching associated with
 partition search_LPID
 if RIC=2 then
 if MSRHV then
 if PRS=0 then
 for each thread
 invalidate all Partition Table caching
 else
 for each thread
Power ISA™ III1232

Version 3.1
 invalidate all Process Table caching
 if (MSRHV=0) & (PRS=1) then
 for each thread invalidate Process Table
 caching associated with partition
 search_LPID

The operation performed by this instruction is based on
the contents of registers RS and RB. The contents of
these registers are shown below, where IS is (RB)52:53
and L is (RB)63.

RS:

RB for R=1 and IS=0b00:

RB for R=0, IS=0b00, RIC≠3, and L=0:

RB for R=0, IS=0b00, RIC≠3, and L=1:

RB for R=0, IS=0b00, and RIC=3:

RB for IS=0b01, 0b10, or 0b11:

If this instruction is executed in hypervisor state,
RS32:63 contains the partiion ID (LPID) of the partition
for which one or more translations are being invali-
dated. Otherwise, the value in LPIDR is used. The
supported (RS)32:63 values are the same as the LPID
values supported in LPIDR. RS0:31 contains a PID
value. The supported values of RS0:31 are the same as
the PID values supported in PIDR.

The following forms are invalid.
 PRS=1, R=0, and RIC≠2 (The only pro-

cess-scoped HPT caching is of the Process Table.)

 RIC=1 and R=0 (There is no Page Walk Cache for
HPT translation.)

 RIC=3 and R=1 (Group invalidation is only sup-
ported for HPT translation.)

The following forms are treated as if the instruction
form were invalid.
 RIC=1 and IS=0 (The architecture does not sup-

port shootdown of individual translations in the
Page Walk Cache.)

 RIC=2 and IS=0 (RIC is for comprehensive invali-
dation that is not supported at the level of an indi-
vidual page.)

 RIC=3 and IS≠0 (Group invalidation is only sup-
ported for individual pages.)

 PRS=0 and IS=1 (Partition-scoped translations
are not associated with processes.)

 R=0, IS=1, and RIC≠2 (HPT translations are not
associated with processes.)

 R=0, RIC=2, PRS=0, HV=0, and IS=2 or 3 (The
similar cases with RIC=0 allow the HPT OS to
invalidate all of its TLB entries. The only incremen-
tal function of these cases is to invalidate partition
table caching, which the OS is not permitted to do.)

The results of an attempt to invalidate a translation out-
side of quadrant 0 for Radix Tree translation (R=1,
RIC=0, PRS=1, IS=0, and EA0:1≠0b00) are boundedly
undefined.

IS field in RB contains 0b00

If RIC=0, this is a search for a single TLB entry. The
following relationships must be true and tests and
actions are performed to search for an HPT translation.

If the base page size specified by the PTE that was
used to create the TLB entry to be invalidated is 4
KB, the L field in register RB must contain 0.

If the L field in RB contains 0, the base page size is
4 KB and RB56:58 (AP - Actual Page size field)
must be set to the SLBEL||LP encoding for the page
size corresponding to the actual page size speci-
fied by the PTE that was used to create the TLB
entry to be invalidated. Thus, b is equal to 12 and p
is equal to log2 (actual page size specified by
(RB)56:58). The Abbreviated Virtual Address (AVA)
field in register RB must contain bits 14:65 of the
virtual address translated by the TLB entry to be
invalidated. Variable i is equal to 51.

If the L field in RB contains 1, the following rules
apply.
 The base page size and actual page size are

specified in the LP field in register RB, where
the relationship between (RB)44:51 (LP - Large
Page size selector field) and the base page
size and actual page size is the same as the
relationship between PTELP and the base
page size and actual page size (see
Section 6.7.9.1 on page 1195 and Figure 33

PID LPID
0 32 63

Note that although there is no PID compare for par-
tition-scoped translation, software must still place
the PID in RS when IS=0 or 1. It may be used, for
example, in the TLB hash.

EPN IS 0s AP 0s
0 52 54 56 59 63

AVA IS B AP 0s L
0 52 54 56 59 63

AVA LP IS B AVAL L
0 44 52 54 56 63

AVA IS B GS
0 52 54 56 63

0s IS 0s
0 52 54 63

Programming Note
Chapter 6. Storage Control 1233

Version 3.1
on page 1196). Thus, b is equal to log2 (base
page size specified by (RB)44:51) and p is
equal to log2 (actual page size specified by
(RB)44:51). Specifically, (RB)44+c:51 must be
equal to the contents of bits c:7 of the LP field
of the PTE that was used to create the TLB
entry to be invalidated, where c is the number
of “r” bits in the LP field of the PTE that was
used to create the TLB entry to be invalidated.

 Variable i is the larger of (63-p) and the value
that is the smaller of 43 and (63-b). (RB)0:i
must contain bits 14:(i+14) of the virtual
address translated by the TLB to be invali-
dated. If b>20, RB64-b:43 may contain any
value and are ignored by the hardware.

 If b<20, (RB)56:75-b must contain bits 58:77-b
of the virtual address translated by the TLB to
be invalidated, and other bits in (RB)56:62 may
contain any value and are ignored by the
hardware.

 If b≥20, (RB)56:62 (AVAL - Abbreviated Virtual
Address, Lower) may contain any value and
are ignored by the hardware.

Let the segment size be equal to the segment size
specified in (RB)54:55 (B field). The contents of
RB54:55 must be the same as the contents of the B
field of the PTE that was used to create the TLB
entry to be invalidated.

RB52:53 and RB59:62 (when (RB)63 = 0) must con-
tain zeros and are ignored by the hardware.

All TLB entries on all threads that have all of the
following properties are made invalid.
 The entry translates a virtual address for

which all the following are true.
 VA14:14+i is equal to (RB)0:i.
 L=0 or b≥20 or, if L=1 and b<20,

VA58:77-b is equal to (RB)56:75-b.
 The segment size of the entry is the same as

the segment size specified in (RB)54:55.
 Either of the following is true:

 The L field in RB is 0, the base page
size of the entry is 4 KB, and the actual
page size of the entry matches the
actual page size specified in (RB)56:58.

 The L field in RB is 1, the base page
size of the entry matches the base
page size specified in (RB)44:51, and
the actual page size of the entry
matches the actual page size specified
in (RB)44:51.

 The entry is partition scoped.
 TLBELPID = search_LPID.

Additional TLB entries may also be made invalid if
those TLB entries contain an LPID that matches
search_LPID.

The following relationships must be true and tests and
actions are performed to search for a Radix Tree trans-

lation. For a partition-scoped invalidation, references
to the effective address are understood to refer to the
guest real address.

The page size is encoded in RB56:58 (AP - Actual
Page size field). Thus p is equal to log2(page size
specified by RB56:58). The Effective Page Number
(EPN) field in register RB must contain the bits 0:i
of the effective address translated by the TLB entry
to be invalidated. Variable i is equal to 63-p.

The fields shown as zeros must be set to zero and
are ignored by the hardware.

All TLB entries on all threads that have all of the
following properties are made invalid.
 The entry translates an effective address for

which EA0:i is equal to (RB)0:i.
 The page size of the entry matches the page

size specified in (RB)56:58.
 The entry has the appropriate scope (partition

or process).
 The process ID specified in RS matches the

process ID in the TLB entry if not invalidating
a partition-scoped translation.

 TLBELPID matches the partiion ID of the parti-
tion for which the translation is to be invali-
dated.

Additional TLB entries may also be made invalid if
those TLB entries contain an LPID that matches
the partition ID of the partition for which the trans-
lation is to be invalidated.

If RIC=3, then the TLB entries mapping an aligned
sequence of virtual pages are made invalid on all
threads. The number of virtual pages in the sequence,
and their page size (base page size = actual page
size), are provided using an implementation-specific
encoding of the GS field of RB. The number of virtual
pages is a power of two. The abbreviated virtual
address of the beginning of the sequence is provided
by the AVA field of RB with the appropriate number of
low-order bits treated as zero to cause the affected
region of VA space to be aligned at a multiple of its
size. The effect is as if a tlbie instruction with
RIC=PRS=R=0 were executed for each virtual page in
the sequence, using the supplied contents of RS and
RB except using the AVA value corresponding to the
virtual page and using the base and actual page size
provided by GS.

IS field in RB is non-zero

If RIC=0 or RIC=2, all partition-scoped TLB entries
when PRS=0 and either MSRHV=1 or R=0, or all pro-
cess-scoped TLB entries when PRS=1 on all threads
for which any of the following conditions are met for the
entry are made invalid.
 The IS field in RB contains 0b10 or MSRHV=0 and

the IS field contains 0b11, and TLBELPID matches
the partition ID of the partition for which the trans-
lation is to be invalidated.
Power ISA™ III1234

Version 3.1
 The IS field in RB contains 0b01, TLBELPID
matches the partition ID of the partition for which
the translation is to be invalidated, and
TLBEPID=RS0:31.

 The IS field in RB contains 0b11 and MSRHV=1.

If RIC=1 or RIC=2, if the following conditions are met,
the respective partition-scoped contents when PRS=0
and MSRHV=1 or process-scoped contents when
PRS=1 of the page walk cache are invalidated.
 If the IS field in RB contains 0b10 or if IS contains

0b11 and MSRHV=0, for all threads, all prop-
erly-scoped page walk caching associated with the
partition for which the translation is to be invali-
dated is invalidated.

 If the IS field in RB contains 0b11 and MSRHV=1,
the entire properly-scoped page walk caching for
each thread is invalidated.

 If the IS field in RB contains 0b01 (and PRS=1), for
all threads, all properly-scoped page walk caching
associated with process RS0:31 in the partition for
which the translation is to be invalidated is invali-
dated.

If RIC=2, if the following conditions are met, the respec-
tive partition and Process Table caching are invalidated
for all threads.
 If the IS field in RB contains 0b01 and PRS=1, for

all threads, caching of Process Table Entries for
process RS0:31 in the partition for which the trans-
lation is to be invalidated is invalidated.

 If the IS field in RB contains 0b10, MSRHV=1, and
PRS=0, for all threads, caching of Partition Tables
for the partition for which the translation is to be
invalidated is invalidated.

 If the IS field in RB contains 0b10 and PRS=1, for
all threads, caching of Process Tables for the parti-
tion for which the translation is to be invalidated is
invalidated.

 if the IS field in RB contains 0b11, MSRHV=1, and
PRS=0, for all threads, all Partition Table caching
is invalidated.

 if the IS field in RB contains 0b11, MSRHV=1, and
PRS=1, for all theads, all Process Table caching is
invalidated.

 If the IS field in RB contains 0b11, MSRHV=0, and
PRS=1, for all threads, caching of Process Tables
for the partition for which the translation is to be
invalidated is invalidated.

When i>40, RB40:i-1 may contain any value and are
ignored by the hardware.

For all IS values

For all threads, any implementation specific lookaside
information that is based on any TLB entry that would
be invalidated by this instruction will also be invali-
dated.

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

If the value specified in RS0:31, RS32:63, RB54:55 when
R=0, RB56:58 when RB63=0, or RB44:51 when RB63=1
is not supported by the implementation, the instruction
is treated as if the instruction form were invalid.

The operation performed by this instruction is ordered
by the eieio (or [p]hwsync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed
by the thread executing the tlbie instruction. The oper-
ations caused by tlbie and tlbsync are ordered by
eieio as a fourth set of operations, which is indepen-
dent of the other four sets that eieio orders.

This instruction is privileged except when LPCRGTSE=0
or when PRS=0 and HR=1, making it hypervisor privi-
leged.

See Section 6.10, “Translation Table Update Synchro-
nization Requirements” for a description of other
requirements associated with the use of this instruction.

Special Registers Altered:

None

Extended Mnemonics:

Extended mnemonic for tlbie::

Extended: Equivalent to:
tlbie RB,RS tlbie RB,RS,0,0,0

tlbie serves as both a basic and an extended mne-
monic. The Assembler will recognize a tlbie mne-
monic with five operands as the basic form, and a
tlbie mnemonic with two operands as the extended
form. In the extended form the RIC, PRS, and R
operands are omitted and assumed to be 0.

For tlbie[l] instructions in which (RB)63=0, the AP
value in RB is provided to make it easier for the
hardware to locate address translations, in loo-
kaside buffers, corresponding to the address trans-
lation being invalidated.

For tlbie[l] instructions the AP specification is not
binary compatible with versions of the architecture
that precede Version 2.06. As an example, for an
actual page size of 64 KB AP=0b101, whereas
software written for an implementation that com-
plies with a version of the architecture that pre-
cedes V. 2.06 would have AP=100 since AP was a
1 bit value followed by 0s in RB57:58. If binary com-
patibility is important, for a 64 KB page software
can use AP=0b101 on these earlier implementa-
tions since these implementations were required to
ignore RB57:58.

Programming Note

Programming Note
Chapter 6. Storage Control 1235

Version 3.1

TLB Invalidate Entry Local X-form

tlbiel RB,RS,RIC,PRS,R

IS  (RB)52:53
search_LPID=LPIDRLPID
switch(IS)
 case (0b00):
 If RIC=0
 If R=0
 L  (RB)63
 if L = 0 then
 base_pg_size = 4K
 actual_pg_size =
 page size specified in (RB)56:58
 i = 51
 else
 base_pg_size = base page size specified
 in (RB)44:51
 actual_pg_size =
 actual page size specified in (RB)44:51
 b  log_base_2(base_pg_size)
 p  log_base_2(actual_pg_size)
 i = max(min(43,63-b),63-p)
 sg_sizesegment size specified in (RB)54:55
 for each TLB entry
 if (entry_VA14:i+14 = (RB)0:i) &
 (entry_sg_size = segment_size) &
 (entry_base_pg_size = base_pg_size) &
 (entry_actual_pg_size =actual_pg_size)&
 (TLBELPID=search_LPID) &
 (entry_process_scoped=0)
 then
 if ((L = 0)|(b ≥ 20)) then

 TLB entry  invalid
 else
 if (entry_VA58:77-b = (RB)56:75-b) then
 TLB entry  invalid
 else
 pg_size = page size specified in (RB)56:58
 p  log_base_2(pg_size)
 i = 63-p
 for each TLB entry
 if (entry_EA0:i = (RB)0:i) &
 (entry_pg_size = pg_size) &
 (entry_LPID = search_LPID) &
 (entry_process_scoped = PRS) &
 ((PRS = 0) |
 (entry_PID = (RS)0:31))
 then
 TLB entry  invalid
 case (0b01):
 if SET=0 then
 if RIC=0 | RIC=2 then
 for each TLB entry
 if (entry_LPID=search_LPID)
 &(entry_PID=RS0:31)
 &(entry_PRS=1)
 then TLB entry  invalid
 if RIC=1 | RIC=2 then
 invalidate process-scoped radix page walk
 caching associated with process RS0:31 in
 partition search_LPID
 if (RIC=2)&(PRS=1) then
 invalidate Process Table caching associated
 with process RS0:31 in partition search_LPID
 case (0b10):
 if SET=0 then
 if RIC=0 | RIC=2 then
 if (PRS=0)&((MSRHV=1)|(R=0)) then
 for each partition-scoped TLB entry
 if entry_LPID=search_LPID
 then TLB entry  invalid
 if PRS=1 then
 for each process-scoped TLB entry
 if entry_LPID=search_LPID
 then TLB entry  invalid
 if RIC=1 | RIC=2 then
 if (PRS=0)&(MSRHV=1) then
 invalidate partition-scoped page walk
 caching associated with partition
 search_LPID
 if PRS=1 then
 invalidate process-scoped page walk
 caching associated with partition
 search_LPID
 if RIC=2 then
 if (PRS=0)&(MSRHV=1) then
 invalidate Partition Table caching
 associated with partition search_LPID
 if PRS=1 then
 invalidate Process Table caching
 associated with partition search_LPID
 case (0b11):
 if SET=0 then
 if RIC=0 | RIC=2 then
 if MSRHV then
 if PRS=0 then
 all partition-scoped TLB entries
invalid

For tlbie[l] instructions the AVA and AVAL fields in
RB contain different VA bits from those in PTEAVA.

An operating system that uses HPT translation
should only use tlbie to invalidate the translation
for a specific page when it knows whether VPM is
active, and more specifically, what page size is
actually in use for the target translation. The
address comparison performed by tlbie is not sen-
sitive to whether VPM is active. As a result, the
operating system must supply an AVA value that is
appropriate for the page size that is in use.

31 RS / RIC PRS R RB 274 /
0 6 11 12 14 15 16 21 31

Programming Note

Programming Note
Power ISA™ III1236

Version 3.1
 else
 all process-scoped TLB entries invalid
 if (MSRHV=0)&(PRS=1) then
 for each process-scoped TLB entry
 if entry_LPID=search_LPID
 then TLB entry  invalid
 if (MSRHV=0)&(PRS=0)&(R=0) then
 for each partition-scoped TLB entry
 if entry_LPID=search_LPID
 then TLB entry invalid
 if RIC=1 | RIC=2 then
 if MSRHV then
 if PRS=0 then
 invalidate all partition-scoped
 page walk caching
 else
 invalidate all process-scoped
 page walk caching
 if (MSRHV=0) & (PRS=1) then
 invalidate process-scoped page walk
 caching associated with partition
 search_LPID
 if RIC=2 then
 if MSRHV then
 if PRS=0 then
 invalidate all Partition Table caching
 else
 invalidate all Process Table caching
 if (MSRHV=0) & (PRS=1) then
 invalidate Process Table caching
 associated with partition search_LPID

The operation performed by this instruction is based on
the contents of registers RS and RB. The contents of
these registers are shown below, where IS is (RB)52:53
and L is (RB)63.

RS:

RB for R=1 and IS=0b00:

RB for R=0, IS=0b00, and L=0:

RB for R=0, IS=0b00, and L=1:

RB for IS=0b01, 0b10, or 0b11:

LPIDR contains the partiion ID (LPID) of the partition for
which the translation is being invalidated. RS0:31 con-
tains a PID value. The supported values of RS0:31 are
the same as the PID values supported in PIDR.

The following forms are invalid.
 PRS=1, R=0, and RIC≠2 (The only pro-

cess-scoped HPT caching is of the Process Table.)
 RIC=1 and R=0 (There is no Page Walk Cache for

HPT translation.)
 RIC=3 (Group invalidation is not supported for

tlbiel.)

The following forms are treated as though the instruc-
tion form was invalid.
 RIC=1 and IS=0 (The architecture does not sup-

port shootdown of individual translations in the
Page Walk Cache.)

 RIC=1 and SET≠0 (PWC invalidation never
required a loop to iterate across congruence
classes.)

 RIC=2 and IS=0 (RIC is for comprehensive invali-
dation that is not supported at the level of an indi-
vidual page.)

 PRS=0 and IS=1 (Partition-scoped translations
are not associated with processes.)

 R=0, IS=1, and RIC≠2 (HPT translations are not
associated with processes.)

 R=0, RIC=2, PRS=0, HV=0, and IS=2 or 3 (The
similar cases with RIC=0 allow the HPT OS to
invalidate all of its TLB entries. The only incremen-
tal function of these cases is to invalidate partition
table caching, which the OS is not permitted to do.)

PID ///
0 32 63

Note that although there is no PID compare for par-
tition-scoped translation, software must still place
the PID in RS when IS=0 or 1. It may be used, for
example, in the TLB hash.

EPN IS 0s AP 0s
0 52 54 56 59 63

AVA IS B AP 0s L
0 52 54 56 59 63

Programming Note

AVA LP IS B AVAL L
0 44 52 54 56 63

0s SET IS 0s
0 40 52 54 63

In versions of the architecture that precede Version
3.1, tlbiel with IS= 1, 2, or 3 invalidated appropriate
entries only in a specific congruence class of the
TLB, specified by SET in register RB. As a result,
software was required to use a tlbiel loop to iterate
through all congruence classes in order to invali-
date the TLB. Software that will not be run on hard-
ware complying with those versions should specify
SET=0 in register RB. The description for tlbiel
specifies SET instead of 0 in register RB to illus-
trate compatibility with software written to run on
hardware complying with those versions.

Programming Note
Chapter 6. Storage Control 1237

Version 3.1
The results of an attempt to invalidate a translation out-
side of quadrant 0 for Radix Tree translation (R=1,
RIC=0, PRS=1, IS=0, and EA0:1≠0b00) are boundedly
undefined.

IS field in RB contains 0b00

If RIC=0, this is a search for a single TLB entry. The
following relationships must be true and tests and
actions are performed to search for an HPT translation.

If the base page size specified by the PTE that was
used to create the TLB entry to be invalidated is 4
KB, the L field in register RB must contain 0.

If the L field in RB contains 0, the base page size is
4 KB and RB56:58 (AP - Actual Page size field)
must be set to the SLBEL||LP encoding for the page
size corresponding to the actual page size speci-
fied by the PTE that was used to create the TLB
entry to be invalidated. Thus, b is equal to 12 and p
is equal to log2 (actual page size specified by
(RB)56:58). The Abbreviated Virtual Address (AVA)
field in register RB must contain bits 14:65 of the
virtual address translated by the TLB entry to be
invalidated. Variable i is equal to 51.

If the L field in RB contains 1, the following rules
apply.
 The base page size and actual page size are

specified in the LP field in register RB, where
the relationship between (RB)44:51 (LP - Large
Page size selector field) and the base page
size and actual page size is the same as the
relationship between PTELP and the base
page size and actual page size (see
Section 6.7.9.1 on page 1195 and Figure 33
on page 1196). Thus, b is equal to log2 (base
page size specified by (RB)44:51) and p is
equal to log2 (actual page size specified by
(RB)44:51). Specifically, (RB)44+c:51 must be
equal to the contents of bits c:7 of the LP field
of the PTE that was used to create the TLB
entry to be invalidated, where c is the number
of “r” bits in the LP field of the PTE that was
used to create the TLB entry to be invalidated.

 Variable i is the larger of (63-p) and the value
that is the smaller of 43 and (63-b). (RB)0:i
must contain bits 14:(i+14) of the virtual
address translated by the TLB to be invali-
dated. If b>20, RB64-b:43 may contain any
value and are ignored by the hardware.

 If b<20, (RB)56:75-b must contain bits 58:77-b
of the virtual address translated by the TLB to
be invalidated, and other bits in (RB)56:62 may
contain any value and are ignored by the
hardware.

 If b≥20, (RB)56:62 (AVAL - Abbreviated Virtual
Address, Lower) may contain any value and
are ignored by the hardware.

Let the segment size be equal to the segment size
specified in (RB)54:55 (B field). The contents of

RB54:55 must be the same as the contents of the B
field of the PTE that was used to create the TLB
entry to be invalidated.

All TLB entries that have all of the following proper-
ties are made invalid on the thread executing the
tlbiel instruction.
 The entry translates a virtual address for

which all the following are true.
 VA14:14+i is equal to (RB)0:i.
 L=0 or b≥20 or, if L=1 and b<20,

VA58:77-b is equal to (RB)56:75-b.
 The segment size of the entry is the same as

the segment size specified in (RB)54:55.
 Either of the following is true:

 The L field in RB is 0, the base page
size of the entry is 4 KB, and the actual
page size of the entry matches the
actual page size specified in (RB)56:58.

 The L field in RB is 1, the base page
size of the entry matches the base
page size specified in (RB)44:51, and
the actual page size of the entry
matches the actual page size specified
in (RB)44:51.

 The entry is partition scoped.
 TLBELPID = LPIDRLPID.

The following relationships must be true and tests and
actions are performed to search for a Radix Tree trans-
lation. For a partition-scoped invalidation, references
to the effective address are understood to refer to the
guest real address.

The page size is encoded in RB56:58 (AP - Actual
Page size field). Thus p is equal to log2(page size
specified by RB56:58). The Effective Page Number
(EPN) field in register RB must contain the bits 0:i
of the effective address translated by the TLB entry
to be invalidated. Variable i is equal to 63-p.

The fields shown as zeros must be set to zero and
are ignored by the hardware.

All TLB entries that have all of the following proper-
ties are made invalid on the thread executing the
tlbiel instruction..
 The entry translates an effective address for

which EA0:i is equal to (RB)0:i.
 The page size of the entry matches the page

size specified in (RB)56:58.
 The entry has the appropriate scope (partition

or process).
 The process ID specified in RS matches the

process ID in the TLB entry if not invalidating
a partition-scoped translation.

 TLBELPID matches the partiion ID of the parti-
tion for which the translation is to be invali-
dated.

IS field in RB is non-zero

When SET=0 is specified and either RIC=0 or RIC=2,
each partition-scoped entry when PRS=0 and either
MSRHV=1 or R=0, or each process-scoped entry when
Power ISA™ III1238

Version 3.1
PRS=1 is invalidated if any of the following conditions
are met for the entry.
 The IS field in RB contains 0b10, or MSRHV=0 and

the IS field contains 0b11, and TLBELPID =
LPIDRLPID.

 The IS field in RB contains 0b01,
TLBELPID=LPIDRLPID, and TLBEPID=RS0:31.

 The IS field in RB contains 0b11 and MSRHV=1.

When SET=0 is specified and either RIC=1 or RIC=2,
if the following conditions are met, the respective parti-
tion-scoped contents when PRS=0 and MSRHV=1 or
process-scoped contents when PRS=1 of the page
walk cache are invalidated.
 If the IS field in RB contains 0b10 or if IS contains

0b11 and MSRHV=0, all properly-scoped page
walk caching associated with partition LPDIRLPID
is invalidated.

 If the IS field in RB contains 0b11 and MSRHV=1,
the entire properly-scoped page walk caching is
invalidated.

 If the IS field in RB contains 0b01 (and PRS=1), all
properly-scoped page walk caching associated
with process RS0:31 in partition LPIDRLPID is inval-
idated.

When SET=0 is specified and RIC=2, if the following
conditions are met, the respective partition and Pro-
cess Table caching are invalidated.
 If the IS field in RB contains 0b01 and PRS=1,

caching of Process Table Entries for process
RS0:31 in partition LPIDRLPID is invalidated.

 If the IS field in RB contains 0b10, MSRHV=1, and
PRS=0, caching of Partition Tables for partition
LPIDRLPID is invalidated.

 If the IS field in RB contains 0b10 and PRS=1,
caching of Process Tables for partition LPIDRLPID
is invalidated.

 if the IS field in RB contains 0b11, MSRHV=1, and
PRS=0, all Partition Table caching is invalidated.

 if the IS field in RB contains 0b11, MSRHV=1, and
PRS=1, all Process Table caching is invalidated.

 If the IS field in RB contains 0b11, MSRHV=0, and
PRS=1, caching of Process Tables for partition
LIDRLPID is invalidated.

For all IS values

Any implementation specific lookaside information that
is based on any TLB entry that would be invalidated by
this instruction will also be invalidated.

Depending on the variant of the instruction, RB0:39,
RB59:62, RB59:63, RB54:55, and RB54:63 are the equiva-
lent of reserved fields, should contain 0s, and are
ignored by the hardware. RS32:63 is always the equiva-
lent of a reserved field, should contain 0s, and is
ignored by the hardware.

Only TLB entries, page walk caching, and process and
Segment Table caching on the thread executing the
tlbiel instruction are affected.

MSRSF must be 1 when this instruction is executed;
otherwise the results are boundedly undefined.

If the value specified in RS0:31, RB54:55, RB56:58, or
RB44:51, when it is needed to perform the specified
operation, is not supported by the implementation, the
instruction is treated as if the instruction form were
invalid.

This instruction is privileged except when PRS=0 and
HR=1, making it hypervisor privileged.

See Section 6.10, “Translation Table Update Synchro-
nization Requirements” on page 1241 for a description
of other requirements associated with the use of this
instruction.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonic for tlbiel::

Extended: Equivalent to:
tlbiel RB tlbiel RB,r0,0,0,0

tlbiel serves as both a basic and an extended mne-
monic. The Assembler will recognize a tlbiel mne-
monic with five operands as the basic form, and a
tlbiel mnemonic with one operand as the extended
form. In the extended form the RS, RIC, PRS, and
R operands are omitted and assumed to be 0.

tlbiel may be executed on a given thread even if
the sequence tlbie - eieio - tlbsync - ptesync is
concurrently being executed on another thread.

See also the Programming Notes with the descrip-
tion of the tlbie instruction.

Programming Note

Programming Note
Chapter 6. Storage Control 1239

Version 3.1

TLB Synchronize X-form

tlbsync

The tlbsync instruction provides an ordering function
for the effects of all tlbie instructions executed by the
thread executing the tlbsync instruction, with respect
to the memory barrier created by a subsequent pte-
sync instruction executed by the same thread. Execut-
ing a tlbsync instruction ensures that all of the
following will occur.

 All TLB invalidations caused by tlbie instructions
preceding the tlbsync instruction will have com-
pleted on any other thread before any data
accesses caused by instructions following the pte-
sync instruction are performed with respect to that
thread.

 All storage accesses by other threads for which
the address was translated using the translations
being invalidated, and all Reference and Change
bit updates associated with address translations
that were performed by other threads using the
translations being invalidated, will have been per-
formed with respect to the thread executing the
ptesync instruction, to the extent required by the
associated Memory Coherence Required attri-
butes, before the ptesync instruction’s memory
barrier is created.

The operation performed by this instruction is ordered
by the eieio (or [p]hwsync or ptesync) instruction with
respect to preceding tlbie instructions executed by the
thread executing the tlbsync instruction. The opera-
tions caused by tlbie and tlbsync are ordered by eieio
as a fourth set of operations, which is independent of
the other three sets that eieio orders.
The tlbsync instruction may complete before opera-
tions caused by tlbie instructions preceding the tlb-
sync instruction have been performed.

This instruction is privileged except when
LPCRGTSE=0, making it hypervisor privileged.

See Section 6.10 for a description of other require-
ments associated with the use of this instruction.

Special Registers Altered:
None

An operating system that uses HPT translation
should only use tlbiel to invalidate the translation
for a specific page when it knows whether VPM is
active, and more specifically, what page size is
actually in use for the target translation. The
address comparison performed by tlbiel is not sen-
sitive to whether VPM is active. As a result, the
operating system must supply an AVA value that is
appropriate for the page size that is in use.

Programming Note

31 /// /// /// 566 /
0 6 11 16 21 31

tlbsync should not be used to synchronize the
completion of tlbiel.

Programming Note
Power ISA™ III1240

Version 3.1
6.10 Translation Table Update Synchronization Requirements

This section describes rules that software must follow
when updating the Translation Tables, and includes
suggested sequences of operations for some represen-
tative cases. The sequences required for other cases
may be deduced from the sequences that are provided
and from this accompanying description.

In the sequences of operations shown in the following
subsections, the Page Table Entry is assumed to be for
a virtual page for which the base page size is equal to
the actual page size. If these page sizes are different,
multiple tlbie instructions are needed, one for each
PTE corresponding to the virtual page.

In the sequences of operations shown in the following
subsections, any alteration of a translation table entry
that corresponds to a single line in the sequence is
assumed to be done using a Store instruction for which
the access is atomic. Appropriate modifications must
be made to these sequences if this assumption is not
satisfied (e.g., if a store doubleword operation is done
using two Store Word instructions).

Two correctness-related considerations when choosing
translation table update sequences are to be safe for
multiple asynchronous sources of update (potentially
both hardware and software), and to avoid paradoxes
that in some cases could show up as multi-hits in the
various translation caches. These considerations lead
to the simple, contiguous sequences for general case
updates that appear later in this section. Good perfor-
mance is a third consideration that motivates deferring
and/or batching invalidations or even omitting synchro-
nization or invalidation from the general case. The via-
bility of these techniques is determined by whether the
lack of a single clear state across the system has prob-
lematic repercussions. The discussion of atomic Refer-
ence and Change bit updates alludes to one such
example. (See Section 6.7.12.) Simpler optimizations
are illustrated below.

The following are guidelines for safety when multiple
sources of asynchronous updates are possible. To
interact correctly with hardware that atomically updates
Reference and Change bits (as well as with updates
from other software threads), software should use
atomic updates to modify valid PTEs. Academically
speaking, if hardware uses simple loads and stores,
software may either use locking and first invalidate the
PTE and cached translations, or may attempt to opti-
mize using atomic updates that don’t change the val-
ues of the bytes containing the Reference and Change
bits with the exception of potentially setting those spe-
cific bits to 1 or the Reference bit to 0. When modifying
only bytes not subject to hardware modification, soft-
ware may use either locking or atomic updates, subject
to the limitations and optimizations described below.
The realities of Reference and Change bit placement
may severely limit what optimizations are possible

when hardware uses normal loads and stores to
update those bits.

To simplify verification and avoid paradoxes,
non-impactful limitations are placed on translation table
update sequence optimizations. One limitation is that
software must not have two or more valid overlapping
translations at any level of the translation process with
different page or segment sizes. This means that one
translation must be marked invalid in the translation
table and invalidated from any caches prior to instating
the second. The other limitation is that software must
not have two or more valid translations with different
attributes (i.e. WIMG, ATT). The example of I=1 and
I=0 is obvious, but in general there is not enough to be
gained to attempt to avoid invalidating one attribute set-
ting before establishing another. In both of these
cases, the translation cache invalidation may lag indefi-
nitely behind the table entry invalidations and the cache
invalidations may be batched, but must precede
enabling the new attributes.

To protect software’s ability to have reasonable perfor-
mance, optimizations that hardware must support are
also identified. (These optimizations are understood to
be limited by the techniques used for hardware and
software updates as described above, and by the prop-
erties of the table structure itself. A convention for
atomic updates will yield more opportunity than locking.
Hardware that does not use atomic updates may limit
or eliminate the opportunity for software to optimize.
The table structure for Radix Tree translation will yield
more opportunity than the dual PTEG structure of HPT
translation.) Access authority downgrades and setting
Change bits to zero may be done without first marking
the PTE invalid and invalidating the translation caches.
The translation cache invalidation may lag the PTE
change indefinitely and be done in bulk. Access
authority upgrades and setting Reference and Change
bits to 1 may be done without any PTE or translation
cache invalidation. Software bits may be changed with-
out any PTE or translation cache invalidation. Finally,
any complete change to the RPN (non-overlapping with
the original value) does not of itself require synchroni-
zation (though other changes to the PTE made at the
same time might).

In the following examples, when the same type of
sequence works for both types of translation, the HPT
PTE is shown because it is more complex. In this
description, and in references in subsequent subsec-
tions to “safe for multithreaded software,” the safety is
with respect to the risk of one thread overwriting
another’s update. There may also be concern for the
creation of multiple matching translations, e.g. within a
PTEG or pair of PTEGs. When the reservation granule
is equal to or larger in size than the structure on which
mutual exclusion must be ensured (e.g. PTE for Radix
Chapter 6. Storage Control 1241

Version 3.1
Tree translation but PTEG for HPT translation), multiple
entries will also be prevented. (Secondary hash groups
will generally not be covered by the same reservation
granule as primary hash groups.)

Updates (by software) to the tables are performed only
when they are known to be required by the sequential
execution model (see Section 6.5). Because address
translation for instructions preceding a given Store
instruction might cause an interrupt, and thereby pre-
vent the corresponding store from being required by
the sequential execution model, address translations
for instructions preceding the Store instruction must be
performed before the corresponding store is per-
formed. As a result, an update to a translation table
need not be preceded by a context synchronizing
instruction.

All of the sequences require a context synchronizing
operation after the sequence if the new contents of the
translation table are to be used for address translations
associated with subsequent instructions.

As noted in the description of the Synchronize instruc-
tion in Section 4.6.3 of Book II, address translation
associated with instructions which occur in program
order subsequent to the Synchronize (and this includes
the ptesync variant) may be performed prior to the
completion of the Synchronize. To ensure that these
instructions and data which may have been specula-
tively fetched are discarded, a context synchronizing
operation is required.

Translation table entries must not be changed in a
manner that causes an implicit branch.

6.10.1 Translation Table Updates
TLBs are non-coherent caches of the HTABs and Radix
Trees. TLB entries must be invalidated explicitly with
one of the TLB Invalidate instructions. SLBs are
non-coherent caches of the Segment Tables, SLB
entries must be invalidated explicitly with one of the
SLB Invalidate instructions. Page Walk Caches are
non-coherent caches of the intermediate steps in Radix
Tree translation. Non-coherent caching of the Partition
and Process Tables is permitted. Provision has been
made for the use of the TLB Invalidate instructions to
manage the types of caching described in the preced-
ing two sentences at a PID or LPID granularity.

Unsynchronized lookups in the Page, Segment, and
when HR=0, Process Tables continue even while they

are being modified. (For Partition Table Entries, and for
Process Table Entries when HR=1, the process or par-
tition affected must be inactive because the entries do
not have valid bits.) With the exceptions previously
identified for Segment Table walks (see Section 6.9.3,
“Lookaside Buffer Management”), any thread, including
a thread on which software is modifying any of the set
of tables described in the first sentence, may look in
those tables at any time in an attempt to translate an
address. When modifying an entry in any of the former
set of tables, software must ensure that the table
entry’s V bit is 0 if the table entry does not correctly
specify its portion of the translation (e.g., if the RPN
field is not correct for the current AVA field).

For HPT translation, updates of Reference and
Change bits by the hardware are not synchronized
with the accesses that cause the updates. When
modifying doubleword 1 of a PTE, software must take
care to avoid overwriting a hardware update of these
bits and to avoid having the value written by a Store
instruction overwritten by a hardware update.

The most basic sequence that will achieve proper sys-
tem synchronization for PTE updates is the following.

tlbie instruction(s) specifying the same LPID oper-
and value
eieio
tlbsync
ptesync

Other instructions may be interleaved among these
instructions. Operating system and hypervisor soft-
ware that updates Page Table Entries should use this
sequence.

Operating systems and nested hypervisors are
exposed to being interrupted during this sequence.
The interrupting hypervisor is responsible for complet-
ing the sequence above. In general this will require the
hypervisor to include the following sequence in an
interrupt handler.

eieio
tlbsync
ptesync

This sequence itself may be interrupted by a higher
level hypervisor. When returning to the interrupted soft-
ware, the original sequence will be completed. Hard-
ware must tolerate the result of nested interleaving of
these sequences. tlbie and tlbsync instructions
should only be used as part of these sequences.

The corresponding sequence for Segment Table
updates uses slbieg in place of tlbie and slbsync in
place of tlbsync. Similarly slbieg and slbsync should
only be used as part of these sequences. In circum-
stances where a hypervisor may be interrupting either a
PTE update or a Segment Table update, it must include
both tlbsync and slbsync in its completing sequence,
in either order. Hardware must tolerate the result of
nested interleaving of these additional sequences.

In many cases this context synchronization will
occur naturally; for example, if the sequence is exe-
cuted within an interrupt handler the rfid, rfscv,
hrfid, or urfid instruction that returns from the inter-
rupt handler may provide the required context syn-
chronization.

Programming Note
Power ISA™ III1242

Version 3.1
The PTE sequence is also used to synchronize
updates to Partition Table Entries, and to Process
Table Entries that do not have valid bits. Mutual exclu-
sion must be added if the update processes are multi-
threaded.

On systems consisting of only a single-threaded pro-
cessor, the eieio and tlbsync or slbsync instructions
can be omitted.

The following subsections illustrate sequences that
must be used for translation table updates to tables that
are subject to concurrent use by hardware (i.e. that
have valid bits in their entries). For Partition Table
Entries and for Process Table Entries that do not have
valid bits, simpler sequences consisting of just the pre-
ceding sequences, perhaps with mutual exclusion if the
update processes are multithreaded, is sufficient.

The sequences of operations shown in the following
subsections assume a multi-threaded environment. In
an environment consisting of only a single-threaded
processor, the tlbsync or slbsync and the eieio that
separates the tlbie or slbieg from the tlbsync or slb-
sync can be omitted. In a multi-threaded environment,
when tlbiel or slbie is used instead of tlbie or slbieg in
a Page or Segment Table update, the synchronization
requirements are the same as when tlbie or slbieg is
used in an environment consisting of only a sin-
gle-threaded processor.

6.10.1.1 Adding a Page Table Entry
This is the simplest Page Table case. The V bit of the
old entry is assumed to be 0. The following sequence
can be used to create a PTE, maintain a consistent
state, and ensure that a subsequent reference to the
virtual address translated by the new entry will use the
correct real address and associated attributes. A sin-
gle quadword store would avoid the need for the eieio.
A similar sequence may be used to add a new Seg-
ment Table Entry. Mutual exclusion with respect to
other software threads may be required, but there is no
concern for interaction with hardware updates because
the entry is invalid until the last store in the sequence.

PTEpp key B ARPN LP key R C WIMG N pp  new values
eieio /* order 1st update before 2nd */
PTEAVA SW L H V  new values (V=1)
ptesync /* order updates before next

 Page Table search and before
 next data access */

6.10.1.2 Modifying a Translation Table
Entry

General Case (PTE)
If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be invali-
dated, the sequences below can be used to modify the

The eieio instruction prevents the reordering of the
preceding tlbie, slbieg, or slbiag instructions with
respect to the subsequent tlbsync or slbsync
instruction. The tlbsync or slbsync instruction and
the subsequent ptesync instruction together
ensure that all storage accesses for which the
address was translated using the translations being
invalidated (by the tlbie, slbieg, or slbiag instruc-
tions), and all Reference and Change bit updates
associated with address translations that were per-
formed using the translations being invalidated, will
be performed with respect to any thread or mecha-
nism, to the extent required by the associated
Memory Coherence Required attributes, before
any data accesses caused by instructions following
the ptesync instruction are performed with respect
to that thread or mechanism.

For Page Table update sequences that mark the
PTE invalid (see Section 6.10.1.2, “Modifying a
Translation Table Entry”), Reference and Change
bit updates cease when the sequence is com-
plete. When the PTE is marked invalid using an
atomic update and the Store Conditional setting the
entry invalid is successful, the Reference and
Change bits obtained by the corresponding Load
And Reserve instruction are stable/final values.

Programming Note

For all of the sequences shown in the following
subsections, if it is necessary to communicate com-
pletion of the sequence to software running on
another thread, the ptesync instruction at the end
of the sequence should be followed by a Store
instruction that stores a chosen value to some cho-
sen storage location X. The memory barrier cre-
ated by the ptesync instruction ensures that if a
Load instruction executed by another thread
returns the chosen value from location X, all subse-
quent searches of the Page or Segment Table by
the other thread, that implicitly load from the PTE or
STE specified by the sequence’s stores, will obtain
the values stored (or values stored subsequently).
The Load instruction that returns the chosen value
should be followed by a context synchronizing
instruction in order to ensure that all instructions
following the context synchronizing instruction will
be fetched and executed using the values stored
by the sequence (or values stored subsequently).
(These instructions may have been fetched or exe-
cuted out-of-order using the old contents of the
PTE or STE.)

This Note assumes that the Page or Segment
Table and location X are in storage that is Memory
Coherence Required.

Programming Note
Chapter 6. Storage Control 1243

Version 3.1
PTE, maintain a consistent state (subject to the limita-
tions described in the introduction to Section 6.10 such
as avoiding overlapping translations), ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will use
the correct real address and associated attributes.

The following sequence is to interact correctly with
atomic hardware updates. It returns stable Reference
and Change bit values for the old translation and is
safe for multitheaded software. If the purpose of the
sequence is mainly to collect Reference and Change
bit values, the part of the sequence beginning with tlbie
may be deferred and performed as a bulk invalidation
(e.g. for a range of storage or an entire process) after
collecting values for a plurality of pages. A similar
seqence (i.e. using Load And Reserve and Store Con-
ditional instructions) can be used to update a Segment
Table Entry but will not interact correctly with
non-atomic hardware Reference and Change bit
updates.
r6PTEV L SW RPN R C Att EAA
r4addr(pte)
loop:
 lqarx r2,0,r4
 if V=0 abort, else /* to interact with locking */
 stqcx r6,0,r4
 bne- loop
ptesync /* order update before tlbie and

 before next Page Table search */
tlbie(old_EA0:63-b,old_AP,old_PID,

old_LPID)
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /*complete the sequence, stores ordered
 /*by first ptesync

The corresponding sequence for non-atomic hardware
updates is the following. (The sequence is equivalent
to deleting the PTE and then adding a new one.)
Mutual exclusion with respect to other software threads
may be required. The Reference and Change bit val-
ues will not be stable until the entire sequence is com-
pleted.
PTEV  0 /* (other fields don’t matter)*/
ptesync /* order update before tlbie and

 before next Page Table search */
tlbie(old_B,old_VA14:77-b,old_L,old_LP,old_AP,

old_LPID)
/*invalidate old translation*/

eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and 1st

 update before 2nd update */
PTEARPN,LP,AC,R,C,WIMG,N,PP  new values
eieio /* order 2nd update before 3rd */
PTEB,AVA,SW,L,H,V  new values (V=1)
ptesync /* order 2nd and 3rd updates before

 next Page Table search and
 before next data access */

General Case(STE)
If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be invali-
dated, the following sequence can be used to modify
the STE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the effective address translated by the new entry will
use the correct virtual address and associated attri-
butes. (The sequence is much like the general case for
a change to a PTE that is subject to non-atomic hard-
ware updates, and is equivalent to deleting the STE
and then adding a new one.) Mutual exclusion with
respect to other software threads may be required. A
similar sequence (except using tlbie with RIC=2 and
tlbsync) may be used to modify HR=0 Process Table
Entries.

STEV  0 /* (other fields don’t matter)*/
ptesync /* order update before slbieg and

 before next Segment Table search */
slbieg(old_B,old_ESID,old_TA,old_PID,old_LPID)

/*invalidate old translation*/
eieio /* order slbieg before slbsync */
slbsync /* order slbieg before ptesync */
ptesync /* order slbieg, slbsync and 1st

 update before 2nd update */
/* deletion sequence ends here */

STEVSID, Ks, Kp, N, L, C, LP, SW  new values
eieio /* order 2nd update before 3rd */
STEESID,V  new values (V=1)
ptesync /* order 2nd and 3rd updates before

 next Segment Table search and
 before next data access */

Resetting the Reference Bit (PTE)
If the only change being made to a valid entry is to set
the Reference bit to 0, a simpler sequence suffices
because the Reference bit need not be maintained
exactly. The byte store is exposed to overwriting
another change being performed by multithreaded soft-
ware, so mutual exclusion may be required.

oldR  PTER /* get old R */
if oldR = 1 then
 PTER  0 /* store byte (R=0, other bits

 unchanged) */
 tlbie(B,VA14:77-b,L,LP,AP,LPID) /* invalidate

 entry */
 eieio /* order tlbie before tlbsync */
 tlbsync /* order tlbie before ptesync */
 ptesync /* order tlbie, tlbsync, and update

 before next Page Table search
 and before next data access */

Setting a Reference or Change Bit or
Upgrading Access Authority (PTE
Subject to Atomic Hardware Updates)
If the only change being made to a valid PTE that is
subject to atomic hardware updates is to set the Refer-
Power ISA™ III1244

Version 3.1
ence or Change bit to 1 or to upgrade access authority,
a simpler sequence suffices because the translation
hardware will refetch the PTE if an access is attempted
for which the only problems were reference and/or
change bits needing to be set or insufficient access
authority. The store is exposed to overwriting another
change being performed by multithreaded software, so
mutual exclusion may be required. (Note that changing
EAA0 can be both an upgrade and a downgrade,
depending on the value of Key0 of the [I]AMR. If it is
not solely an upgrade, the simpler sequence must not
be used.)

PTEV L SW RPN R C Att EAA  new values (V=1)
ptesync /* order update before next Page Table
 search and before next data access */

Modifying the SW field (PTE)
If the only change being made to a valid entry is to
modify the SW field, the following sequence suffices,
because the SW field is not used by the hardware (i.e.
is not cached in the TLB and has no effect on hardware
behavior).

loop: ldarx r1  PTE_dwd_0 /* load dwd 0 of PTE */
 if V=0 abort, else/*to interact with locking*/

r157:60  new SW value /* replace SW, in r1 */
stdcx. PTE_dwd_0 r1 /* store dwd 0 of PTE

if still reserved (new SW value, other
fields unchanged) */

bne- loop /* loop if lost reservation */

A lbarx/stbcx., lharx/sthcx., or lwarx/stwcx. pair
(specifying the low-order byte, halfword, or word
respectively of doubleword 0 of the PTE) can be used
instead of the ldarx /stdcx. pair shown above for HPT
translation. The split SW field in the radix PTE cannot
be updated with a single smaller atomic update. This
sequence interacts correctly with hardware updates
and is safe for multithreaded software. A similar
sequence (including the possibility of using a smaller
atomic update) can be used to update a Segment Table
Entry.

Modifying the Effective Address (STE)
If the effective address translated by a valid STE is to
be modified and the new effective address hashes to
the same STEG as does the old effective address, the
following sequence can be used to modify the STE,
maintain a consistent state, ensure that the translation
instantiated by the old entry is no longer available, and
ensure that a subsequent reference to the effective
address translated by the new entry will use the correct
virtual address and associated attributes. Mutual
exclusion with respect to other software threads may
be required. The corresponding change of the virtual
address in the PTE for HPT translation can be per-
formed using a similar sequence, interacting correctly
with non-atomic hardware table updates, as long as the
second doubleword of the PTE is not stored.

STEESID,V  new values (V=1)
ptesync /* order update before slbieg and

 before next Segment Table search */
slbieg(old_B,old_ESID,old_TA,old_PID,old_LPID)

/*invalidate old translation*/
eieio /* order slbieg before slbsync */
slbsync /* order slbieg before ptesync */
ptesync /* order slbieg, slbsync, and update

 before next data access */
Chapter 6. Storage Control 1245

Version 3.1
Power ISA™ III1246

Version 3.1
Chapter 7. Interrupts

7.1 Overview
The Power ISA provides an interrupt mechanism to
allow the thread to change state as a result of external
signals, errors, or unusual conditions arising in the exe-
cution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that only
one interrupt is reported, and when it is processed
(taken) no program state is lost. Since Save/Restore
Registers SRR0 and SRR1 are serially reusable
resources used by most interrupts, program state may
be lost when an unordered interrupt is taken.

7.2 Interrupt Registers

7.2.1 Machine Status Save/
Restore Registers
When various interrupts occur, the state of the machine
is saved in the Machine Status Save/Restore registers
(SRR0 and SRR1). Section 7.5 describes which regis-
ters are altered by each interrupt.

Figure 53. Save/Restore Registers

SRR1 bits may be treated as reserved in a given imple-
mentation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for SRR1 bits in the range 33:36, 42:43, and
45:47, they are specified as being set either to 0 or to
an undefined value for all interrupts that set SRR1
(including implementation-dependent setting, e.g. by
the Machine Check interrupt or by implementation-spe-
cific interrupts). SRR144 cannot be treated as reserved,
regardless of how it is set by interrupts, because it is
used by software, as described in a Programming Note

near the end of Section 7.5.9, “Program Interrupt” on
page 1272.

7.2.2 Hypervisor Machine Status
Save/Restore Registers
When various interrupts occur, the state of the machine
is saved in the Hypervisor Machine Status Save/
Restore registers (HSRR0 and HSRR1). Section 7.5
describes which registers are altered by each interrupt.

Figure 54. Hypervisor Save/Restore Registers

HSRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for HSRR1 bits in the range 33:36 and 42:47,
they are specified as being set either to 0 or to an
undefined value for all interrupts that set HSRR1
(including implementation-dependent setting, e.g. by
implementation-specific interrupts).

The HSRR0 and HSRR1 are hypervisor resources; see
Chapter 2.

7.2.3 Ultravisor Machine Status
Save/Restore Registers
When a Directed Ultravisor Doorbell interrupt occurs,
the state of the machine is saved in the Ultravisor
Machine Status Save/Restore Registers (USRR0 and
USRR1).

SRR0 //
0 62 63

SRR1
0 63

HSRR0 //
0 62 63

HSRR1
0 63

Execution of some instructions, and fetching
instructions when MSRIR=1 or MSRHV=0, may
have the side effect of modifying HSRR0 and
HSRR1; see Section 7.4.4.

Programming Note
Chapter 7. Interrupts 1247

Version 3.1
.

Figure 55. Ultravisor Save/Restore Registers

USRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for USRR1 bits in the range 33:36 and 42:47,
they are specified as being set either to 0 or to an
undefined value by the Directed Ultravisor Doorbell
interrupt.

The USRR0 and USRR1 are ultravisor resources; see
Chapter 3.

7.2.4 Access Segment Descriptor
Register
The DAR, HDAR, SRR0, and HSRR0 generally provide
the EA for storage exceptions. For hypervisor storage
interrupts, additional information is often necessary to
enable the hypervisor to handle the interrupt. This
information is provided in a 64b SPR called the Access
Segment Descriptor Register (ASDR). When nested
Radix Tree translation is taking place, the ASDR will
generally provide the guest real address down to bit 51.
(The smallest supported page size is 4k.) When using
paravirtualized HPT translation, information from the
segment descriptor that was used to perform the effec-
tive to virtual translation is provided in the ASDR. For a
big segment the values of the bits of the VSID field that
are not part of the VSID are undefined. For exceptions
that take place when translating the address of the pro-
cess table entry or segment table entry group, only the
VSID will be provided, because those addresses are
specified as virtual addresses and the rest of the seg-
ment descriptor is implied. Some instances of the
Machine Check interrupt may require the ASDR to be
set similarly to how it is set for the hypervisor storage

interrupts. The ASDR is set independent of the value
of UPRT for the partition that is running.

Figure 56. Access Segment Descriptor Register
format for a Segment Descriptor

Figure 57. Access Segment Descriptor Register
format for a Guest Real Address

7.2.5 Data Address Register
The Data Address Register (DAR) is a 64-bit register
that is set by the Machine Check, Data Storage, Data
Segment, and Alignment interrupts; see Sections 7.5.2,
7.5.3, 7.5.4, and 7.5.8. In general, when one of these
interrupts occurs the DAR is set to an effective address
associated with the storage access that caused the
interrupt, with the high-order 32 bits of the DAR set to 0
if the interrupt occurs in 32-bit mode.

Figure 58. Data Address Register

7.2.6 Hypervisor Data Address
Register
The Hypervisor Data Address Register (HDAR) is a
64-bit register that is set by the Hypervisor Data Stor-
age Interrupt; see Section 7.5.16. In general, when this
interrupt occurs, the HDAR is set to an effective
address associated with the storage access that
caused the interrupt, with the high-order 32 bits of the
HDAR set to 0 if the interrupt occurs in 32-bit mode.

Figure 59. Hypervisor Data Address Register

7.2.7 Data Storage Interrupt
Status Register
The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that is set by the Machine Check, Data
Storage, and Data Segment interrupts; see Sections
7.5.2, 7.5.3, and 7.5.4.

USRR0 //
 0 62 63

USRR1
 0 63

B VSID KsKpNLC / LP ///

0 2 52 57 58 60 63

/ GRA 0
0 2 52 63

DAR
0 63

HDAR
0 63
Power ISA™ III1248

Version 3.1

Figure 60. Data Storage Interrupt Status Register

DSISR bits may be treated as reserved in a given
implementation if they are specified as being set either
to 0 or to an undefined value for all interrupts that set
the DSISR.

7.2.8 Hypervisor Data Storage
Interrupt Status Register
The Hypervisor Data Storage Interrupt Status Register
(HDSISR) is a 32-bit register that is set by the Hypervi-
sor Data Storage interrupt. In general, when one of
these interrupts occurs the HDSISR is set to indicate
the cause of the interrupt.

Figure 61. Hypervisor Data Storage Interrupt
Status Register

7.2.9 Hypervisor Emulation
Instruction Register
The Hypervisor Emulation Instruction Register (HEIR)
is a 64-bit register that is set by the Hypervisor Emula-
tion Assistance interrupt; see Section 7.5.18. When a
word instruction causes the interrupt, the image of the
instruction that caused the interrupt is loaded into bits
32:63 of the register, and bits 0:31 are set to 0s. When
a prefixed instruction causes the interrupt, the image of
the instruction that caused the interrupt is loaded into
bits 0:63 of the register.

There may be circumstances in which the suffix cannot
be loaded, such as when the instruction is located in
storage that is Caching Inhibited, or when the value of
the suffix corresponds to a Branch instruction, rfebb, a
context synchronizing instruction other than isync, or a
“Service Processor Attention” instruction.

In such circumstances, bits 32:63 are set to 0s.

Figure 62. Hypervisor Emulation Instruction
Register

7.2.10 Hypervisor Maintenance
Exception Register
Each bit in the Hypervisor Maintenance Exception Reg-
ister (HMER) is associated with one or more causes of
the Hypervisor Maintenance exception, and is set when
the associated exception(s) occur. If the corresponding
bit in the Hypervisor Maintenance Exception Enable
Register (HMEER) is set, a Hypervisor Maintenance
Interrupt (HMI) may occur. If the thread is in a
power-saving mode when the interrupt would have
occurred, the thread will exit the power-saving mode;
see Section 7.5.19 and Section 4.3.2.

Figure 63. Hypervisor Maintenance Exception
Register

The contents of the HMER are as follows:
0 Set to 1 for a Malfunction Alert.
1 Set to 1 when performance is degraded for

thermal reasons.
2 Set to 1 when thread recovery is invoked.
Others Implementation-specific.

When the mtspr instruction is executed with the HMER
as the encoded Special Purpose Register, the contents
of register RS are ANDed with the contents of the
HMER and the result is placed into the HMER.

The exception bits in the HMER are sticky; that is, once
set to 1 they remain set to 1 until they are set to 0 by an
mthmer instruction.

7.2.11 Hypervisor Maintenance
Exception Enable Register
The Hypervisor Maintenance Exception Enable Regis-
ter (HMEER) is a 64-bit register in which each bit
enables the corresponding exception in the HMER to
cause the Hypervisor Maintenance interrupt, potentially
causing exit from power-saving mode; see Section
7.5.19 and Section 4.3.2.

Figure 64. Hypervisor Maintenance Exception
Enable Register

DSISR
32 63

HDSISR
32 63

HEIR
0 63

When all prefixed instructions are made unavail-
able by the PCR setting, the prefix will be recog-
nized as an illegal word instruction and placed in
HEIR32:63.

Programming Note

HMER
0 63

An access to the HMER is likely to be very slow.
Software should access it sparingly.

HMEER
0 63

Programming Note
Chapter 7. Interrupts 1249

Version 3.1
7.2.12 Facility Status and Control
Register
The Facility Status and Control Register (FSCR) con-
trols the availability of various facilities in problem state
and indicates the cause of a Facility Unavailable inter-
rupt.

When the FSCR makes a facility unavailable,
attempted usage of the facility in problem state is
treated as follows:
 Execution of an instruction causes a Facility

Unavailable exception.
 Access of an SPR using mfspr/mtspr causes a

Facility Unavailable exception.
 rfebb, rfid, rfscv, hrfid, urfid, and mtmsr[d]

instructions have the same effect on bits in system
registers as they would if the bits were available.
The same is true for mtspr and mfspr unless the
preceding item applies.

MMCR0 can also make various components of the Per-
formance Monitor unavailable when accessed in prob-
lem state. An access to one of these components when
it is unavailable causes a Facility Unavailable excep-
tion.

When the PCR makes a facility unavailable in problem
state, the facility is treated as not defined in problem
state; any Facility Unavailable interrupt that would
occur if the facility were not made unavailable by the
PCR does not occur.

When a Facility Unavailable interrupt occurs, the
unavailable facility that was accessed is indicated in
the most-significant byte of the FSCR.

Figure 65. Facility Status and Control Register

The contents of the FSCR are specified below.

Value Meaning
0:7 Interruption Cause (IC)

When a Facility Unavailable interrupt occurs,
the IC field contains a binary number indicat-
ing the facility for which access was
attempted. The values and their meanings are
specified below.

02 Access to the DSCR at SPR 3
03 Access to a Performance Monitor SPR in

group A or B when MMCR0PMCC is set to
a value for which the access results in a
Facility Unavailable interrupt. (See the
definition of MMCR0PMCC in Section
10.4.4.)

04 Execution of a BHRB Instruction

07 Access to an Event-Based Branch SPR or
execution of an Event-Based Branch
instruction

08 Access to the Target Address Register
0C Execution of scv
0D Execution of a prefixed instruction

All other values are reserved.

8:63 Facility Enable (FE)

The FE field controls the availability of various
facilities in problem state as specified below.

8:49 Reserved

50 Prefixed Instruction
0 Prefixed instructions are not available in

problem state.
1 Prefixed instructions are available in prob-

lem state unless made unavailable by
another register.

51 scv instruction
0 The scv instruction is not available.
1 The scv instruction is available.

52:54 Reserved

55 Target Address Register (TAR)

0 The TAR and bctar instruction are not
available in problem state.

1 The TAR and bctar instruction are avail-
able in problem state unless made
unavailable by another register.

56 Event-Based Branch Facility (EBB)

0 The Event-Based Branch facility SPRs
and instructions are not available in prob-
lem state, and event-based exceptions
and branches do not occur.

1 The Event-Based Branch facility SPRs
and instructions (see Chapter 6 of Book II)
are available in problem state unless
made unavailable by another register, and
event-based exceptions and branches
are allowed to occur if enabled by other
registers.

57:60 Reserved

61 Data Stream Control Register at SPR 3
(DSCR)

0 SPR 3 is not available in problem state.

IC Facility Control
0 8 63

HFSCR59:60 are used to control the availability of
the Performance Monitor and the BHRB in problem
and privileged non-hypervisor states. FSCR59:60
are reserved since the availability of the Perfor-
mance Monitor and BHRB is controlled by MMCR0.

Programming Note
Power ISA™ III1250

Version 3.1
1 SPR 3 is available in problem state
unless made unavailable by another reg-
ister.

62:63 Reserved

7.2.13 Hypervisor Facility Status
and Control Register
The Hypervisor Facility Status and Control Register
(HFSCR) controls the availability of various facilities in
problem and privileged non-hypervisor states, and indi-
cates the cause of a Hypervisor Facility Unavailable
interrupt.

When the HFSCR makes a facility unavailable,
attempted usage of the facility in problem or privileged
non-hypervisor states is treated as follows:

- Execution of an instruction causes a Hypervi-
sor Facility Unavailable exception.

- Access of an SPR using mfspr/mtspr causes
a Hypervisor Facility Unavailable exception

- rfebb, rfid, rfscv, hrfid, urfid, and mtmsr[d]
instructions have the same effect on bits in
system registers as they would if the bits were
available. The same is true for mtspr and
mfspr unless the preceding item applies.

When the PCR makes a facility unavailable in problem
state, the facility is treated as not defined in problem
state; any Hypervisor Facility Unavailable interrupt that
would occur if the facility were not made unavailble by
the PCR does not occur as a result of problem state
access. See Section 2.5 for additional information.

When a Hypervisor Facility Unavailable interrupt
occurs, the facility that was accessed is indicated in the
most-significant byte of the HFSCR.

Figure 66. Hypervisor Facility Status and Control
Register

The contents of the HFSCR are specified below.

Value Meaning
0:7 Interruption Cause (IC)

When a Hypervisor Facility Unavailable inter-
rupt occurs, the IC field contains a binary
number indicating the access that was
attempted. The values and their meanings are
specified below.
00 Access to a Floating Point register or exe-

cution of a Floating Point instruction
01 Access to a Vector or VSX register or exe-

cution of a Vector or VSX instruction
02 Access to the DSCR at SPRs 3 or 17
03 Read or write access of a Performance

Monitor SPR in group A, or read access of
a Performance Monitor SPR in group B.
(See Section 10.4.1 for a definition of
groups A and B.)

04 Execution of a BHRB Instruction

07 Access to an Event-Based Branch SPR or
execution of an Event-Based Branch
instruction

08 Access to the Target Address Register
09 Access to the stop instruction in privileged

non-hypervisor state when one or more of
the following conditions exist.
PSSCREC=1
PSSCRESL=1
PSSCRMTL>PSSCRPSLL
PSSCRRL>PSSCRPSLL

0A Access to the msgsndp or msgclrp
instructions, the TIR or the DPDES Regis-
ter

All other values are reserved.

8:63 Facility Enable (FE)

The FE field controls the availability of various
facilities in problem and privileged non-hyper-
visor states as specified below.

8:52 Reserved

53 msgsndp instructions and SPRs (MSGP)

0 The msgsndp and msgclrp instructions
and the TIR and DPDES registers are not
available in privileged non-hypervisor
state.

1 The msgsndp and msgclrp instructions
and the TIR and DPDES registers are
available in privileged non-hypervisor
state unless made unavailable by another
register.

54 Reserved

When an OS has set the FSCR such that a facility
is unavailable, the OS should either emulate the
facility when it is accessed or provide an applica-
tion interface that requires the application to
request use of the facility before it accesses the
facility.

IC Facility Control
0 8 63

Programming Note

There is no bit in this register controlling
the availability of the stop instruction
because the availability of stop in privi-
leged non-hypervisor state is controlled by
the PSSCR. See Section 4.2.2.

Programming Note
Chapter 7. Interrupts 1251

Version 3.1
55 Target Address Register (TAR)

0 The TAR and bctar instruction are not
available in problem and privileged
non-hypervisor state.

1 The TAR and bctar instruction are avail-
able in problem and privileged states
unless made unavailable by another reg-
ister.

56 Event-Based Branch Facility (EBB)

0 The Event-Based Branch facility SPRs
and instructions are not available in prob-
lem and privileged non-hypervisor states,
and event-based exceptions and
branches do not occur.

1 The Event-Based Branch facility SPRs
and instructions are available in problem
and privileged states unless made
unavailable by another register, and
event-based exceptions and branches are
allowed to occur if enabled by other bits.

57 Reserved

58 Reserved

59 BHRB Instructions (BHRB)

0 The BHRB instructions (clrbhrb,
mfbhrbe) are not available in problem
and privileged non-hypervisor states.

1 The BHRB instructions (clrbhrb,
mfbhrbe) are available in problem and
privileged states unless made unavail-
able by another register.

60 Performance Monitor Facility SPRs (PM)

0 Read and write operations of Perfor-
mance Monitor SPRs in group A and read
operations of Performance Monitor SPRs
in group B are not available in problem
and privileged non-hypervisor states; read
and write operations to privileged Perfor-
mance Monitor registers (SPRs 752-754,
784-792, 795-798) are not available in
privileged non-hypervisor state. (See Sec-
tion 10.4.1 for a definition of groups A and
B.) Performance Monitor exceptions do
not cause Performance Monitor interrupts
to occur when the thread is in problem or
privileged states.

1 Read and write operations of Perfor-
mance Monitor SPRs in group A and read
operations of Performance Monitor SPRs
in group B are available in problem and
privileged states unless made unavail-
able by another register; read and write
operations to privileged Performance
Monitor registers (SPRs 752-754,
784-792, 795-798) are available in privi-

leged state; Performance Monitor inter-
rupts to occur if MSREE=1 and
MMCR0EBE=0. See Section 10.2 of Book
III for additional information

61 Data Stream Control Register (DSCR)

0 SPR 3 is not available in problem or privi-
leged non-hypervisor states and SPR 17
is not available in privileged non-hypervi-
sor state.

1 SPR 3 is available in problem and privi-
leged states and SPR 17 is available in
privileged state unless made unavailable
by another register.

62 Vector and VSX Facilities (VECVSX)

0 The facilities whose availability is con-
trolled by either MSRVEC or MSRVSX are
not available in problem and privileged
non-hypervisor states.

1 The facilities whose availability is con-
troled by either MSRVEC or MSRVSX are
available in problem and privileged states
unless made unavailable by another reg-
ister.

63 Floating Point Facility (FP)

0 The facilities whose availability is con-
trolled by MSRFP are not available in
problem and privileged non-hypervisor
states.

1 The facilities whose availability is con-
trolled by MSRFP are available in problem
and privileged states unless made
unavailable by another register.

The FSCR can be used to determine whether a
particular facility is being used by an application,
and the HFSCR can be used to determine whether
a particular facility is being used by either an appli-
cation or by an operating system. This is done by
disabling the facility initially, and enabling it in the
interrupt handler upon first usage. The information
about the usage of a particular facility can be used
to determine whether that facility’s state must be
saved and restored when changing program con-
text.

Programming Note
Power ISA™ III1252

Version 3.1
Programming Note

The following tables summarize the interrupts that occur as a result of accessing the non-privileged Performance
Monitor registers in problem state when MMCR0PMCC, PCR, and HFSCR are set to various values. (Accesses to
privileged Performance Monitor SPRs (SPRs 784-792, 795-798) in problem state result in Privileged Instruction Type
Program interrupts.)

mfspr mtspr
PMCC PMCC

SPR # 00 01 10 11 00 01 10 11

G
ro

up
 A

MMCR23 769 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

MMCRA 770 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC1 771 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC2 772 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC3 773 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC4 774 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

PMC5 775 HU4 FU, HU4 HU4 FU, HU4 HE,HU4 FU, HU4 HU4 FU, HU4

PMC6 776 HU4 FU, HU4 HU4 FU, HU4 HE,HU4 FU, HU4 HU4 FU, HU4

MMCR0 779 HU4 FU, HU4 HU4 HU4 HE,HU4 FU, HU4 HU4 HU4

SIER26 736 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.
SIER36 737 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.
MMCR36 738 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.

G
ro

up
 B

SIER3 768 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.
SIAR 780 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.
SDAR 781 FU5,HU4 FU, HU4 HU4 HU4 See 2. See 2. See 2. See 2.
MMCR1 782 FU5,HU4 FU, HU4 FU, HU4 FU, HU4 See 2. See 2. See 2. See 2.
Notes:

1. Terminology:
FU: Facility Unavailable interrupt
HE: Hypervisor Emulation Assistance interrupt
HU: Hypervisor Facility Unavailable interrupt

2. This SPR is read-only, and cannot be written in any privilege state. (See the mtspr instruction descrip-
tion in Section 5.4.4 for additional information.) FU or HU interrupts do not occur regardless of the
value of MMCR0PMCC or HFSCRPM.

3. When the PCR indicates a version of the architecture prior to V 2.07, this SPR is treated as undefined
in problem state; no FU or HU interrupts occur regardless of the value of MMCR0PMCC or HFSCRPM.

4. An HU interrupt occurs if HFSCRPM=0 when this SPR is accessed in either problem state or privileged
non-hypervisor state.

5. An FU interrupt occurs only if PCR indicates a version of the architecture subsequent to V 3.0. and
MMCR0PMCCEXT is set.

6. When the PCR indicates a version of the architecture prior to V 3.1, this SPR is treated as undefined in
problem state; no FU or HU interrupts occur regardless of the value of MMCR0PMCC or HFSCRPM.
Chapter 7. Interrupts 1253

Version 3.1

When an MSR bit makes a facility unavailable, the
facility is made unavailable in all privilege states.
Examples of this include the Floating Point, Vector,
and VSX facilities. The FSCR and HFSCR affect
the availability of facilities only in privilege states
that are lower than the privilege of the register
(FSCR or HFSCR).

Programming Note
Power ISA™ III1254

Version 3.1
7.3 Interrupt Synchronization
When an interrupt occurs, SRR0, HSRR0, or USRR0 is
set to point to an instruction such that all preceding
instructions have completed execution, no subsequent
instruction has begun execution, and the instruction
addressed by SRR0, HSRR0, or USRR0 may or may
not have completed execution, depending on the inter-
rupt type.

With the exception of System Reset and Machine
Check interrupts, all interrupts are context synchroniz-
ing as defined in Section 1.5.1. System Reset and
Machine Check interrupts are context synchronizing if
they are recoverable (i.e., if bit 62 of SRR1 is set to 1
by the interrupt). If a System Reset or Machine Check
interrupt is not recoverable (i.e., if bit 62 of SRR1 is set
to 0 by the interrupt), it acts like a context synchronizing
operation with respect to subsequent instructions. That
is, a non-recoverable System Reset or Machine Check
interrupt need not satisfy items 1 through 3 of Section
1.5.1, but does satisfy items 4 and 5.

7.4 Interrupt Classes
Interrupts are classified by whether they are directly
caused by the execution of an instruction or are caused
by some other system exception. Those that are “sys-
tem-caused” are:

 System Reset
 Machine Check
 External
 Decrementer
 Directed Privileged Doorbell
 Hypervisor Decrementer
 Hypervisor Maintenance
 Hypervisor Virtualization
 Directed Hypervisor Doorbell
 Directed Ultravisor Doorbell
 Performance Monitor

External, Decrementer, Hypervisor Decrementer,
Directed Privileged Doorbell, Directed Hypervisor Door-
bell, Directed Ultravisor Doorbell, Hypervisor Mainte-
nance, and Hypervisor Virtualization interrupts are
maskable interrupts. Therefore, software may delay the
generation of these interrupts. System Reset and
Machine Check interrupts are not maskable.

“Instruction-caused” interrupts are further divided into
two classes, precise and imprecise.

7.4.1 Precise Interrupt
Except for the Imprecise Mode Floating-Point Enabled
Exception type Program interrupt, all instruc-
tion-caused interrupts are precise.

When the fetching or execution of an instruction causes
a precise interrupt, the following conditions exist at the
interrupt point.

1. SRR0, HSRR0, and USRR0 addresses either the
instruction causing the exception or the immedi-
ately following instruction. Which instruction is
addressed can be determined from the interrupt
type and status bits.

2. An interrupt is generated such that all instructions
preceding the instruction causing the exception
appear to have completed with respect to the exe-
cuting thread.

3. The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the inter-
rupt type.

4. Architecturally, no subsequent instruction has
begun execution.

7.4.2 Imprecise Interrupt
This architecture defines one imprecise interrupt, the
Imprecise Mode Floating-Point Enabled Exception type
Program interrupt.

When an Imprecise Mode Floating-Point Enabled
Exception type Program interrupt occurs, the following
conditions exist at the interrupt point.

1. SRR0 addresses either the instruction causing the
exception or some instruction following that
instruction; see Section 7.5.9, “Program Interrupt”
on page 1272.

2. An interrupt is generated such that all instructions
preceding the instruction addressed by SRR0
appear to have completed with respect to the exe-
cuting thread.

3. The instruction addressed by SRR0 may appear
not to have begun execution (except, in some
cases, for causing the interrupt to occur), may
have been partially executed, or may have com-
pleted; see Section 7.5.9.

4. No instruction following the instruction addressed
by SRR0 appears to have begun execution.

All Floating-Point Enabled Exception type Program
interrupts are maskable using the MSR bits FE0 and
FE1. Although these interrupts are maskable, they dif-
fer significantly from the other maskable interrupts in
that the masking of these interrupts is usually controlled
by the application program, whereas the masking of all
other maskable interrupts is controlled by either the
operating system or the hypervisor.
Chapter 7. Interrupts 1255

Version 3.1
7.4.3 Interrupt Processing
Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of instruc-
tions that is executed when the corresponding interrupt
occurs.

Interrupt processing consists of saving a small part of
the thread’s state in certain registers, identifying the
cause of the interrupt in other registers, and continuing
execution at the corresponding interrupt vector loca-
tion. When an exception exists that will cause an inter-
rupt to be generated and it has been determined that
the interrupt will occur, the following actions are per-
formed. The handling of Machine Check interrupts (see
Section 7.5.2) and System Call Vectored interrupts
(see Section 7.5.27) differs from the description given
below in several respects.

1. SRR0, HSRR0, or USRR0 is loaded with an
instruction address that depends on the type of
interrupt; see the specific interrupt description for
details.

2. Bits 33:36 and 42:47 of SRR1, HSRR1, or USRR1
are loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 of SRR1, HSRR1, or
USRR1 are loaded with a copy of the correspond-
ing bits of the MSR.

4. The MSR is set as shown in Figure 67 on
page 1261. In particular, MSR bits IR and DR are
set as specified by LPCRAIL or LPCRHAIL as
appropriate (see Section 2.2), and MSR bit SF is
set to 1, selecting 64-bit mode. The new values
take effect beginning with the first instruction exe-
cuted following the interrupt.

5. Instruction fetch and execution resumes, using the
new MSR value, at the effective address specific to
the interrupt type. These effective addresses are
shown in Figure 68 on page 1262. An offset may
be applied to get the effective addresses, as speci-
fied by LPCRAIL or LPCRHAIL as appropriate (see
Section 2.2).

Interrupts do not clear reservations obtained with lbarx,
lharx, lwarx, ldarx, or lqarx.

In general, when an interrupt occurs, the following
instructions should be executed by the interrupt
handler before dispatching a “new” program on the
thread.

 stbcx., sthcx., stwcx., stdcx., or stqcx. to
clear the reservation if one is outstanding, to
ensure that a lbarx, lharx, lwarx, ldarx, or
lqarx in the interrupted program is not paired
with a stbcx., sthcx., stwcx., stdcx., stqcx.,
or waitrsv on the “new” program.

 “eieio, tlbsync, slbsync, ptesync,” to com-
plete any outstanding translation table modifi-
cation sequence and ensure that all storage
accesses caused by the interrupted program
will be performed with respect to another
thread before the program is resumed on that
other thread. (If software conventions are
such that there is no possibility of a translation
table modification sequence being in progress
on the thread, a [p]hwsync instruction suf-
fices.)

 isync or rfid, to ensure that the instructions in
the “new” program execute in the “new” con-
text.

 cpabort, to clear state from any previous use
of the Copy-Paste Facility.

Programming Note
Power ISA™ III1256

Version 3.1
Programming Note

For instruction-caused interrupts, in some cases it may
be desirable for the operating system to emulate the
instruction that caused the interrupt, while in other
cases it may be desirable for the operating system not
to emulate the instruction. The following list, while not
complete, illustrates criteria by which decisions regard-
ing emulation should be made. The list applies to gen-
eral execution environments; it does not necessarily
apply to special environments such as program debug-
ging, bring-up, etc.

In general, the instruction should be emulated if:

- The interrupt is caused by a condition for
which the instruction description (including
related material such as the introduction to the
section describing the instruction) implies that
the instruction works correctly. Example:
Alignment interrupt caused by lmw for which
the storage operand is not aligned, or by dcbz
for which the storage operand is in storage
that is Write Through Required or Caching
Inhibited.

- The instruction is an illegal instruction that
should appear, to the program executing it, as
if it were supported by the implementation.
Example: A Hypervisor Emulation Assistance
interrupt is caused by an instruction that has
been phased out of the architecture but is still
used by some programs that the operating
system supports.

If the instruction is a Storage Access instruction, the
emulation must satisfy the atomicity requirements
described in Section 1.4 of Book II.

In general, the instruction should not be emulated if:

- The purpose of the instruction is to cause an
interrupt. Example: System Call interrupt
caused by sc.

- The interrupt is caused by a condition that is
stated, in the instruction description, poten-
tially to cause the interrupt. Example: Align-
ment interrupt caused by lwarx for which the
storage operand is not aligned.

- The program is attempting to perform a func-
tion that it should not be permitted to perform.
Example: Data Storage interrupt caused by
lwz for which the storage operand is in stor-
age that the program should not be permitted
to access. (If the function is one that the pro-
gram should be permitted to perform, the con-
ditions that caused the interrupt should be
corrected and the program re-dispatched such
that the instruction will be re-executed. Exam-
ple: Data Storage interrupt caused by lwz for
which the storage operand is in storage that
the program should be permitted to access
but for which there currently is no PTE that
satisfies the Page Table search.)

If a program modifies an instruction that it or
another program will subsequently execute and the
execution of the instruction causes an interrupt, the
state of storage and the content of some registers
may appear to be inconsistent to the interrupt han-
dler program. For example, this could be the result
of one program executing an instruction that
causes a Hypervisor Emulation Assistance inter-
rupt just before another instance of the same pro-
gram stores an Add Immediate instruction in that
storage location. To the interrupt handler code, it
would appear that a hardware generated the inter-
rupt as the result of executing a valid instruction.

Programming Note
Chapter 7. Interrupts 1257

Version 3.1

7.4.4 Implicit alteration of HSRR0
and HSRR1
Executing some of the more complex instructions may
have the side effect of altering the contents of HSRR0
and HSRR1. The instructions listed below are guaran-
teed not to have this side effect. Any omission of
instruction suffixes is significant; e.g., add is listed but
add. is excluded.

1. Branch instructions

b[l][a], bc[l][a], bclr[l], bcctr[l]

2. Fixed-Point Load and Store Instructions

lbz, lbzx, lhz, lhzx, lwz, lwzx, ld, ldx, stb, stbx,
sth, sthx, stw, stwx, std, stdx

Execution of these instructions is guaranteed not
to have the side effect of altering HSRR0 and
HSRR1 only if the storage operand is aligned and
MSRHV DR=0b10.

3. Arithmetic instructions

addi, addis, add, subf, neg

4. Compare instructions

Hardware reports system integrity problems via
Machine Check and System Reset interrupts that
set SRR162 to 0. All other interrupts that set the
SRRs, including Machine Check and System Reset
interrupts that do not themselves report integrity
problems, copy MSRRI to SRR162. (All interrupts
that set the SRRs set MSRRI to 0.) To interact cor-
rectly with this behavior, interrupt handlers for inter-
rupts that set the SRRs should do as follows.

 In each such interrupt handler, interpret
SRR162 as:
- 0: interrupt is not recoverable
- 1: interrupt is recoverable

 In each such interrupt handler, when enough
state has been saved that another interrupt
that sets the SRRs can be recovered from, set
MSRRI to 1.

 In each such interrupt handler, do the following
(in order) just before returning.
1. Set MSRRI to 0.
2. Set SRR0 and SRR1 to the values to be

used by rfid. The new value of SRR1
should have bit 62 set to 1 (which will hap-
pen naturally if SRR1 is restored to the
value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter-
rupt is recoverable).

3. Execute rfid.

Programming Note
Because interrupts that set the HSRRs preserve
MSRRI instead of setting it to 0 as is done by inter-
rupts that set the SRRs, handlers for interrupts that
set the HSRRs must prevent additional such inter-
rupts from occurring until enough state has been
saved that another such interrupt can be recovered
from, and also when the HSRRs have been
restored prior to executing hrfid. Required behav-
ior during those intervals includes the following.
 Keep MSRHV PR EE=0b100. (This state pre-

vents many such interrupts from occurring.)
 Execute only defined instructions that are not

in invalid form.
 Pin the first page of the hypervisor’s Process

Table
 Ensure that the PTE mapping the first page of

the hypervisor’s Process Table has the Refer-
ence bit set and has no other reason to cause
an exception.

Similarly, because the Directed Ultravisor Doorbell
interrupt preserves MSRRI instead of setting it to 0,
the Directed Ultravisor Doorbell interrupt handler
must prevent additional such interrupts from occur-
ring until enough state has been saved that another
such interrupt can be recovered from, and also
when the USRRs have been restored prior to exe-
cuting urfid. This can be accomplished by keeping
MSRS HV PR EE=0b1100 during those intervals.

Programming Note
Power ISA™ III1258

Version 3.1
cmpi, cmp, cmpli, cmpl

5. Logical and Extend Sign instructions

ori, oris, xori, xoris, and, or, xor, nand, nor, eqv,
andc, orc, extsb, extsh, extsw

6. Rotate and Shift instructions

rldicl, rldicr, rldic, rlwinm, rldcl, rldcr, rlwnm,
rldimi, rlwimi, sld, slw, srd, srw

7. Other instructions

isync

rfid, urfid

hrfid in hypervisor state

mtspr, mfspr, mtmsrd, mfmsr

Similarly, fetching instructions may have the side effect
of altering the contents of HSRR0 and HSRR1 unless
MSRHV IR = 0b10.

Instructions excluded from the list include the fol-
lowing.

 instructions that set or use XERCA
 instructions that set XEROV or XERSO
 andi., andis., and fixed-point instructions with

Rc=1 (Fixed-point instructions with Rc=1 can
be replaced by the corresponding instruction
with Rc=0 followed by a Compare instruction.)

 all floating-point instructions
 mftb

These instructions, and the other excluded instruc-
tions, may be implemented with the assistance of
the Hypervisor Emulation Assistance interrupt, or of
implementation-specific interrupts that modify
HSRR0 and HSRR1. The included instructions are
guaranteed not to be implemented thus. (The
included instructions are sufficiently simple as to be
unlikely to need such assistance. Moreover, they
are likely to be needed in interrupt handlers before
HSRR0 and HSRR1 have been saved or after
HSRR0 and HSRR1 have been restored.)

Programming Note
Chapter 7. Interrupts 1259

Version 3.1
7.5 Interrupt Definitions
Figure 67 shows all the types of interrupts and the val-
ues assigned to the MSR for each. Figure 68 shows the
effective address of the interrupt vector for each inter-
rupt type. (Section 6.7.5 on page 1184 summarizes all
architecturally defined uses of effective addresses,
including those implied by Figure 68.)

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV S

System Reset 0 0 0 0 0 0 p 1 t
Machine Check 0 0 0 0 0 0 0 1 -
Data Storage r r 0 0 0 0 - - -
Data Segment r r 0 0 0 0 - - -
Instruction Storage r r 0 0 0 0 - - -
Instruction Segment r r 0 0 0 0 - - -
External r r 0 0 0 h - e -
Alignment r r 0 0 0 0 - - -
Program r r 0 0 0 0 - - -
Floating-Point Unavailable r r 0 0 0 0 - - -
Decrementer r r 0 0 0 0 - - -
Hypervisor Decrementer r r 0 0 0 - - 1 -
Directed Privileged Doorbell r r 0 0 0 0 - - -
System Call r r 0 0 0 0 - s u
Trace r r 0 0 0 0 - - -
Hypervisor Data Storage r r 0 0 0 - - 1 -
Hypervisor Instruction Storage r r 0 0 0 - - 1 -
Hypervisor Emulation Assistance r r 0 0 0 - - 1 -
Hypervisor Maintenance 0 0 0 0 0 - - 1 -
Directed Hypervisor Doorbell r r 0 0 0 - - 1 -
Hypervisor Virtualization r r 0 0 0 - - 1 -
Performance Monitor r r 0 0 0 0 - - -
Vector Unavailable r r 0 0 0 0 - - -
VSX Unavailable r r 0 0 0 0 - - -
Facility Unavailable r r 0 0 0 0 - - -
Hypervisor Facility Unavailable r r 0 0 0 - - 1 -
Directed Ultravisor Doorbell 0 0 0 0 0 - - 1 1
System Call Vectored r r 0 0 - - - - -
Power ISA™ III1260

Version 3.1
Figure 67. MSR setting due to interrupt

0 bit is set to 0
1 bit is set to 1
- bit is not altered
r for interrupts for which LPCRAIL applies, if LPCRAIL=3, set to 1; for interrupts for which

LPCRHAIL applies, if LPCRHAIL=1, set to 1; otherwise set to 0
p if the interrupt occurred while the thread was in power-saving mode, set to 1; otherwise

not altered
e if LPES=0, set to 1; otherwise not altered
h if LPES=1, set to 0; otherwise not altered
s if LEV=1 or LEV=2, set to 1; otherwise not altered
t if the interrupt caused exit from a state-losing power-saving mode and SMFCTRLE=1, set

to 1; if the interrupt caused exit from a state-losing power-saving mode and SMFC-
TRLE=0, set to 0; otherwise not altered

u if SMFCTRLE =1 and LEV=2, set to 1; otherwise not altered
Settings for Other Bits

Bits PR and PMM are set to 0.
The TE field is set to 0b00.
FP, VEC, VSX, and bits 5 and 31 are set to 0.
If the interrupt results in MSRS HV being equal to 0b11, the LE bit is copied from the UILE bit;
otherwise, if the interrupt results in MSRS HV being equal to 0b01, the LE bit is copied from the
HILE bit; otherwise the LE bit is copied from the LPCRILE bit.
The SF bit is set to 1.
Reserved bits are set as if written as 0.

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV S
Chapter 7. Interrupts 1261

Version 3.1

Figure 68. Effective address of interrupt vector by
interrupt type

7.5.1 System Reset Interrupt
If a System Reset exception causes an interrupt that is
not context synchronizing or causes the loss of a
Machine Check exception or a Direct External excep-
tion, or if the state of the thread has been corrupted, the
interrupt is not recoverable.

When the thread is in any power-saving level, a System
Reset interrupt occurs when a System Reset exception
exists. When the thread is in a power-saving level that
was entered when PSSCREC=1, a System Reset inter-
rupt also occurs when any of the following events
occurs provided that the event is enabled to cause exit
from power-saving mode (see Section 2.2). When the
thread is in a power-saving level that allows the state of
the LPCR to be lost, it is implementation-specific
whether the following events, when enabled, cause
exit, or whether only a system-reset exception causes
exit.

 External

Effective
Address1

Interrupt Type

 00..0000_0100 System Reset
 00..0000_0200 Machine Check
 00..0000_0300 Data Storage
 00..0000_0380 Data Segment
 00..0000_0400 Instruction Storage
 00..0000_0480 Instruction Segment
 00..0000_0500 External
 00..0000_0600 Alignment
 00..0000_0700 Program
 00..0000_0800 Floating-Point Unavailable
 00..0000_0900 Decrementer
 00..0000_0980 Hypervisor Decrementer
 00..0000_0A00 Directed Privileged Doorbell
 00..0000_0B00 Reserved
 00..0000_0C00 System Call
 00..0000_0D00 Trace
 00..0000_0E00 Hypervisor Data Storage
 00..0000_0E20 Hypervisor Instruction Storage
 00..0000_0E40 Hypervisor Emulation Assistance
 00..0000_0E60 Hypervisor Maintenance
 00..0000_0E80 Directed Hypervisor Doorbell
 00..0000_0EA0 Hypervisor Virtualization
 00..0000_0EC0 Reserved
 00..0000_0EE0 Reserved for implementa-

tion-dependent interrupt for per-
formance monitoring

 00..0000_0F00 Performance Monitor
 00..0000_0F20 Vector Unavailable
 00..0000_0F40 VSX Unavailable
 00..0000_0F60 Facility Unavailable
 00..0000_0F80 Hypervisor Facility Unavailable
 00..0000_0FA0 Directed Ultravisor Doorbell
 00..0000_0FC0 Reserved

 00..0000_0FFF Reserved
 00..0001_7000 System Call Vectored
 00..0001_7020 System Call Vectored

 00..0001_7FE0 System Call Vectored
 00..0001_7FFF (end of scv interrupt vectors)

1 The values in the Effective Address column are
interpreted as follows.
 00...0000_0nnn means

0x0000_0000_0000_0nnn unless the values
of MSRS HV IR DR and of LPCRAIL or
LPCRHAIL as appropriate cause the applica-
tion of an effective address offset. See the
description of LPCRAIL and LPCRHAIL in Sec-
tion 2.2 for more details.

 0...00_0001_7nnn means
0x0000_0000_0001_7nnn unless the values
of MSRS HV IR DR and of LPCRAIL or
LPCRHAIL as appropriate cause the usage of
an alternate effective address. See the
description of LPCRAIL and LPCRHAIL in Sec-
tion 2.2 for details.

2 Effective addresses 0x0000_0000_0000_0000
through 0x0000_0000_0000_00FF are used by
software and will not be assigned as interrupt
vectors.

Effective addresses 0x0000_0000_0000_0000
through 0x0000_0000_0000_00FF are used by soft-
ware and will not be assigned as interrupt vectors.

When address translation is disabled, use of any of
the effective addresses that are shown as reserved
in Figure 68 risks incompatibility with future imple-
mentations.

Effective
Address1

Interrupt Type

Programming Note
Power ISA™ III1262

Version 3.1
 Decrementer

 Directed Privileged Doorbell

 Directed Hypervisor Doorbell

 Directed Ultravisor Doorbell

 Hypervisor Maintenance

 Hypervisor Virtualization exception

 Implementation-specific

SRR1 indicates the exception that caused exit from
power-saving mode as specified below.

The following registers are set:

SRR0 If the interrupt did not occur when the
thread was in power-saving mode, set to
the effective address of the instruction that
the thread would have attempted to exe-
cute next if no interrupt conditions were
present; if the interrupt occurred when the
thread was in a power-saving mode that
was entered with PSSCR bit ESL=0, and
fields RL, MTL, and PSLL set to values that
do not allow state loss, set to the effective
address of the instruction following the stop
instruction; otherwise, set to an undefined
value.

If the interrupt occurred while the thread
was in power-saving mode, set to the effec-
tive address of the instruction following the
stop instruction when stop is executed
with PSSCR bit ESL=0 and fields RL, MTL,
and PSLL set to values that do not allow
state loss; otherwise, set to an undefined
value.

SRR1
33 Implementation-dependent.

34:36 Set to 0.

42:45 If the interrupt did not occur when the
thread was in power-saving mode, set to an
implementation-specific value. If the inter-
rupt occurred when the thread was in
power-saving mode, set to indicate the
exception that caused exit from power-sav-
ing mode as shown below:

If multiple events that cause exit from
power-saving mode exist, the event
reported is the exception corresponding to
the interrupt that would have occurred if the
same conditions existed and the thread
was not in power-saving mode.

46:47 Set to indicate whether the interrupt
occurred when the thread was in
power-saving mode and, if so, the extent
to which resource state was maintained
while the thread was in power-saving
mode, as follows:

Whenever stop is executed in privi-
leged non-hypervisor state, the hyper-
visor typically sets both PSSCRESL
and PSSCREC to 0, and sets RL and
MTL to values that do not cause state
loss. If an interrupt causes exit to
power-saving mode (either because
the interrupt was a System Reset or
Machine Check interrupt or
MSREE=1), then SRR0 for that inter-
rupt contains the effective address of
the instruction immediately following
stop.

Programming Note

SRR142:45 Exception
0000 Reserved
0001 Directed Ultravisor Doorbell
0010 Implementation specific
0011 Directed Hypervisor Doorbell
0100 System Reset
0101 Directed Privlgd Doorbell
0110 Decrementer
0111 Reserved
1000 External
1001 Hypervisor Virtualization
1010 Hypervisor Maintenance
1011 Reserved
1100 Implementation specific
1101 Reserved
1110 Implementation specific
1111 Reserved

00 The interrupt did not occur when
the thread was in power-saving
mode.

01 The interrupt occurred when the
thread was in power-saving mode.
The state of all resources was
maintained as if the thread was not
in power-saving mode.
Chapter 7. Interrupts 1263

Version 3.1

62 If the interrupt did not occur while the
thread was in a power-saving level that was
entered when PSSCREC=1, loaded from bit
62 of the MSR if the thread is in a recover-
able state; otherwise set to 0. If the inter-
rupt occurred while the thread was in a
power-saving level that was entered when
PSSCREC=1, set to 1 if the thread is in a
recoverable state; otherwise set to 0.

Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

In addition, if the interrupt occurs when the thread is in
a power-saving level that was entered when PSS-
CREC=1 and is caused by an exception other than a
System Reset exception, all other registers, except
HSRR0 and HSRR1, that would be set by the corre-
sponding interrupt if the exception occurred when the

thread was not in power-saving mode are set by the
System Reset interrupt, and are set to the values to
which they would be set if the exception occurred when
the thread was not in power-saving mode.

Execution resumes at effective address
0x0000_0000_0000_0100.

The means for software to distinguish between
power-on Reset and other types of System Reset are
implementation-dependent.

7.5.2 Machine Check Interrupt
The causes of Machine Check interrupts are implemen-
tation-dependent. For example, a Machine Check
interrupt may be caused by a reference to a storage
location that contains an uncorrectable error or does
not exist (see Section 6.6), or by an error in the storage
subsystem. In some cases, processor designers may
choose to present what would normally be considered
a storage exception, and reported as an [H]DSI or
[H]ISI, as a Machine Check interrupt instead, often
because of the perceived severity of the programming
error or the difficulty of the verification and testing asso-
ciated with reporting the error as an [H]DSI or [H]ISI. If
the decision to report the exception as a Machine
Check interrupt is made when the scenario is first
added to the architecture, the exception may never be
documented in a storage interrupt description. One
such case is an attempt to access storage mapped to
an accelerator as anything other than an operand of
copy or paste.

When the thread is not in power-saving mode, Machine
Check interrupts are enabled when MSRME=1; if
MSRME=0 and a Machine Check exception occurs, the
thread enters the Checkstop state. When the thread is
in a power-saving level that does not allow loss of
hypervisor state, Machine Check interrupts are treated
as enabled when LPCR51=1 and cannot occur when
LPCR51=0. When the thread is in a power-saving level
that allows loss of hypervisor state, it is implementa-
tion-specific whether Machine Check interrupts are
treated as enabled LPCR51=1 or if they cannot occur. If
a Machine Check exception occurs while the thread is
in power-saving mode and the Machine Check excep-
tion is not enabled to cause exit from power-saving
mode, the result is implementation specific.

The Checkstop state may also be entered if an access
is attempted to a storage location that does not exist
(see Section 6.6), or if an implementation-dependent
hardware error occurs that prevents continued opera-
tion.

Disabled Machine Check (Checkstop State)

When a thread is in Checkstop state, instruction pro-
cessing is suspended and generally cannot be
restarted without resetting the thread. Some implemen-
tations may preserve some or all of the internal state of

10 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, but the state of all
hypervisor resources, including the
DEC, HDEC, TB, PURR, SPURR,
and VTB, was maintained as if the
thread was not in power-saving
mode and the state of all other
resources is such that the hypervi-
sor can resume execution. (See
Section 2.6 for the list of hypervisor
resources.)

11 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, and the state of
some hypervisor resources was
not maintained or the state of some
resources is such that the hypervi-
sor cannot resume execution.

Although the resources that are main-
tained in power-saving levels that allow
loss of state are implementa-
tion-dependent, the hypervisor can
avoid implementation-dependence in
the portion of the System Reset and
Machine Check interrupt handlers that
recover from having been in
power-saving mode by using the con-
tents of SRR146:47, to determine what
state to restore. (To avoid implementa-
tion-dependence, the hypervisor must
assume that only the resources indi-
cated in SRR146:47 have been pre-
served.

Programming Note
Power ISA™ III1264

Version 3.1
the thread when entering Checkstop state, so that the
state can be analyzed as an aid in problem determina-
tion.

Enabled Machine Check

If a Machine Check exception causes an interrupt that
is not context synchronizing or causes the loss of a
Direct External exception, or if the state of the thread
has been corrupted, the interrupt is not recoverable.

The following registers are set:

SRR0 If the interrupt occurred when the thread
was not in a power-saving mode, or was in
a power-saving mode that was entered with
PSSCR bit ESL=0, and fields RL, MTL, and
PSLL set to values that do not allow state
loss, set on a "best effort" basis to the
effective address of some instruction that
was executing or was about to be executed
when the Machine Check exception
occurred; otherwise set to an undefined
value.

SRR1
34 If SRR0 is set to the effective address of an

instruction for which the instruction length
can easily be reported, set to 0 if the
instruction is a word instruction and to 1 if
the instruction is a prefixed instruction; oth-
erwise set to an undefined value.

46:47 Set to indicate whether the interrupt
occurred when the thread was in
power-saving mode and, if so, the extent to
which resource state was maintained while
the thread was in power-saving mode, as
follows.

62 If the interrupt did not occur while the
thread was in a power-saving level that was
entered when PSSCREC=1, loaded from bit
62 of the MSR if the thread is in a recover-
able state; otherwise set to 0. If the inter-
rupt occurred while the thread was in a
power-saving level that was entered when
PSSCREC=1, set to 1 if the thread is in a
recoverable state; otherwise set to 0.

Others Set to an implementation-dependent value.

MSR See Figure 67.

DSISR Set to an implementation-dependent value.

DAR Set to an implementation-dependent value.

ASDR Set to an implementation-dependent value.

00 The interrupt did not occur when
the thread was in power-saving
mode.

01 The interrupt occurred when the
thread was in power-saving mode.
The state of all resources was
maintained as if the thread was not
in power-saving mode.

10 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, but the state of all
hypervisor resources, including the
DEC, HDEC, TB, PURR, SPURR,
and VTB, was maintained as if the
thread was not in power-saving
mode and the state of all other
resources is such that the hypervi-
sor can resume execution. (See
Section 2.6 for the list of hypervisor
resources.)

11 The interrupt occurred when the
thread was in power-saving mode.
The state of some resources was
not maintained, and the state of
some hypervisor resources was
not maintained or the state of some
resources is such that the hypervi-
sor cannot resume execution.

Although the resources that are main-
tained in power-saving mode (except
when all resources are maintained)
are implementation-dependent, the
hypervisor can avoid implementa-
tion-dependence in the portion of the
System Reset and Machine Check
interrupt handlers that recover from
having been in power-saving mode by
using the contents of SRR146:47, to
determine what state to restore. (To
avoid implementation-dependence in
the portion of the hypervisor that
enters power-saving mode, the hyper-
visor must use the specification of the
four instructions to determine what
state to save.)

Programming Note
Chapter 7. Interrupts 1265

Version 3.1
Execution resumes at effective address
0x0000_0000_0000_0200.

A Machine Check interrupt caused by the existence of
multiple SLB entries or TLB entries (or similar entries in
implementation-specific translation caches) which
translate a given effective or virtual address (see Sec-
tions 6.7.8.2 and 6.7.9.2.) must occur while still in the
context of the partition that caused it. The interrupt
must be presented in a way that permits continuing
execution, with damage limited to the causing partition.
Treating the exception as instruction-caused will
achieve these requirements.

7.5.3 Data Storage Interrupt (DSI)
A Data Storage interrupt occurs when no higher priority
exception exists and either

(a) (MSRHV PR=0b10) & (MSRDR=0)) and the data
 access cannot be performed, or

(b) HPT translation is being performed, the value of the
 expression
 ((MSRHV PR=0b10)|((¬VPM|¬PRTEV)& MSRDR))
 is 1, and a data access cannot be performed,
 except for the case of MSRHV PR≠0b10,
 VPM=0, LPCRKBV=1, and a Virtual Page Class Key
 Storage Protection exception exists or

(c) Radix Tree translation is being performed, and
 either a Data Address Watchpoint match occurs, an
 attempt is made to execute an AMO with an invalid
 function code, an attempt is made to perform a
 copy-paste transfer other than from main storage to a
 properly initiated accelerator, a problem other than
 page fault or unsupported MMU configuration caused
 by (RTS or RPDS in) the PATE occurs attempting to
 access the LPID=0 process table, or process-scoped
 translation prevents the data access from being
 performed

for any of the following reasons that can occur in the
respective translation state except for a PTEG access
causing a Secure Memory Protection exception when
VPM=0.

 Data address translation is enabled (MSRDR=1)
and the effective or virtual address of any byte of
the storage location specified by a Load, Store,
icbi, dcbz, dcbst, or dcbf instruction cannot be
translated to a real address because no valid PTE
was found for the process-scoped Radix Tree
translation or HPT translation with VPM off.

 The address of the appropriate process table entry
or segment table entry group cannot be translated
when HR=0 and either VPM=0 or the process table
entry is invalid (independent of VPM).

 The effective address specified by a lq, stq, lwat,
ldat, lbarx, lharx, lwarx, ldarx, lqarx, stwat,
stdat, stbcx., sthcx., stwcx., stdcx., or stqcx.
instruction refers to storage that is Write Through
Required or Caching Inhibited; or the effective
address specified by a copy or paste. instruction
refers to storage that is Caching Inhibited; or the
effective address specified by a lwat, ldat, stwat,
or stdat instruction refers to storage that is
Guarded.

 An accelerator is specified as the source of a copy
instruction or an attempt is made to access an
accelerator that is not properly configured for the
software’s use.

 The access violates Basic Storage Protection.
 The access violates Virtual Page Class Key Stor-

age Protection and LPCRKBV=0.
 The access violates Radix Tree Storage Protection

because the process-scoped PTE does not permit
the access.

 The access violates Secure Memory Protection.
 The process- and partition-scoped page attributes

conflict.
 An unsupported radix tree configuration is found

for the process-scoped tables, or, if effLPID=0, for
the partition-scoped tables. (Note that this condi-
tion may not be detected until the associated val-
ues are about to cause a functional problem for the
processor.)

 A reference or change bit update cannot be per-
formed in a process-scoped PTE.

 A Data Address Watchpoint match occurs.
 An attempt is made to execute a Load Atomic or

Store Atomic instruction with an invalid function
code.

 An attempt is made to execute a Fixed-Point Load
or Store Caching Inhibited instruction with
MSRDR=1 or specifying a storage location that is
specified by the Hypervisor Real Mode Storage
Control facility to be treated as non-Guarded.

A Data Storage interrupt also occurs when no higher
priority exception exists and an attempt is made to exe-
cute a Load Atomic or Store Atomic instruction specify-
ing an invalid function code.

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, which may be placed
into registers. This corruption of register contents
may occur even if the interrupt is recoverable.

Programming Note

When an attempt to execute a Load Atomic or
Store Atomic instruction containing an invalid func-
tion code (see Figures 3 and 4 in Book II) causes a
DSI, the condition is very similar to an invalid form
of an instruction. As a result, this instance of DSI
occurs with a high prioirty that blocks the transla-
tion process and prevents Reference and Change
bit updates.

Programming Note
Power ISA™ III1266

Version 3.1
If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Storage inter-
rupt, and either (a) the specified effective address
refers to storage that is Write Through Required or
Caching Inhibited, or (b) a non-conditional Store to the
specified effective address would cause a Data Storage
interrupt, it is implementation-dependent whether a
Data Storage interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Data Storage interrupt does
not occur.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67.

DSISR
32 Set to 0.
33 Set to 1 if MSRDR=1 and the translation for

an attempted access is not found in the
Page Table; otherwise set to 0..

34 Set to 1 if the process- and partition-scoped
page attributes conflict; otherwise set to 0.

35 Set to 0.
36 Set to 1 if the access is not permitted by

Figure 45 or the privilege, read, or read/
write bits in Figure 46 as appropriate; other-
wise set to 0.

37 Set to 1 if the access is due to a lq, stq,
lwat, ldat, lbarx, lharx, lwarx, ldarx,
lqarx, stwat, stdat, stbcx., sthcx., stwcx.,
stdcx., or stqcx. instruction that addresses
storage that is Write Through Required or
Caching Inhibited; or if the access is due to
a copy or paste. instruction that addresses
storage that is Caching Inhibited; or if the
access is due to a lwat, ldat, stwat, or
stdat instruction that addresses storage
that is Guarded; otherwise set to 0.

38 Set to 1 for a Store, dcbz, or Load/Store
Atomic instruction; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Watchpoint

match occurs; otherwise set to 0.
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported radix tree config-
uration is found during the translation pro-
cess; otherwise set to 0.

45 Set to 1 if an attempt to atomically set a ref-
erence or change bit fails; otherwise set to
0.

46 Set to 1 if the address of the appropriate
process table entry or segment table entry
group cannot be translated when VPM=0
and HR=0, or the process table entry is
invalid (independent of VPM) when HR=0.

47:59 Set to 0.
60 Set to 1 if an accelerator is specified as the

source of a copy instruction or an attempt
is made to access an accelerator that is not
properly configured for the software’s use;
otherwise set to 0. These exceptions are
presented differently from most instruc-
tion-caused exceptions. See Section 4.4,
“Copy-Paste Facility”, in Book II for details.
Additional information may be retained by
the platform if the accelerator is not prop-
erly configured.

61 Set to 1 if an attempt is made to execute a
Load Atomic or Store Atomic instruction
specifying an invalid function code; other-
wise set to 0.

62 Set to 1 if an attempt is made to execute a
Fixed-Point Load or Store Caching Inhib-
ited instruction with MSRDR=1 or specifying
a storage location that is specified by the
Hypervisor Real Mode Storage Control
facility to be treated as non-Guarded.

63 Set to 0.

DAR Set to the effective address of a storage
element as described in the following list.
The list should be read from the top down;
the DAR is set as described by the first item
that corresponds to an exception that is
reported in the DSISR. For example, if a
Load Word instruction causes a storage
protection violation and a Data Address
Watchpoint match (and both are reported in
the DSISR), the DAR is set to the effective

The number of attempts hardware
makes to atomically set reference and
change bits before triggering this
exception is implementation depen-
dent. The POWER9 processor makes
no attempt. Software may still support
the atomic update programming model
to get performance benefits such as
those described in Section 6.7.12.

Programming Note
Chapter 7. Interrupts 1267

Version 3.1
address of a byte in the first aligned double-
word for which access was attempted in the
page that caused the exception.
 undefined, for Load Atomic or Store

Atomic instruction specifying an invalid
function code


 undefined, when DSISR60=1
 a Data Storage exception occurs for

reasons other than a Data Address
Watchpoint match
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a Load or Store
instruction (“first” refers to address
order: see Section 7.7).

 the first byte of overlap between the
operand and the matching watched
range, for a Data Address Watchpoint
match

For the cases in which the DAR is specified
above to be set to a defined value, if the
interrupt occurs in 32-bit mode the
high-order 32 bits of the DAR are set to 0.

If multiple Data Storage exceptions occur for a given
effective address, any one or more of the bits corre-
sponding to these exceptions may be set to 1 in the
DSISR. However, if one or more Data Storage excep-
tions occur together with a Virtualized Page Class Key
Storage Protection exception that occurs when
LPCRKBV=1 and Virtualized Partition Memory is dis-
abled by VPM=0, an HDSI results, and all of the excep-
tions are reported in the HDSISR.

Execution resumes at effective address
0x0000_0000_0000_0300, possibly offset as specified
in Figure 68.

7.5.4 Data Segment Interrupt
For Paravirtualized HPT Translation, a Data Segment
interrupt occurs when no higher priority exception
exists and a data access cannot be performed because
data address translation is enabled and the effective
address of any byte of the storage location specified by
a Load, Store, icbi, dcbz, dcbst, or dcbf instruction
cannot be translated to a virtual address because the
SLB search fails and, if UPRT=1, the Segment Table
search fails after the STEG has been accessed.

For Radix Tree Translation, a Data Segment interrupt
occurs when no higher priority exception exists and a
data access cannot be performed because for the
effective address specified by a Load, Store, icbi,
dcbz, dcbst, or dcbf instruction, data address transla-
tion is enabled and either EA0:1=0b01 or 0b10 when

MSRHV PR ≠ 0b10 or EA0:1=0b00 when MSRHV
PR=0b10 and LPIDR≠0, or EA2:63 is outside the range
translated by the appropriate Radix Tree.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Data Segment
interrupt and a non-conditional Store to the specified
effective address would cause a Data Segment inter-
rupt, it is implementation-dependent whether a Data
Segment interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Data Segment interrupt does
not occur.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67.

DSISR Set to an undefined value.

DAR Set to the effective address of a storage
element as described in the following list.
 a byte in the block that caused the

exception, for a Cache Management
instruction

 a byte in the first aligned doubleword
for which access was attempted in the
segment that caused the exception, for
a Load or Store instruction (“first”
refers to address order: see
Section 7.7).

If the interrupt occurs in 32-bit mode the
high-order 32 bits of the DAR are set to 0.

Execution resumes at effective address
0x0000_0000_0000_0380, possibly offset as specified
in Figure 68.

A Data Segment interrupt occurs if MSRDR=1 and
the translation of the effective address of any byte
of the specified storage location is not found in the
SLB (or in any implementation-specific address
translation lookaside information).

Programming Note
Power ISA™ III1268

Version 3.1
7.5.5 Instruction Storage Inter-
rupt (ISI)
An Instruction Storage interrupt occurs when no higher
priority exception exists and either

(a) (MSRHV PR=0b10) & (MSRIR=0)) and the next
 instruction to be executed cannot be fetched, or

(b) HPT Translation is being performed, the value of the
 expression
 ((MSRHV PR=0b10)|((¬VPM|¬PRTEV)&MSRIR))
 is 1, and the next instruction to be executed cannot
 be fetched, or

(c) Radix Tree translation is being performed and either
 a problem other than page fault or unsupported MMU
 configuration caused by (RTS or RPDS in) the PATE
 occurs attempting to access the LPID=0 process table
 or process-scoped translation prevents the next
 instruction to be executed from being fetched

for any of the following reasons that can occur in the
respective translation state except for a PTEG access
causing a Secure Memory Protection exception when
VPM=0.

 Instruction address translation is enabled and the
effective or virtual address cannot be translated to
a real address because no valid PTE was found for
the process-scoped Radix Tree translation or HPT
translation with VPM off.

 The address of the appropriate process table entry
or segment table entry group cannot be translated
when HR=0 and either VPM=0 or the process table
entry is invalid (independent of VPM).

 The access violates Basic Storage Protection.
 The access violates Virtual Page Class Key Stor-

age Protection.
 The access violates Radix Tree Translation Stor-

age Protection.
 The access violates Secure Memory Protection.
 The process- and partition-scoped page attributes

conflict.
 An unsupported radix tree configuration is found

for the process-scoped tables, or, if effLPID=0, for
the partition-scoped tables. (Note that this condi-
tion may not be detected until the associated val-
ues are about to cause a functional problem for the
processor.)

 A reference bit update cannot be performed in a
process-scoped PTE.

 The instruction is a prefixed instruction and is in
storage that is Caching Inhibited.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent (if the interrupt occurs on attempting to
fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33 Set to 1 if MSRIR=1 and the translation for

an attempted access is not found in the
Page Table; otherwise set to 0.

34 Set to 1 if the process- and partition-scoped
page attributes conflict; otherwise set to 0.

35 Set to 1 if the access is to No-execute (as
indicated by the N bit in the segment table
entry or the N bit in the HPT PTE or the
Execute and Privilege bits in the EAA field
of the Radix PTE and IAMR key 0) or
Guarded storage, or is to Caching Inhib-
ited storage and is for a prefixed instruc-
tion; otherwise set to 0.

36 Set to 1 if the access is not permitted by
Figure 45 or the privilege or execute bits in
Figure 46 as appropriate; otherwise set to
0.

42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported radix tree config-
uration is found during the translation pro-
cess; otherwise set to 0.

45 Set to 1 if an attempt to atomically set a ref-
erence bit fails; otherwise set to 0.

46 Set to 1 if the address of the appropriate
process table entry or segment table entry
group cannot be translated when VPM=0
and HR=0, or the process table entry is
invalid (independent of VPM) when HR=0.

47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67.

If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or more
of the bits corresponding to these exceptions may be
set to 1 in SRR1.

Execution resumes at effective address
0x0000_0000_0000_0400, possibly offset as specified
in Figure 68.

The number of attempts hardware
makes to atomically set reference and
change bits before triggering this
exception is implementation depen-
dent. The POWER9 processor makes
no attempt. Software may still support
the atomic update programming model
to get performance benefits such as
those described in Section 6.7.12.

Programming Note
Chapter 7. Interrupts 1269

Version 3.1
7.5.6 Instruction Segment
Interrupt
For Paravirtualized HPT Translation, an Instruction
Segment interrupt occurs when no higher priority
exception exists and the next instruction to be executed
cannot be fetched because instruction address transla-
tion is enabled and the effective address cannot be
translated to a virtual address because the SLB search
fails and, if UPRT=1, the Segment Table search fails
after the STEG has been accessed.

For Radix Tree Translation, an Instruction Segment
interrupt occurs when no higher priority exception
exists and the next instruction to be executed cannot
be fetched because instruction address translation is
enabled and either EA0:1=0b01 or 0b10 when MSRHV
PR ≠ 0b10 or EA0:1=0b00 when MSRHV PR=0b10 and
LPIDR≠0, or EA2:63 is outside the range translated by
the appropriate Radix Tree.

The following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent (if the interrupt occurs on attempting to
fetch a branch target, SRR0 is set to the
branch target address).

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0480, possibly offset as specified
in Figure 68.

7.5.7 External Interrupt
An External interrupt is classified as being either a
Direct External interrupt or a Mediated External inter-
rupt. Throughout this Book, usage of the phrase “Exter-
nal interrupt’, without further classification, refers to
both a Direct External interrupt and a Mediated Exter-
nal interrupt.

7.5.7.1 Direct External Interrupt
A Direct External interrupt occurs when no higher prior-
ity exception exists, a Direct External exception exists,
and the value of the expression

MSREE & ¬(MSRHV & ¬MSRPR & LPCRHEIC) |
(¬(LPES) & (¬(MSRHV) | MSRPR))

is one. The occurrence of the interrupt does not cause
the exception to cease to exist.

When LPES=0, the following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

When LPES=1, the following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0500, possibly offset as specified
in Figure 68.

An Instruction Segment interrupt occurs if
MSRIR=1 and the translation of the effective
address of the next instruction to be executed is not
found in the SLB (or in any implementation-specific
address translation lookaside information).

Programming Note

When HEIC=1, Direct External exceptions will not
result in external interrupts when the processor is in
hypervisor state even if MSREE=1. This enables
the Hypervisor Virtualization interrupt handler to
prevent External interrupts from occurring during
the Hypervisor Virtualization interrupt handler.

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

MSREE & ¬(MSRHV & ¬MSRPR & LPCRHEIC) |
¬(LPES | MSRHV)

is equivalent to the expression given above.

Programming Note

Programming Note
Power ISA™ III1270

Version 3.1

7.5.7.2 Mediated External Interrupt
A Mediated External interrupt occurs when no higher
priority exception exists, a Mediated External exception
exists (see the definition of LPCRMER in Section 2.2),
and the value of the expression

MSREE & (¬(MSRHV) | MSRPR)

is one. The occurrence of the interrupt does not cause
the exception to cease to exist.

When LPES=0, the following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent.

HSRR1
33:36 Set to 0.
42 Set to 1.
43:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

When LPES=1, the following registers are set:

SRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0500, possibly offset as specified
in Figure 68.

7.5.8 Alignment Interrupt
Most causes of Alignment interrupt involve storage
operands, and many of those causes involve the align-
ment thereof. Storage operand alignment is defined in
Section 1.10.1 of Book I. Another cause of Alignment
interrupt is attempt to execute a prefixed instruction
that crosses a 64-byte address boundary.

An Alignment interrupt occurs when no higher priority
exception exists and an attempt is made to execute an
instruction in a manner that is required, by the instruc-
tion description, to cause an Alignment interrupt, or to

execute a prefixed instruction that crosses a 64-byte
boundary. These cases are as follows.
 A Load/Store Multiple instruction that is executed

in Little-Endian mode
 A Move Assist instruction that is executed in Lit-

tle-Endian mode, unless the string length is zero
 A copy, paste., lwat, ldat, lharx, lwarx, ldarx,

lqarx, stwat, stdat, sthcx., stwcx., stdcx., or
stqcx. instruction that has an unaligned storage
operand, unless execution of the instruction yields
boundedly undefined results

 The operand(s) of a Load Atomic or Store Atomic
instruction cross(es) a 32-byte boundary.

 A prefixed instruction that is at an effective address
equal to 60 modulo 64.

An Alignment interrupt may occur when no higher prior-
ity exception exists and a data access cannot be per-
formed for any of the following reasons.
 The storage operand of lfdp, lfdpx, stfdp, stfdpx,

lxsihzx, or stxsihx is unaligned.
 The storage operand of lq or stq is unaligned.
 The storage operand of a Floating-Point Storage

Access or VSX Storage Access instruction other
than lfdp, lfdpx, stfdp, stfdpx, lxsihzx, lxsibzx,
stxsihx, or stxsibx is not word-aligned.

 The storage operand of a Load/Store Multiple
Word instruction is not word-aligned and the
thread is in Big-Endian mode.

 The storage operand of a Load/Store Multiple Dou-
bleword instruction is not doubleword-aligned and
the thread is in Big-Endian mode.

 The storage operand of a Load/Store Multiple,
lfdp, lfdpx, lxvl, lxvll, stfdp, stfdpx, stxvl, stxvll,
or dcbz instruction is in storage that is Write
Through Required or Caching Inhibited.

 The storage operand of a Move Assist instruction
is in storage that is Write Through Required or
Caching Inhibited and has length greater than
zero.

 The storage operand of a Load or Store instruction
is unaligned and is in storage that is Write Through
Required or Caching Inhibited.

 The storage operand of a Storage Access instruc-
tion crosses a segment boundary, or crosses a
boundary between virtual pages that have different
storage control attributes.

The following registers are set:

SRR0 Set to the effective address of the instruction
that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35 Set to 1 if the instruction that caused the
interrupt is a prefixed instruction that is at

The Direct External exception has the same mean-
ing as the External exception in versions of the
architecture prior to Version 2.05.

Programming Note
Chapter 7. Interrupts 1271

Version 3.1
an effective address equal to 60 modulo
64; otherwise set to 0.

36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67.

DAR Set to the effective address computed by
the instruction, unless the instruction is a
prefixed instruction at an effective address
equal to 60 modulo 64, in which case set to
an undefined value except as described in
the next sentence. If the interrupt occurs in
32-bit mode the high-order 32 bits of the
DAR are set to 0.

Execution resumes at effective address
0x0000_0000_0000_0600, possibly offset as specified
in Figure 68.

7.5.9 Program Interrupt
A Program interrupt occurs when no higher priority
exception exists and one of the following exceptions
arises during execution of an instruction:

Floating-Point Enabled Exception

A Floating-Point Enabled Exception type Program
interrupt is generated when the value of the
expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is set to 1 by the execution of a
floating-point instruction that causes an enabled
exception, including the case of a Move To FPSCR
instruction that causes an exception bit and the
corresponding enable bit both to be 1.

Privileged Instruction

The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
privileged instruction, or of an mtspr or mfspr
instruction with an SPR field that contains a
value having spr0=1.

The following applies if the instruction is executed
when MSRHV PR = 0b00 and LPCREVIRT=0.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
hypervisor privileged instruction, or of an
mtspr or mfspr instruction that specifies an
SPR that is hypervisor privileged for the oper-
ation or that specifies PTCR, DAWRn, DAW-
RXn, or CIABR when those SPRs are
ultravisor privileged for the operation.

The following applies if the instruction is executed
when MSRHV PR = 0b00 or when MSRS HV PR =
0b010.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of
an ultravisor privileged instruction, or of an
mtspr or mfspr instruction that specifies an
SPR, other than PTCR, DAWRn, DAWRXn,
and CIABR, that is ultravisor privileged for the
operation.

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruction
is met.

The following registers are set:

SRR0 For all Program interrupts except a Float-
ing-Point Enabled Exception type Program
interrupt, set to the effective address of the
instruction that caused the corresponding
exception.

For a Floating-Point Enabled Exception type
Program interrupt, set as described in the fol-
lowing list.
- If MSRFE0 FE1 = 0b00, FPSCRFEX = 1,

and an instruction is executed that
changes MSRFE0 FE1 to a nonzero value,
set to the effective address of the instruc-
tion that the thread would have attempted

If an Alignment interrupt occurs for a case in the
second bulleted list above, the Alignment interrupt
handler should emulate the instruction. The emula-
tion must satisfy the atomicity requirements
described in Section 1.4 of Book II.

If an Alignment interrupt occurs for a case in the
first bulleted list above, the Alignment interrupt han-
dler must not attempt to emulate the instruction, but
instead should treat the instruction as a program-
ming error.

Programming Note

These are the only cases in which a Privi-
leged Instruction type Program interrupt
can be generated when MSRPR=0. They
can be distinguished from other causes of
Privileged Instruction type Program inter-
rupts by examining SRR149 (the bit in
which MSRPR was saved by the interrupt).

Programming Note
Power ISA™ III1272

Version 3.1
to execute next if no interrupt conditions
were present.

- If MSRFE0 FE = 0b11, set to the effective
address of the instruction that caused the
Floating-Point Enabled Exception.

- If MSRFE0 FE = 0b01 or 0b10, set to the
effective address of the first instruction
that caused a Floating-Point Enabled
Exception since the most recent time
FPSCRFEX was changed from 1 to 0 or of
some subsequent instruction.

SRR1
33 Set to 0.
34 Except for the cases in which SRR0 is not

necessarily set to the effective address of
the instruction that caused the exception
(first and third bullets in the description of
how SRR0 is set), set to 0 if the instruction
that caused the interrupt is a word instruc-
tion and to 1 if the instruction that caused
the interrupt is a prefixed instruction; for the
cases in which SRR0 is not necessarily set
to the effective address of the instruction
that caused the exception, set to an unde-
fined value.

35:36 Set to 0.
42 Set to 0.

43 Set to 1 for a Floating-Point Enabled
Exception type Program interrupt; other-
wise set to 0.

44 Set to 0.

45 Set to 1 for a Privileged Instruction type
Program interrupt; otherwise set to 0.

46 Set to 1 for a Trap type Program interrupt;
otherwise set to 0.

47 Set to 0 if SRR0 contains the address of
the instruction causing the exception and
there is only one such instruction; other-
wise set to 1.

Others Loaded from the MSR.

Exactly one of bits 43, 45, and 46 is set to 1.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0700, possibly offset as specified
in Figure 68.

Recall that all instructions that can alter
MSRFE0 FE1 are context synchroniz-
ing, and therefore are not initiated until
all preceding instructions have reported
all exceptions they will cause.

If SRR0 is set to the effective address
of a subsequent instruction, that
instruction will not be beyond the first
such instruction at which synchroniza-
tion of floating-point instructions
occurs. (Recall that such synchroniza-
tion is caused by Floating-Point Status
and Control Register instructions, as
well as by execution synchronizing
instructions and events.)

Programming Note

Programming Note

Bit 44 will not be assigned a meaning.
In versions of the architecture that pre-
cede Version 2.05 this bit was set to 1
(and bits 42:43 and 45:46 were set to
0) to indicate that an "Illegal Instruction
type Program interrupt" had occurred.
Hypervisors may set this bit to 1 as part
of simulating an Illegal Instruction type
Program interrupt to the operating sys-
tem, as described in a subsequent Pro-
gramming Note.

SRR147 can be set to 1 only if the
exception is a Floating-Point Enabled
Exception and either MSRFE0 FE1 =
0b01 or 0b10 or MSRFE0 FE1 has just
been changed from 0b00 to a nonzero
value. (SRR147 is always set to 1 in the
last case.)

Programming Note

Programming Note
Chapter 7. Interrupts 1273

Version 3.1

7.5.10 Floating-Point Unavailable
Interrupt
A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including float-
ing-point loads, stores, and moves), and MSRFP=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0800, possibly offset as specified
in Figure 68.

In versions of the architecture that precede V. 2.05,
the conditions that now cause a Hypervisor Emula-
tion Assistance interrupt with HSRR145=0 instead
caused an “Illegal Instruction type Program inter-
rupt”. This was a Program interrupt for which regis-
ters (SRR0, SRR1, and the MSR) were set as
described above for the Privileged Instruction type
Program interrupt, except that SRR144 was set to 1
and SRR145 was set to 0. Thus older operating
systems have code to handle these conditions, at
the Program interrupt vector location. For this rea-
son, if a Hypervisor Emulation Assistance interrupt
occurs with HSRR145=0 when the thread is not in
hypervisor state, for an instruction that the hypervi-
sor determines should be handled by the operating
system, the hypervisor is expected to pass control
to the operating system at the operating system's
Program interrupt vector location, with all registers
(SRR0, SRR1, MSR, GPRs, etc.) set as if the
instruction had caused a Privileged Instruction type
Program interrupt, except with SRR144:45 set to
0b10. (The Hypervisor Emulation Assistance inter-
rupt was added to the architecture in V. 2.05, and
the Illegal Instruction type Program interrupt was
removed from the architecture in V. 2.06. In V. 2.05
the Hypervisor Emulation Assistance interrupt was
optional: implementations that supported it gener-
ated it as described in V. 2.06, and never gener-
ated an Illegal Instruction type Program interrupt;
implementations that did not support it generated
an Illegal Instruction type Program interrupt as
described above.)

Programming Note
When LPCREVIRT=1, some of the conditions that
cause a Privileged Instruction type Program inter-
rupt when LPCREVIRT=0 (attempted execution, in
privileged but non-hypervisor state, of a hypervisor
privileged instruction or of an mtspr or mfspr
instruction specifying an SPR that is hypervisor
privileged for the operation or PTCR, DAWRn,
DAWRXn, or CIABR when they are ultravisor privi-
leged for the operation) instead cause a Hypervisor
Emulation Assistance interrupt with HSRR145=1.
Having these conditions cause a Hypervisor Emu-
lation Assistance interrupt permits support of
nested hypervisors through virtualization of hyper-
visor resources, and simplifies creation of a com-
mon kernel for the OS and the hypervisor. In
versions of the architecture that precede V. 3.0,
LPCREVIRT did not exist and these conditions
always caused a Privileged Instruction type Pro-
gram interrupt. Thus older operating systems have
code to handle these conditions, at the Program
interrupt vector location. For this reason, if a Hyper-
visor Emulation Assistance interrupt occurs with
HSRR145=1 for an instruction that the hypervisor
determines should be handled by the operating
system, the hypervisor is expected to pass control
to the operating system at the operating system's
Program interrupt vector location, with all registers
(SRR0, SRR1, MSR, GPRs, etc.) set as if the
instruction had caused a Privileged Instruction type
Program interrupt.

Programming Note
Power ISA™ III1274

Version 3.1
7.5.11 Decrementer Interrupt
A Decrementer interrupt occurs when no higher priority
exception exists, a Decrementer exception exists, and
MSREE=1.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0900, possibly offset as specified
in Figure 68.

7.5.12 Hypervisor Decrementer
Interrupt
A Hypervisor Decrementer interrupt occurs when no
higher priority exception exists, a Hypervisor Decre-
menter exception exists, and the value of the following
expression is 1.

(MSREE | ¬(MSRHV) | MSRPR) & HDICE

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0980, possibly offset as specified
in Figure 68.

7.5.13 Directed Privileged Door-
bell Interrupt
A Directed Privileged Doorbell interrupt occurs when no
higher priority exception exists, a Directed Privileged
Doorbell exception is present, and MSREE=1. Directed
Privileged Doorbell exceptions are generated when
Directed Privileged Doorbell messages (see Chapter
11) are received and accepted by the thread.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0A00, possibly offset as specified
in Figure 68.

7.5.14 System Call Interrupt
A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:43 Set to indicate the LEV value specified by

the System Call instruction that caused the
interrupt, as follows.

44:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0C00, possibly offset as specified
in Figure 68.

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV)) & HDICE

is equivalent to the expression given above.

Programming Note

LEV SRR142:43
 0 00
 1 01
 2 10
 3* undefined
* reserved LEV value
Chapter 7. Interrupts 1275

Version 3.1

7.5.15 Trace Interrupt
A Trace interrupt occurs when no higher priority excep-
tion exists and any instruction except rfid, hrfid, urfid,
rfscv, or a Power-Saving Mode instruction is success-
fully completed, provided any of the following is true:

- the instruction is mtmsr[d] and
MSRTE=0b10 when the instruction was initi-
ated,

- the instruction is not mtmsr[d] and
MSRTE=0b10,

- the instruction is a Branch instruction and
MSRTE=0b01, or

- a CIABR match occurs.

Successful completion for an instruction means that the
instruction caused no other interrupt. Thus a Trace
interrupt never occurs for a System Call or System Call
Vectored instruction, or for a Trap instruction that traps.
The instruction that causes a Trace interrupt is called
the “traced instruction”.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33 Set to 1.
34 Set to 0 if the traced instruction is a word

instruction and to 1 if the traced instruction
is a prefixed instruction.

35 Set to 1 if the the Trace interrupt is not the
result of a CIABR match and the traced
instruction is a Load instruction other than a
Load String instruction with string length of
0 or is specified to be treated as a Load
instruction; otherwise set to 0.

36 Set to 1 if the the Trace interrupt is not the
result of a CIABR match and the traced
instruction is a Store instruction other than
a Store String instruction with string length
of 0 or is specified to be treated as a Store
instruction; otherwise set to 0.

42 Set to 0.

43 Set to 1 if the Trace interrupt is the result of
a CIABR match.

44:47 Set to 0.
Others Loaded from the MSR.

SIAR For all Trace interrupts other than those
caused by a CIABR match, set to the effec-
tive address of the traced instruction; for
Trace interrupts caused by a CIABR match,
not modified if MSRTE=0b00; otherwise
undefined.

SDAR For all Trace interrupts other than those
caused by a CIABR match, set to the effec-
tive address of the storage operand (if any)
of the traced instruction; for Trace interrupts
caused by a CIABR match, not modified if
MSRTE=0b00; otherwise undefined.

If the state of the Performance Monitor is such that the
Performance Monitor may be altering the SIAR and
SDAR (i.e., if MMCR0PMAE=1), the contents of the
SIAR and SDAR are undefined for the Trace interrupt
and may change even when no Trace interrupt occurs.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_00D0, possibly offset as specified
in Figure 68. For a Trace interrupt resulting from exe-
cution of an instruction that modifies the value of
MSRIR, MSRDR, MSRHV, LPCRAIL, or LPCRHAIL, the
Trace interrupt vector location is based on the modified
values.

An attempt to execute an sc instruction with LEV=1
or LEV=2 in problem state, or an attempt to exe-
cute an sc instruction with LEV=2 in privileged
non-hypervisor state, should be treated as a pro-
gramming error.

An attempt to execute an sc instruction with LEV=2
when SMFCTRLE=0 should be treated as a pro-
gramming error.

Programming Note

Bit 33 is set to 1 for historical reasons.

The following instructions are not traced.

 rfid
 hrfid
 urfid
 rfscv
 sc, scv, and Trap instructions that trap
 Power-Saving Mode instructions
 other instructions that cause interrupts (other

than Trace interrupts)
 the first instructions of any interrupt handler

(applies to Branch and Single Step tracing;
CIABR matches may still occur)

 instructions that are emulated by software

In general, interrupt handlers can achieve the effect
of tracing these instructions.

Programming Note

Programming Note
Power ISA™ III1276

Version 3.1

7.5.16 Hypervisor Data Storage
Interrupt (HDSI)
A Hypervisor Data Storage interrupt occurs when no
higher priority exception exists, either the thread is not
in hypervisor state or an unsupported MMU configura-
tion has been found or the access has been prevented
by a problem in partition-scoped Radix Tree translation,
and either

(a) HPT translation is being performed, VPM=0,
 LPCRKBV=1, and a Virtual Storage Page Class Key
 Protection exception exists or

(b) HPT translation is being performed and either a
 PRTE, STEG, or PTEG access causes a Secure
 Memory Protection exception or the value of the
 expression (¬MSRDR) | (VPM & PRTEV & MSRDR)
 is 1, and a data access cannot be performed, or

(c) Radix Tree translation is being performed and either
 a page fault or an unsupported MMU configuration in
 the PATE (unsupported value of RTS or RPDS)
 occurs attempting to access the LPID=0 process table
 or partition-scoped translation other than for the
 LPID=0 process table prevents an access from being
 performed

for any of the following reasons that can occur in the
respective translation state.

 HR=0, data address translation is enabled
(MSRDR=1) and the virtual address of any byte of
the storage location specified by a Load, Store,
icbi, dcbz, dcbst, or dcbf instruction cannot be
translated to a real address because no valid PTE
was found for the VPM translation.

 HR=1 and the guest real address of any byte of the
storage location specified by a Load, Store, icbi,
dcbz, dcbst, or dcbf instruction cannot be trans-
lated to a host real address because no valid PTE
was found in the partition-scoped page table.

 The guest real address of a page directory entry,
page table entry, or process table entry could not
be translated when HR=1; or the virtual address of
a process table entry or segment table entry group
could not be translated when VPM=1 and HR=0.

 An unsupported MMU configuration is found. In
addition to an unsupported radix tree configuration

found for the partition-scoped tables, this type of
exception will also be reported outside of hypervi-
sor or ultravisor real mode for translation mode
mismatches including UPRT=0 when HR=1,
LPID=0 if MSRHV=0 when HR=1, and HR=0 for
LPID=0 when HR=1 for another partition ID. (Note
that these conditions may not be detected until the
associated values are about to cause a functional
problem for the processor.)

 A reference or change bit update in a parti-
tion-scoped PTE cannot be performed (including
for the process-scoped PDE or PTE or process
table entry for a radix guest.

 HR=0, data address translation is disabled
(MSRDR=0), and the virtual address of any byte of
the storage location specified by a Load, Store,
icbi, dcbz, dcbst, or dcbf instruction cannot be
translated to a real address by means of the virtual
real addressing mechanism.

 The effective address specified by a lq, stq, lwat,
ldat, lbarx, lharx, lwarx, ldarx, lqarx, stwat,
stdat, stbcx., sthcx., stwcx., stdcx., or stqcx.
instruction refers to storage that is Write Through
Required or Caching Inhibited; or the effective
address specified by a copy or paste. instruction
refers to storage that is Caching Inhibited; or the
effective address specified by a lwat, ldat, stwat,
or stdat instruction refers to storage that is
Guarded.

 An accelerator is specified as the source of a copy
instruction or an attempt is made to access an
accelerator that is not properly configured for the
software’s use; HR=0 only.

 The access violates storage protection. In addition
to the legacy VPM cases (including those for
Secure Memory Protection), this includes mis-
matches in access authority in which the pro-
cess-scoped PTE permits the access but the
partition-scoped PTE does not and Secure Mem-
ory Protection for a radix guest. It also includes
lack of necessary authority for accesses to pro-
cess-scoped tables (which cannot happen when
HR=0), for example lack of write authority to set a
reference bit in the process-scoped PTE (and
Secure Memory Protection here as well). (In such
a case, the “access” reported as failing would be
the access to the process-scoped table. The

If a wait instruction is executed when MSRTE=0b10
or when the instruction causes a CIABR match, a
Trace interrupt occurs immediately, with no sus-
pension of instruction fetching or execution. (Archi-
tecturally, the suspension of instruction fetching
and execution begins but is terminated immediately
by the Trace interrupt.)

Engineering NoteProgramming NoteProgramming Note

When reporting failure to set a reference or
change bit for a table entry, whether the
change bit must be set is inferred from
whether the access is reported to be a store.
(A load may report store if, when attempting to
set the reference bit, the update of the change
bit in the partition-scoped PTE mapping the
process-scoped PTE fails.) Behavior is similar
for access authority failures.

Programming Note
Chapter 7. Interrupts 1277

Version 3.1
ASDR would provide the guest real address of the
table entry.)

 A Data Address Watchpoint match occurs, HR=0
only.

 An attempt is made to execute a Load Atomic or
Store Atomic instruction with an invalid function
code, HR=0 only.

A Hypervisor Data Storage interrupt also occurs when
no higher priority exception exists and an attempt is
made to execute a Load Atomic or Store Atomic
instruction specifying an invalid function code.

If a stbcx., sthcx., stwcx., stdcx., or stqcx. would not
perform its store in the absence of a Hypervisor Data
Storage interrupt, and either (a) the specified effective
address refers to storage that is Write Through
Required or Caching Inhibited, or (b) a non-conditional
Store to the specified effective address would cause a
Hypervisor Data Storage interrupt, it is implementa-
tion-dependent whether a Hypervisor Data Storage
interrupt occurs.

If the XER specifies a length of zero for an indexed
Move Assist instruction, a Hypervisor Data Storage
interrupt does not occur.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67.

HDSISR
32 Set to 0.
33 Set to 1 if the translation for an attempted

access is not found in the Page Table; oth-
erwise set to 0.

34:35 Set to 0.
36 Set to 1 if the access is not permitted by

Figure 45 or the read or read/write bits in

Figure 46 as appropriate; otherwise set to
0.

37 Set to 1 if the access is due to a lq, stq,
lwat, ldat, lbarx, lharx, lwarx, ldarx,
lqarx, stwat, stdat, stbcx., sthcx., stwcx.,
stdcx., or stqcx. instruction that addresses
storage that is Write Through Required or
Caching Inhibited; or if the access is due to
a copy or paste. instruction that addresses
storage that is caching inhibited; or if the
access is due to a lwat, ldat, stwat, or
stdat instruction that addresses storage
that is Guarded; otherwise set to 0.

38 Set to 1 by an explicit access for a Store,
dcbz, or Load/Store Atomic instruction; set
to 1 when a process-scoped PTE update
fails due to a lack of write authority or the
inability to set the change bit in the parti-
tion-scoped PTE; otherwise set to 0.

39:40 Set to 0.
41 Set to 1 if a Data Address Watchpoint

match occurs; otherwise set to 0.
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported MMU configura-
tion is found during the translation process.

45 Set to 1 if an attempt to atomically set a ref-
erence or change bit fails; otherwise set to
0.

46 Set to 1 if HR=1 and the virtual / guest real
address of a page directory entry, page
table entry, or process table entry could not
be translated; or HR=0, VPM=1, and the
virtual address of a process table entry or
segment table entry group could not be
translated; otherwise set to 0.

47:59 Set to 0.
60 Set to 1 if an accelerator is specified as the

source of a copy instruction or an attempt
is made to access an accelerator that is not
properly configured for the software’s use;
otherwise set to 0. These exceptions are
presented differently from most instruc-

When an attempt to execute a Load Atomic or
Store Atomic instruction containing an invalid func-
tion code (see Figures 3 and 4 in Book II) causes
an HDSI, the condition is very similar to an invalid
form of an instruction. As a result, this instance of
HDSI occurs with a high prioirty that blocks the
translation process and prevents Reference and
Change bit updates.

Programming Note

The number of attempts hardware
makes to atomically set reference and
change bits before triggering this
exception is implementation depen-
dent. The POWER9 processor makes
no attempt. Software may still support
the atomic update programming model
to get performance benefits such as
those described in Section 6.7.12.

Programming Note
Power ISA™ III1278

Version 3.1
tion-caused exceptions. See Section 4.4,
“Copy-Paste Facility”, in Book II for details.
Additional information may be retained by
the platform if the accelerator is not prop-
erly configured.

61 Set to 1 if an attempt is made to execute a
Load Atomic or Store Atomic instruction
specifying an invalid function code; other-
wise set to 0.

62:63 Set to 0.

HDAR Set to the effective address or portion of the
VPN of a storage element, or undefined, as
described in the following list. The list
should be read from the top down; the
HDAR is set as described by the first item
that corresponds to an exception that is
reported in the HDSISR. For example, if a
Load Word instruction causes a storage
protection violation and a Data Address
Watchpoint match (and both are reported in
the HDSISR), the HDAR is set to the effec-
tive address of a byte in the first aligned
doubleword for which access was
attempted in the page that caused the
exception.
 undefined, for Load Atomic or Store

Atomic instruction specifying an invalid
function code


 undefined, when HDSISR60=1
 least significant 64 bits of the VA of the

table entry or group when a process
table entry or segment table entry
group virtual address cannot be trans-
lated in Paravirtualized HPT mode with
VPM=1.

 EA, when a Hypervisor Data Storage
exception occurs for reasons other
than a Data Address Watchpoint
match
- a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

- a byte in the first aligned double-
word for which access was
attempted in the page that caused
the exception, for a Load or Store
instruction (“first” refers to address
order: see Section 7.7).

 the first byte of overlap between the
operand and the matching watched
range, for a Data Address Watchpoint
match

For the cases in which the HDAR is speci-
fied above to be set to an effective address,
if the interrupt occurs in 32-bit mode the
high-order 32 bits of the HDAR are set to 0.

ASDR When HR=0, loaded with VSID, B, Ks, Kp,
N, C, L, and LP values from the segment
descriptor that translated the access or
indicated the base of the table, or unde-
fined, as described in the following list.
When HR=1 (nested translaiton is taking
place), loaded with the guest real address
down to bit 51 of a storage element or table
entry, or undefined, as described in the fol-
lowing list. The list should be read from the
top down; the ASDR is set as described by
the first item that corresponds to an excep-
tion that is reported in the HDSISR.
 undefined, for Load Atomic or Store

Atomic instruction specifying an invalid
function code


 undefined, when HDSISR60=1
 the guest real page address of the

table entry when a process table or
process-scoped page directory or
page table entry guest real address
cannot be translated or the VSID of the
table entry (group) when a Process
Table Entry or Segment Table Entry
Group virtual address cannot be trans-
lated (the rest of the segment descrip-
tor is implied, or, for the base page
size, comes from the Partition Table
Entry or Process Table Entry, respec-
tively).

 the guest real address of the pro-
cess-scoped PDE or PTE or process
table entry when a reference or
change bit in the partition-scoped PTE
mapping the process-scoped PDE or
PTE or process table entry cannot be
set atomically

 the guest real address of the storage
element when a reference or change
bit in the partition-scoped PTE cannot
be set atomically

 the guest real address of the storage
element, process table entry, page
directory entry, or page table entry
(depending on which partition-scoped
table has the flaw) for an unsupported
radix tree configuration for the parti-
tion-scoped tables (the effective
address for other cases of the invalid
MMU configuration exception is found
in the HDAR)

 the guest real address of the pro-
cess-scoped PTE when an attempt is

Note that for HPT translation, the full EA is a super-
set of the bits required to construct the full VA,
when also provided with the VSID in the ASDR.

Programming Note
Chapter 7. Interrupts 1279

Version 3.1
made to set a reference or change bit
without write authority in the parti-
tion-scoped PTE that maps it

 the guest real address or segment
descriptor associated with the speci-
fied storage element when a Hypervi-
sor Data Storage exception occurs for
reasons other than a Data Address
Watchpoint match

 undefined, for a Data Address Watch-
point match, unsupported MMU config-
uration, or accesses to storage that is
Caching Inhibited or Write Through
Required by the instructions that are
prohibited from making such accesses.

If multiple Hypervisor Data Storage exceptions occur
for a given effective address, any one or more of the
bits corresponding to these exceptions may be set to 1
in the HDSISR. If the HDSISR reports other exceptions
together with a Virtualized Page Class Key Storage
Protection exception that occurs when LPCRKBV=1 and
Virtualized Partition Memory is disabled by VPM=0, the
other exceptions are actually DSIs.

Execution resumes at effective address
0x0000_0000_0000_0E00, possibly offset as specified
in Figure 68.

7.5.17 Hypervisor Instruction
Storage Interrupt (HISI)
A Hypervisor Instruction Storage interrupt occurs when
no higher priority exception exists, either the thread is
not in hypervisor state or an unsupported MMU config-
uration has been found or the access has been pre-
vented by a problem in partition-scoped Radix Tree
translation, and either

(a) HPT translation is being performed and either a
 PRTE, STEG, or PTEG access causes a Secure
 Memory Protection exception or the value of the
 expression (¬MSRIR) | (VPM & PRTEV & MSRIR))
 is 1, and the next instruction to be executed cannot
 be fetched, or

(b) Radix Tree translation is being performed and either
 a page fault or an unsupported MMU configuration in
 the PATE (unsupported value of RTS or RPDS)
 occurs attempting to access the LPID=0 process table
 or partition-scoped translation other than for the
 LPID=0 process table prevents the next instruction to
 be executed from being fetched

for any of the following reasons that can occur in the
respective translation state.

 Instruction address translation is enabled
(MSRIR=1) and the virtual address cannot be
translated to a real address because no valid PTE
was found for the VPM translation.

 HR=1 and the guest real address of the instruction
cannot be translated to a host real address
because no valid PTE was found in the parti-
tion-scoped page table.

 The guest real address of a page directory entry or
process table entry could not be translated when
HR=1; or the virtual address of a process table
entry or segment table entry group could not be
translated when VPM=1 and HR=0.

 An unsupported MMU configuration is found. In
addition to an unsupported radix tree configuration
found for the partition-scoped tables, this type of
exception will also be reported outside of hypervi-
sor or ultravisor real mode for translation mode
mismatches including UPRT=0 when HR=1,
LPID=0 if MSRHV=0 when HR=1, and HR=0 for
LPID=0 when HR=1 for another partition ID. (Note
that these conditions may not be detected until the
associated values are about to cause a functional
problem for the processor.)

 A reference or change bit update in a parti-
tion-scoped PTE cannot be performed (including
for the process-scoped PDE or PTE or process
table entry for a radix guest.

 HR=0, instruction address translation is disabled
(MSRIR=0), and the virtual address cannot be
translated to a real address by means of the virtual
real addressing mechanism.

 The fetch violates storage protection. In addition
to the legacy VPM cases (including those for
Secure Memory Protection), this includes mis-
matches in access authority in which the pro-
cess-scoped PTE permits the access but the
partition-scoped PTE does not and Secure Mem-
ory Protection for a radix guest. It also includes
lack of necessary authority for accesses to pro-
cess-scoped tables (which cannot happen when
HR=0), for example lack of write authority to set a
reference bit in the process-scoped PTE (and
Secure Memory Protection here as well). (In such
a case, the “access” reported as failing would be
the access to the process-scoped table. The

A Virtual Page Class Key Storage Protection
exception that occurs with LPCRKBV=1 and Virtual-
ized Partition Memory disabled by VPM=0 identi-
fies an access that must be emulated by the
hypervisor. When it is reported together with other
exceptions in the HDSISR, the hypervisor should
service the Virtual Page Class Key Storage Protec-
tion exception first. This is in part because the
operating system may be using some PTE fields
for non-architected purposes, which could in turn
cause spurious exceptions to be reported.

Programming Note
Power ISA™ III1280

Version 3.1
ASDR would provide the guest real address of the
table entry.)

 The instruction is a prefixed instruction and is in
storage that is Caching Inhibited.

The following registers are set:

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent (if the interrupt occurs on attempting to
fetch a branch target, HSRR0 is set to the
branch target address).

HSRR1
33 Set to 1 if the translation for an attempted

access is not found in the Page Table; oth-
erwise set to 0.

34 Set to 0.
35 Set to 1 if the access is to No-execute (as

indicated by the N bit in the segment table
entry and HPT PTE or the exec bit in the
EAA field of the Radix PTE) or Guarded
storage, or is to Caching Inhibited storage
and is for a prefixed instruction; otherwise
set to 0.

36 Set to 1 if the access is not permitted by
Figure 45 or the execute bit in Figure 46 as
appropriate; otherwise set to 0.

42 Set to 1 if the access is not permitted by vir-
tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported MMU configura-
tion is found during the translation process.

45 Set to 1 if an attempt to atomically set a ref-
erence or change bit fails; otherwise set to
0.

46 Set to 1 if HR=1 and the guest real address
of a page directory entry, page table entry,
or process table entry could not be trans-
lated; or HR=0, VPM=1, and the virtual
address of a process table entry or seg-
ment table entry group could not be trans-
lated; otherwise set to 0.

47 Set to 1 if the operation that caused the
exception was attempting to update stor-

age; otherwise set to 0. This bit may be set
as a modifier to bit 45 to indicate that a
change bit must be set. It may also be set
as a modifier to bits 36 and 42, to indicate
that write authority was required to com-
plete the operation.

Others Loaded from the MSR.

HDAR Set to the least significant 64 bits of the VA
of a table entry or group when HR=0 and a
process table entry or segment table entry
group virtual address cannot be translated
and VPM=1. May be set spuriously in other
cases.

ASDR When HR=0, loaded with VSID, B, Ks, Kp,
N, C, L, and LP values from the segment
descriptor that translated the access or
indicated the base of the table, or unde-
fined, as described in the following list.
When HR=1 (nested translation is taking
place), loaded with the guest real address
down to bit 51 of the instruction or table
entry, or undefined, as described in the fol-
lowing list.
 the guest real address of the table

entry when a process table or pro-
cess-scoped page directory or page
table entry guest real address cannot
be translated or the VSID of the table
entry (group) when a Process Table
Entry or Segment Table Entry Group
virtual address cannot be translated
(the rest of the segment descriptor is
implied, or, for the base page size,
comes from the Partition Table Entry or
Process Table Entry, respectively).

 the guest real address of the pro-
cess-scoped PDE or PTE or process
table entry when a reference or
change bit in the partition-scoped PTE
mapping the process-scoped PDE or
PTE or process table entry cannot be
set atomically

 the guest real address of the instruc-
tion when a reference or change bit in
the partition-scoped PTE cannot be set
atomically

 the guest real address of the instruc-
tion, process table entry, page direc-
tory entry, or page table entry
(depending on which partition-scoped
table has the flaw) for an unsupported
radix tree configuration for the parti-
tion-scoped tables (the effective
address for other cases of the invalid
MMU configuration exception will be
found in HSRR0)

 the guest real address of the pro-
cess-scoped PTE when an attempt is
made to set a reference bit without

The number of attempts hardware
makes to atomically set reference and
change bits before triggering this
exception is implementation depen-
dent. The POWER9 processor makes
no attempt. Software may still support
the atomic update programming model
to get performance benefits such as
those described in Section 6.7.12.

Programming Note
Chapter 7. Interrupts 1281

Version 3.1
write authority in the partition-scoped
PTE that maps it

 the guest real address or segment
descriptor associated with the instruc-
tion that the thread would have
attempted to execute next if no inter-
rupt conditions were present (parti-
tion-scoped page fault or protection
exception)

 undefined for unsupported MMU con-
figuration

MSR See Figure 67.

If multiple Hypervisor Instruction Storage exceptions
occur due to attempting to fetch a single instruction,
any one or more of the bits corresponding to these
exceptions may be set to 1 in HSRR1.

Execution resumes at effective address
0x0000_0000_0000_0E10, possibly offset as specified
in Figure 68.

7.5.18 Hypervisor Emulation
Assistance Interrupt
A Hypervisor Emulation Assistance interrupt is gener-
ated when execution is attempted of an illegal instruc-
tion, or of a reserved instruction or an instruction that is
not provided by the implementation. It is also generated
under the following conditions.
 When MSRHV PR=0b00 and LPCREVIRT=1, execu-

tion is attempted of a hypervisor privileged instruc-
tion, or of an mtspr or mfspr instruction that
specifies an SPR that is hypervisor privileged for
the operation or that specifies PTCR, DAWRn,
DAWRXn, or CIABR when those SPRs are ultravi-
sor privileged for the operation.

 When MSRS HV PR = 0b010, execution is
attempted of an mtspr or mfspr instruction that
specifies PTCR, DAWRn, DAWRXn, or CIABR
when those SPRs are ultravisor privileged for the
operation.

 When MSRPR=1, execution is attempted of an
mtspr or mfspr instruction that specifies an SPR
with spr0=0 that is not provided by the implementa-
tion.

 When MSRPR=0, execution is attempted of an
mtspr or mfspr instruction that specifies SPR 0, 4,
5, or 6.

 When MSRPR=0 and LPCREVIRT=1, execution is
attempted of an mtspr or mfspr instruction that
specifies an SPR other than 0, 4, 5, or 6 that is not
provided by the implementation.

A Hypervisor Emulation Assistance interrupt may be
generated when execution is attempted of an instruc-
tion that is in invalid form or that is treated as if the
instruction form were invalid.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction (or a prefixed
instruction when prefixed instructions are
unavailable based on the PCR setting) and
to 1 if the instruction that caused the inter-
rupt is a prefixed instruction.

35:36 Set to 0.
42:44 Set to 0.
45 Set to 1 for an attempt, when MSRHV PR =

0b00 and LPCREVIRT=1, to execute a
hypervisor privileged instruction or an
mtspr or mfspr instruction that specifies an
SPR that is hypervisor privileged for the
operation or that specifies PTCR, DAWRn,
DAWRXn, or CIABR when they are ultravi-
sor privileged for the operation, or for an
attempt when MSRS HV PR = 0b010 to exe-
cute an mtspr or mfspr instruction that
specifies PTCR, DAWRn, DAWRXn, or
CIABR when they are ultravisor privileged
for the operation; otherwise set to 0.

46:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

HEIR Set to a copy of the instruction that caused
the interrupt

If the interrupt is caused by an attempt to execute an
invalid form of a hypervisor privileged instruction when
MSRHV PR = 0b00 and LPCREVIRT=1, it is implementa-
tion dependent whether HSRR145 is set to 0 (reflecting
the invalid instruction form) or to 1 (reflecting the privi-
lege violation).

Execution resumes at effective address
0x0000_0000_0000_0E40, possibly offset as specified
in Figure 68.
Power ISA™ III1282

Version 3.1
Programming Note

This Programming Note illustrates how Hypervisor Emulation
Assistance interrupts should be handled by software, including
in environments that support nested hypervisors. For simplic-
ity, this Programming Note ignores effects of the SMF facility
(equivalently, assumes that SMFCTRLE=0).

In this Note, “the hypervisor” may be the hypervisor to which
hardware passes control when a Hypervisor Emulation Assis-
tance interrupt occurs or, in an environment that supports
nested hypervisors, may be a nested hypervisor. The hypervi-
sor to which hardware passes control when a Hypervisor
Emulation Assistance interrupt occurs is here called the “level
0 hypervisor,” and is the only level of hypervisor that runs with
MSRHV PR=0b10 and that can access hypervisor resources
directly; nested hypervisors run with MSRHV PR=0b00 and
their attempts to access hypervisor resources are virtualized
by a higher-level hypervisor as described below. In this Note,
the hypervisor receiving the Hypervisor Emulation Assistance
interrupt (which may have been passed from a higher-level
hypervisor as described below) is called the “level N hypervi-
sor.” This Note assumes that LPCREVIRT=1 if nested hypervi-
sors are used. (A Hypervisor Emulation Assistance interrupt
can set HSRR145 to 1 only when LPCREVIRT=1.) Higher level
numbers correspond to lower level hypervisors.

In the description immediately below, it is assumed that
nested hypervisors (if any) are new versions of the existing
hypervisor, and that the purpose of the nesting is to test the
nested hypervisors before using them as level 0 hypervisors.

When a Hypervisor Emulation Assistance interrupt is received
by the level N hypervisor, the cases and their suggested han-
dling are as follows.
 The program that caused the interrupt is the level N

hypervisor itself.
- HSRR145=0: Emulate the instruction, recover from

the error, or terminate this hypervisor, as appropri-
ate.

- HSRR145=1: Cannot occur for N=0; will not occur
for N>0 if the hypervisor nesting software is written
correctly.

 The program that caused the interrupt is not the level N
hypervisor.
- The program most recently dispatched by the level

N hypervisor is a level N+1 hypervisor.
 HSRR145=0: Pass control to the level N+1

hypervisor as if the instruction had caused a
Hypervisor Emulation Assistance interrupt
(with HSRR145=0) to that hypervisor.

 HSRR145=1:
- The program that caused the interrupt

is the level N+1 hypervisor: Virtualize
the instruction.

- The program that caused the interrupt
is not the level N+1 hypervisor: Pass

control to the level N+1 hypervisor as if
the instruction had caused a Hypervi-
sor Emulation Assistance interrupt
(with HSRR145=1) to that hypervisor.

- The program most recently dispatched by the level
N hypervisor is an operating system.
 HSRR145=0: Emulate the instruction if

appropriate (rather than pass control to the
operating system to do the emulation); oth-
erwise pass control to the operating system
as if the instruction had caused an “Illegal
Instruction type Program interrupt” as
described in a Programming Note near the
end of Section 7.5.9.

 HSRR145=1: Either terminate the operating
system or pass control to the operating sys-
tem as if the instruction had caused a Privi-
leged Instruction type Program interrupt as
described in a Programming Note near the
end of Section 7.5.9.

- The program most recently dispatched by the level
N hypervisor is an application program.
 HSRR145=0: Emulate the instruction if

appropriate; otherwise terminate the appli-
cation program.

 HSRR145=1: Cannot occur.

The preceding description implicitly assumes that any nested
hypervisors being tested will, when run at level 0, be run on
processors that support the same version of the architecture
as the processor on which they are being tested. If instead
they will be run on processors that support a newer version of
the architecture, the level 0 hypervisor should behave as
described above if the interrupt is caused by an instruction
that is unchanged between the two architecture versions.
However, if the interrupt is caused by an instruction that differs
between the two architecture versions (e.g., an instruction that
is added by the newer version of the architecture), the level 0
hypervisor should emulate the behavior of the newer proces-
sor, rather than, for example, passing the interrupt to a level 1
hypervisor.

Other uses of nested hypervisors are also possible. For
example, software that is designed to interact, nearly simulta-
neously, with the hypervisor instance that is running on each
of many processors could be tested on a single processor by
running multiple level 1 hypervisors under a single level 0
hypervisor.

It is expected that in practice there will be at most two levels of
nested hypervisor (i.e., N≤2). (For example, two levels are
needed in the case described in detail above, to test the ability
of the nested hypervisors at level 1 to support nested hypervi-
sors.)

Chapter 7. Interrupts 1283

Version 3.1

7.5.19 Hypervisor Maintenance
Interrupt
A Hypervisor Maintenance interrupt occurs when no
higher priority exception exists, a Hypervisor Mainte-
nance exception exists (a bit in the HMER is set to
one), the exception is enabled in the HMEER, and the
value of the following expression is 1.

(MSREE | ¬(MSRHV) | MSRPR)

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

HMER See Section 7.2.10 on page 1249.

The exception bits in the HMER are sticky; that is, once
set to 1 they remain set to 1 until they are set to 0 by an
mthmer instruction.

Execution resumes at effective address
0x0000_0000_0000_0E60.

7.5.20 Directed Hypervisor Door-
bell Interrupt
A Directed Hypervisor Doorbell interrupt occurs when
no higher priority exception exists, a Directed Hypervi-
sor Doorbell exception is present, and the value of the
following expression is 1.

(MSREE | ¬(MSRHV) | MSRPR)

Directed Hypervisor Doorbell exceptions are generated
when Directed Hypervisor Doorbell messages (see
Chapter 11) are received and accepted by the thread.

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

If a Hypervisor Emulation Assistance interrupt
occurs with HSRR145=0 when the thread is not in
hypervisor state, for an instruction that the hypervi-
sor does not emulate, the hypervisor should pass
control to the operating system as if the instruction
had caused an "Illegal Instruction type Program
interrupt", as described in a Programming Note
near the end of Section 7.5.9, “Program Interrupt”
on page 1272.

Similarly, if a Hypervisor Emulation Assistance
interrupt occurs with HSRR145=1 when the thread
is in privileged non-hypervisor state, for an instruc-
tion that the hypervisor does not virtualize, the
hypervisor should pass control to the operating
system as if the instruction had caused a Privileged
Instruction type Program interrupt, as described in
another Programming Note near the end of
Section 7.5.9, “Program Interrupt” on page 1272.

In versions of the architecture that precede V. 3.1,
an attempt when MSRPR=0 to execute an mtspr or
mfspr instruction specifying an SPR that was not
implemented (with the exception of SPR 0 for
mtspr and SPRs 0, 4, 5, and 6 for mfspr) was
treated as a no-op. These former no-op cases now
cause a Hypervisor Emulation Assistance interrupt
(with HSRR145=0) when LPCREVIRT=1 to enable
future functions to be emulated on older implemen-
tations. (An attempt when MSRPR=0 to execute an
mtspr instruction specifying SPRs 4, 5, and 6 now
causes a Hypervisor Emulation Assistance inter-
rupt regardless of the value of LPCREVIRT.) If there
is no future function emulation to be performed,
hypervisor software must choose a policy from the
following.
 treat the instruction as an error
 emulate the legacy no-op behavior
 give control to the operating system

Programming Note

Programming Note

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV))

is equivalent to the expression given above.

If an implementation uses the HMER to record that
a readable resource, such as the Time Base, has
been corrupted, then, because the HMI is disabled
in the hypervisor state, it is necessary for the
hypervisor to check HMER after reading that
resource to be sure an error has not occurred.

Programming Note

Programming Note
Power ISA™ III1284

Version 3.1
MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0E80, possibly offset as specified
in Figure 68.

7.5.21 Hypervisor Virtualization
Interrupt
A Hypervisor Virtualization interrupt occurs when no
higher priority exception exists, a Hypervisor Virtualiza-
tion exception exists, and the value of the following
equation is1.

(MSREE | ¬(MSRHV) | MSRPR) & HVICE

The occurrence of the interrupt does not cause the
exception to cease to exist.

HSRR0 Set to the effective address of the instruction
that the thread would have attempted to exe-
cute next if no interrupt conditions were pres-
ent.

HSRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0EA0, possibly offset as speci-
fied in Figure 68.

7.5.22 Performance Monitor
Interrupt
A Performance Monitor interrupt occurs when no higher
priority exception exists, a Performance Monitor excep-
tion exists, event-based branches are disabled
(MMCR0EBE=0), and MSREE=1, and either
HFSCRPM=1 or the thread is in hypervisor state.

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor interrupt,
the interrupt reflects the most recent Performance Mon-
itor exception and the preceding Performance Monitor
exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that would have been attempted to be

execute next if no interrupt conditions were
present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0F00, possibly offset as specified
in Figure 68.

7.5.23 Vector Unavailable Inter-
rupt
A Vector Unavailable interrupt occurs when no higher
priority exception exists, an attempt is made to execute
a Vector instruction (including Vector loads, stores, and
moves), and MSRVEC=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0F20, possibly offset as specified
in Figure 68.

7.5.24 VSX Unavailable Interrupt
A VSX Unavailable interrupt occurs when no higher pri-
ority exception exists, an attempt is made to execute a
VSX instruction (including VSX loads, stores, and
moves), and MSRVSX=0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.

Because the value of MSREE is always 1 when the
thread is in problem state, the simpler expression

(MSREE | ¬(MSRHV))

is equivalent to the expression given above.

Programming Note
Chapter 7. Interrupts 1285

Version 3.1
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0F40, possibly offset as specified
in Figure 68.

7.5.25 Facility Unavailable Inter-
rupt
A Facility Unavailable interrupt occurs when no higher
priority exception exists, and one of the following
occurs.

- a facility is accessed in problem state when it
has been made unavailable by the FSCR

- a Performance Monitor register is accessed or
a clrbhrb or mfbhrbe instruction is executed
in problem state when it has been made
unavailable by MMCR0.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

FSCR
0:7 See Section 7.2.12 on page 1250.
Others Not changed.

Execution resumes at effective address
0x0000_0000_0000_0F60, possibly offset as specified
in Figure 68.

7.5.26 Hypervisor Facility Unavail-
able Interrupt
A Hypervisor Facility Unavailable interrupt occurs when
no higher priority exception exists, and one of the fol-
lowing occurs.

- a facility is accessed in problem or privileged
non-hypervisor states when it has been made
unavailable by the HFSCR.

- The stop instruction is executed in privileged
non hypervisor state when any of the following
conditions exist.
PSSCREC=1
PSSCRESL=1

PSSCRMTL>PSSCRPSLL
PSSCRRL>PSSCRPSLL

The following registers are set:

HSRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

HSRR1
33 Set to 0.
34 Set to 0 if the instruction that caused the

interrupt is a word instruction and to 1 if the
instruction that caused the interrupt is a
prefixed instruction.

35:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

HFSCR
0:7 See Section 7.2.13 on page 1251.
Others Not changed.

Execution resumes at effective address
0x0000_0000_0000_0F80, possibly offset as specified
in Figure 68.
Power ISA™ III1286

Version 3.1
Programming Note

The Hypervisor Facility Unavailable interrupt handler
should either (a) make the facility, the attempted use of
which caused the interrupt, available, or (b) pass con-
trol to the operating system as if the instruction that
caused the interrupt had instead caused an “Illegal
Instruction type Program interrupt”, as described in a
Programming Note near the end of Section 7.5.9. Spe-
cifically, for choice (b) the hypervisor should pass con-
trol to the operating system at the operating system's
Program interrupt vector location, with all registers
(SRR0, SRR1, MSR, GPRs, etc.) set as if the instruc-
tion had caused a Privileged Instruction type Program
interrupt, except with SRR144:45 set to 0b10. (This
behavior is the same as that provided by the Hypervi-
sor Emulation Assistance interrupt handler when that
interrupt is caused by an illegal instruction or by
mt/fspr specifying an undefined SPR number.) In gen-
eral this behavior by the Hypervisor Facility Unavailable
interrupt handler provides to the operating system the
appearance that the instructions in the facility are illegal
instructions and that the SPRs in the facility correspond
to undefined SPR numbers. The cases in which it does
not provide this appearance are as follows.
1. privileged instruction executed in problem

state
Because Privileged Instruction type Program inter-
rupt has higher priority than Hypervisor Facility
Unavailable interrupt, an attempt in problem state
to execute a privileged instruction made unavail-

able by the HFSCR will cause a Privileged Instruc-
tion type Program interrupt to the operating
system, rather than a Hypervisor Facility Unavail-
able interrupt, so the hypervisor will not have
opportunity to make the instruction appear to be
illegal. (It may be useful to note that the handling
described in choice (b) above together with the
behavior of this case provides behavior, in problem
state, that is equivalent to the behavior that would
be obtained by making the facility unavailable by
means of the PCR.)

2. mt/fspr executed in privileged non-hypervisor
state when LPCREVIRT=0
mt/fspr specifying an undefined SPR number
(other than 0, 4, 5, 6) and executed in privileged
non-hypervisor state when LPCREVIRT=0 will be
treated as a no-op. If instead the SPR number is
defined and the SPR is made unavailable by the
HFSCR a Hypervisor Facility Unavailable interrupt
will occur, and there is no easy way for the inter-
rupt handler to determine that the interrupting
instruction is mt/fspr and hence should be treated
as a no-op. (Hypervisor Facility Unavailable inter-
rupt does not set HEIR.) Passing control to the
operating system's Program interrupt handler in
the manner described above is preferable to incur-
ring the software complexity and performance cost
of emulating the no-op behavior.

7.5.27 System Call Vectored Inter-
rupt
A System Call Vectored interrupt occurs when a Sys-
tem Call Vectored instruction is executed.

The following registers are set:

LR Set to the effective address of the instruc-
tion following the System Call Vectored
instruction.

CTR
33:36 undefined
42:47 undefined
Others Loaded from corresponding bits of the

MSR.

MSR See Figure 67 on page 1261.

Execution resumes at the effective address specified in
Figure 68

When the System Call Vectored interrupt results in
MSRIR being 1 or MSRHV being 0, the effective
address described above is translated to a real
address before being used to access storage. If
the effective address cannot be translated, or if
instructions cannot be fetched from the addressed
storage location (e.g., the access would violate
storage protection, or would be to No-execute stor-
age), an [Hypervisor] Instruction Storage interrupt
occurs before the first instruction at the effective
address is executed.

Because the System Call Vectored interrupt uses
save/restore registers that differ from those used
by other interrupts, the System Call Vectored inter-
rupt handler can run with address translation
enabled and External interrupts enabled. Similarly,
the Programming Note about managing MSRRI at
the end of Section 7.4.3 does not apply to the Sys-
tem Call Vectored interrupt handler (the System
Call Vectored interrupt does not alter MSRRI).

Programming Note
Chapter 7. Interrupts 1287

Version 3.1
7.5.28 Directed Ultravisor Door-
bell Interrupt
A Directed Ultravisor Doorbell interrupt occurs when no
higher priority exception exists, SMFCTRLE=1, a
Directed Ultravisor Doorbell exception is present, and
the value of the following expression is 1.

(MSREE | ¬(MSRS HV PR=0b110)

Directed Ultravisor Doorbell exceptions are generated
when Directed Ultravisor Doorbell messages (see
Chapter 11) are received and accepted by the thread.

The following registers are set:

USRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

USRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 67 on page 1261.

Execution resumes at effective address
0x0000_0000_0000_0FA0.

7.6 Partially Executed
Instructions
If a Data Storage, Data Segment, Alignment, sys-
tem-caused, or imprecise exception occurs while a
Load or Store instruction is executing, the instruction
may be aborted. In such cases the instruction is not
completed, but may have been partially executed in the
following respects.

 Some of the bytes of the storage operand may
have been accessed, except that if access to a
given byte of the storage operand would violate
storage protection, that byte is neither copied to a
register by a Load instruction nor modified by a
Store instruction. Also, the rules for storage
accesses given in Section 6.8.1, “Guarded Stor-
age” and in Section of Book II are obeyed.

 Some registers may have been altered as
described in the Book II section cited above.

 Reference and Change bits may have been
updated as described in Section 6.7.12.

 For a stbcx., sthcx., stwcx., stdcx., or stqcx.
instruction that is executed in-order, CR0 may
have been set to an undefined value and the reser-
vation may have been cleared.



The architecture does not support continuation of an
aborted instruction but intends that the aborted instruc-
tion be re-executed if appropriate.

An exception may result in the partial execution of
a Load or Store instruction. For example, if the
Page Table Entry that translates the address of the
storage operand is altered, by a program running
on another thread, such that the new contents of
the Page Table Entry preclude performing the
access, the alteration could cause the Load or
Store instruction to be aborted after having been
partially executed.

As stated in the Book II section cited above, if an
instruction is partially executed the contents of reg-
isters are preserved to the extent that the instruc-
tion can be re-executed correctly. The consequent
preservation is described in the following list. For
any given instruction, zero, one, or two items in the
list apply.

 For a fixed-point Load instruction that is not a
multiple or string form, if RT=RA or RT=RB
then the contents of register RT are not
altered.

 For an lq instruction, if RT+1 = RA then the
contents of register RT+1 are not altered.

 For an update form Load or Store instruction,
the contents of register RA are not altered.

Programming Note
Power ISA™ III1288

Version 3.1
7.7 Exception Ordering
Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Some exceptions,
such as the Mediated External exception, persist and
can be deferred. However, other exceptions would be
lost if they were not recognized and handled when they
occur. For example, if an External interrupt was gener-
ated when a Data Storage exception existed, the Data
Storage exception would be lost. If the Data Storage
exception was caused by a Store Multiple instruction
for which the storage operand crosses a virtual page
boundary and the exception was a result of attempting
to access the second virtual page, the store could have
modified locations in the first virtual page even though it
appeared that the Store Multiple instruction was never
executed.

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that is
not persistent. Some exceptions cannot exist at the
same instant as some others.

Data Storage, Hypervisor Data Storage, Data Segment,
and Alignment exceptions occur as if the storage oper-
and were accessed one byte at a time in order of
increasing effective address (with the obvious caveat if
the operand includes both the maximum effective
address and effective address 0). (The required order-
ing of exceptions on components of non-atomic
accesses does not extend to the performing of the
component accesses in the event of an exception. For
example, if byte n causes a data storage exception, it is
not necessarily true that the access to byte n-1 has
been performed.)

7.7.1 Unordered Exceptions
With one exception, the exceptions listed here are
unordered, meaning that they may occur at any time
regardless of the state of the interrupt processing
mechanism. These exceptions are recognized and pro-
cessed when presented. The exception is that a
Machine Check caused by an attempt to access an
accelerator as other than an operand of copy or paste.
is ordered similarly to the corresponding type of stor-
age access exception. (Note that this results in two dif-
ferent orderings. The one for instruction fetch occurs
early, as item 2 in the “Instruction-Caused and Precise”
list. The one for data access appears later, within case
3 of the appropriate “Function-Dependent” listings.)

1. System Reset
2. Machine Check except for those caused by an

invalid attempt to access an accelerator

7.7.2 Ordered Exceptions
The exceptions listed here are ordered with respect to
the state of the interrupt processing mechanism. With
one exception, in the following list the hypervisor forms
of the Data Storage and Instruction Storage exceptions
can be substituted for the non-hypervisor forms since
the hypervisor forms cannot be caused by the same
instruction and have the same ordering. The exception
is that Virtual Page Class Key Storage Protection
exceptions that occur when LPCRKBV=1 and Virtual-
ized Partition Memory is disabled by VPM=0 cause
only a Hypervisor Data Storage exception (and never a
Data Storage exception).

In the list below for Instruction-Caused and Precise
exceptions, for prefixed instructions items 1, 2, and 6
apply to the first word of the instruction, and determina-
tion of whether the exceptions of items 3-5 and 7 occur
is based on the first word of the instruction. (Items 3-7
can occur only for prefixed instructions.)

System-Caused or Imprecise

1. Program
 - Imprecise Mode Floating-Point Enabled Exception
2. Directed Ultravisor Doorbell
3. Hypervisor Maintenance
4. Hypervisor Virtualization, External, [Hypervisor]

Decrementer, Performance Monitor, Directed Privi-
leged Doorbell, Directed Hypervisor Doorbell

Instruction-Caused and Precise

1. Instruction Segment
2. [Hypervisor] Instruction Storage other than case

described in item 6
3. Hypervisor Emulation Assistance due to PCR

making all prefixed instructions unavailable
4. Hypervisor Facility Unavailable due to HFSCR

making all prefixed instructions unavailable
5. Facility Unavailable due to HFSCR making all

prefixed instructions unavailable
6. [Hypervisor] Instruction Storage for prefixed

instruction in Caching Inhibited storage
7. Alignment for incorrectly aligned prefixed instruction

For a prefixed instruction there is no need to deter-
mine whether the exceptions of items 1, 2, and 6
can be caused by the second word of the instruc-
tion.
 If the instruction is correctly aligned (i.e., is at

an effective address that is not equal to 60
modulo 64), the determination would be the
same for the second word as for the first word.

 If the instruction is not correctly aligned, an
exception will occur due to one of items 1-7
applied to the first word, and the correspond-
ing interrupt obviates the need for hardware to
access the second word.

Programming Note
Chapter 7. Interrupts 1289

Version 3.1
8. Machine Check for invalid accelerator access
9. Other Hypervisor Emulation Assistance or Program
 (Privileged Instruction)
10. Function-Dependent
 10.a Fixed-Point and Branch
 1 Hypervisor Facility Unavailable
 2 Facility Unavailable
 3a Program
 - Trap
 3b System Call or System Call Vectored
 3c.1 Data Storage for the case of Fixed-Point
 Load or Store Caching Inhibited instructions
 with MSRDR=1 or the case of an invalid

 function code for an Atomic Memory
 Operation

 3c.2 all other Data Storage, Hypervisor Data
 Storage, [Hypervisor] Data Segment, Machine

 Check for invalid accelerator access, or
 Alignment

 4 Trace
 10.b Floating-Point
 1 Hypervisor Facility Unavailable
 2 Floating Point Unavailable
 3a Program
 - Precise Mode Floating-Pt Enabled Excep’n
 3b [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, Machine Check for invalid

 accelerator access, or Alignment

 4 Trace
 10.c Vector
 1 Hypervisor Facility Unavailable
 2 Vector Unavailable
 3a [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, Machine Check for invalid

 accelerator access, or Alignment

 4 Trace
 10.d VSX
 1 Hypervisor Facility Unavailable
 2 VSX Unavailable
 3a Program
 - Precise Mode Floating-Pt Enabled Excep’n
 3b [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, Machine Check for invalid

 accelerator access, or Alignment

 4 Trace
 10.e Other Instructions
 1 Hypervisor Facility Unavailable
 2 Facility Unavailable
 3a [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, Machine Check for invalid

 accelerator access, or Alignment

 4 Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult to understand
the ordering of exceptions.To understand this ordering
it is useful to consider a model in which each instruction
is fetched, then decoded, then executed, all before the
next instruction is fetched. In this model, the exceptions
a single instruction would generate are in the order
shown in the list of instruction-caused exceptions.
Exceptions with different numbers have different order-
ing. Exceptions with the same numbering but different
lettering are mutually exclusive and cannot be caused
by the same instruction. The Hypervisor Virtualization,
External, [Hypervisor] Decrementer, Performance Mon-
itor, Directed Privileged Doorbell, and Directed Hypervi-
sor Doorbell interrupts have equal ordering. Similarly,
where Data Storage, Data Segment, and Alignment
exceptions are listed in the same item, and where
Hypervisor Emulation Assistance and Privileged
Instruction exceptions are listed in the same item, they
have equal ordering.

Even on threads that are capable of executing several
instructions simultaneously, or out of order, instruc-
tion-caused interrupts (precise and imprecise) occur in
program order.

7.8 Event-Based Branch Excep-
tion Ordering
Event-based exceptions are not ordered because they
can occur simultaneously. Whenever an event-based
exception occurs and the exception is enabled, the cor-
responding “exception occurred” bit in the BESCR is
set to 1. See Section 6.2.1 of Book II.

7.9 Interrupt Priorities
This section describes the relationship of nonmas-
kable, maskable, precise, and imprecise interrupts. In
the following descriptions, the interrupt mechanism
waiting for all possible exceptions to be reported
includes only exceptions caused by previously initiated
instructions (e.g., it does not include waiting for the
Decrementer to step through zero). The exceptions
are listed in order of highest to lowest priority. The
phrase "corresponding interrupt" means the interrupt

Despite that debug address matches are EA
based, the exceptions they cause are not neces-
sarily ordered before translation-caused excep-
tions. For example, it may be considered
advantageous to take a page fault that would have
prevented an access rather than a DAWR match
exception

Programming Note
Power ISA™ III1290

Version 3.1
having the same name as the exception unless the
thread is in power-saving mode, in which case the
phrase means the System Reset interrupt.

Unless otherwise stated or obvious from context, it is
assumed below that one of the following conditions is
satisfied.

 The thread is not in power-saving mode and the
interrupt, unless it is the Machine Check inter-
rupt, is not disabled. (For the Machine Check
interrupt no assumption is made regarding
enablement.)

 The thread is in power-saving mode and the
exception is enabled to cause exit from the
mode.

With one exception, in the following list the hypervisor
forms of the Data Storage and Instruction Storage
exceptions can be substituted for the non-hypervisor
forms since the hypervisor forms cannot be caused by
the same instruction and have the same priority. The
exception is that exceptions caused by Virtual Page
Class Key Storage Protection exceptions that occur
when LPCRKBV=1 and Virtualized Partition Memory is
disabled by VPM=0 cause only a Hypervisor Data Stor-
age exception (and never a Data Storage exception).

1. System Reset

System Reset exception has the highest priority of
all exceptions. If this exception exists, the interrupt
mechanism ignores all other exceptions and gen-
erates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check

With one exception, the Machine Check exception
is the second highest priority exception. If this
exception exists and a System Reset exception
does not exist, the interrupt mechanism ignores all
other exceptions and generates a Machine Check
interrupt. The exception is that a Machine Check
caused by an attempt to access an accelerator as
other than an operand of copy or paste. is priori-
tized similarly to the corresponding type of storage
access exception. (Note that this results in two
different priorities. The one for data access is
higher, appearing as item e or f in the listings for
different types of Load and Store instructions. The
one for instruction fetch is lower, in category K.)

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction-Caused and Precise

This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise excep-
tions to be reported. It then generates the appro-
priate ordered interrupt if no higher priority
exception exists when the interrupt is to be gener-
ated. Within this category a particular instruction
may present more than a single exception. When
this occurs, those exceptions are ordered in prior-
ity as indicated in the following lists. Where [Hyper-
visor] Data Storage, Data Segment, and Alignment
exceptions are listed in the same item they have
equal priority (i.e., the hardware may generate any
one of the three interrupts for which an exception
exists).

 A. Fixed-Point Loads and Stores
a.These exceptions are mutually exclusive

and have the same priority:
 Hypervisor Emulation Assistance
 Program - Privileged Instruction

b. Hypervisor Facility Unavailable
c. Facility Unavailable
d.Data Storage for the case of Fixed-Point

Load or Store Caching Inhibited instructions
with MSRDR=1 or the case of an invalid
function code for an Atomic Memory
Operation

e.all other Data Storage, Hypervisor Data
Storage, [Hypervisor] Data Segment,

 Machine Check for invalid accelerator
access, or Alignment (other than for incor-
rectly aligned prefixed instruction)

f. Trace

 B. Floating-Point Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Floating-Point Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, Machine Check for invalid
accelerator access, or Alignment (other
than for incorrectly aligned prefixed instruc-
tion)

e Trace

 C. Vector Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Vector Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, Machine Check for invalid
accelerator access, or Alignment (other
than for incorrectly aligned prefixed instruc-
tion)

e.Trace

D. VSX Loads and Stores
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. VSX Unavailable
Chapter 7. Interrupts 1291

Version 3.1
d. [Hypervisor] Data Storage, [Hypervisor]
Data Segment, Machine Check for invalid
accelerator access, or Alignment (other
than for incorrectly aligned prefixed instruc-
tion)

e.Trace

E. Other Floating-Point Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Floating-Point Unavailable
d.Program - Precise Mode Floating-Point

Enabled Exception
e.Trace

F. Other Vector Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. Vector Unavailable
d.Trace

G. Other VSX Instructions
a.Hypervisor Emulation Assistance
b. Hypervisor Facility Unavailable
c. VSX Unavailable
d.Program - Precise Mode Floating-Point

Enabled Exception
e.Trace

 H. rfebb, rfscv, rfid, hrfid, urfid, and mtmsr[d]
a.These exceptions are mutually exclusive

and have the same priority:
 Program - Privileged Instruction, for all

except rfebb
 Hypervisor Emulation Assistance, for

rfebb, rfscv, hrfid and mtmsr
b.Hypervisor Facility Unavailable (rfebb only)
c. Facility Unavailable (rfebb only)
d.Program - Floating-Point Enabled Excep-

tion, for all except rfebb
e.Trace, for rfebb and mtmsr[d] only

I. Other Instructions
 a.These exceptions or groups of exceptions

 are mutually exclusive and have the same
 priority (the members of a group are not
 mutually exclusive, but have the same
 priority):
 Program - Trap
 System Call
 System Call Vectored
 Hypervisor Emulation Assistance or

Program (Privileged Instruction)
b. Hypervisor Facility Unavailable
c. Facility Unavailable
d.Trace

J. [Hypervisor] Instruction Storage, Instruction
 Segment, Alignment for incorrectly aligned
 prefixed instruction, and Machine Check for
 invalid accelerator access

These exceptions have the lowest priority in
this category. They are recognized only when

all instructions prior to the instruction causing
one of these exceptions appear to have com-
pleted and that instruction is the next instruc-
tion to be executed. The four exceptions are
mutually exclusive.

The priority of these exceptions is specified for
completeness and to ensure that they are not
given more favorable treatment. It is accept-
able for an implementation to treat these
exceptions as though they had a lower priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception

This exception is the fourth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

5. Directed Ultravisor Doorbell

This exception is the fifth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

6. Hypervisor Maintenance

This exception is the sixth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

If a Hypervisor Maintenance exception exists and
each attempt to execute an instruction when the
Hypervisor Maintenance interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Maintenance interrupt is
not delayed indefinitely.

7. Hypervisor Virtualization, Direct External, Medi-
ated External, and [Hypervisor] Decrementer, Per-
formance Monitor, Directed Privileged Doorbell,
Directed Hypervisor Doorbell

These exceptions are the lowest priority excep-
tions. All have equal priority (i.e., the hardware
may generate any one of the corresponding inter-
rupts for which an exception exists). When one of

Some platform implementations may depend
on timely servicing of Hypervisor Maintenance
interrupts, e.g. to prevent physical damage.
The Directed Ultravisor Doorbell interrupt han-
dler may test the HMER to identify such cir-
cumstances and take appropriate action.

Programming Note
Power ISA™ III1292

Version 3.1
these exceptions is created, the interrupt process-
ing mechanism waits for all other possible excep-
tions to be reported. It then generates the
corresponding interrupt if no higher priority excep-
tion exists when the interrupt is to be generated.

If a Hypervisor Decrementer exception exists and
each attempt to execute an instruction when the
Hypervisor Decrementer interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Decrementer interrupt is
not delayed indefinitely.

If LPES=0 and a Direct External exception exists
and each attempt to execute an instruction when
this interrupt is enabled causes an exception (see
the Programming Note below), the Direct External
interrupt is not delayed indefinitely.

7.10 Relationship of
Event-Based Branches to Inter-
rupts

7.10.1 EBB Exception Priority
Event-based branches have a priority lower than that of
all interrupts. When an event-based exception is cre-
ated, the Event-Based Branch facility waits for all possi-
ble exceptions that would cause interrupts to be
reported. It then generates the event-based branch if
no exception that would cause an interrupt exists when
the event-based branch is to be generated.

7.10.2 EBB Synchronization
When an event-based branch occurs, EBBRR is set to
point to an instruction such that all preceding instruc-

tions have completed execution, no subsequent
instruction has begun execution, and the instruction
addressed by EBBRR has not completed execution.

7.10.3 EBB Classes
Event-based branches are classified by whether they
are directly caused by the execution of an instruction or
are caused by some other system exception. Those
that are “system-caused” are
 Performance Monitor
 External

An incorrect or malicious operating system
could corrupt the first instruction in the inter-
rupt vector location for an instruction-caused
interrupt such that the attempt to execute the
instruction causes the same exception that
caused the interrupt (a looping interrupt; e.g.,
Trap instruction and Program interrupt). Simi-
larly, the first instruction of the interrupt vector
for one instruction-caused interrupt could
cause a different instruction-caused interrupt,
and the first instruction of the interrupt vector
for the second instruction-caused interrupt
could cause the first instruction-caused inter-
rupt (e.g., Program interrupt and Floating-Point
Unavailable interrupt). The looping caused by
these and similar cases is terminated by the
occurrence of a System Reset or Hypervisor
Decrementer interrupt.

Programming Note
Chapter 7. Interrupts 1293

Version 3.1
Power ISA™ III1294

Version 3.1
Chapter 8. Timer Facilities

8.1 Overview
The Time Base, Decrementer, Hypervisor Decre-
menter, Processor Utilization of Resources, and
Scaled Processor Utilization of Resources registers
provide timing functions for the system. The remainder
of this section describes these registers and related
facilities.

8.2 Time Base (TB)
The Time Base (TB) is a 64-bit register (see Figure 69)
containing a 64-bit unsigned integer that is incremented
periodically.

Figure 69. Time Base

The Time Base is a hypervisor resource; see Chapter
2.

The SPRs TBU40, TBU, and TBL provide access to the
fields of the Time Base shown in Figure 69. When a
mtspr instruction is executed specifying one of these
SPRs, the associated field of the Time Base is altered
and the remaining bits of the Time Base are not
affected.

See Chapter 5 of Book II for infromation about the
update frequency of the Time Base.

The Time Base is implemented such that:

1. Loading a GPR from the Time Base has no effect
on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Time Base
replaces the contents of the Time Base with the
contents of the GPR.

The Power ISA does not specify a relationship between
the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock
in a Power ISA system. The Time Base update fre-
quency is not required to be constant. What is required,
so that system software can keep time of day and oper-
ate interval timers, is one of the following.

 The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

 The update frequency of the Time Base is under
the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or preventing
it from being read in problem state (MSRPR=1). If the
means is under software control, it must be accessible
only in hypervisor state (MSRHV PR = 0b10). There
must be a method for getting all Time Bases in the sys-
tem to start incrementing with values that are identical
or almost identical.

0 39

TBU40 ///
TBU TBL

0 32 63

Field Description
TBU40 Upper 40 bits of Time Base
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base
Chapter 8. Timer Facilities 1295

Version 3.1

8.2.1 Writing the Time Base
Writing the Time Base is privileged, and can be done
only in hypervisor state. Reading the Time Base is not
privileged; it is discussed in Chapter 5 of Book II.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper halves
of the Time Base (TBL and TBU), respectively, preserv-
ing the other half. These are extended mnemonics for
the mtspr instruction; Figure 19.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz # set TBL to 0
mttbu Rx # set TBU
mttbl Ry # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL pre-
vents the possibility of a carry from TBL to TBU while
the Time Base is being initialized.

The preferred method of changing the Time Base uti-
lizes the TBU40 facility. The following code sequence
demonstrates the process. Assume the upper 40 bits of
Rx contain the desired value upper 40 bits of the Time
Base.

mftb Ry # Read 64-bit Time Base value
clrldi Ry,Ry,40 # lower 24 bits of old TB
mttbu40 Rx # write upper 40 bits of TB
mftb Rz # read TB value again
clrldi Rz,Rz,40 # lower 24 bits of new TB
cmpld Rz,Ry # compare new and old lwr 24
bge done # no carry out of low 24 bits
addis Rx,Rx,0x0100

#increment upper 40 bits
mttbu40 Rx # update to adjust for carry

8.3 Virtual Time Base
The Virtual Time Base (VTB) is a 64-bit incrementing
counter.

Figure 70. Virtual Time Base

Virtual Time Base increments at the same rate as the
Time Base until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 - 1); at the next incre-
ment its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The operation of the Virtual Time Base has the follow-
ing additional properties.

1. Loading a GPR from the Virtual Time Base has no
effect on the accuracy of the Virtual Time Base.

2. Copying the contents of a GPR to the Virtual Time
Base replaces the contents of the Virtual Time
Base with the contents of the GPR.

If software initializes the Time Base on power-on to
some reasonable value and the update frequency
of the Time Base is constant, the Time Base can be
used as a source of values that increase at a con-
stant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0). If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

If Time Base bits 60:63 are used as part of a ran-
dom number generator, software must account for
the fact that these bits are set to 0x0 only when bit
59 changes state regardless of whether or not they
incremented to 0xF since they were previously set
to 0x0.

See the description of the Time Base in Chapter 5
of Book II for ways to compute time of day in
POSIX format from the Time Base.

Programming Note

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or
32-bit mode.

VTB
0 63

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Virtual Time Base input frequency will also
change. Software must be aware of this in order to
set interval timers.

Programming Note

Programming Note
Power ISA™ III1296

Version 3.1

8.4 Decrementer
The Decrementer (DEC) is a decrementing counter that
provides a mechanism for causing a Decrementer
interrupt after a programmable delay.

The Decrementer is driven at the same frequency as
the Time Base.

Figure 71. Decrementer

The LPCR is used to enable and disable Large Decre-
menter mode, as defined below. (See Section 2.2.)

When the Decrementer is not in Large Decrementer
mode, it behaves as a 32-bit signed integer and oper-
ates as follows.

The Decrementer counts down until its value
becomes 0x0000_0000_0000_0000; at the next
decrement its value becomes
0x0000_0000_FFFF_FFFF. When reading the
Decrementer using mfspr, bits 0:31 always read
back as 0s.

When the contents of DEC32 change from 0 to 1, a
Decrementer exception will come into existence
within a reasonable period of time. When the con-
tents of DEC32 change from 1 to 0, the existing
Decrementer exception, if any, will cease to exist
within a reasonable period of time, but not later
than the completion of the next context synchroniz-
ing instruction or event.

The preceding paragraph applies regardless of
whether the change in the contents of DEC32 is the
result of decrementation of the Decrementer by the
hardware or of modification of the Decrementer
caused by execution of an mtspr instruction.

When the Decrementer is in Large Decrementer mode,
it behaves as a d-bit decrementing counter which is
sign-extended to 64 bits. The value of d is implementa-

tion dependent but at least 32. When the Decrementer
is written, bits 0:63-d are ignored by the hardware.

When in Large Decrementer mode, the Decrementer
operates as follows.

The binary value of the Decrementer counts down
until its value becomes 0x0000_0000_0000_0000;
at the next decrement its value becomes the mini-
mum value supported, which is represented as
0xFFFF_FFFF_FFFF_FFFF.

When the contents of the DEC0 change from 0 to
1, a Decrementer exception will come into exis-
tence within a reasonable period of time. When the
contents of DEC0 change from 1 to 0, the existing
Decrementer exception, if any, will cease to exist
within a reasonable period of time, but not later
than the completion of the next context synchroniz-
ing instruction or event.

The preceding paragraph applies regardless of
whether the change in the contents of DEC0 is the
result of decrementation of the Decrementer by the
hardware or of modification of the Decrementer
caused by execution of an mtspr instruction.

The operation of the Decrementer has the following
additional properties.

1. Loading a GPR from the Decrementer has no
effect on the accuracy of the Time Base.

2. Copying the contents of a GPR to the Decrementer
replaces the contents of the Decrementer with the
contents of the GPR.

In configurations in which the hypervisor allows
multiple partitions to time-share a processor, the
Virtual Time Base can be managed by the hypervi-
sor such that it appears to each partition as if it
counts only during the times that the partition is
executing.

In order to do this, the hypervisor saves the value
of the Virtual Time Base as part of the program
context when removing a partition from the proces-
sor, and restores it to its previous value when initi-
ating the partition again on the same or another
processor.

DEC
0 63

Programming Note

In Large Decrementer mode, the maximum positive
value supported by the Decrementer is 2d-1-1, rep-
resented with bits 0:64-d containing 0’s and bits
65-d:63 containing 1’s. The minimum value sup-
ported by the Decrementer is -2d-1, represented as
0xFFFF_FFFF_FFFF_FFFF.

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set inter-
val timers.

If Decrementer bits 60:63 are used as part of a ran-
dom number generator, software must account for
the fact that these bits are set to 0xF only when bit
59 changes state regardless of whether or not they
decremented to 0x0 since they were previously set
to 0xF.

Programming Note

Programming Note
Chapter 8. Timer Facilities 1297

Version 3.1
8.4.1 Writing and Reading the
Decrementer
The contents of the Decrementer can be read or written
using the mfspr and mtspr instructions, both of which
are privileged when they refer to the Decrementer.
Using an extended mnemonic (Figure 19), the Decre-
menter can be written from GPR Rx using:

mtdec Rx

The Decrementer can be read into GPR Rx using:

mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mecha-
nism.

8.5 Hypervisor Decrementer
The Hypervisor Decrementer is a h-bit decrementing
counter that is sign-extended to 64 bits. The value of h
is implementation dependent, however the number of
bits supported by the Hypervisor Decrementer must be
greater than or equal to the number of bits supported
by the Decrementer. When the Decrementer is written,
bits 0:63-h are ignored by the hardware.

The binary value of the Hypervisor Decrementer counts
down until its value becomes
0x0000_0000_0000_0000; at the next decrement its
value becomes the minimum value supported, which is
represented as 0xFFFF_FFFF_FFFF_FFFF.

When the contents of HDEC0 change from 0 to 1 and
the thread is not in a power-saving mode, a Hypervisor
Decrementer exception will come into existence within
a reasonable period of time. When a Hypervisor Decre-
menter interrupt occurs, the existing Hypervisor Decre-
menter exception will cease to exist within a
reasonable period of time, but not later than the com-
pletion of the next context synchronizing instruction or
event. Even if multiple HDEC0 change transitions from
0 to 1 occur before a Hypervisor Decrementer interrupt
occurs, at most one Hypervisor Decrementer exception
exists.

The preceding paragraph applies regardless of whether
the change in the contents of HDEC0 is the result of
decrementation of the Hypervisor Decrementer by the

hardware or of modification of the Hypervisor Decre-
menter caused by execution of an mtspr instruction.

The operation of the Hypervisor Decrementer has the
following additional properties.

1. Loading a GPR from the Hypervisor Decrementer
has no effect on the accuracy of the Hypervisor
Decrementer.

2. Copying the contents of a GPR to the Hypervisor
Decrementer replaces the contents of the Hypervi-
sor Decrementer with the contents of the GPR.

8.6 Processor Utilization of
Resources Register (PURR)
The Processor Utilization of Resources Register
(PURR) is a 64-bit counter, the contents of which pro-
vide an estimate of the resources used by the thread.
The contents of the PURR are treated as a 64-bit
unsigned integer.

Figure 72. Processor Utilization of Resources
Register

The PURR is a hypervisor resource; see Chapter 2.

The maximum positive value supported by the
Hypervisor Decrementer is 2h-1-1, represented with
bits 0:64-h containing 0’s and bits 65-h:63 contain-
ing 1’s. The minimum value supported by the
Hypervisor Decrementer is -2h-1, represented as
0xFFFF_FFFF_FFFF_FFFF.

Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Hypervisor Decrementer update frequency will
also change. Software must be aware of this in
order to set interval timers.

If Hypervisor Decrementer bits 60:63 are used as
part of a random number generator, software must
account for the fact that these bits are set to 0xF
only when bit 59 changes state regardless of
whether or not they decremented to 0x0 since they
were previously set to 0xF.

A Hypervisor Decrementer exception is not created
if the thread is in a power-saving mode when
HDEC0 changes from 0 to 1 because having a
Hypervisor Decrementer interrupt occur almost
immediately after exiting the power-saving mode in
this case is deemed unnecessary. The hypervisor
already has control, and if a timed exit from the
power-saving mode is necessary and possible, the
hypervisor can use the Decrementer to exit the
power-saving mode at the appropriate time. For
some power-saving levels, the state of the Hyper-
visor Decrementer and Decrementer is not neces-
sarily maintained and updated.

PURR
0 63

Programming Note

Programming Note
Power ISA™ III1298

Version 3.1
The contents of the PURR increase monotonically,
unless altered by software, until the sum of the con-
tents plus the amount by which it is to be increased
exceed 0xFFFF_FFFF_FFFF_FFFF (264 - 1) at which
point the contents are replaced by that sum modulo
264. There is no interrupt or other indication when this
occurs.

The rate at which the value represented by the con-
tents of the PURR increases is an estimate of the por-
tion of resources used by the thread per unit time with
respect to other threads that share those resources
monitored by the PURR. When the thread is idle, the
rate at which the PURR value increases is implementa-
tion dependent.

Let the difference between the value represented by
the contents of the Time Base at times Ta and Tb be
Tab. Let the difference between the value represented
by the contents of the PURR at time Ta and Tb be the
value Pab. The ratio of Pab/Tab is an estimate of the per-
centage of shared resources used by the thread during
the interval Tab. For the set {S} of threads that share
the resources monitored by the PURR, the sum of the
usage estimates for all the threads in the set is 1.0.

The definition of the set of threads S, the shared
resources corresponding to the set S, and specifics of
the algorithm for incrementing the PURR are imple-
mentation-specific.

The PURR is implemented such that:

1. Loading a GPR from the PURR has no effect on
the accuracy of the PURR.

2. Copying the contents of a GPR to the PURR
replaces the contents of the PURR with the con-
tents of the GPR.

8.7 Scaled Processor Utilization
of Resources Register (SPURR)
The Scaled Processor Utilization of Resources Regis-
ter (SPURR) is a 64-bit counter, the contents of which
provide an estimate of the resources used by the
thread. The contents of the SPURR are treated as a
64-bit unsigned integer.

Figure 73. Scaled Processor Utilization of
Resources Register

The SPURR is a hypervisor resource; see Section 2.6.

The contents of the SPURR increase monotonically,
unless altered by software, until the sum of the con-
tents plus the amount by which it is to be increased
exceed 0xFFFF_FFFF_FFFF_FFFF (264 - 1) at which
point the contents are replaced by that sum modulo
264. There is no interrupt or other indication when this
occurs.

The rate at which the value represented by the con-
tents of the SPURR increases is an estimate of the por-
tion of resources used by the thread with respect to
other threads that share those resources monitored by
the SPURR, and relative to the computational capacity
provided by those resources. The computational
capacity provided by the shared resources may vary as
a function of the frequency of the oscillator which drives
the resources or as a result of deliberate delays in pro-
cessing that are created to reduce power consumption.
When the thread is idle, the rate at which the SPURR
value increases is implementation dependent.

Let the difference between the value represented by
the contents of the Time Base at times Ta and Tb be
Tab. Let the ratio of the effective and nominal frequen-
cies of the oscillator driving instruction execution fe/fn
be fr. Let the ratio of delay cycles created by power
reduction circuitry and total cycles cd/ct be cr. Let the
difference between the value represented by the con-
tents of the SPURR at time Ta and Tb be the value Sab.
The ratio of Sab/(Tab x fr x (1 - cr)) is an estimate of the
percentage of shared resource capacity used by the
thread during the interval Tab. For the set {S} of
threads that share the resources monitored by the
SPURR, the sum of the usage estimates for all the
threads in the set is 1.0.

The definition of the set of threads S, the shared
resources corresponding to the set S, and specifics of
the algorithm for incrementing the SPURR are imple-
mentation-specific.

The SPURR is implemented such that:

1. Loading a GPR from the SPURR has no effect on
the accuracy of the SPURR.

Estimates computed as described above may be
useful for purposes related to resource utilization,
including utilization-based system management
and planning.

Because the rate at which the PURR accumulates
resource usage estimates is dependent on the fre-
quency at which the Time Base is incremented,
and the frequency of the oscillator that drives
instruction execution may vary independently from
that of the Time Base, the interpretation of the con-
tents of the PURR may be inaccurate as a mea-
surement of capacity consumption for accounting
purposes. The SPURR should be used for
accounting purposes.

Programming Note

SPURR
0 63
Chapter 8. Timer Facilities 1299

Version 3.1
2. Copying the contents of a GPR to the SPURR
replaces the contents of the SPURR with the con-
tents of the GPR.

8.8 Instruction Counter
The Instruction Counter (IC) is a 64-bit incrementing
counter that counts the number of instructions that the
thread has completed (according to the sequential exe-
cution model; see Section 2.2 of Book I).

Figure 74. Instruction Counter

Estimates computed as described above may be
useful for purposes of resource use accounting,
program dispatching, etc.

IC
0 63

Programming Note
Power ISA™ III1300

Version 3.1
Chapter 9. Debug Facilities

9.1 Overview
Implementations provide debug facilities to enable
hardware and software debug functions, such as con-
trol flow tracing, data address watchpoints, and pro-
gram single-stepping. The debug facilities described in
this section consist of the Come-From Address Regis-
ter (see Section 9.2), Completed Instruction Address
Breakpoint Register (see Section 9.3), and the Data
Address Watchpoint Register (DAWRn) and Data
Address Watchpoint Register Extension (DAWRXn)
(see Section 9.4). The interrupt associated with the
Data Address Breakpoint registers is described in Sec-
tion 7.5.3. The interrupt associated with the Completed
Instruction Address Breakpoint Register is described in
Section 7.5.15. The Trace facility, which can be used
for single-stepping as well as for control flow tracing, is
described in Section 7.5.15.

The mfspr and mtspr instructions (see Section 5.4.4)
provide access to the registers of the debug facilities.

In addition to the facilities mentioned above, implemen-
tations typically provide debug facilities, modes, and
access mechanisms that are implementation-specific.
For example, implementations typically provide facili-
ties for instruction address tracing, and also access to
certain debug facilities via a dedicated interface such
as the IEEE 1149.1 Test Access Port (JTAG).

9.2 Come-From Address Regis-
ter
The Come-From Address Register (CFAR) is a 64-bit
register. When an rfebb, rfid, or rfscv instruction is
executed, the register is set to the effective address of
the instruction. When a Branch instruction is executed
and the branch is taken, the register is set to the effec-
tive address of an instruction in the instruction cache
block containing the Branch instruction, except that if
the Branch instruction is a B-form Branch (i.e., bc, bca,
bcl, or bcla) for which the target address is in the
instruction cache block containing the Branch instruc-
tion or is in the previous or next cache block, the regis-
ter is not necessarily set. For Branch instructions, the

setting need not occur until a subsequent context syn-
chronizing operation has occurred.

Figure 75. Come-From Address Register

The contents of the CFAR can be read and written
using the mfspr and mtspr instructions. Acccess to the
CFAR is privileged.

9.3 Completed Instruction
Address Breakpoint
The Completed Instruction Address Breakpoint mecha-
nism provides a means of detecting an instruction com-
pletion at a specific instruction address. The address
comparison is done on an effective address (EA).

The Completed Instruction Address Breakpoint mecha-
nism is controlled by the Completed Instruction
Address Breakpoint Register (CIABR), shown in
Figure 76, except that if SMFCTRLD=1 when PRIV≠0,

CFAR //
0 62 63

This register can be used for purposes of debug-
ging software. For example, often a software bug
results in the program executing a portion of the
code that it should not have reached or causing an
unexpected interrupt. In the former case, a break-
point can be placed in the portion of the code that
was erroneously reached and the program reexe-
cuted. In either case, the interrupt handler can save
the contents of the CFAR (before executing the first
instruction that would modify the register), and then
make the saved contents available for a debugger
to use in determining the control flow path by which
the exception was reached.

In order to preserve the CFAR's contents for each
partition and to prevent it from being used to imple-
ment a "covert channel" between partitions, the
hypervisor should initialize/save/restore the CFAR
when switching partitions on a given thread.

Programming Note
Chapter 9. Debug Facilities 1301

Version 3.1
the Privilege specification in the PRIV field is ignored
and the facility detects instruction address matches in
ultravisor state.

Figure 76. Completed Instruction Address
Breakpoint Register

A Completed Instruction Address Breakpoint match
occurs upon instruction completion if all of the following
conditions are satisfied. The values of CIABR, SMFC-
TRL, and the MSR that are used for the comparisons
are those that exist at the time the instruction is initi-
ated.

 the completed instruction address is equal to
CIEA0:61 || 0b00. For prefixed instructions, the
completed instruction address is the address of the
prefix.

 SMFCTRLD=0 and the thread privilege matches
that specified in PRIV or SMFCTRLD=1, PRIV≠0,
and MSRS HV PR=0b110.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

A Completed Instruction Address Breakpoint match
causes a Trace exception, which may cause a Trace
interrupt as described in Section 7.5.15.

9.4 Data Address Watchpoint
The Data Address Watchpoint mechanism provides a
means of detecting load and store accesses to multiple
doubleword-aligned effective address (EA) ranges. At
least two independent address ranges are provided.

Each Data Address Watchpoint range is controlled by a
pair of SPRs: the Data Address Watchpoint Register
(DAWRn), shown in Figure 77, and the Data Address

Watchpoint Register Extension (DAWRXn), shown in
Figure 78, where n=0,1,.... SMFCTRLD functions as an
extension to the PRIVM field: when SMFCTRLD=1, the
facility detects data address watchpoint matches in
ultravisor state in addition to states enabled by the
PRIVM field.

Figure 77. Data Address Watchpoint Register

All other fields are reserved.

Figure 78. Data Address Watchpoint Register
Extension

The supported PRIVM values are 0b000, 0b001,
0b010, 0b011, 0b100, and 0b111 when SMFCTRLD=0
and 0b000, 0b001, 0b010, and 0b011 when SMFC-
TRLD=1. If the combination of SMFCTRLD and the
PRIVM field does not contain one of the supported val-
ues, then whether a match occurs for a given storage
access is undefined. Elsewhere in this section it is
assumed that the PRIVM field contains one of the sup-
ported values.

CIEA PRIV
0 62 63

Bit(s) Name Description
0:61 CIEA Completed Instruction Effective

Address
62:63 PRIV Privilege (PRIV > 0b00 ignored when

SMFCTRLD=1)
00: Disable matching
01: Match in problem state
10: Match in privileged non-hypervi-

sor state
11: Match in hypervisor non-ultravisor

state

The Data Address Watchpoint mechanism employs
a simple EA compare. It makes no attempt to take
the radix table translation quadrants (keyed off
EA0:1) into account to enable a single setting to
work in all privilege levels.

Programming Note

DEAW ///
0 61 63

Bit(s) Name Description
0:60 DEAW Data Effective Address Watchpoint

/// MRD /// HRAMMC DW DR WT WTI PRIVM
32 48 54 56 57 58 59 60 61 63

Bit(s) Name Description
48:53 MRD Match Range in Doublewords

biased by -1. (0b000000 = 1 DW,
0b111111 = 64 DW)

56 HRAMMC Hypervisor Real Addressing Mode
Match Control

0: DEAW0 and EA0 are used
during matching in ultravisor or
hypervisor real addressing mode

1: DEAW0 and EA0 are ignored
during matching in ultravisor or
hypervisor real addressing mode

57 DW Data Write
58 DR Data Read
59 WT Watchpoint Translation
60 WTI Watchpoint Translation Ignore
61:63 PRIVM Privilege Mask
61 HYP Hypervisor non-ultravisor state
62 PNH Privileged Non-Hypervisor state
63 PRO Problem state
Power ISA™ III1302

Version 3.1

A Data Address Watchpoint match occurs for a Load or
Store instruction, or for an instruction that is treated as
a Load or Store, if, for any byte accessed, all of the fol-
lowing conditions are satisfied. For the first condition,
chk_DEAW and chk_EA are defined as follows. If
MSRHV DR=0b10 and HRAMMC=1 then

chk_DEAW = 0b0 || DEAW1:60 and
chk_EA = 0b0 || EA1:63;

otherwise
chk_DEAW = DEAW and
chk_EA = EA.

 the access is located in the range
chk_DEAW0:60 ≤ chk_EA0:60 ≤
(chk_DEAW0:60 + (550 || MRD0:5)) such that
(chk_EA0:60 AND (551 || 60)) =
 (chk_DEAW0:60 AND (551 || 60)).

 (MSRDR = DAWRXnWT) | DAWRXnWTI
 the thread is in

- ultravisor state and SMFCTRLD=1, or
- hypervisor non-ultravisor state and

DAWRXnHYP = 1, or
- privileged non-hypervisor state and

DAWRXnPNH = 1, or
- problem state and DAWRXnPR = 1

 the instruction is a Store or treated as a Store and
DAWRXnDW = 1, or the instruction is a Load or
treated as a Load and DAWRXnDR = 1.

In hypervisor and ultravisor real addressing modes, bits
1:63-m of the EA are ignored for the purpose of detect-
ing a match, where m is the real address size sup-
ported by the implementation. In virtual real addressing
mode, the high order 24 bits of the EA are ignored for
the purpose of detecting a match. In 32-bit mode the
high-order 32 bits of the EA are treated as zeros for the
purpose of detecting a match.

A watched range must not cross any of the following
boundaries in their respective circumstances. If it does,
the facility will operate correctly with respect to the vari-

ous control parameters (e.g., PRIVM), but the set of
EAs that cause matches is undefined.
 the 264-byte boundary when HPT translation is

being performed in other than virtual real address-
ing mode (i.e., a range that includes the last and
first byte of the 264-byte effective address space)

 a 2m-byte boundary when the thread is in hypervi-
sor or ultravisor real addressing mode (i.e., a
range that, if the corresponding EAs were used to
address storage on a design that ignores the
high-order bits of the 60-bit real address that are
not supported by the implementation, would
include the last and first byte of the 2m-byte real
address space)

 a 262-byte boundary when Radix Tree translation
is being performed (i.e., a quadrant boundary)

 a 240-byte boundary when HPT translation is being
performed in virtual real addressing mode (i.e., a
range that, if the corresponding EAs were used to
address storage, would include the last and first
byte of the reserved virtual segment)

 a 232-byte boundary when the thread is in 32-bit
mode (i.e., a range that, if the corresponding EAs
were used to address storage, would include the
last and first byte of the 232-byte effective address
space)

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

 The instruction is Store Conditional but the store is
not performed

 The instruction is dcbz. (For the purpose of deter-
mining whether a match occurs, dcbz is treated as
a Store.)

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Watchpoint match causes a Data Stor-
age exception or a Hypervisor Data Storage exception
(see Section 7.5.3, “Data Storage Interrupt (DSI)” on
page 1266 and Section 7.5.16, “Hypervisor Data Stor-
age Interrupt (HDSI)” on page 1277). If a match occurs,
some or all of the bytes of the storage operand may
have been accessed; however, if a Store instruction
causes the match, the storage operand is not modified
if the instruction is one of the following:
 any Store instruction that causes an atomic access

When SMFCTRLD=0, PRIVM value 0b000 causes
matches not to occur regardless of the contents of
other DAWRn and DAWRXn fields. PRIVM values
0b101 and 0b110 are not supported because a
storage location that is shared between the hyper-
visor and non-hypervisor software is unlikely to be
accessed using the same EA by both the hypervi-
sor and the non-hypervisor software. (PRIVM value
0b111 is supported primarily for reasons of soft-
ware compatibility with respect to emulation of the
DABR facility as described in a subsequent Pro-
gramming Note.)

SMFCTRLD=1 is provided for ultravisor debugging
and also for ultravisor supervision of secure parti-
tion debugging. When SMFCTRLD=1, exceptions
due to matches that occur in hypervisor non-ultravi-
sor state are unlikely to be desirable.

Programming Note

The Data Address Watchpoint mechanism does
not apply to instruction fetches.

Programming Note
Chapter 9. Debug Facilities 1303

Version 3.1

The limitations of the Data Address Watchpoint
mechanism may lead to uncertainties when
attempting to interpret a reported match. For
example, there is no explicit indication of which
watchpoint matched. The watched address ranges
could overlap, for example, as a result of the dou-
bleword granularity of the address range specifica-
tion, making it unclear which watchpoint matched.
Even if one of the overlapping watchpoints was set
to match only for stores and the other only for
loads, the existence of the Atomic Memory Opera-
tions would make the reporting of a store in the
DSISR inconclusive. For a given watchpoint, the
doubleword granularity may make the validity of the
match uncertain because only the starting address
of the match is reported without a length. In such
cases, it is necessary to examine the operand that
caused the match to determine what actually hap-
pened.

Implementations that comply with versions of the
architecture that precede Version 2.02 do not pro-
vide the DABRX (now replaced by DAWRXn). For-
ward compatibility for software that was written for
such implementations (and uses the Data Address
Breakpoint facility) can be obtained by setting
DAWRXn60:63 to 0b0111.

Programming Note

Programming Note
Power ISA™ III1304

Version 3.1
Chapter 10. Performance Monitor Facility

10.1 Overview
The Performance Monitor facility provides a means of
collecting information about program and system per-
formance.

10.2 Performance Monitor Oper-
ation
The Performance Monitor facility includes the following
features.

 an MSR bit

- PMM (Performance Monitor Mark), which can
be used to select one or more programs for
monitoring

 registers

- PMC1 - PMC6 (Performance Monitor Count-
ers 1 - 6), which count events

- MMCR0, MMCR1, MMCR2, MMCR3 and
MMCRA (Monitor Mode Control Registers 0,
1, 2, 3 and A), which control the Performance
Monitor facility

- SIAR, SDAR, SIER, SIER2 and SIER3 (Sam-
pled Instruction Address Register, Sampled
Data Address Register, Sampled Instruction
Event Register, Sampled Instruction Event
Register 2 and Sampled Instruction Event
Register 3), which contain the address of the
“sampled instruction” and of the “sampled
data,” and additional information about the
“sampled instruction” (see Section 10.4.8 -
Section 10.4.10).

 the Performance Monitor interrupt and Perfor-
mance Monitor event-based branch, which can be
caused by monitored conditions and events.

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

 A “counter negative condition” exists when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1). A “Time Base transition event” occurs
when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by a field in
MMCR0). The term “condition or event” is used as
an abbreviation for “counter negative condition or
Time Base transition event”. A condition or event
can be caused implicitly by the hardware (e.g.,
incrementing a PMC) or explicitly by software
(mtspr).

 A condition or event is enabled if the correspond-
ing “Enable” bit (i.e., PMC1CE, PMCjCE, or TBEE)
in MMCR0 is 1. The occurrence of an enabled
condition or event can have side effects within the
Performance Monitor, such as causing the PMCs
to cease counting.

 An enabled condition or event causes a Perfor-
mance Monitor alert if Performance Monitor alerts
are enabled by the corresponding “Enable” bit in
MMCR0. Another cause of a Performance Monitor
alert is the threshold event counter reaching its
maximum value (see Section 10.4.3). A single Per-
formance Monitor alert may reflect multiple
enabled conditions and events.

 When a Performance Monitor alert occurs,
MMCR0PMAO is set to 1 and the writing of BHRB
entries, if in process, is suspended.

When the contents of MMCR0PMAO change from 0
to 1, a Performance Monitor exception will come
into existence within a reasonable period of time.
When the contents of MMCR0PMAO change from 1
to 0, the existing Performance Monitor exception, if
any, will cease to exist within a reasonable period
of time, but not later than the completion of the
next context synchronizing instruction or event.

 A Performance Monitor exception causes one of
the following.

- If MSREE = 1, MMCR0EBE = 0, and either
HFSCRPM=1 or the thread is in hypervisor
state, an interrupt occurs.

- If MSRPR = 1, MMCR0EBE = 1, a Performance
Monitor event-based exception occurs if
Chapter 10. Performance Monitor Facility 1305

Version 3.1
BESCRPME=1, provided that event-based
exceptions are enabled by FSCREBB and
HFSCREBB. When a Performance Monitor
event-based exception occurs, an
event-based branch is generated if BES-
CRGE=1.

The Performance Monitor also controls when BHRB
entries are written, the instruction filters that are used
when writing BHRB entries, and the availability of the
BHRB in problem state. It also controls whether Perfor-
mance Monitor exceptions cause Performance Monitor
event-based exceptions or Performance Monitor inter-
rupts. See Section 10.4.4.

10.3 No-op Instructions
Reserved for the Performance
Monitor
The following forms of the and x,x,x instruction are
reserved for exclusive use by the Performance Monitor.
 and x,x,x, where x=0,1.

10.4 Performance Monitor Facil-
ity Registers
The Performance Monitor registers count events, con-
trol the operation of the Performance Monitor, and pro-
vide associated information.

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruction
have been reflected in Performance Monitor registers is
not defined. No means are provided by which software
can ensure that all events due to preceding instructions
have been reflected in Performance Monitor registers.
Similarly, if the events being monitored may be caused
by operations that are performed out-of-order, no
means are provided by which software can prevent
such events due to subsequent instructions from being
reflected in Performance Monitor registers. Thus the
contents obtained by reading a Performance Monitor
register may not be precise: it may fail to reflect some
events due to instructions that precede the mfspr and
may reflect some events due to instructions that follow
the mfspr. This lack of precision applies regardless of
whether the state of the thread is such that the register
is subject to change by the hardware at the time the

The Performance Monitor can be effectively dis-
abled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor exceptions do not occur) by setting
MMCR0 to 0x0000_0000_8000_0000.

Programming Note

An example usage of a probe no-op by the Perfor-
mance Monitor is to measure branch prediction
effectiveness. In order to do this, one of probe
no-ops is inserted in various sections of the code in
which branch prediction efficiency is being studied.
The Performance Monitor registers are then set up
as follows.

MMCRA:
ES=010 (only probe no-ops eligible for sampling)
SM=00 (all eligible instructions)
SE=1 (enable random sampling).
Other fields in MMCRA are set as desired.

MMCR1:
PMC1SEL=E0 (count PMC1 on dispatch)
PMC4SEL=E0 (count PMC4 on completion)
Other counters initialized as desired.

MMCR2: Initialize as desired.

MMCR0:
FC is set to 0 to stop freezing the counters
PMAE is set to 1 to enable PMU alerts.
Other fields in MMCR0 are set as desired.

Subsequently, when a PMU alert occurs, PMCs 1
and 4 can be read. The difference between the two
counter values provides an indication of branch
prediction effectiveness in the areas of the code in
which the probe no-op was inserted.

Programming Note
Power ISA™ III1306

Version 3.1
mfspr is executed. Similarly, if an mtspr instruction is
executed that changes the contents of the Time Base,
the change is not guaranteed to have taken effect with
respect to causing Time Base transition events until
after a subsequent context synchronizing instruction
has been executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor register other than
SIAR, SDAR, and SIER, the change is not guaranteed
to have taken effect until after a subsequent context
synchronizing instruction has been executed (see
Chapter 12. “Synchronization Requirements for Con-
text Alterations” on page 1333).

10.4.1 Performance Monitor SPR
Numbers
The Performance Monitor registers have two sets of
SPR numbers, one set that is non-privileged and
another set that is privileged.

For the purpose of explanation elsewhere in the archi-
tecture, the non-privileged registers are divided into two
groups as defined below.
 A: The non-privileged read/write Performance

Monitor registers (i.e., the PMCs, MMCR0,
MMCR2, and MMCRA at SPR numbers 771-776,
779, 769, and 770, respectively)

 B: The non-privileged read-only Performance Mon-
itor registers (i.e., SIER2, SIER3, MMCR3, SIER,
SIAR, SDAR, and MMCR1 at SPR numbers 736,
737, 738, 768, 780, 781, and 782, respectively).

The SPRs in group B are treated as undefined registers
for write (mtspr) operations. See the mtspr instruction
description in Section 5.4.4 for additional information.

When the PCR makes a register in either group A or B
unavailable in problem state, that SPR is not included
in group A or B.

10.4.2 Performance Monitor
Counters
The six Performance Monitor Counters, PMC1 through
PMC6, are 32-bit registers that count events.

Figure 79. Performance Monitor Counter registers

PMC1 - PMC4 are referred to as “programmable”
counters since the events that can be counted can be
specified by the program. The events that are counted
by each counter are specified in MMCR1.

PMC5 and PMC6 are not programmable and can be
specified as being part of the Performance Monitor
Facility or not part of it. PMC5 counts instructions com-
pleted, and PMC6 counts cycles. The PMCC field in
MMCR0 controls whether or not PMCs 5-6 are part of
the Performance Monitor Facility, and the result of
accessing these counters when they are not part of the
Performance Monitor Facility.

10.4.2.1 Event Counting and Sampling
The PMCs are enabled to count unless they are “fro-
zen” by one or more of the “freeze counters” fields in
MMCR0 or MMCR2.

Each of PMC’s 1-4 can be configured, using MMCR1,
to count “continuous” events (events that can occur at
any time), or to count “randomly sampled” events (or
“sampled” events) that are associated with the execu-
tion of randomly sampled instructions.

Depending on the events being monitored, the con-
tents of Performance Monitor registers may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

Older versions of Performance Monitor facilities
used different sets of SPR numbers from those
shown in Section 5.4.4. (All 32-bit PowerPC imple-
mentations used a different set.

Programming Note

Programming Note

PMC1
PMC2
PMC3
PMC4
PMC5
PMC6

32 63

PMC5 and PMC6 are defined to facilitate calculat-
ing basic performance metrics such as cycles per
instruction (CPI).

Software can use a PMC to “pace” the collection of
Performance Monitor data. For example, if it is
desired to collect event counts every n cycles, soft-
ware can specify that a particular PMC count
cycles, and set that PMC to 0x8000_0000 - n. The
events of interest would be counted in other PMCs.
The counter negative condition that will occur after
n cycles can, with the appropriate setting of MMCR
bits, cause counter values to become frozen, cause
a Performance Monitor exception to occur, etc.

Programming Note

Programming Note
Chapter 10. Performance Monitor Facility 1307

Version 3.1
Continuous events always cause the counters to count
(unless counters are frozen). These events are speci-
fied for each counter by using encodes F0-FF in the
PMCn Selector fields in MMCR1.

Randomly sampled events can cause the counters to
count only when random sampling has been enabled
by setting MMCRASE=1. The types of instructions that
are sampled are specified in MMCRASM and
MMCRAES. Randomly sampled events are specified for
each counter by using encodes E0-EF in the PMCn
Selector fields in MMCR1.

10.4.3 Threshold Event Counter
The threshold event counter and associated controls
are in MMCRA (see Section 10.4.7). When Perfor-
mance Monitor alerts are enabled (MMCR0PMAE=1),
this counter begins incrementing from value 0 upon
each occurrence of the event specified in the Threshold

Event Counter Event (TECE) field after the event spec-
ified by the Threshold Start Event (TS) field occurs. The
counter stops incrementing when the event specified in
the Threshold End Event (TE) field occurs. The
counter subsequently freezes until the event specified
in the TS field is again recognized, at which point it
restarts incrementing from value 0 as explained above.
If the counter reaches its maximum value or a Perfor-
mance Monitor alert occurs, incrementing stops. After
the Performance Monitor alert occurs, the contents of
the threshold event counter are not altered by the hard-
ware until software sets MMCR0PMAE to 1.

The threshold event counter value is represented as a
3-bit integral power of 4, multiplied by a 7-bit integer.
The exponent is contained in MMCRATECX, and the
multiplier is contained in MMCRATECM. For a given
counter exponent, e, and multiplier, m, the number rep-
resented is as follows:

N = 4e × m

This counter format allows the counter to represent a
range of 0 through approximately 2 million counts with
many fewer bits than would be required by a binary
counter.

To represent a given counter value, hardware uses as e
the smallest 3-bit integer for which a 7-bit integer exists
such that the given counter value can be expressed
using this format.

The value in the counter is the exact number of events
that occur for values from 0 through the maximum mul-
tiplier value (127), within 4 events of the exact value for
values from 128 - 508 (or 127×4), within 16 events of
the exact value for values from 512 - 2032 (or 127×42),
and so on. This represents an event count accuracy of
approximately 3%, which is expected to be sufficient for
most situations in which a count of events between a
start and end event is required.

A typical sequence of operations that enables use
the PMCs is as follows.
 Freeze the counters by setting MMCR0FC=1.
 Set control fields in MMCR0 and MMCR2 that

control counting in various privilege states and
other modes, and that enable counter negative
conditions.

 Initialize the events to be counted by PMCs
1-4 using the PMCn Selector fields in MMCR1.

 Specify the BHRB filtering mode, threshold
event Counter events, and whether or not ran-
dom sampling is enabled in the corresponding
fields in MMCRA.

 Initialize the PMCs to the values desired. For
example, in order to configure a counter to
cause a counter negative condition after n
counts, that counter would be initialized to
232-n.

 Set MMCR0FC to 0 to disable freezing the
counters, and set MMCR0PMAE to 1 if a Per-
formance Monitor alert (and the corresponding
Performance Monitor interrupt) is desired
when an enabled condition or event occurs.
(See Section 10.2 for the definition of enabled
condition or event.)

When the Performance Monitor alert occurs, the
program would typically read the values of the
counters as well as the contents of SIAR, SDAR,
SIER as needed in order to extract the information
that was being monitored.

See Sections 10.4.4 - 10.4.10 for information
regarding MMCRs, SIAR, SDAR, and SIER, and
some additional usage examples.

Programming Note

Because hardware can modify the contents of the
threshold event counter when random sampling is
enabled (MMCRASE=1) and MMCR0PMAE=1 at
any time, any value written to the threshold event
counter under this condition may be immediately
overwritten by hardware.

Software can obtain the number N from the con-
tents of the threshold event counter by shifting the
multiplier left twice times the value contained in the
exponent.

Programming Note

Programming Note
Power ISA™ III1308

Version 3.1

10.4.4 Monitor Mode Control
Register 0
Monitor Mode Control Register 0 (MMCR0) is a 64-bit
register as shown below.

Figure 80. Monitor Mode Control Register 0

MMCR0 is used to control multiple functions of the Per-
formance Monitor. Some fields of MMCR0 are altered
by the hardware when various events occur.

The following notation is used in the definitions below.
“PMCs” refers to PMCs 1 - n and “PMCj” refers to
PMCj, where 2 ≤ j ≤ n. n=4 when MMCR0PMCC=0b11
and n=6 otherwise.

When MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCR0,
only FC, PMAE, PMAO can be accessed. All other bits
are not changed when mtspr is executed in problem
state, and all other bits return 0s when mfspr is exe-
cuted in problem state.

The bit definitions of MMCR0 are as follows.

Bit(s) Description
0:31 Reserved

32 Freeze Counters (FC)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented.

The hardware sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE=1.

33 Freeze Counters in Privileged State (FCS)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRHV PR=0b00.

34 Conditionally Freeze Counters and BHRB
in Problem State (FCP)

If the value of bit 51 (FCPC) is 0, this field has
the following meaning.
0 The PMCs are incremented (if permitted

by other MMCR bits) and entries are writ-
ten into the BHRB (if permitted by the
BHRB Instruction Filtering Mode field in
MMCRA).

1 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRPR=1.

If the value of bit 51 (FCPC) is 1, this field has
the following meaning.
0 The PMCs are not incremented, and

entries are not written into the BHRB, if
MSRHV PR=0b01.

1 The PMCs are not incremented, and
entries are not written into the BHRB, if
MSRHV PR=0b11.

35 Freeze Counters while Mark = 1 (FCM1)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=1.

36 Freeze Counters while Mark = 0 (FCM0)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM=0.

37 Performance Monitor Alert Enable (PMAE)

0 Performance Monitor alerts are disabled
and BHRB entries are not written.

1 Performance Monitor alerts are enabled,
and BHRB entries are written (if enabled
by other bits) until a Performance Monitor
alert occurs, at which time:
 MMCR0PMAE is set to 0
 MMCR0PMAO is set to 1

When using the threshold event counter, software
typically specifies a “threshold counter exceeded n”
event in MMCR1. This enables a PMC to count the
number of times the counter exceeded a specified
threshold value during the time Performance Moni-
tor alerts were enabled.

MMCR0
0 63

When PMCC=0b10 or 0b11, problem state pro-
grams have write access to MMCR0 in order to
enable event-based branch routines to reset the
FC bit after it has been set to 1 as a result of an
enabled condition or event (FCECE=1). During
event processing, the event-based branch handler
would write the desired initial values to the PMCs
and reset the FC bit to 0. PMAO and PMAE can
also be set to their appropriate values during the
same write operation before returning.

Programming Note

Programming Note

In order to freeze counters in problem
state regardless of MSRHV, MMCR0FCPC
must be set to 0 and MMCR0FCP must be
set to 1.

Programming Note
Chapter 10. Performance Monitor Facility 1309

Version 3.1

38 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are incremented (if permitted
by other MMCR bits) until an enabled
condition or event occurs when
MMCR0TRIGGER=0, at which time:
 MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER=1, the FCECE bit is treated
as if it were 0.

39:40 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00 Time Base bit 47 is selected.
01 Time Base bit 51 is selected.
10 Time Base bit 55 is selected.
11 Time Base bit 63 is selected.

41 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

42 BHRB Available (BHRBA)
This field controls whether the BHRB instruc-
tions are available in problem state. If an
attempt is made to execute a BHRB instruc-
tion in problem state when the BHRB instruc-
tions are not available, a Facility Unavailable
interrupt will occur.

0 clrbhrb and mfbhrbe are not available in
problem state.

1 clrbhrb and mfbhrbe are available in
problem state unless they have been
made unavailable by some other register.

43 Performance Monitor Event-Based Branch
Enable (EBE)
This field controls whether Performance Moni-
tor event-based branches and Performance
Monitor event-based exceptions are enabled.

When Performance Monitor event-based
branches and exceptions are disabled, no
Performance Monitor event-based branches
or exceptions occur regardless of the state of
BESCRPME.

Software can set this bit and
MMCR0PMAO to 0 to prevent Performance
Monitor exceptions.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful for software that runs
with MSREE=0.

In earlier versions of the architecture that
lacked the concept of Performance Moni-
tor alerts, this bit was called Performance
Monitor Exception Enable (PMXE).

Programming Note
Time Base transition events can be used
to collect information about activity, as
revealed by event counts in PMCs and by
addresses in SIAR and SDAR, at periodic
intervals.

In multi-threaded systems in which the
Time Base registers are synchronized
among the threads, Time Base transition
events can be used to correlate the Per-
formance Monitor data obtained by the
several threads. For this use, software
must specify the same TBSEL value for all
the threads in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

When PMC3 is configured to count the
occurrence of Time Base transition
events, the events are counted regardless
of the value of MMCR0TBEE. (See Section
10.4.5.) The occurrence of a Time Base
transition causes a Performance Monitor
alert only if MMCR0TBEE=1.

Programming Note

Programming Note
Power ISA™ III1310

Version 3.1
0 Performance Monitor event-based
branches and exceptions are disabled.

1 Performance Monitor event-based
branches and exceptions are enabled.

44:45 PMC Control (PMCC)

This field controls whether or not PMCs 5 - 6
are included in the Performance Monitor, and
the accessibility of groups A and B (see Sec-
tion 10.4.1) of non-privileged SPRs in problem
state as described below.

I

00 PMCs 5 - 6 are included in the Perfor-
mance Monitor.
Group A is read-only, and group B read
access behavior is conditional on
MMCR0PMCCEXT in problem state. If an
attempt is made to write to an SPR in
group A in problem state, a Hypervisor
Emulation Assistance interrupt will occur.

01 PMCs 5 - 6 are included in the Perfor-
mance Monitor.
Group A is not allowed to be read or writ-
ten in problem state, and group B is not
allowed to be read in problem state. If an
attempt is made, in problem state, to read
or write to an SPR in group A, or to read
from an SPR in group B, a Facility
Unavailable interrupt will occur.

10 PMCs 5 - 6 are included in the Perfor-
mance Monitor.
Group A is allowed to be read and written
in problem state, and group B except for
MMCR1 (SPR 782) is allowed to be read
in problem state. If an attempt is made to
read MMCR1 in problem state, a Facility
Unavailable interrupt will occur.

11 PMCs 5 - 6 are not included in the Perfor-
mance Monitor. See Section 10.4.2 for
details.
Group A except for PMCs 5-6 (SPRs
775,776) is allowed to be read and written
in problem state, and group B except for
MMCR1 (SPR 782) is allowed to be read
in problem state.
If an attempt is made, in problem state, to
read or write to PMCs 5-6 (SPRs
775,776), or to read from MMCR1, a
Facility Unavailable interrupt will occur.

When an SPR is made available by the
PMCC field, it is available only if it has not

In order to enable a problem state applica-
tions to use the event-based Branch facil-
ity for Performance Monitor events,
privileged software initializes MMCR1 to
specify the events to be counted, and sets
MMCR2, and MMCRA to specify addi-
tional sampling controls. MMCR0 should
be initialized with PMCC set to 0b10 or
ob11 (to give problem state access to var-
ious Performance Monitor registers),
PMAE and PMAO set to 0s (disabling Per-
formance Monitor alerts), and EBE set to
1 (enabling Performance Monitor
event-based branches and exceptions to
occur). If the Event-Based Branch facility
has not been enabled in the FSCR and
HFSCR, it must be enabled in these regis-
ters as well.

The above operations by the operating
system enable the application to control
Performance Monitor event-based
branching by means of BESCRPME (to
enable or disable Performance Monitor
event-based branching) and MMCR0PMAE
(to enable or disable Performance Moni-
tor alerts).

The PMCC field does not affect the
behavior of the privileged Performance
Monitor registers (SPRs 784-792,
795-798); accesses to these SPRs in
problem state result in Privileged Instruc-
tion type Program interrupts.

The PMCC field also does not affect the
behavior of write operations to group B;
write operations to SPRs in group B are
treated as not supported regardless of
privilege state. See the mtspr instruction
description in Section 5.4.4 for additional
information on accessing SPRs that are
not supported.

Programming Note

Programming Note

When the PCR makes SPRs unavailable
in problem state, they are treated as
undefined, and they are not included in
groups A or B regardless of the value of
PMCC. Thus when the PCR indicates a
version of the architecture prior to V. 2.07
(i.e., PCRv2.06=1), the PMCC field does
not affect SPRs MMCR2 or SIER, which
are newly-defined in V. 2.07; these SPRs
are treated as undefined registers.
Accesses to them in problem state result
in Hypervisor Emulation Assistance inter-
rupts regardless of the value of PMCC,
and Facility Unavailable interrupts do not
occur for them. See Section 2.5 for addi-
tional information.

Programming Note
Chapter 10. Performance Monitor Facility 1311

Version 3.1
been made unavailable by the HFSCR (see
Section 7.2.13).

46:47 Reserved

48 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.
0 Counter negative conditions for PMC1 are

disabled.
1 Counter negative conditions for PMC1 are

enabled.

49 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

50 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits). The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:
 the PMCjs resume incrementing (if

permitted by other MMCR bits)
 MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.

In order to give problem state programs
the same level of access to the Perfor-
mance Monitor registers as was specified
in Power ISA V 2.06, PMCC must be set
to 0b00 (restricting access to read-only)
and the PCR should indicate Version 2.06
(restricting access to the set of Perfor-
mance Monitor SPRs and SPR bits that
were defined in V 2.06).

When PMCC=0b00 and a write operation
to a Performance Monitor register in
group A or B is attempted in problem
state, a Hypervisor Emulation Assistance
interrupt occurs in order to maintain com-
patibility with V 2.06. For other values of
PMCC, write or read operations to group
A and read operations from group B that
are not allowed result in Facility Unavail-
able interrupts. Facility Unavailable inter-
rupts provide the operating system with
more information about the type of disal-
lowed access that was attempted than the
Hypervisor Emulation Assistance interrupt
provides. See Section 7.2.12 for addi-
tional information.

In order to prevent applications from
accessing Performance Monitor regis-
ters, PMCC is set to 0b01.

In order to allow applications limited con-
trol over the Performance Monitor, PMCC
is set to 0b10 or 0b11. These values are
also used when Performance Monitor
event-based branches are enabled.

Programming Note

Programming Note

Uses of TRIGGER include the following.

 Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt. Then freeze all PMCs (and
optionally cause a Performance Mon-
itor interrupt) when a PMCj becomes
negative. The PMCjs then reflect the
events that occurred between the
time PMC1 became negative and the
time a PMCj becomes negative. This
use requires the following MMCR0 bit
settings.
- TRIGGER=1
- PMC1CE=0
- PMCjCE=1
- TBEE=0
- FCECE=1
- PMAE=1 (if a Performance Moni-

tor interrupt is desired)

 Resume counting in the PMCjs when
PMC1 becomes negative, and cause
a Performance Monitor interrupt with-
out freezing any PMCs. The PMCjs
then reflect the events that occurred
between the time PMC1 became
negative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.
- TRIGGER=1
- PMC1CE=1
- TBEE=0
- FCECE=0
- PMAE=1

Programming Note
Power ISA™ III1312

Version 3.1
51 Freeze Counters and BHRB in Problem
State Condition (FCPC)

This bit controls the meaning of bit 34 (FCP).
See the definition of bit 34 for details.

52 Reserved

53 Freeze Counters, sampling and threshold
counting in Ultravisor State (FCU)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented, if MSRS
HV PR=0b110.

54 PMCC Extended (PMCCEXT)

0 If MMCR0PMCC = b00, a SPR in group B
is allowed to be read in problem state.

1 If MMCR0PMCC = b00 and an attempt is
made to read from an SPR in group B, a
Facility Unavailable Interrupt will occur.

55 Control Counters 5 - 6 with Run Latch
(CC5-6RUN)
When MMCR0PMCC = b11, the setting of this
bit has no effect; otherwise it is defined as fol-
lows.

0 PMCs 5 and 6 are incremented if
CTRLRUN=1 (if permitted by other MMCR
bits).

1 PMCs 5 and 6 are incremented regardless
of the value of CTRLRUN (if permitted by
other MMCR bits).

56 Performance Monitor Alert Occurred
(PMAO)

0 A Performance Monitor alert has not
occurred since the last time software set
this bit to 0.

1 A Performance Monitor alert has occurred
since the last time software set this bit to
0.

This bit is set to 1 by the hardware when a
Performance Monitor alert occurs. This bit can
be set to 0 only by the mtspr instruction.

57 Reserved
58 Freeze Counters 1-4 (FC1-4)

0 PMC1 - PMC4 are incremented (if permit-
ted by other MMCR bits).

1 PMC1 - PMC4 are not incremented.

59 Freeze Counters 5-6 (FC5-6)

0 PMC5 - PMC6 are incremented (if permit-
ted by other MMCR bits).

1 PMC5 - PMC6 are not incremented.

60:61 Reserved

62 Freeze Counters 1-4 in Wait State
(FC1-4WAIT)

0 PMCs 1-4 are incremented (if permitted
by other MMCR bits).

1 PMCs 1-4, except for PMCs counting
events that are not controlled by this bit,
are not incremented if CTRLRUN=0.

63 Freeze Counters in Hypervisor State (FCH)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if MSRS
HV PR=0b010.

10.4.5 Monitor Mode Control
Register 1
Monitor Mode Control Register 1 (MMCR1) is a 64-bit
register as shown below.

Figure 81. Monitor Mode Control Register 1

MMCR1 enables software to specify the events that are
counted by the PMCs.

In the following descriptions, events due to randomly
sampled instructions occur only if random sampling is
enabled (MMCRASE=1); all other events occur when-
ever the event specification is met regardless of the
value of MMCRASE.

Various events defined below refer to “threshold A”
through “threshold H”. The table below specifies the
number of threshold event counter events correspond-
ing to each of these thresholds.

In order to enable the FCP bit to freeze
counters in problem state regardless of
MSRHV, MMCR0FCPC must be set to 0.

Software can set this bit to 1 and set
PMAE to 0 to simulate the occurrence of a
Performance Monitor alert.

Software should set this bit to 0 after han-
dling the Performance Monitor alert.

Programming Note

Programming Note

When PMC 1 is counting cycles, it is not
controlled by this bit. See the description
of the F0 event in Section 10.4.5.

MMCR1
0 63

Programming Note
Chapter 10. Performance Monitor Facility 1313

Version 3.1
The bit definitions of MMCR1 are as follows. Imple-
mentation-dependent MMCR1 bits that are not sup-
ported are treated as reserved.

Bit(s) Description
0:31 Problem state access (SPR 782)

Reserved

Privileged access (SPR 782 or 798)
Implementation-dependent

32:39 PMC1 Selector (PMC1SEL)
The value of PMC1SEL specifies the event to
be counted by PMC1 as defined below.
All values in the range of E0 - FF that are not
specified below are reserved.

Hex Event
00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has dispatched a randomly

sampled instruction. (RIS)
E2 The thread has completed a randomly

sampled Branch instruction for which the
branch was taken. (RIS, RBS)

E4 The thread has failed to locate a randomly
sampled instruction in the primary instruc-
tion cache. (RIS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold A (see Table 6).
(RIS, RLS, RBS)

E8 The threshold event counter has
exceeded the number of events corre-
sponding to threshold E (see Table 6).
(RIS, RLS, RBS)

EA The thread filled a block in a data cache
with data that were accessed by a ran-
domly sampled Load instruction. (RIS,
RLS)

EC The threshold event counter has reached
its maximum value. (RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled.

F0 A cycle has occurred. This event is not
controlled by MMCR0FC1-4WAIT.

F2 A cycle has occurred in which the thread
completed one or more instructions.

F4 The thread has completed a Float-
ing-Point, Vector Floating-Point, or VSX
Floating-Point instruction other than a
Load or Store instruction to the point at
which it has reported all exceptions it will
cause.

F6 The thread has failed to locate an ERAT
entry during instruction address transla-
tion.

F8 A cycle has occurred during which all pre-
viously initiated instructions have com-
pleted and no instructions are available for
initiation.

FA A cycle has occurred during which the
RUN bit of the CTRL register for one or
more threads of the multi-threaded pro-
cessor was set to 1.

FC A load type instruction finished. If the
instruction caused more than one refer-
ence, only one will be counted.

FE The thread has completed an instruction.

40:47 PMC2 Selector (PMC2SEL)
The value of PMC2SEL specifies the event to
be counted by PMC2 as defined below.
All values in the range of E0 - FF that are not
specified below are reserved.

Hex Event
00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has obtained the data for a

randomly sampled Load instruction from
storage that did not reside in any cache.
(RIS, RLS)

E2 The thread has failed to locate the data for
a randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

Threshold Events
A 4096
B 32
C 64
D 128
E 256
F 512
G 1024
H 2048

Table 6: Event Counts for thesholds A-H
Power ISA™ III1314

Version 3.1
E4 The thread filled a block in the primary
data cache with data that were accessed
by a randomly sampled Load instruction
and obtained from a location other than
the secondary or tertiary cache. (RIS,
RLS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold B (see Table 6).
(RIS, RLS, RBS)

E6 The threshold event counter has
exceeded the number of events corre-
sponding to threshold F (see Table 6).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled.

F0 The thread has completed a Store instruc-

tion to the point at which it has reported all
the exceptions it will cause.

F2 The thread has dispatched an instruction.
F4 A cycle has occurred during which the

RUN bit of the thread’s CTRL register
contained 1.

F6 The thread has failed to locate an ERAT
entry during data address translation, and
a new ERAT entry corresponding to the
data effective address has been written.

F8 An external interrupt for the thread has
occurred.

FA The thread has completed a Branch
instruction for which the branch was
taken.

FC The thread has failed to locate an instruc-
tion in the primary cache.

FE The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction and obtained from a
location other than the secondary cache.

48:55 PMC3Selector (PMC3SEL)
The value of PMC3SEL specifies the event to
be counted by PMC3 as defined below.
All values in the range of E0 - FF that are not
specified below are reserved.

Hex Event
00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E2 The thread has completed a randomly

sampled Store instruction to the point at
which it has reported all exceptions it will
cause. (RIS,RLS)

E4 The thread has mispredicted either
whether or not the branch would be
taken, or if taken, the target address of a
randomly sampled Branch instruction.
(RIS, RBS)

E6 The thread has failed to locate an ERAT
entry during data address translation for a
randomly sampled instruction. (RIS,RLS)

E8 The threshold event counter has
exceeded the number of events corre-
sponding to threshold C (see Table 6).
(RIS, RLS, RBS)

EA The threshold event counter has
exceeded the number of events corre-
sponding to threshold G (see Table 6).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled.

F0 The thread has attempted to store data in

the primary data cache but no block corre-
sponding to the real address existed.

F2 The thread has dispatched an instruction.
F4 The thread has completed an instruction

when the RUN bit of the CTRL register for
all threads on the multi-threaded proces-
sor contained 1.

F6 The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction.

F8 A Time Base transition event has
occurred for the thread. This event is
counted regardless of whether or not Time
Base transition events are enabled by
MMCR0TBEE.

FA The thread has loaded an instruction from
a higher level cache than the tertiary
cache.

FC The thread was unable to translate a data
virtual address using the TLB.

FE The thread has filled a block in the primary
data cache with data that were accessed
by a Load instruction and obtained from a
location other than the secondary or ter-
tiary cache.

56:63 PMC4 Selector (PMC4SEL)
The value of PMC4SEL specifies the event to
be counted by PMC4 as defined below.
All values in the range of E0 - FF that are not
specified below are reserved.

Hex Event
00 Disable events. (No events occur.)
01-BF Implementation-dependent
C0-DF Reserved

The following events can occur only when ran-
dom sampling is enabled (MMCRASE=1). The
sampling modes corresponding to each event
Chapter 10. Performance Monitor Facility 1315

Version 3.1
are listed in parentheses. (The sampling mode
is specified in MMCRASM.)
E0 The thread has completed a randomly

sampled instruction. (RIS, RLS, RBS)
E4 The thread was unable to translate a data

virtual address using the TLB for a ran-
domly sampled instruction. (RIS,RLS)

E6 The thread has loaded a randomly sam-
pled instruction from a higher level cache
than the tertiary cache. (RIS)

E8 The thread has filled a block in the primary
data cache with data that were accessed
by a randomly sampled Load instruction
and obtained from a location other than
the secondary cache. (RIS, RLS)

EA The threshold event counter has
exceeded the number of events corre-
sponding to threshold D (see Table 6).
(RIS, RLS, RBS)

EC The threshold event counter has
exceeded the number of events corre-
sponding to threshold H (see Table 6).
(RIS, RLS, RBS)

The following events can occur regardless of
whether random sampling is enabled.

F0 The thread has attempted to load data

from the primary data cache but no block
corresponding to the real address existed.

F2 A cycle has occurred during which the
thread has dispatched one or more
instructions.

F4 A cycle has occurred during which the
PURR was incremented when the RUN bit
of the thread’s CTRL register contained 1.

F6 The thread has mispredicted either
whether or not the branch would be
taken, or if taken, the target address of a
Branch instruction.

F8 The thread has discarded prefetched
instructions.

FA The thread has completed an instruction
when the RUN bit of the thread’s CTRL
register contained 1.

FC The thread was unable to translate an
instruction virtual address using the TLB,
and a new TLB entry corresponding to the
instruction virtual address has been writ-
ten.

FE The thread has obtained the data for a
Load instruction from storage that did not
reside in any cache.

10.4.6 Monitor Mode Control
Register 2
Monitor Mode Control Register 2 (MMCR2) is a 64-bit
register that contains 9-bit control fields for controlling
the operation of PMC1 - PMC6 as shown below.

Figure 82. Monitor Mode Control Register 2

When MMCR0PMCC = 0b11, fields C1 - C4 control the
operation of PMC1 - PMC4, respectively and fields C5
and C6 are ignored by the hardware; otherwise, fields
C1 - C6 control the operation of PMC1 - PMC6, respec-
tively. The bit definitions of each Cn field are as fol-
lows, where n = 1,...6.

When MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCR2,
only the FCnP0 bits can be accessed. All other bits are
not changed when mtspr is executed in problem state,
and all other bits return 0s when mfspr is executed in
problem state.

Bit Description
0 Freeze Counter n in Privileged State

(FCnS)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b00.

1 Freeze Counter n in Problem State if
MSRHV=0 (FCnP0)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b01.

In versions of the architecture that precede Version
2.02 the PMC Selector Fields were six bits long,
and were split between MMCR0 and MMCR1.
PMC1-8 were all programmable.

If more programmable PMCs are implemented in
the future, additional MMCRs may be defined to
cover the additional selectors.

C1 C2 C3 C4 C5 C6 Res’d.
0 8 9 17 18 26 27 35 36 44 45 53 54 63

Compatibility Note
Power ISA™ III1316

Version 3.1

2 Freeze Counter n in Problem State if
MSRHV=1 (FCnP1)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b11.

3 Freeze Counter n while Mark = 1 (FCnM1)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if MSRPMM=1.

4 Freeze Counter n while Mark = 0 (FCnM0)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if MSRPMM=0.

5 Freeze Counter n in Wait State (FCnWAIT)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if CTRLRUN=0.

6 Freeze Counter n in Hypervisor State
(FCnH)

0 PMCn is incremented (if permitted by
other MMCR bits).

1 PMCn is not incremented if
MSRHV PR=0b10.

Bits 54:63 of MMCR2 are reserved.

10.4.7 Monitor Mode Control
Register A
Monitor Mode Control Register A (MMCRA) is a 64-bit
register as shown below.

Figure 83. Monitor Mode Control Register A

MMCRA gives privileged programs the ability to control
the sampling process, BHRB filtering, and threshold
events.

When MMCR0PMCC is set to 0b10 or 0b11, providing
problem state programs read/write access to MMCRA,
the Threshold Event Counter Exponent (TECX) and
Threshold Event Counter Multiplier (TECM) fields are
read-only, and all other fields return 0s, when mfspr is
executed in problem state; all fields are not changed
when mtspr is executed in problem state.

The bit definitions of MMCRA are as follows.

Bit(s) Description
0:25 Problem state access (SPR 770)

Reserved

Privileged access (SPR 770 or 786)
Implementation-dependent

26 BHRB Recording Disable (BHRBRD)
This field controls whether BHRB entries are
written when BHRB recording is enabled by
other bits.

0 BHRB entries are written (if enabled by
other bits).

1 BHRB entries are not written.

27:31 Problem state access (SPR 770)
Reserved

Privileged access (SPR 770 or 786)
Implementation-dependent

32:33 BHRB Instruction Filtering Mode (IFM)

This field controls the filter criterion used by
the hardware when recording Branch instruc-
tions into the BHRB. See Section 10.5.
00 All taken Branch instructions are entered

into the BHRB unless prevented by other
filtering fields.

01 Only taken calls are entered into the
BHRB. Includes direct and indirect: bl,
bla, bcl, bcla, bclrl, bcctrl, bctarl.

10 Only taken indirect branches (excluding
calls) are entered into BHRB: bclr, bcctr,
bctar. This translates to all XL-form taken
branches with LK=0.

11 Only taken conditional branches: bc, bca,
bcl, bcla, bclr, bclrl, bcctr, bcctrl, bctar,

Problem state programs need access to
this field in order to enable them to individ-
ually enable counters when analyzing
sections of code. All the other fields will
typically be initialized by the operating
system.

The operating system is expected to set
CTRLRUN to 0 when the thread is in a
“wait state”, i.e., when there is no process
ready to run.

MMCRA
0 63

Programming Note

Programming Note

Read/write access is provided to MMCRA in prob-
lem state (SPR 770) when MMCR0PMCC = 0b10 or
0b11 even though no fields can be modified by
mtspr because future versions of the architecture
may allow various fields of MMCRA to be modified
in problem state.

Programming Note
Chapter 10. Performance Monitor Facility 1317

Version 3.1
bctarl. This translates to all B-form or
XL-form taken branches except those with
the BO field encoded to branch always (
BO=0b1z1zz).

34:36 Threshold Event Counter Exponent
(TECX)

This field species the exponent of the thresh-
old event counter value. See Section 10.4.3
for additional information. The maximum
exponent supported is at least 5.

37 Reserved

38:44 Threshold Event Counter Multiplier (TECM)

This field species the multiplier of the thresh-
old event counter value. See Section 10.4.3
for additional information.

45:47 Threshold Event Counter Event (TECE)

This field specifies the event, if any, that is
counted by the threshold event counter. The
values and meanings are follows.

Value Event
000 Disable counting.
001 A cycle has occurred.
010 An instruction has completed.
011 Reserved

All other values are implementation-depen-
dent.

48:51 Threshold Start Event (TS)

This field specifies the event that causes the
threshold event counter to start counting
occurrences of the event specified in the
Threshold Event Counter Event (TECE) field.
The events only occur if MMCRASE=1 (ran-
dom sampling enabled) and one of the sam-
pling modes listed in parenthesis is in effect.
(The sampling mode that is currently in effect
is specified in MMCRASM.)
0000 Reserved.
0001 The thread has randomly sampled an

instruction while it is being decoded.
(RIS)

0010 The thread has dispatched a randomly
sampled instruction. (RIS)

0011 A randomly sampled instruction has
been sent to a facility (e.g. Branch,
Fixed Point, etc.) (RIS, RLS, RBS)

0100 The thread has completed a randomly
sampled instruction to the point at which
it has reported all exceptions it will
cause. (RIS, RLS, RBS)

0101 The thread has completed a randomly
sampled instruction. (RIS, RLS, RBS)

0110 The thread has failed to locate data for a
randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

0111 The thread has filled a block in the pri-
mary data cache with data that were
accessed by a randomly sampled Load
instruction. (RIS, RLS)

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
1000 - 1111 - Reserved

Privileged access (SPR 770 or 786)
1000 - 1111 - Implementation-dependent

52:55 Threshold End Event (TE)

This field specifies the event that causes the
threshold event counter to stop counting
occurrences of the event specified in the
Threshold Event Counter Event (TECE) field.
The events only occur if MMCRASE=1 (ran-
dom sampling enabled) and one of the sam-
pling modes listed in parenthesis is in effect.
(The sampling mode that is currently in effect
is specified in MMCRASM.)
0000 Reserved
0001 The thread has randomly sampled an

instruction while it is being decoded.
(RIS)

Filtering mode 10 provides additional fil-
tering for unconditional Branch instruc-
tions, and for indirect Branch instructions
only the target address is recorded.

Filtering mode 11 provides additional fil-
tering for instructions that provide a hint or
for which the outcome does not depend
on the value of the Condition Register.

When MMCR0PMCC = 0b10 or 0b11, pro-
viding problem-state programs read-write
access to MMCRA, problem state pro-
grams are able to read only the TECX and
TECM fields (and are not able to write any
fields). The values of these fields are
needed during the processing of an
event-based branch that occurs due to a
counter negative condition for a PMC that
was counting “threshold counter
exceeded n” events (e.g. MMCR1PMC1SEL
= 0xE8). Reading these fields enables the
application to determine the amount by
which the threshold was exceeded. Appli-
cations are not given access to other
fields, and these other fields must initial-
ized by the operating system.

Programming Note

Programming Note
Power ISA™ III1318

Version 3.1
0010 The thread has dispatched a randomly
sampled instruction. (RIS)

0011 A randomly sampled instruction has
been sent to a facility (e.g. Branch,
Fixed Point, etc.) (RIS, RLS, RBS)

0100 The thread has completed a randomly
sampled instruction to the point at which
it has reported all exceptions that it will
cause. (RIS, RLS, RBS)

0101 The thread has completed a randomly
sampled instruction. (RIS, RLS, RBS)

0110 The thread has failed to locate data for a
randomly sampled Load instruction in
the primary data cache. (RIS, RLS)

0111 The thread has filled a block in the pri-
mary data cache with data that were
accessed by a randomly sampled Load
instruction. (RIS, RLS)

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
1000 - 1111 - Reserved

Privileged access (SPR 770 or 786)
1000 - 1111 - Implementation-dependent

56 Reserved

57:59 Eligibility for Random Sampling (ES)
When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom instruction sampling (RIS), the encodings
of this field specify the instructions that are eli-
gible to be sampled as follows.

000 All instructions
001 All Load and Store instructions
010 All probe no-op instructions
011 Reserved

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom Load/Store Facility sampling (RLS), the
encodings of this field specify the instructions
that are eligible to be sampled as follows.
000 Instructions for which the thread has

attempted to load data from the data
cache but no block corresponding to the
real address existed.

001 Reserved
010 Reserved

011 Reserved

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

When random sampling is enabled
(MMCRASE=1) and the SM field indicates ran-
dom Branch Facility sampling (RBS), the
encodings of this field specify the instructions
that are eligible to be sampled as follows.
000 Instructions for which the thread has

either mispredicted whether or not the
branch would be taken, or if taken, the
target address of a Branch instruction.

001 Instructions for which the thread has
mispredicted whether or not the branch
of a Branch instruction would be taken
because the contents of the Condition
Register differed from the predicted con-
tents.

010 Instructions for which the thread has
mispredicted the target address of a
Branch instruction.

011 All Branch instructions for which the
branch was taken.

The definition of the following values depends
on whether the access to MMCRA is in prob-
lem state or in privileged state.

Problem state access (SPR 770)
100 - 111 - Reserved

Privileged access (SPR 770 or 786)
100 - 111 - Implementation-dependent

60 Reserved

61:62 Random Sampling Mode (SM)

00 Random Instruction Sampling (RIS) -
Instructions that meet the criterion speci-
fied in the ES field for random instruction
sampling are eligible to be sampled.

01 Random Load/Store Facility Sampling
(RLS) - Instructions that meet the criterion
specified in the ES field for random
Load/Store Facility sampling are eligible
for sampling.

10 Random Branch Facility Sampling
(RBS) - Instructions that meet the criterion
specified in the ES field for random
Branch Facility sampling are eligible for
sampling.

11 Reserved
Chapter 10. Performance Monitor Facility 1319

Version 3.1
63 Random Sampling Enable (SE)

0 Random sampling is disabled.
1 Random sampling is enabled.

See Section 10.4.2.1 for information about
random sampling.

10.4.8 Sampled Instruction
Address Register
The Sampled Instruction Address Register (SIAR) is a
64-bit register.

Figure 84. Sampled Instruction Address Register

When a Performance Monitor alert occurs because of
an event caused by execution of a randomly sampled
instruction, bits 0:61 of the SIAR contain bits 0:61 of the
effective address of the instruction if SIERSIARV = 1 and
contains an undefined value if SIERSIARV = 0.

When a Performance Monitor alert occurs because of
an event other than an event caused by execution of a
randomly sampled instruction, the SIAR contains the
effective address of an instruction that was being exe-
cuted, possibly out-of-order, at or around the time that
the Performance Monitor alert occurred.

The instruction located at the effective address con-
tained in the SIAR is called the “sampled instruction”.

Except as described in the next paragraph, the con-
tents of SIAR may be altered by the hardware if and
only if MMCR0PMAE=1. Thus after the Performance
Monitor alert occurs, the contents of SIAR are not
altered by the hardware until software sets MMCR0P-

MAE to 1. After software sets MMCR0PMAE to 1, the
contents of SIAR are undefined until the next Perfor-
mance Monitor alert occurs.

If single step or branch tracing is active (MSRTE = 0b10
or 0b01), the contents of SIAR as used by the Perfor-
mance Monitor facility are undefined and may change
even when MMCR0PMAE=0.

10.4.9 Sampled Data Address
Register
The Sampled Data Address Register (SDAR) is a 64-bit
register.

Figure 85. Sampled Data Address Register

When a Performance Monitor alert occurs because of
an event caused by execution of a randomly sampled
instruction, the SDAR contains the effective address of
the storage operand of the instruction if SIERSDARV = 1
and contains an undefined value if SIERSDARV = 0.

When a Performance Monitor alert occurs because of
an event other than an event caused by execution of a
randomly sampled instruction, the SDAR contains the
effective address of the storage operand of an instruc-
tion that was being executed, possibly out-of-order, at
or around the time that the Performance Monitor alert
occurred. This storage operand may or may not be the
storage operand (if any) of the sampled instruction.

The data located at the effective address contained in
the SDAR are called the “sampled data.”

Except as described in the next paragraph, the con-
tents of SDAR may be altered by the hardware if and
only if MMCR0PMAE=1. Thus after the Performance
Monitor alert occurs, the contents of SDAR are not
altered by the hardware until software sets MMCR0P-

MAE to 1. After software sets MMCR0PMAE to 1, the
contents of SDAR are undefined until the next Perfor-
mance Monitor alert occurs.

If single step or branch tracing is active (MSRTE = 0b10
or 0b01), the contents of SDAR as used by the Perfor-
mance Monitor facility are undefined and may change
even when MMCR0PMAE=0.

10.4.10 Sampled Instruction
Event Register
The Sampled Instruction Event Register (SIER) is a
64-bit register.

Figure 86. Sampled Instruction Event Register

When random sampling is enabled and a Performance
Monitor alert occurs because of an event caused by
execution of a randomly sampled instruction, the SIER
contains information about the sampled instruction. The
contents of all fields are valid unless otherwise indi-
cated.

SIAR //
0
63 62

When the Performance Monitor alert occurs,
SIERAMPPR SAMPHV indicates the value of
MSRHV PR that was in effect when the sampled
instruction was being executed. (The contents of
these SIER bits are visible only in privileged state.)

Programming Note

SDAR
0 63

SIER
0 63
Power ISA™ III1320

Version 3.1

When random sampling is disabled or when a Perfor-
mance Monitor alert occurs because of an event that
was not caused by execution of a randomly sampled
instruction, the contents of the SIER are undefined.

The contents of SIER may be altered by the hardware if
and only if MMCR0PMAE=1. Thus after the Perfor-
mance Monitor alert occurs, the contents of SIER are
not altered by the hardware until software sets
MMCR0PMAE to 1. After software sets MMCR0PMAE to
1, the contents of SIER are undefined until the next
Performance Monitor alert occurs.

The bit definitions of the SIER are as follows.

0:37 The definition of these bits depends on
whether the access to SIER is in problem
state or in privileged state.

Problem state access (SPR 768)
Reserved

Privileged access (SPR 768 or 784)
Implementation-dependent

38:40 The definition of these bits depends on
whether the access to SIER is in problem
state or in privileged state.

Problem state access (SPR 768)
Reserved

Privileged access (SPR 768 or 784)
38 Sampled MSRPR (SAMPPR)

Value of MSRPR when the Performance
Monitor alert occurred.

39 Sampled MSRHV (SAMPHV)
Value of MSRHV when the Performance
Monitor alert occurred.

40 Reserved

41 SIAR Valid (SIARV)

Set to 1 when the contents of the SIAR are
valid (i.e., they contain the effective address of
the sampled instruction); otherwise set to 0.

42 SDAR Valid (SDARV)

Set to 1 when the contents of the SDAR are
valid (i.e., they contain the effective address of
the sampled instruction); otherwise set to 0.

43 Threshold Exceeded (TE)

Set to 1 by the hardware if the contents of the
threshold event counter exceeded the maxi-
mum value when the Performance Monitor

alert occurred; otherwise set to 0 by the hard-
ware.

44 Slew Down

Set to 1 by the hardware if the processor clock
was lower than nominal when the Perfor-
mance Monitor alert occurred; otherwise set
to 0 by the hardware.

45 Slew Up

Set to 1 by the hardware if the processor clock
was higher than nominal when the Perfor-
mance Monitor alert occurred; otherwise set
to 0 by the hardware.

46:48 Sampled Instruction Type (SITYPE)
This field indicates the sampled instruction
type. The values and their meanings are as
follows.

000 The hardware is unable to indicate the
sampled instruction type

001 Load Instruction
010 Store instruction
011 Branch Instruction
100 Floating-Point Instruction other than a

Load or Store instruction
101 Fixed-Point Instruction other than a

Load or Store instruction
110 Condition Register or System Call

instruction
111 Reserved

49:51 Sampled Instruction Cache Information
(SICACHE)

This field provides cache-related information
about the sampled instruction.
000 The hardware is unable to provide any

cache-related information for the sam-
pled insttuction.

001 The thread obtained the instruction in
the primary instruction cache.

010 The thread obtained the instruction in
the secondary cache.

011 The thread obtained the instruction in
the tertiary cache.

100 The thread failed to obtain the instruc-
tion in the primary, secondary, or tertiary
cache

101 Reserved
110 Reserved
111 Reserved

52 Sampled Instruction Taken Branch
(SITAKBR)

Set to 1 if the SITYPE field indicates a Branch
instruction and the branch was taken; other-
wise set to 0.

53 Sampled Instruction Mispredicted Branch
(SIMISPRED)

A Performance Monitor alert occurs because of an
event caused by execution of a randomly sampled
instruction if random sampling Is enabled and a
counter negative condition exists in a PMC that
was counting events based on randomly sampled
instructions.

Programming Note
Chapter 10. Performance Monitor Facility 1321

Version 3.1
Set to 1 if the SITYPE field indicates a Branch
instruction and the thread has mispredicted
either whether or not the branch would be
taken, or if taken, the target address; other-
wise set to 0.

54:55 Sampled Branch Instruction Misprediction
Information (SIMISPREDI)

If SIMISPRED=1, this field indicates how the
thread mispredicted the outcome of a Branch
instruction; otherwise this field is set to 0s.
00 The instruction was not a mispredicted

Branch instruction.
01 The thread mispredicted whether or not

the branch would be taken because the
contents of the Condition Register dif-
fered from the predicted contents.

10 The thread mispredicted the target
address of the instruction.

11 Reserved

56 Sampled Instruction Data ERAT Miss (SID-
ERAT)

When the SITYPE field indicates a Load or
Store instruction, this field is set to 1 if the
thread has failed to locate an ERAT entry
during data address translation for the sam-
pled instruction and otherwise is set to 0.

When the SITYPE field does not indicate a
Load or Store instruction, the contents of this
field are undefined.

57:59 Sampled Instruction Data Address Transla-
tion Information (SIDAXLATE)

This field contains information about data
address translation for the sampled instruc-
tion. If multiple data address translations were
performed, the information pertains to the last
translation. The values and their meanings
are as follows.
000 The instruction did not require data

address translation.
001 The thread translated the data virtual

address using the TLB.
010 A PTEG required for data address trans-

lation for the instruction was obtained
from the secondary cache.

011 A PTEG required for data address trans-
lation for the instruction was obtained
from the tertiary cache.

100 A PTEG required for data address trans-
lation for the instruction was obtained
from storage that did not reside in any
cache.

101 A PTEG required for data address trans-
lation for the instruction was obtained
from a cache on a different
multi-threaded processor that resides on
the same chip as the thread.

110 A PTEG required for data address trans-
lation for the instruction was obtained
from a cache on a different chip from the
thread.

111 Reserved

60:62 Sampled Instruction Data Storage Access
Information (SIDSAI)

This field contains information about data stor-
age accesses made by the sampled instruc-
tion. The values and their meanings are as
follows.
000 The instruction did not require data

address translation.
001 The instruction was a Read for which

the thread obtained the referenced data
from the primary data cache.

010 The instruction was a Read for which
the thread obtained the referenced data
from the secondary cache.

011 The instruction was a Read for which
the thread obtained the referenced data-
from the tertiary cache.

100 The instruction was a Read for which
the thread obtained the referenced data-
from storage that did not reside in any
cache.

101 The instruction was a Read for which
the thread obtained the referenced data
from a cache on a different
multi-threaded processor that resides on
the same chip as the thread.

110 The instruction was a Read for which
the thread obtained the referenced data
from a cache on a different chip from the
thread.

111 The instruction was a Store for which
the data were placed into a location
other than the primary data cache.

63 Sampled Instruction Completed (SICMPL)

Set to 1 if the sampled instruction has com-
pleted; otherwise set to 0.

10.4.11 Other Performance Moni-
tor Registers
SIER2, SIER3 and MMCR3 are 64-bit registers. The
contents of these registers are
implementation-dependent.
Power ISA™ III1322

Version 3.1

10.5 Branch History Rolling Buf-
fer
The Branch History Rolling Buffer (BHRB) is described
in Chapter 7 of Book II but only at the level required by
application programmers. Additional aspects of the
BHRB are described here.

In order to enable problem state programs to use the
BHRB, MMCR0BHRBA must be set to 1 to enable exe-
cution of clrbhrb and mfbhrbe instructions in problem
state. Additionally, MMCR0PMCC must be set to 0b10 or
0b11 to allow problem state programs to read and write
the necessary Performance Monitor registers. (See
Section 10.4.4.)

If Performance Monitor event-based branching is
desired, MMCR0EBE must also be set to 1 to enable
Performance Monitor event-based branches.

The BHRB is written by the hardware only in problem
state (MSRPR=1), and if and only if MMCR0PMAE=1
and MMCRABHRBRD=0. After MMCR0PMAE has been
set to 1 and a Performance Monitor alert occurs,
MMCR0PMAE is set to 0 and the BHRB is not altered by
hardware until software sets MMCR0PMAE to 1 again.

When MMCR0PMAE=1, mfbhrbe instructions return 0s
to the target register.

10.5.1 BHRB Filtering
When the BHRB is written by hardware, only those
Branch instructions that meet the filtering criterion
specified in MMCRAIFM and for which the branch was
taken are included.

Filtering restricts the type of Branch instructions that
are entered into the BHRB. The filtering criteria are
defined using the following terminology.

 Call: A Branch instruction with the LK field set to 1.

 Return: A bclr instruction with the BH field set to
0s.

 Jump: Any Branch instruction that is not a call or a
return.

 Conditional Branch: Any Branch instruction other
than an I-Form Branch instruction, or a B- or
XL-Form Branch instruction with the BO field set to
“branch always.” (See Figure 40 in Book I.)

 Unconditional Branch: Any Branch instruction
other than a conditional branch instruction

 Indirect Branch: Any XL-Form Branch instruction

 Direct Branch: Any B- or I-Form Branch instruc-
tion Software is able to prevent various combina-
tions of each of the above types of Branch
instructions from being entered into the BHRB
using the IFM field in MMCRA. (See
Section 10.4.7, “Monitor Mode Control
Register A”.)

Software is able to prevent various combinations of
each of the above types of Branch instructions from
being entered into the BHRB using the IFM field in
MMCRA. (See Section 10.4.7, “Monitor Mode Control
Register A”.)

Applications are expected to access the contents of
SIER2, SIER3 and MMCR3 by means of a privi-
leged service program which will be typically
invoked by a system call and which is capable of
interpreting the contents of these registers, and
returns to the application a generalized summary of
the register contents in a form that is not implemen-
tation-dependent.

The recommended secure configuration of the Per-
formance Monitor Facility is to disable access to
group B Performance Monitor registers in problem
state via setting MMCR0PMCC and MMCR0PMC-

CEXT appropriately, which is congruous to the pro-
gramming model described above.

Enabling Performance Monitor event-based
branching eliminates the need for the problem state
program to poll MMCR0PMAO in order to determine
when a Performance Monitor alert occurs.

mfbhrbe instructions return 0s when MMCR0P-

MAE=1 in order to prevent software from reading
the BHRB while it is being written by hardware.

Programming Note

Programming Note

Programming Note
Chapter 10. Performance Monitor Facility 1323

Version 3.1
Power ISA™ III1324

Version 3.1
Chapter 11. Processor Control

11.1 Overview
The Processor Control facility provides a mechanism
for the ultravisor or hypervisor to send messages to
other threads in the system. Privileged non-hypervisor
programs are able to send messages to other threads
on the same multi-threaded processor; however if the
processor is configured into sub-processors, privileged
non-hypervisor programs can only send messages to
other threads on the same sub-processor.

11.2 Programming Model
Ultravisor-level, hypervisor-level, and privileged-level
messages can be sent. Ultravisor-level messages are
sent using the msgsndu instruction and cause ultravi-
sor-level exceptions when received. Hypervisor-level
messages are sent using the msgsnd instruction and
cause hypervisor-level exceptions when received. Priv-
ileged-level messages are sent using the msgsndp
instruction and cause privileged-level exceptions when
received. For all three instructions, the message type
and destination threads are specified in a General Pur-
pose Register.

If a message is received by a thread, the exception cor-
responding to the message type is generated. When
the exception is generated, the corresponding interrupt
occurs when no higher priority exception exists and the
interrupt is enabled (MSREE=1 for the Directed Privi-
leged Doorbell interrupt, MSREE=1 or MSRHV=0 for the
Directed Hypervisor Doorbell interrupt, and MSREE=1
or MSRS HV PR≠0b110 for the Directed Ultravisor Door-
bell interrupt).

A Directed Privileged Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a mtspr(DPDES) or msgclrp
instruction.

A Directed Hypervisor Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a msgclr instruction.

A Directed Ultravisor Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a msgclru instruction.

If a Doorbell exception of a given privilege is present
and the corresponding interrupt is pended because
MSREE=0, additional Doorbell exceptions of that privi-
lege are ignored until the exception is cleared.

11.3 Processor Control Regis-
ters

11.3.1 Directed Privileged Door-
bell Exception State
The layout of the Directed Privileged Doorbell Excep-
tion State (DPDES) register is shown in Figure 87.

Figure 87. Directed Privileged Doorbell Exception
State Register

The DPDES register is a 64-bit register. For t < T,
where T is the number of threads on the sub-processor
(or on the multi-threaded processor if sub-processors
are not supported), bit 63-t corresponds to the thread
with privileged thread number t.

The value of bit t indicates the presence of a Directed
Privileged Doorbell exception on the thread with privi-
leged thread number t. Bit t is cleared when a Directed
Privileged Doorbell interrupt occurs on thread t.

When the contents of DPDES63-t change from 0 to 1, a
Directed Privileged Doorbell exception will come into
existence on privileged thread number t within a rea-
sonable period of time. When the contents of
DPDES63-t change from 1 to 0, the existing Directed
Privileged Doorbell exception, if any, on privileged
thread number t, will cease to exist within a reasonable
period of time, but not later than the completion of the
next context synchronizing instruction or event on privi-
leged thread number t.

The preceding paragraph applies regardless of whether
the change in the contents of DPDES63-t is the result a
msgsndp or msgclrp instruction or of modification of
the DPDES register caused by execution of an
mtspr (DPDES) instruction.

Bits 0:63-T of the DPDES are reserved.

DPDES
0 63
Chapter 11. Processor Control 1325

Version 3.1

The primary use of the DPDES is to provide the
means for the hypervisor to save a [sub-]proces-
sor's Directed Privileged Doorbell exception state
when the set of programs running on the [sub-]pro-
cessor is swapped out or moved from one
[sub-]processor to another. Since there is no such
need for a similar function for the hypervisor or
ultravisor, there is no similar register for the hyper-
visor or ultravisor. Privileged programs are able to
read the DPDES in order to poll for Directed Privi-
leged Doorbell exceptions when the corresponding
interrupt is disabled (MSREE=1).

Programming Note
Power ISA™ III1326

Version 3.1
11.4 Processor Control Instructions

msgsndu, msgsnd, msgsndp, msgclru, msgclr, and
msgclrp instructions are provided for sending and
clearing messages. msgsync is provided to enable the
thread that is target of a msgsndu or msgsnd instruc-
tion to ensure that stores performed by the mes-
sage-sending thread before it executed msgsndu or

msgsnd have been performed with respect to the tar-
get thread. msgsndp and msgclrp are privileged
instructions; msgsnd, msgclr, and msgsync are
hypervisor privileged instructions; msgsndu and
msgclru are ultravisor privileged instructions.

Message Send Ultravisor X-form

msgsndu RB

msgtype  GPR(RB)32:36
payload  GPR(RB)37:63
if (msgtype = 0x05) then
 send_msg(msgtype, payload)

msgsndu sends a message to other threads in the
system. The message type and destination thread(s)
are specified in RB.

RB

Figure 88. RB Contents for msgsndu

The contents of RB are defined below. Bits 37:63 are
referred to as the message payload.

Field Description
0:31 Reserved

32:36 Type

If Type=0x05, then a Directed Ultravisor Door-
bell message is to be sent to the thread(s)
specified in the Message Payload field.

All other values of the Type field are reserved;
if the instruction is executed with this field set
to a reserved value, the instruction is treated
as a no-op.

37:38 Broadcast (B)

00 The message is sent to the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

01 The message is sent to all threads on the
same sub-processor as the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

10 The message is sent to all threads on the
same multi-threaded processor as the
thread for which PIR44:63 is equal to the
value of the PROCIDTAG field in the mes-
sage payload.

11 Reserved

39:43 Reserved

44:63 PROCIDTAG

This field indicates the recipient thread(s) as
specified in the B field. If this field set to a
value that is not the same as bits PIR44:63 of
any thread in the system, then the instruction
behaves as if it were a no-op.

The actions taken on receipt of a message are defined
in Section 11.2.

This instruction is ultravisor privileged.

Special Registers Altered:
None

31 /// /// RB 78 /
0 6 11 16 21 31

<-Message Payload->
/ / / TYPE B / / / PROCIDTAG

0 32 37 39 44 63

If msgsndu is used to notify the receiver that
updates have been made to storage, a sync
should be placed between the stores and the
msgsndu. See Section 6.9.2.

Programming Note
Chapter 11. Processor Control 1327

Version 3.1
Message Clear Ultravisor X-form

msgclru RB

t  hypervisor thread number of executing thread
if (msgtype = 0x05) then

clear any Directed Ultravisor Doorbell exception
for thread t

msgclru clears a message previously accepted by the
thread executing the msgclru.

Let msgtype be (RB)32: 36, and let t be the hypervisor
thread number of the thread executing the msgclru
instruction.

If msgtype = 0x05, then clear any Directed Ultravisor
Doorbell exception that exists on thread t; otherwise,
this instruction is treated as a no-op.

This instruction is ultravisor privileged.

Special Registers Altered:
None

Message Send X-form

msgsnd RB

msgtype  GPR(RB)32:36
payload  GPR(RB)37:63
if(msgtype = 0x05)then
 send_msg(msgtype, payload)

msgsnd sends a message to other threads in the sys-
tem. The message type and destination thread(s) are
specified in RB.

RB

Figure 89. RB Contents for msgsnd

The contents of RB are defined below. Bits 37:63 are
referred to as the message payload.

Field Description
0:31 Reserved

32:36 Type

If Type=0x05, then a Directed Hypervisor
Doorbell message is to be sent to the
thread(s) specified in the Message Payload
field.

All other values of the Type field are reserved;
if the instruction is executed with this field set
to a reserved value, the instruction is treated
as a no-op.

37:38 Broadcast (B)

00 The message is sent to the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

01 The message is sent to all threads on the
same sub-processor as the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

10 The message is sent to all threads on the
same multi-threaded processor as the
thread for which PIR44:63 is equal to the
value of the PROCIDTAG field in the mes-
sage payload.

11 Reserved

39:43 Reserved

44:63 PROCIDTAG

This field indicates the recipient thread(s) as
specified in the B field. If this field set to a

31 /// /// RB 110 /
0 6 11 16 21 31

msgclru is typically issued only when MSREE=0. If
msgclru is executed when MSREE=1 when a
Directed Ultravisor Doorbell interrupt is about to
occur, the corresponding interrupt may or may not
occur.

Programming Note

31 /// /// RB 206 /
0 6 11 16 21 31

<-Message Payload->
/ / / TYPE B / / / PROCIDTAG

0 32 37 39 44 63
Power ISA™ III1328

Version 3.1
value that is not the same as bits PIR44:63 of
any thread in the system, then the instruction
behaves as if it were a no-op.

The actions taken on receipt of a message are defined
in Section 11.2.

This instruction is hypervisor privileged.

Special Registers Altered:
None

Message Clear X-form

msgclr RB

t  hypervisor thread number of executing thread
if(msgtype = 0x05) then

clear any Directed Hypervisor Doorbell exception
for thread t

msgclr clears a message previously accepted by the
thread executing the msgclr.

Let msgtype be (RB)32: 36, and let t be the hypervisor
thread number of the thread executing the msgclr
instruction.

If msgtype = 0x05, then clear any Directed Hypervisor
Doorbell exception that exists on thread t; otherwise,
this instruction is treated as a no-op.

This instruction is hypervisor privileged.

Special Registers Altered:
None

If msgsnd is used to notify the receiver that
updates have been made to storage, a sync
should be placed between the stores and the
msgsnd. See Section 6.9.2.

Programming Note

31 /// /// RB 238 /
0 6 11 16 21 31

msgclr is typically issued only when MSREE=0. If
msgclr is executed when MSREE=1 when a
Directed Hypervisor Doorbell interrupt is about to
occur, the corresponding interrupt may or may not
occur.

Programming Note
Chapter 11. Processor Control 1329

Version 3.1
 Message Send Privileged X-form

msgsndp RB

msgtype  (RB)32:36
payload  (RB)37:63
t  (RB)57:63
if msgtype = 5 and
 t ≤ maximum privileged thread number
 on processor or sub-processor
 then

 DPDES63-t  1
 send_msg(msgtype, payload, t)

msgsndp sends a message to other threads that are
on the same multi-threaded processor (if the processor
is not in sub-processor mode) or to other threads that
are on the same sub-processor (if the processor is in
sub-processor mode). The message type and destina-
tion thread(s) are specified in RB.

RB

Figure 90. RB Contents for msgsndp

The contents of RB are defined below. Bits 37:63 are
referred to as the message payload.

Bits Description
37:56 Reserved

57:63 TIRTAG

This message is sent to the thread for which
the privileged thread number is equal to con-
tents of the TIRTAG field of the message pay-
load, and one of the following conditions
applies.
- for processors that are not partitioned into

sub-processors, the thread is sent to the
thread on the same multi-threaded pro-
cessor for which the privileged thread
number is equal to the contents of the
TIRTAG field of the message payload.

- for processors that are partitioned into
sub-processors, the thread is sent to the
thread on the same sub-processor for
which the privileged thread number is
equal to the contents of the TIRTAG field
of the message payload.

If msgsndp is executed with TIRTAG set to a
value greater than the highest privileged
thread number on the sub-processor (or on
the multi-threaded processor if sub-proces-

sors are not supported), then this instruction
behaves as a no-op

The actions taken on receipt of a message are defined
in Section 11.2.

This instruction is privileged.

Special Registers Altered:
DPDES

31 /// /// RB 142 /
0 6 11 16 21 31

Message Payload
/ / / TYPE / / / TIRTA

G
0 32 37 39 57 63

If msgsndp is used to notify the receiver that
updates have been made to storage, a lwsync or
sync should be placed between the stores and the
msgsndp. See Section 6.9.2.

Programming Note
Power ISA™ III1330

Version 3.1
Message Clear Privileged X-form

msgclrp RB

msgtype  (RB)32:36
t  privileged thread number of executing thread
IF(msgtype = 0x05)
 then

DPDES63-t  0

msgclrp clears a message previously accepted by the
thread executing the msgclrp.

Let msgtype be (RB)32:36, and let t be the privileged
thread number of the thread executing the msgclrp.

If msgtype = 0x05, then clear any Directed Privileged
Doorbell exception that exists on thread t by setting
DPDES63-t to 0; otherwise, this instruction is treated as
a no-op.

This instruction is privileged.

Special Registers Altered:
DPDES

Message Synchronize X-form

msgsync

In conjunction with the Synchronize and msgsndu or
msgsnd instructions, the msgsync instruction pro-
vides an ordering function for stores that have been
performed with respect to the thread executing the
Synchronize and msgsndu or msgsnd instructions,
relative to data accesses by other threads that are per-
formed after a Directed Ultravisor Doorbell or Directed
Hypervisor Doorbell interrupt has occurred, as
described in the Synchronize instruction description on
p. 1218.

This instruction is hypervisor privileged.

Special Registers Altered:

 None

31 /// /// RB 174 /
0 6 11 16 21 31

msgclrp is typically issued only when MSREE=0. If
msgclrp is executed when MSREE=1 when a
Directed Hypervisor Doorbell interrupt is about to
occur, the corresponding interrupt may or may not
occur.

Programming Note

31 /// /// /// 886 /
0 6 11 16 21 31

When used in conjunction with msgsndu or
msgsnd, Synchronize with L = 0 or 2 is executed
on the thread that will execute the msgsndu or
msgsnd, and msgsync is executed on another
thread -- typically the thread that is the target of the
msgsndu or msgsnd, but possibly any other
thread (partly because the software that services
the Directed Ultravisor Doorbell or Directed Hyper-
visor Doorbell interrupt may ultimately run on a
thread other than that which received the excep-
tion). The Synchronize precedes the msgsndu or
msgsnd; the msgsync is executed after the
Directed Ultravisor Doorbell or Directed Hypervisor
Doorbell interrupt occurs, and precedes all instruc-
tions that need to "see" the values stored by the
stores that are in set A of the memory barrier cre-
ated by the Synchronize; see Section 6.9.2, “Syn-
chronize Instruction”.

Programming Note
Chapter 11. Processor Control 1331

Version 3.1
Power ISA™ III1332

Version 3.1
Chapter 12. Synchronization Requirements for Context
Alterations

Changing the contents of certain System Registers, the
contents of SLB entries, or the contents of other system
resources that control the context in which a program
executes can have the side effect of altering the con-
text in which data addresses and instruction addresses
are interpreted, and in which instructions are executed
and data accesses are performed. For example,
changing MSRIR from 0 to 1 has the side effect of
enabling translation of instruction addresses. These
side effects need not occur in program order, and
therefore may require explicit synchronization by soft-
ware. (Program order is defined in Book II.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses are
performed, is called a context-altering instruction. This
chapter covers all the context-altering instructions. The
software synchronization required for them is shown in
Table 7 (for data access) and Table 8 (for instruction
fetch and execution).

The notation “CSI” in the tables means any context
synchronizing instruction (e.g., sc, isync, or rfid). A
context synchronizing interrupt (i.e., any interrupt
except non-recoverable System Reset or non-recover-
able Machine Check) can be used instead of a context
synchronizing instruction. If it is, phrases like “the syn-
chronizing instruction”, below, should be interpreted as
meaning the instruction at which the interrupt occurs. If
no software synchronization is required before (after) a
context-altering instruction, “the synchronizing instruc-
tion before (after) the context-altering instruction”
should be interpreted as meaning the context-altering
instruction itself.

The synchronizing instruction before the context-alter-
ing instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and
executed in the context that existed before the alter-
ation. The synchronizing instruction after the con-
text-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and
executed in the context established by the alteration.
Instructions after the first synchronizing instruction, up
to and including the second synchronizing instruction,
may be fetched or executed in either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

No software synchronization is required before or after
a context-altering instruction that is also context syn-
chronizing or when altering the MSR in most cases
(see the tables). No software synchronization is
required before most of the other alterations shown in
Table 8, because all instructions preceding the con-
text-altering instruction are fetched and decoded before
the context-altering instruction is executed (the hard-
ware must determine whether any of these preceding
instructions are context synchronizing).

Unless otherwise stated, the material in this chapter
assumes a single-threaded environment.

Sometimes advantage can be taken of the fact that
certain events, such as interrupts, and certain
instructions that occur naturally in the program,
such as the rfid that returns from an interrupt han-
dler, provide the required synchronization.

Because the instructions between the first synchro-
nizing instruction (exclusive) and the second syn-
chronizing instruction (inclusive) may be fetched or
executed in either context, if the context alteration
affects whether the second synchronizing instruc-
tion can be fetched or executed then the context
alteration will not necessarily be synchronized in
the manner the programmer expected. For exam-
ple, if the second synchronizing instruction is in a
different virtual page from the context-altering
instruction, and fetching instructions from this vir-
tual page is prohibited by Virtual Page Class Key
Storage Protection, and the context-altering
instruction is an mtiamr that enables fetching
instructions from this virtual page, it is indetermi-
nate whether the second synchronizing instruction
will be executed or a [Hypervisor] Instruction Stor-
age interrupt will occur instead.

Programming Note
Chapter 12. Synchronization Requirements for Context Alterations 1333

Version 3.1
Instruction or
Event

Required
Before

Required
After

Notes

interrupt none none
rfid none none
hrfid none none
urfid none none
rfscv none none
sc none none
scv none none
Trap none none
mtspr (AMR) CSI CSI 13
mtspr (PIDR) CSI CSI 6,20
mtspr (DAWRn) CSI CSI
mtspr (DAWRXn) CSI CSI
mtspr (HRMOR) CSI CSI 11,17
mtspr (URMOR) CSI CSI 11,17
mtspr (LPCR) CSI CSI 14,19
mtspr (PTCR) ptesync CSI 3
mtspr (SMFCTRL) CSI CSI
mtmsrd (SF) none none
mtmsr[d] (PR) none none
mtmsr[d] (DR) none none
mtspr (LPIDR) CSI CSI 6,14,20
slbie CSI CSI 4
slbieg CSI CSI 4,6
slbia CSI CSI 4
slbmte CSI CSI 4,10
tlbie CSI CSI 4,6
tlbiel CSI ptesync 4
Store(PTE) none {ptesync,

CSI}
5,6

Store(STE) none {ptesync,
CSI}

5,6

Store(PRTE) none {ptesync,
CSI}

5,6

Store(PATE) none {ptesync,
CSI}

5,6,19

Table 7: Synchronization requirements for data access

Instruction or
Event

Required
Before

Required
After

Notes

interrupt none none
rfid none none
hrfid none none
urfid none none
rfscv none none
sc none none
scv none none
Trap none none
mtmsrd (SF) none none 7
mtmsr[d] (EE) none none 1
mtmsr[d] (PR) none none 8
mtmsr[d] (FP) none none
mtmsr[d](FE0,FE1) none none
mtmsr[d] (TE) none none
mtmsr[d] (IR) none none 8
mtmsr[d] (RI) none none
mtspr (DEC) none none 9
mtspr (PIDR) CSI CSI 6
mtspr (IAMR) none CSI
mtspr (CTRL) none none
mtspr (FSCR) none CSI
mtspr (DPDES) none CSI 17
mtspr (CIABR) none CSI
mtspr (HFSCR) none CSI
mtspr (HDEC) none none 9
mtspr (HRMOR) none CSI 8,11,17
mtspr (URMOR) none CSI 8,11,17
mtspr (LPCR) none CSI 12,14,19
mtspr (LPIDR) CSI CSI 6,14,17
mtspr (PCR) none CSI 17
mtspr (PTCR) ptesync CSI 3,17
mtspr (SMFCTRL) none CSI
mtspr (Perf. Mon.) none CSI 15,18
mtspr (BESCR) none CSI 16,18
slbie none CSI 4
slbieg none CSI 4,6
slbia none CSI 4
slbmte none CSI 4,8,10
tlbie none CSI 4,6
tlbiel none CSI 4
Store(PTE) none {ptesync,

CSI}
5,6,8

Store(STE) none {ptesync,
CSI}

5,6,8

Store(PRTE) none {ptesync,
CSI}

5,6,8

Store(PATE) none {ptesync,
CSI}

5,6,8,19

Table 8: Synchronization requirements for instruction
fetch and/or execution
Power ISA™ III1334

Version 3.1
Notes:
1. The effect of changing the EE bit is immediate,

even if the mtmsr[d] instruction is not context syn-
chronizing (i.e., even if L=1).
 If an mtmsr[d] instruction sets the EE bit to 0,

neither an External interrupt, a Decrementer
interrupt nor a Performance Monitor interrupt
occurs after the mtmsr[d] is executed.

 If an mtmsr[d] instruction changes the EE bit
from 0 to 1 when an External, Decrementer,
Performance Monitor or higher priority excep-
tion exists, the corresponding interrupt occurs
immediately after the mtmsr[d] is executed,
and before the next instruction is executed in
the program that set EE to 1.

 If a hypervisor executes the mtmsr[d] instruc-
tion that sets the EE bit to 0, a Hypervisor
Decrementer interrupt does not occur after
mtmsr[d] is executed as long as the thread
remains in hypervisor state.

 If the hypervisor executes an mtmsr[d]
instruction that changes the EE bit from 0 to 1
when a Hypervisor Decrementer or higher pri-
ority exception exists, the corresponding inter-
rupt occurs immediately after the mtmsr[d]
instruction is executed, and before the next
instruction is executed, provided HDICE is 1.

2. Synchronization requirements for this instruction
are implementation-dependent.

3. The PTCR controls all implicit and explicit storage
accesses performed by all threads on the proces-
sor when the thread is not in hypervisor or ultravi-
sor real addressing mode. Modifying the PTCR
requires that the following conditions be achieved
on all threads on the processor.
 the thread is in hypervisor or ultravisor real

addressing mode
 all previous accesses (implicit and explicit) ini-

tiated when the thread was not in hypervisor
or ultravisor real addressing mode have been
performed with respect to all threads

 no subsequent accesses which require trans-
lation have been initiated

4. For data accesses, the context synchronizing
instruction before the slbie, slbieg, slbia, slbmte,
tlbie, or tlbiel instruction ensures that all preced-
ing instructions that access data storage have
completed to a point at which they have reported
all exceptions they will cause.

The context synchronizing instruction after the
slbie, slbieg, slbia, tlbie or tlbiel instruction
ensures that storage accesses associated with
instructions following the context synchronizing
instruction will not use the SLB entry(s), TLB
entry(s), or implementation-specific lookaside
information being invalidated.

(For tlbie and tlbiel, if it is necessary to order stor-
age accesses associated with preceding instruc-
tions, or Reference and Change bit updates
associated with preceding address translations,
with respect to subsequent data accesses, a pte-
sync instruction must also be used, either before
or after the tlbie or tlbiel instruction. These effects
of the ptesync instruction are described in the last
paragraph of Note 5.)

5. The notation “{ptesync,CSI}” denotes an instruc-
tion sequence. Other instructions may be inter-
leaved with this sequence, but these instructions
must appear in the order shown.

No software synchronization is required before the
Store instruction because (a) stores are not per-
formed out-of-order and (b) address translations
associated with instructions preceding the Store
instruction are not performed again after the store
has been performed (see Section 6.5). These
properties ensure that all address translations
associated with instructions preceding the Store
instruction will be performed using the old contents
of the PTE.

The ptesync instruction after the Store instruction
ensures that all searches of the Page Table that
are performed after the ptesync instruction com-
pletes will use the value stored (or a value stored
subsequently). The context synchronizing instruc-
tion after the ptesync instruction ensures that any
address translations associated with instructions
following the context synchronizing instruction that
were performed using the old contents of the PTE
will be discarded, with the result that these
address translations will be performed again and, if
there is no corresponding entry in any TLB, SLB,
page walk cache, cache of Partition or Process
Table entries, or implementation-specific address
translation lookaside information, will use the value
stored (or a value stored subsequently).

The ptesync instruction also ensures that all stor-
age accesses associated with instructions preced-
ing the ptesync instruction, and all Reference and
Change bit updates associated with additional
address translations that were performed, by the
thread executing the ptesync instruction, before
the ptesync instruction is executed, will be per-
formed with respect to any thread or mechanism,
to the extent required by the associated Memory
Coherence Required attributes, before any data
accesses caused by instructions following the pte-
sync instruction are performed with respect to that
thread or mechanism.

6. There are additional software synchronization
requirements for this instruction in multi-threaded
environments (e.g., it may be necessary to invali-
date one or more TLB entries on all threads in the
system and to be able to determine that the invali-
Chapter 12. Synchronization Requirements for Context Alterations 1335

Version 3.1
dations have completed and that all side effects of
the invalidations have taken effect).

Section 6.10 gives examples of using tlbie, Store,
and related instructions to maintain the Page
Table, in both multi-threaded environments and
environments consisting of only a single-threaded
processor.

7. The alteration must not cause an implicit branch in
effective address space. Thus, when changing
MSRSF from 1 to 0, the mtmsrd instruction must
have an effective address that is less than 232 - 4.
Furthermore, when changing MSRSF from 0 to 1,
the mtmsrd instruction must not be at effective
address 232 - 4 (see Section 6.3.2 on page 1177).

8. The alteration must not cause an implicit branch in
real address space. Thus the real address of the
context-altering instruction and of each subse-
quent instruction, up to and including the next con-
text synchronizing instruction, must be
independent of whether the alteration has taken
effect.

9. The elapsed time between the contents of the Dec-
rementer or Hypervisor Decrementer becoming
negative and the signaling of the corresponding
exception is not defined.

10. If an slbmte instruction alters the mapping, or
associated attributes, of a currently mapped ESID,
the slbmte must be preceded by an slbie (or
slbia) instruction that invalidates the existing
translation. This applies even if the corresponding
entry is no longer in the SLB (the translation may
still be in implementation-specific address transla-
tion lookaside information). No software synchro-
nization is needed between the slbie and the
slbmte, regardless of whether the index of the
SLB entry (if any) containing the current translation
is the same as the SLB index specified by the slb-
mte.

In a multi-threaded system, if software locking
is used to help ensure that the requirements
described in Section 6.10 are satisfied, the
isync instruction near the end of the lock
acquisition sequence (see Section B.2.1.1 of
Book II) may naturally provide the context syn-
chronization that is required before the alter-
ation.

Programming Note

If it is desired to set MSRIR to 1 early in an operat-
ing system interrupt handler, advantage can some-
times be taken of the fact that EA0:3 are ignored
when forming the real address when address trans-
lation is disabled and MSRHV = 0. For example, if
address translation resources are set such that
effective address 0xn000_0000_0000_0000 maps
to real address 0x000_0000_0000_0000 when
address translation is enabled, where n is an arbi-
trary 4-bit value, the following code sequence, in
real page 0, can be used early in the interrupt han-
dler.

la rx,target
li ry,0xn000
sldi ry,ry,48
or rx,rx,ry # set high-order

 nibble of target
 addr to 0xn

mtctr rx
bcctr # branch to targ

targ: mfmsr rx
orir x,rx,0x0020
mtmsrd rx # set MSRIR to 1

The mtmsrd does not cause an implicit branch in
real address space because the real address of the
next sequential instruction is independent of
MSRIR. Using mtmsrd, rather than rfid (or similar
context synchronizing instruction that alters the
control flow), may yield better performance on
some implementations.

(Variations on the technique are possible. For
example, the target instruction of the bcctr can be
in arbitrary real page P, where P is a 48-bit value,
provided that effective address 0xn || P || 0x000
maps to real address P || 0x000 when address
translation is enabled.)

Programming Note
Power ISA™ III1336

Version 3.1
No slbie (or slbia) is needed if the slbmte instruc-
tion replaces a valid SLB entry with a mapping of a
different ESID (e.g., to satisfy an SLB miss). How-
ever, the slbie is needed later if and when the
translation that was contained in the replaced SLB
entry is to be invalidated.

11. When the URMOR or the HRMOR is modified,
software must invalidate all implementation-spe-
cific lookaside information used in address transla-
tion that depends on the old contents of the
register (i.e., the contents immediately before the
modification). The slbia instruction can be used to
invalidate all such implementation-specific loo-
kaside information.

12. A context synchronizing instruction or event that is
executed or occurs when LPCRMER = 1 does not
necessarily ensure that the exception effects of
LPCRMER are consistent with the contents of
LPCRMER. See Section 2.2.

13. This line applies regardless of which SPR number
(13 or 29) is used for the AMR.

14. LPIDR when using HPT translation and LPCRHR
must not be altered when MSRDR=1 or MSRIR=1;
if they are, the results are undefined.

15. This line applies to the following Performance
Monitor SPRs: PMC1-6, MMCR0, MMCR1,
MMCR2, and MMCRA.

16. This line applies to all SPR numbers that access
the BESCR (800-803, 806).

17. There are additional software synchronization
requirements when an mtspr instruction modifies
this SPR in a multi-threaded environment. See
Section 2.7.

18. As an alternative to a CSI, the execution of an
rfebb instruction or the occurrence of an
event-based branch is sufficient to provide the
necessary synchronization.

19. When LPCRISL or PATEPS is modified, software
must invalidate all implementation-specific loo-
kaside information used in address translation that
depends on the old contents of the field (i.e., the
contents immediately before the modification). The
slbia instruction can be used to invalidate all such
implementation-specific lookaside information.

20. hwsync (or ptesync) is required between the last
instruction that causes a storage access (e.g.,
Load, Store, dcbz) for which the EA was translated
using the current contents of LPIDR and/or PIDR
and a subsequent mtlpidr and/or mtpidr that
changes the LPID and/or PID value.

For instruction fetch, the prohibitions above
are because of the difficulty of avoiding an
implicit branch relative to the value of enabling
software to avoid using hypervisor real
addressing mode for the operation. For data
access, the prohibitions above are to avoid
errant (wrongly timed and/or for an incorrect
context) speculative translation in support of
hardware data prefetching. (The tables used
for translation are determined by the partition
ID and LPCRHR is used as a shortcut. See
Section 6.7.6 for details.)

The preceding requirement permits designs to
optimize tlbie processing when the LPID and
PID values specified by the tlbie differ from
those in effect on the receiving thread, by
ensuring that all storage accesses that were
caused by preceding instructions and for
which the EA was translated using the current
contents of LPIDR and PIDR have been per-
formed with respect to all threads before the
contents of these registers are changed.

Programming Note

Programming Note
Chapter 12. Synchronization Requirements for Context Alterations 1337

Version 3.1
Power ISA™ III1338

Version 3.1
Power ISA Book I-III Appendices
 Power ISA Book I-III Appendices 1339

Version 3.1
Power ISA™ Appendices1340

Version 3.1
Appendix A. Notes on the Removal of Transactional
Memory from the Architecture

Facilities that are available in problem state are gener-
ally not removed from the architecture because of the
potential impact to the code base. Transactional Mem-
ory is a special case in that the major operating envi-
ronments require software to check the availability of
the facility prior to using it. In addition, the requirement
that every transaction have a failure handler means
that any application that uses TM will continue to func-
tion on a degenerate TM implementation that simply
fails each transaction on the instruction that follows
tbegin.. These two facts enable a minimally-disruptive
ecosystem transition to remove TM, even while con-
tinuing to provide product features such as live partition
migration.

The anticipated system support for the removal of TM
uses a synthetic TM implementation when the thread is
running in “Version 3.0 mode” (PCRv3.0 v2.07 = 0b10) or
in “Version 2.07 mode” (PCRv3.0 v2.07 = 0b11). (See
Section 2.5 of Book III.) For partitions running in “Ver-
sion 3.1 mode” (PCRv3.0 v2.07 = 0b00), hypervisor soft-
ware disables TM by setting HFSCR58 (formerly the
Transactional Memory Facility bit) to zero, and then
ensures that the thread will always be in Non-transac-
tional state by setting MSR29:30 (formerly the Transac-
tion State field) to 0b00 before dispatching the partition.
(The latter requirement will be satisfied naturally pro-
vided that the hypervisor executes treclaim. as part of
context switch, as required in Versions 2.07B and 3.0C
of the architecture.)

Synthetic TM is required in order to provide unre-
stricted live migration of partitions running in PCR
modes that supported TM (PCRv3.0=1). The TM archi-
tecture allowed for access to TM SPRs and execution
of TM instructions even in Non-transactional state,
making pure, interrupt-driven emulation too great a per-
formance risk. Instead, processor implementations
provide default behaviors for TM-related operations.
Each new transaction fails on the instruction after tbe-
gin., going immediately to the failure handler. (Failure
recording for this special case sets the Failure Per-
sistent bit in TEXASR to reduce the likelihood that soft-
ware will pointlessly retry the transaction, and also sets
the Implementation-specific cause bit in TEXASR.)
mtspr and mfspr for TM SPRs have their normal
behavior. Most of the other TM instructions behave as
they would have behaved in Non-transactional state --

i.e., just changing CR0 and FXCC. (See Book II Sec-
tion 5.5 and Book III Section 5.4.4 in Version 3.0C for
background on the TM instructions.) These are the
behaviors that will be seen by most software. Thus,
under synthetic TM, a thread is never productively in
Transactional state, and is in Suspended state (actu-
ally, synthetic Suspended state) only if the program
was migrated, while in Suspended state, from a proces-
sor that implements Version 3.0C or Version 2.07B.
The handling for applications migrated while in Sus-
pended state is beyond the scope of this explanation.
See the implementation’s user manual for details.

The architecture proper portrays TM to be fully
removed. The HFSCR is used to disable TM in Version
3.0 mode because it is impractical to give the appear-
ance that TM has been entirely removed. When the
thread is in problem state or privileged non-hypervisor
state, the deviations from the behavior for complete
removal will be what one would expect if TM was imple-
mented but disabled by the HFSCR. The following sec-
tions describe deviations in Version 3.1 mode with
HFSCR58 set to zero from the behavior if TM was com-
pletely removed. The description is somewhat redun-
dant in describing deviations both from the cause and
effect points of view. It does not discuss deviations that
can happen only in hypervisor state. The hypervisor
and ultravisor must not use any resource formerly allo-
cated to TM other than HFSCR58.

A.1 Attempted Execution of TM
Instructions
Non-privileged TM instructions were encoded using pri-
mary opcode 31 with extended opcodes 654, 686, 718,
750, 782, 814, 846, 878, and 910. Privileged TM
instructions were encoded using primary opcode 31
with extended opcodes 942 and 1006.

An attempt in privileged non-hypervisor state to exe-
cute a TM instruction, or an attempt in problem state to
execute a non-privileged TM instruction, will cause a
Hypervisor Facility Unavailable interrupt with HFSCRIC
= 0x05 indicating that the cause was an attempt to use
a TM resource. Since the architecture portrays the
instructions as reserved, a Hypervisor Emulation Assis-
tance interrupt would be expected. The hypervisor’s
Appendix A. Notes on the Removal of Transactional Memory from the Ar- 1341

Version 3.1
Hypervisor Facility Unavailable interrupt handler must
pass the interrupt to the operating system as if the
instruction had caused an “Illegal Instruction type Pro-
gram Interrupt” just as the hypervisor’s HEAI handler
would.

An attempt in problem state to execute a privileged TM
instruction will cause a Privileged Instruction type Pro-
gram interrupt (because a Privileged Instruction type
Program interrupt has higher priority than a Hypervisor
Facility Unavailable interrupt). Since the architecture
portrays the instructions as reserved, an HEAI would
be expected. There is no way for the hypervisor to
intercept this interrupt to pass it to the operating system
as if the instruction had caused an “Illegal Instruction
type Program interrupt”. Moreover, there is no easy
way for the OS's Program interrupt handler to deter-
mine that the instruction that caused the Privileged
Instruction type Program interrupt is a TM instruction
and then to handle that case as if the instruction were
illegal. In the major operating environments the two
kinds of error are reported to the application program in
a manner that differs only slightly between the two, so
this deviation is deemed acceptable.

A.2 Attempted Access of a TM
SPR
The TM SPRs were SPRs 128, 129, and 130, with 131
as a partial alias to 130 for 32-bit software. (They were
all non-privileged.)

An attempt in problem state, or in privileged non-hyper-
visor state when LPCREVIRT=1, to access a TM SPR
will cause a Hypervisor Facility Unavailable interrupt
with HFSCRIC = 0x05. Since the architecture portrays
the SPRs as “undefined for the implementation” (see
the instruction descriptions for mtspr and mfspr in
Section 5.4.4 of Book III), an HEAI would be expected.
The hypervisor’s Hypervisor Facility Unavailable inter-
rupt handler must pass the interrupt to the operating
system as if the instruction had caused an “Illegal
Instruction type Program interrupt” just as the hypervi-
sor’s HEAI handler would.

An attempt in privileged non-hypervisor state when
LPCREVIRT=0 to access a TM SPR will cause a Hyper-
visor Facility Unavailable interrupt (with HFSCRIC =
0x05). Since the architecture portrays the SPR num-
bers as undefined, the implementation would be
expected to treat the instruction as a no-op. There is
no easy way for the hypervisor to determine the inter-
rupt’s cause in this case. (The interrupt does not set
the HEIR.) The hypervisor’s Hypervisor Facility
Unavailable interrupt handler should pass the interrupt
to the operating system as if the instruction had caused
an “Illegal Instruction type Program interrupt” to avoid
the complexity of determining its cause.

A.3 Occurrence of the Hypervi-
sor Facility Unavailable Interrupt
with HFSCRIC=0x05
A Hypervisor Facility Unavailable interrupt that set
HFSCRIC to 0x05 indicated an attempt to execute a TM
instruction or to access a TM SPR when HFSCR58 is
set to zero. Despite that the architecture no longer
includes Transactional Memory, this variant of the
Hypervisor Facility Unavailable interrrupt will occur in
the circumstances described in the previous two sec-
tions and should be handled as described there.

A.4 Occurrence of the TM Bad
Thing Type Program Interrupt
A Program interrupt that set SRR142 to 1 indicated a
TM Bad Thing type Program interrupt. Despite that the
architecture no longer includes Transactional Memory,
this variant of Program interrupt will occur as the result
of an attempt to set MSR29:30 to a value other than
0b00 via an mtmsrd or a “return from”-type instruction,
including rfebb. These bits had indicated the Transac-
tion State. As they are now reserved, the Program
interrupt would be unanticipated. Because the con-
nection between the BESCR and the MSR bits is espe-
cially hard to make without referencing previous
versions of the architecture, the forms of rfebb that set
MSR29:30 to a value other than 0b00 are specified to be
treated as though the instruction form is invalid. If a
Program interrupt occurs from problem state with
SRR142 = 1, the Program interrupt handler should treat
the offending instruction as an illegal instruction.

A.5 Failure of Performance Mon-
itor Counters to Count
MMCR047 was formerly the Freeze Counters in
Non-Transactional State bit. Despite the architecture’s
portrayal of this bit as reserved, a 1 value in this bit will
prevent Performance Monitor Counters from counting
their assigned events. Software should set MMCR047
to zero.

A.6 Behavior of SPR Bits For-
merly Related to TM
Aside from handling the bits formerly related to TM as
described above, a good general rule is to practice
read-modify-write on the containing SPRs for
TM-related bits, leaving their values unchanged. Soft-
ware is generally permitted to write reserved bits with
the expectation, in privileged state, of reading back the
written value if the bit is implemented in hardware and
Power ISA™ Appendices1342

Version 3.1
with the expectation that the bit will be ignored by hard-
ware. Capriciously setting the relevant bits in SRR1,
the CTR, or directly in the MSR may have the result
discussed in Section A.4. Beyond this, the deviations
take the form of hardware occasionally setting bits,
such as the bits that were formerly MSRTM and BES-
CRTS, to zero.
Appendix A. Notes on the Removal of Transactional Memory from the Ar- 1343

Version 3.1
Power ISA™ Appendices1344

Version 3.1
Appendix B. Illegal Instructions

With the exception of the instruction consisting entirely
of binary 0s, the instructions in this class are available
for future extensions of the Power ISA; that is, some
future version of the Power ISA may define any of
these instructions to perform new functions.

The following primary opcodes are illegal.

5

The following primary opcode is used for an instruction
prefix.

1

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in Appendix D of
Book Appendices. All unused extended opcodes are
illegal.

4, 6, 19, 30, 3156, , 58, 59, 60, 62, 63

The following primary+extended opcodes have unused
expanded opcodes. Their unused expanded opcodes
can be determined from the opcode maps in Appendix
C of Book Appendices. All unused expanded opcodes
are illegal.

primary / extended opcode
 4 / 0b10110_000001
 4 / 0b11110_000001
 4 / 0b11000_000010
60 / 0b01011_01000.
60 / 0b10101_1011..
60 / 0b11101_1011..
63 / 0b11001_00100.
63 / 0b11010_00100.
63 / 0b10010_00111.

An instruction consisting entirely of binary 0s is illegal,
and is guaranteed to be illegal in all future versions of
this architecture.
Appendix B. Illegal Instructions 1345

Version 3.1
Power ISA™ Appendices1346

Version 3.1
Appendix C. Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the Power ISA.

The following types of instruction are included in this
class.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary 0s
(which is an illegal instruction; see Section 1.7.2,
“Illegal Instruction Class” on page 24) and the
extended opcode shown below.

256 Service Processor “Attention”

2. Instructions from the POWER Architecture that
have not been included in the Power ISA.

3. Instructions defined in a previous version of the
Power ISA that have been removed.

4. Implementation-specific instructions used to con-
form to the Power ISA specification.

5. Any other implementation-dependent instructions
that are not defined in the Power ISA.

Appendix C. Reserved Instructions 1347

Version 3.1
Power ISA™ Appendices1348

Version 3.1
Appendix D. Opcode Maps

This appendix contains opcode maps showing the pri-
mary opcodes, extended opcodes, and expanded
opcodes.

Table 9 describes the conventions used in the opcode
maps.

Table 9: Opcode Maps Legend
po book

mnemonic
version privilegeformat

po
primary opcode (decimal format)

xop book
mnemonic

version privilegeformat

xop
extended or expanded opcode image (binary format)

0 instruction bit corresponding to an extended/expanded opcode bit having value of 0
1 instruction bit corresponding to an extended/expanded opcode bit having value of 1
/ reserved instruction bit, must have value of 0, otherwise invalid form
. instruction bit corresponding to an operand or control bit, can have a value of either 0 or 1

book
Book instruction defined

version
ISA version instruction introduced

privilege
P privileged instruction
HV hypervisor-privileged instruction
UV ultravisor-privileged instruction

format
instruction format

Illegal opcode
Opcode having no previous or current assignment, available for future use

08 I
 subfic

P1 D

Defined opcode (primary, extended, or expanded)
Opcode assigned to a defined instruction

17
EXT17

{extended}

Primary opcode having an extended opcode field
Opcode having extended opcode field used to identify multiple instructions

10110 000001
XPND04-1

{expanded}

Extended opcode having an expanded opcode field
Opcode having expanded opcode field used to identify multiple instructions

{reserved}

Reserved opcode (primary, extended, or expanded)
Opcode is not available for future use without careful consideration

1. Opcode corresponds to an instruction defined in a previous version of the architecture that has been subsequently
removed from the architecture. The opcode is treated as an illegal opcode.

2. Or, opcode is reserved for implementation-dependent use.

These opcodes will not be assigned a meaning in the Power ISA except after careful consideration of the effect of such
assignment on existing implementations.

{invalid}

Invalid form opcode
Opcode corresponding to a defined instruction encoding with one or more reserved opcode bits having a value of 1
Appendix D. Opcode Maps 1349

Version 3.1
Table 10: Primary Opcode Map for Opcode Space 0 (32-bit instruction encoding) (bits 0-5)
Primary opcodes of word instructions are mapped to opcode space 0
Primary opcodes of suffixes of M[M](LS|RR)-form prefixed instructions are mapped to opcode space 0
000 001 010 011 100 101 110 111

000
0-00

{reserved}

0-01
PREFIX

{prefixed}

0-02 I
tdi

PPC D

0-03 I
twi

P1 D

0-04
EXT004

{extended}

0-05 0-06
EXT006

{extended}

0-07 I
mulli

P1 D
000

001
0-08 I

subfic
P1 D

0-09

{reserved}

0-10 I
cmpli

P1 D

0-11 I
cmpi

P1 D

0-12 I
addic

P1 D

0-13 I
addic.

P1 D

0-14 I
[p]addi

P1/v3.1 [MLS:]D

0-15 I
addis

P1 D
001

010
0-16 I

bc[l][a]
P1 B

0-17
EXT017

{extended}

0-18 I
b[l][a]

P1 I

0-19
EXT019

{extended}

0-20 I
rlwimi[.]

P1 M

0-21 I
rlwinm[.]

P1 M

0-22
OP sandbox

{reserved/}v3.0C

0-23 I
rlwnm[.]

P1 M
010

011
0-24 I

ori
P1 D

0-25 I
oris

P1 D

0-26 I
xori

P1 D

0-27 I
xoris

P1 D

0-28 I
andi.

P1 D

0-29 I
andis.

P1 D

0-30
EXT030

{extended}

0-31
EXT031

{extended}
011

100
0-32 I

[p]lwz
P1/v3.1 [MLS:]D

0-33 I
lwzu

P1 D

0-34 I
[p]lbz

P1/v3.1 [MLS:]D

0-35 I
lbzu

P1 D

0-36 I
[p]stw

P1/v3.1 [MLS:]D

0-37 I
stwu

P1 D

0-38 I
[p]stb

P1/v3.1 [MLS:]D

0-39 I
stbu

P1 D
100

101
0-40 I

[p]lhz
P1/v3.1 [MLS:]D

0-41 I
lhzu

P1 D

0-42 I
[p]lha

P1/v3.1 [MLS:]D

0-43 I
lhau

P1 D

0-44 I
[p]sth

P1/v3.1 [MLS:]D

0-45 I
sthu

P1 D

0-46 I
lmw

P1 D

0-47 I
stmw

P1 D
101

110
0-48 I

[p]lfs
P1/v3.1 [MLS:]D

0-49 I
lfsu

P1 D

0-50 I
[p]lfd

P1/v3.1 [MLS:]D

0-51 I
lfdu

P1 D

0-52 I
[p]stfs

P1/v3.1 [MLS:]D

0-53 I
stfsu

P1 D

0-54 I
[p]stfd

P1/v3.1 [MLS:]D

0-55 I
stfdu

P1 D
110

111
0-56 I

lq
v2.03 DQ

0-57
EXT057

{extended}

0-58
EXT058

{extended}

0-59
EXT059

{extended}

0-60
EXT060

{extended}

0-61
EXT061

{extended}

0-62
EXT062

{extended}

0-63
EXT063

{extended}
111

000 001 010 011 100 101 110 111

Table 11: Primary Opcode Map for Opcode Space 1 (64-bit instruction encoding) (suffix bits 0-5)
Primary opcodes of suffixes of 8[M](LS|RR)-form prefixed instructions are mapped to opcode space 1
000 001 010 011 100 101 110 111

000
1-00

{reserved}

1-01

{reserved}

1-02 1-03 1-04 1-05

{reserved}

1-06 1-07
000

001
1-08 1-09

{reserved}

1-10 1-11 1-12 1-13 1-14 1-15
001

011
1-16 1-17 1-18 1-19 1-20 1-21 1-22

{reserved}

1-23
011

010
1-24 1-25 1-26 1-27 1-28 1-29 1-30 1-31

010

110
1-32

EXT132
{extended}

1-33
EXT133

{extended}

1-34
EXT134

{extended}

1-35 1-36 1-37 1-38 1-39
110

111
1-40 1-41 I

plwa
v3.1 8LS:D

1-42 I
plxsd

v3.1 8LS:D

1-43 I
plxssp

v3.1 8LS:D

1-44 1-45 1-46 I
pstxsd

v3.1 8LS:D

1-47 I
pstxssp

v3.1 8LS:D
111

101
1-48 1-49 1-50 I

plxv
v3.1 8LS:D

1-50 I
plxv

v3.1 8LS:D

1-52 1-53 1-54 I
pstxv

v3.1 8LS:D

1-54 I
pstxv

v3.1 8LS:D
101

100
1-56 I

plq
v3.1 8LS:D

1-57 I
pld

v3.1 8LS:D

1-58 I
plxvp

v3.1 8LS:D

1-59 1-60 I
pstq

v3.1 8LS:D

1-61 I
pstd

v3.1 8LS:D

1-62 I
pstxvp

v3.1 8LS:D

1-63
100

000 001 010 011 100 101 110 111

Table 12: PREFIX: Opcode Map (64-bit instruction encoding) (prefix bits 6:11)
000 001 010 011 100 101 110 111

000
00 0...

8LS-form
v3.1

000

001 001

010
01 0000

8RR-form
v3.1

010

011 011

100
10 0...

MLS-form
v3.1

100

101 101

110
11 0000

MRR-form
v3.1

110

111
11 1001

MMIRR-form
v3.1

111

000 001 010 011 100 101 110 111
Power ISA™ Appendices1350

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 1 of 8)
000000 000001 000010 000011 000100 000101 000110 000111

00000
00000 000000 I

vaddubm
v2.03 VX

00000 000001 I
vmul10cuq

v3.0 VX

00000 000010 I
vmaxub

v2.03 VX

00000 000100 I
vrlb

v2.03 VX

00000 000101 I
vrlq

v3.1 VX

.0000 000110 I
vcmpequb[.]

v2.03 VC

.0000 000111 I
vcmpneb[.]

v3.0 VC
000

00001
00001 000000 I

vadduhm
v2.03 VX

00001 000001 I
vmul10ecuq

v3.0 VX

00001 000010 I
vmaxuh

v2.03 VX

00001 000100 I
vrlh

v2.03 VX

00001 000101 I
vrlqmi

v3.1 VX

.0001 000110 I
vcmpequh[.]

v2.03 VC

.0001 000111 I
vcmpneh[.]

v3.0 VC
000

00010
00010 000000 I

vadduwm
v2.03 VX

00010 000010 I
vmaxuw

v2.03 VX

00010 000100 I
vrlw

v2.03 VX

00010 000101 I
vrlwmi

v3.0 VX

.0010 000110 I
vcmpequw[.]

v2.03 VC

.0010 000111 I
vcmpnew[.]

v3.0 VC
000

00011
00011 000000 I

vaddudm
v2.07 VX

00011 000010 I
vmaxud

v2.07 VX

00011 000100 I
vrld

v2.07 VX

00011 000101 I
vrldmi

v3.0 VX

.0011 000110 I
vcmpeqfp[.]

v2.03 VC

.0011 000111 I
vcmpequd[.]

v2.07 VC
000

00100
00100 000000 I

vadduqm
v2.07 VX

00100 000001 I
vcmpuq

v3.1 VX

00100 000010 I
vmaxsb

v2.03 VX

00100 000100 I
vslb

v2.03 VX

00100 000101 I
vslq

v3.1 VX

.0100 000111 I
vcmpnezb[.]

v3.0 VC
001

00101
00101 000000 I

vaddcuq
v2.07 VX

00101 000001 I
vcmpsq

v3.1 VX

00101 000010 I
vmaxsh

v2.03 VX

00101 000100 I
vslh

v2.03 VX

00101 000101 I
vrlqnm

v3.1 VX

.0101 000111 I
vcmpnezh[.]

v3.0 VC
001

00110
00110 000000 I

vaddcuw
v2.03 VX

00110 000010 I
vmaxsw

v2.03 VX

00110 000100 I
vslw

v2.03 VX

00110 000101 I
vrlwnm

v3.0 VX

.0110 000111 I
vcmpnezw[.]

v3.0 VC
0011

00111
00111 000010 I

vmaxsd
v2.07 VX

00111 000100 I
vsl

v2.03 VX

00111 000101 I
vrldnm

v3.0 VX

.0111 000110 I
vcmpgefp[.]

v2.03 VC

.0111 000111 I
vcmpequq[.]

v3.1 VC
001

01000
01000 000000 I

vaddubs
v2.03 VX

01000 000001 I
vmul10uq

v3.0 VX

01000 000010 I
vminub

v2.03 VX

01000 000100 I
vsrb

v2.03 VX

01000 000101 I
vsrq

v3.1 VX

.1000 000110 I
vcmpgtub[.]

v2.03 VC
010

01001
01001 000000 I

vadduhs
v2.03 VX

01001 000001 I
vmul10euq

v3.0 VX

01001 000010 I
vminuh

v2.03 VX

01001 000100 I
vsrh

v2.03 VX

.1001 000110 I
vcmpgtuh[.]

v2.03 VC
010

01010
01010 000000 I

vadduws
v2.03 VX

01010 000010 I
vminuw

v2.03 VX

01010 000100 I
vsrw

v2.03 VX

.1010 000110 I
vcmpgtuw[.]

v2.03 VC

.1010 000111 I
vcmpgtuq[.]

v3.1 VC
010

01011
01011 000010 I

vminud
v2.07 VX

01011 000100 I
vsr

v2.03 VX

.1011 000110 I
vcmpgtfp[.]

v2.03 VC

.1011 000111 I
vcmpgtud[.]

v2.07 VC
010

01100
01100 000000 I

vaddsbs
v2.03 VX

01100 000010 I
vminsb

v2.03 VX

01100 000100 I
vsrab

v2.03 VX

01100 000101 I
vsraq

v3.1 VX

.1100 000110 I
vcmpgtsb[.]

v2.03 VC
0110

01101
01101 000000 I

vaddshs
v2.03 VX

01101 000001 I
bcdcpsgn.

v3.0 VX

01101 000010 I
vminsh

v2.03 VX

01101 000100 I
vsrah

v2.03 VX

.1101 000110 I
vcmpgtsh[.]

v2.03 VC
0110

01110
01110 000000 I

vaddsws
v2.03 VX

01110 000010 I
vminsw

v2.03 VX

01110 000100 I
vsraw

v2.03 VX

.1110 000110 I
vcmpgtsw[.]

v2.03 VC

.1110 000111 I
vcmpgtsq[.]

v3.1 VC
0111

01111
01111 000010 I

vminsd
v2.07 VX

01111 000100 I
vsrad

v2.07 VX

.1111 000110 I
vcmpbfp[.]

v2.03 VC

.1111 000111 I
vcmpgtsd[.]

v2.07 VC
0111

10000
10000 000000 I

vsububm
v2.03 VX

1.000 000001 I
bcdadd.

v2.07 VX

10000 000010 I
vavgub

v2.03 VX

10000 000011 I
vabsdub

v3.0 VX

10000 000100 I
vand

v2.03 VX

.0000 000110 I
vcmpequb[.]

v2.03 VC

.0000 000111 I
vcmpneb[.]

v3.0 VC
100

10001
10001 000000 I

vsubuhm
v2.03 VX

1.001 000001 I
bcdsub.

v2.07 VX

10001 000010 I
vavguh

v2.03 VX

10001 000011 I
vabsduh

v3.0 VX

10001 000100 I
vandc

v2.03 VX

.0001 000110 I
vcmpequh[.]

v2.03 VC

.0001 000111 I
vcmpneh[.]

v3.0 VC
100

10010
10010 000000 I

vsubuwm
v2.03 VX

1/010 000001 I
bcdus.

v3.0 VX

10010 000010 I
vavguw

v2.03 VX

10010 000011 I
vabsduw

v3.0 VX

10010 000100 I
vor

v2.03 VX

.0010 000110 I
vcmpequw[.]

v2.03 VC

.0010 000111 I
vcmpnew[.]

v3.0 VC
100

10011
10011 000000 I

vsubudm
v2.07 VX

1.011 000001 I
bcds.

v3.0 VX

10011 000100 I
vxor

v2.03 VX

.0011 000110 I
vcmpeqfp[.]

v2.03 VC

.0011 000111 I
vcmpequd[.]

v2.07 VC
100

10100
10100 000000 I

vsubuqm
v2.07 VX

1.100 000001 I
bcdtrunc.

v3.0 VX

10100 000010 I
vavgsb

v2.03 VX

10100 000100 I
vnor

v2.03 VX

.0100 000111 I
vcmpnezb[.]

v3.0 VC
101

10101
10101 000000 I

vsubcuq
v2.07 VX

1/101 000001 I
bcdutrunc.

v3.0 VX

10101 000010 I
vavgsh

v2.03 VX

10101 000100 I
vorc

v2.07 VX

.0101 000111 I
vcmpnezh[.]

v3.0 VC
101

10110
10110 000000 I

vsubcuw
v2.03 VX

10110 000001
XPND004-1A

{expanded}

10110 000010 I
vavgsw

v2.03 VX

10110 000100 I
vnand

v2.07 VX

.0110 000111 I
vcmpnezw[.]

v3.0 VC
1011

10111
1.111 000001 I

bcdsr.
v3.0 VX

10111 000100 I
vsld

v2.07 VX

.0111 000110 I
vcmpgefp[.]

v2.03 VC

.0111 000111 I
vcmpequq[.]

v3.1 VC
101

11000
11000 000000 I

vsububs
v2.03 VX

1.000 000001 I
bcdadd.

v2.07 VX

11000 000010
XPND004-2

{expanded}

11000 000100 I
mfvscr

v2.03 VX

.1000 000110 I
vcmpgtub[.]

v2.03 VC
1100

11001
11001 000000 I

vsubuhs
v2.03 VX

1.001 000001 I
bcdsub.

v2.07 VX

11001 000010
XPND004-3

{expanded}

11001 000100 I
mtvscr

v2.03 VX

.1001 000110 I
vcmpgtuh[.]

v2.03 VC
1100

11010
11010 000000 I

vsubuws
v2.03 VX

1/010 000001
bcdus.

{invalid}

11010 000010 I
vshasigmaw

v2.07 VX

11010 000100 I
veqv

v2.07 VX

.1010 000110 I
vcmpgtuw[.]

v2.03 VC

.1010 000111 I
vcmpgtuq[.]

v3.1 VC
1101

11011
1.011 000001 I

bcds.
v3.0 VX

11011 000010 I
vshasigmad

v2.07 VX

11011 000100 I
vsrd

v2.07 VX

.1011 000110 I
vcmpgtfp[.]

v2.03 VC

.1011 000111 I
vcmpgtud[.]

v2.07 VC
110

11100
11100 000000 I

vsubsbs
v2.03 VX

1.100 000001 I
bcdtrunc.

v3.0 VX

11100 000010 I
vclzb

v2.07 VX

11100 000011 I
vpopcntb

v2.07 VX

11100 000100 I
vsrv

v3.0 VX

.1100 000110 I
vcmpgtsb[.]

v2.03 VC
1110

11101
11101 000000 I

vsubshs
v2.03 VX

1/101 000001
bcdutrunc.

{invalid}

11101 000010 I
vclzh

v2.07 VX

11101 000011 I
vpopcnth

v2.07 VX

11101 000100 I
vslv

v3.0 VX

.1101 000110 I
vcmpgtsh[.]

v2.03 VC
1110

11110
11110 000000 I

vsubsws
v2.03 VX

11110 000001
XPND004-1B

{expanded}

11110 000010 I
vclzw

v2.07 VX

11110 000011 I
vpopcntw

v2.07 VX

11110 000100 I
vclzdm

v3.1 VX

.1110 000110 I
vcmpgtsw[.]

v2.03 VC

.1110 000111 I
vcmpgtsq[.]

v3.1 VC
1111

11111
1.111 000001 I

bcdsr.
v3.0 VX

11111 000010 I
vclzd

v2.07 VX

11111 000011 I
vpopcntd

v2.07 VX

11111 000100 I
vctzdm

v3.1 VX

.1111 000110 I
vcmpbfp[.]

v2.03 VC

.1111 000111 I
vcmpgtsd[.]

v2.07 VC
1111

000000 000001 000010 000011 000100 000101 000110 000111
Appendix D. Opcode Maps 1351

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

001000 001001 001010 001011 001100 001101 001110 001111

00000
00000 001000 I

vmuloub
v2.03 VX

00000 001010 I
vaddfp

v2.03 VX

00000 001011 I
vdivuq

v3.1 VX

00000 001100 I
vmrghb

v2.03 VX

00000 001101
XPND004-4A

{expanded}

00000 001110 I
vpkuhum

v2.03 VX

00000 001111 I
vinsbvlx

v3.1 VX
0000

00001
00001 001000 I

vmulouh
v2.03 VX

00001 001010 I
vsubfp

v2.03 VX

00001 001100 I
vmrghh

v2.03 VX

00001 001110 I
vpkuwum

v2.03 VX

00001 001111 I
vinshvlx

v3.1 VX
0000

00010
00010 001000 I

vmulouw
v2.07 VX

00010 001001 I
vmuluwm

v2.07 VX

00010 001011 I
vdivuw

v3.1 VX

00010 001100 I
vmrghw

v2.03 VX

 00010 001110 I
vpkuhus

v2.03 VX

00010 001111 I
vinswvlx

v3.1 VX
0001

00011
00011 001000 I

vmuloud
v3.1 VX

00011 001011 I
vdivud

v3.1 VX

00011 001110 I
vpkuwus

v2.03 VX

00011 001111 I
vinsw

v3.1 VX
000

00100
00100 001000 I

vmulosb
v2.03 VX

00100 001010 I
vrefp

v2.03 VX

00100 001011 I
vdivsq

v3.1 VX

00100 001100 I
vmrglb

v2.03 VX

00100 001110 I
vpkshus

v2.03 VX

00100 001111 I
vinsbvrx

v3.1 VX
0010

00101
00101 001000 I

vmulosh
v2.03 VX

00101 001010 I
vrsqrtefp

v2.03 VX

00101 001100 I
vmrglh

v2.03 VX

00101 001110 I
vpkswus

v2.03 VX

00101 001111 I
vinshvrx

v3.1 VX
0010

00110
00110 001000 I

vmulosw
v2.07 VX

00110 001010 I
vexptefp

v2.03 VX

00110 001011 I
vdivsw

v3.1 VX

00110 001100 I
vmrglw

v2.03 VX

00110 001101 I
vclrlb

v3.1 VX

00110 001110 I
vpkshss

v2.03 VX

00110 001111 I
vinswvrx

v3.1 VX
0011

00111
00111 001000 I

vmulosd
v3.1 VX

00111 001001 I
vmulld

v3.1 VX

00111 001010 I
vlogefp

v2.03 VX

00111 001011 I
vdivsd

v3.1 VX

00111 001101 I
vclrrb

v3.1 VX

00111 001110 I
vpkswss

v2.03 VX

00111 001111 I
vinsd

v3.1 VX
0011

01000
01000 001000 I

vmuleub
v2.03 VX

01000 001010 I
vrfin

v2.03 VX

01000 001011 I
vdiveuq

v3.1 VX

01000 001100 I
vspltb

v2.03 VX

01000 001101 I
vextractub

v3.0 VX

01000 001110 I
vupkhsb

v2.03 VX

01000 001111 I
vinsblx

v3.1 VX
0100

01001
01001 001000 I

vmuleuh
v2.03 VX

01001 001010 I
vrfiz

v2.03 VX

01001 001100 I
vsplth

v2.03 VX

01001 001101 I
vextractuh

v3.0 VX

01001 001110 I
vupkhsh

v2.03 VX

01001 001111 I
vinshlx

v3.1 VX
0100

01010
01010 001000 I

vmuleuw
v2.07 VX

01010 001001 I
vmulhuw

v3.1 VX

01010 001010 I
vrfip

v2.03 VX

01010 001011 I
vdiveuw

v3.1 VX

01010 001100 I
vspltw

v2.03 VX

01010 001101 I
vextractuw

v3.0 VX

01010 001110 I
vupklsb

v2.03 VX

01010 001111 I
vinswlx

v3.1 VX
0101

01011
01011 001000 I

vmuleud
v3.1 VX

01011 001001 I
vmulhud

v3.1 VX

01011 001010 I
vrfim

v2.03 VX

01011 001011 I
vdiveud

v3.1 VX

01011 001101 I
vextractd

v3.0 VX

01011 001110 I
vupklsh

v2.03 VX

01011 001111 I
vinsdlx

v3.1 VX
010

01100
01100 001000 I

vmulesb
v2.03 VX

01100 001010 I
vcfux

v2.03 VX

01100 001011 I
vdivesq

v3.1 VX

01100 001100 I
vspltisb

v2.03 VX

01100 001101 I
vinsertb

v3.0 VX

01100 001110 I
vpkpx

v2.03 VX

01100 001111 I
vinsbrx

v3.1 VX
0110

01101
01101 001000 I

vmulesh
v2.03 VX

01101 001010 I
vcfsx

v2.03 VX

01101 001100 I
vspltish

v2.03 VX

01101 001101 I
vinserth

v3.0 VX

01101 001110 I
vupkhpx

v2.03 VX

01101 001111 I
vinshrx

v3.1 VX
0110

01110
01110 001000 I

vmulesw
v2.07 VX

01110 001001 I
vmulhsw

v3.1 VX

01110 001010 I
vctuxs

v2.03 VX

01110 001011 I
vdivesw

v3.1 VX

01110 001100 I
vspltisw

v2.03 VX

01110 001101 I
vinsertw

v3.0 VX

01110 001111 I
vinswrx

v3.1 VX
0111

01111
01111 001000 I

vmulesd
v3.1 VX

01111 001001 I
vmulhsd

v3.1 VX

01111 001010 I
vctsxs

v2.03 VX

01111 001011 I
vdivesd

v3.1 VX

01111 001101 I
vinsertd

v3.0 VX

01111 001110 I
vupklpx

v2.03 VX

01111 001111 I
vinsdrx

v3.1 VX
0111

10000
10000 001000 I

vpmsumb
v2.07 VX

10000 001010 I
vmaxfp

v2.03 VX

10000 001100 I
vslo

v2.03 VX

10000 001101
XPND004-4B

{expanded}
1000

10001
10001 001000 I

vpmsumh
v2.07 VX

10001 001010 I
vminfp

v2.03 VX

10001 001100 I
vsro

v2.03 VX

10001 001110 I
vpkudum

v2.07 VX
1000

10010
10010 001000 I

vpmsumw
v2.07 VX

1001

10011
10011 001000 I

vpmsumd
v2.07 VX

10011 001100 I
vgnb

v3.1 VX

10011 001110 I
vpkudus

v2.07 VX
100

10100
10100 001000 I

vcipher
v2.07 VX

10100 001001 I
vcipherlast

v2.07 VX

10100 001100 I
vgbbd

v2.07 VX
1010

10101
10101 001000 I

vncipher
v2.07 VX

10101 001001 I
vncipherlast

v2.07 VX

10101 001100 I
vbpermq

v2.07 VX

10101 001101 I
vcfuged

v3.1 VX

10101 001110 I
vpksdus

v2.07 VX
1010

10110
10110 001101 I

vpextd
v3.1 VX

1011

10111
10111 001000 I

vsbox
v2.07 VX

10111 001100 I
vbpermd

v3.0 VX

10111 001101 I
vpdepd

v3.1 VX

10111 001110 I
vpksdss

v2.07 VX
1011

11000
11000 001000 I

vsum4ubs
v2.03 VX

11000 001011 I
vmoduq

v3.1 VX

11000 001101 I
vextublx

v3.0 VX
1100

11001
11001 001000 I

vsum4shs
v2.03 VX

11001 001101 I
vextuhlx

v3.0 VX

11001 001110 I
vupkhsw

v2.07 VX
1100

11010
11010 001000 I

vsum2sws
v2.03 VX

11010 001011 I
vmoduw

v3.1 VX

11010 001100 I
vmrgow

v2.07 VX

11010 001101 I
vextuwlx

v3.0 VX
1101

11011
11011 001011 I

vmodud
v3.1 VX

11011 001110 I
vupklsw

v2.07 VX
1101

11100
11100 001000 I

vsum4sbs
v2.03 VX

11100 001011 I
vmodsq

v3.1 VX

11100 001101 I
vextubrx

v3.0 VX
1110

11101
11101 001101 I

vextuhrx
v3.0 VX

1110

11110
11110 001000 I

vsumsws
v2.03 VX

11110 001011 I
vmodsw

v3.1 VX

11110 001100 I
vmrgew

v2.07 VX

11110 001101 I
vextuwrx

v3.0 VX
1111

11111
11111 001011 I

vmodsd
v3.1 VX

1111

001000 001001 001010 001011 001100 001101 001110 001111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 2 of 8)
Power ISA™ Appendices1352

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

010000 010001 010010 010011 010100 010101 010110 010111

00000
..... 01010. I

mtvsrbmi
v3.1 DX

00... 010110 I
vsldbi

v3.1 VN

..... 010111 I
vmsumcud

v3.1 VA
000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

010000 010001 010010 010011 010100 010101 010110 010111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 3 of 8)
Appendix D. Opcode Maps 1353

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

011000 011001 011010 011011 011100 011101 011110 011111

00000
..... 011000 I

vextdubvlx
v3.1 VA

..... 011001 I
vextdubvrx

v3.1 VA

..... 011010 I
vextduhvlx

v3.1 VA

..... 011011 I
vextduhvrx

v3.1 VA

..... 011100 I
vextduwvlx

v3.1 VA

..... 011101 I
vextduwvrx

v3.1 VA

..... 011110 I
vextddvlx

v3.1 VA

..... 011111 I
vextddvrx

v3.1 VA
0000

00001 0000

00010 0001

00011 000

00100 0010

00101 0010

00110 0011

00111 0011

01000 0100

01001 0100

01010 0101

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

011000 011001 011010 011011 011100 011101 011110 011111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 4 of 8)
Power ISA™ Appendices1354

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

100000 100001 100010 100011 100100 100101 100110 100111

00000
..... 100000 I

vmhaddshs
v2.03 VA

..... 100001 I
vmhraddshs

v2.03 VA

..... 100010 I
vmladduhm

v2.03 VA

..... 100011 I
vmsumudm

v3.0B VA

..... 100100 I
vmsumubm

v2.03 VA

..... 100101 I
vmsummbm

v2.03 VA

..... 100110 I
vmsumuhm

v2.03 VA

..... 100111 I
vmsumuhs

v2.03 VA
000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

100000 100001 100010 100011 100100 100101 100110 100111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 5 of 8)
Appendix D. Opcode Maps 1355

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

101000 101001 101010 101011 101100 101101 101110 101111

00000
..... 101000 I

vmsumshm
v2.03 VA

..... 101001 I
vmsumshs

v2.03 VA

..... 101010 I
vsel

v2.03 VA

..... 101011 I
vperm

v2.03 VA

/.... 101100 I
vsldoi

v2.03 VA

..... 101101 I
vpermxor

v2.07 VA

..... 101110 I
vmaddfp

v2.03 VA

..... 101111 I
vnmsubfp

v2.03 VA
0000

00001 0000

00010 0001

00011 000

00100 0010

00101 0010

00110 0011

00111 0011

01000 0100

01001 0100

01010 0101

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000
/.... 101100

vsldoi
{invalid}

1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

101000 101001 101010 101011 101100 101101 101110 101111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 6 of 8)
Power ISA™ Appendices1356

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

110000 110001 110010 110011 110100 110101 110110 110111

00000
..... 110000 I

maddhd
v3.0 VA

..... 110001 I
maddhdu

v3.0 VA

..... 110011 I
maddld

v3.0 VA
000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

110000 110001 110010 110011 110100 110101 110110 110111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 7 of 8)
Appendix D. Opcode Maps 1357

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

111000 111001 111010 111011 111100 111101 111110 111111

00000
..... 111011 I

vpermr
v3.0 VA

..... 111100 I
vaddeuqm

v2.07 VA

..... 111101 I
vaddecuq

v2.07 VA

..... 111110 I
vsubeuqm

v2.07 VA

..... 111111 I
vsubecuq

v2.07 VA
0000

00001 0000

00010 0001

00011 000

00100 0010

00101 0010

00110 0011

00111 0011

01000 0100

01001 0100

01010 0101

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

111000 111001 111010 111011 111100 111101 111110 111111

Table 13: EXT004: Extended Opcode Map for Opcode Space 0, Primary Opcode 4 (bits 21:31) (Sheet 8 of 8)
Power ISA™ Appendices1358

Version 3.1
Table 14: EXT006: Extended Opcode Map for Opcode Space 0, Primary Opcode 6 (bits 28:31)
00 01 10 11

00
0000 I

lxvp
v3.1 DQ

0001 I
stxvp

v3.1 DQ
00

01 01

10 10

11 11

00 01 10 11

Table 15: EXT017: Extended Opcode Map for Opcode Space 0, Primary Opcode 17 (bits 30:31)
00 01 10 11

01 I
scv

v3.0 SC

1/ I
sc

PPC SC

1/
sc

{invalid}

00 01 10 11

Table 16: EXT030: Extended Opcode Map for Opcode Space 0, Primary Opcode 30 (bits 27:30)
00 01 10 11

00
000. I

rldicl[.]
PPC MD

000. I
rldicl[.]

PPC MD

001. I
rldicr[.]

PPC MD

001. I
rldicr[.]

PPC MD
00

01
010. I

rldic[.]
PPC MD

010. I
rldic[.]

PPC MD

011. I
rldimi[.]

PPC MD

011. I
rldimi[.]

PPC MD
01

10
1000 I

rldcl[.]
PPC MDS

1001 I
rldcr[.]

PPC MDS
10

11
1100

{reserved}

1101

{reserved}

1110

{reserved}

1111

{reserved}
11

00 01 10 11

Table 17: EXT057: Extended Opcode Map for Opcode Space 0, Primary Opcode 57 (bits 30:31)
00 01 10 11

00 I
lfdp

v2.05 DS

01

{reserved}

10 I
lxsd

v3.0 DS

11 I
lxssp

v3.0 DS

00 01 10 11

Table 18: EXT058: Extended Opcode Map for Opcode Space 0, Primary Opcode 58 (bits 30:31)
00 01 10 11

00 I
ld

PPC DS

01 I
ldu

PPC DS

10 I
lwa

PPC DS

11

{reserved}

00 01 10 11

Table 19: EXT061: Extended Opcode Map for Opcode Space 0, Primary Opcode 61 (bits 29:31)
00 01 10 11

0
.00 I

stfdp
v2.05 DS

001 I
lxv

v3.0 DQ

.10 I
stxsd

v3.0 DS

.11 I
stxssp

v3.0 DS
0

1
101 I

stxv
v3.0 DQ

1

00 01 10 11

Table 20: EXT062: Extended Opcode Map for Opcode Space 0, Primary Opcode 62 (bits 30:31)
00 01 10 11

00 I
std

PPC DS

01 I
stdu

PPC DS

10 I
stq

v2.03 DS

11

{reserved}

00 01 10 11
Appendix D. Opcode Maps 1359

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

Table 21: EXT019: Extended Opcode Map for Opcode Space 0, Primary Opcode 19 (bits 28:31) (Sheet 1 of 4)
00000 00001 00010 00011 00100 00101 00110 00111

00000
00000 00000 I

mcrf
P1 XL

..... 00010 I
addpcis

v3.0 DX
0000

00001
00001 00001 I

crnor
P1 XL

0000

00010 0001

00011 000

00100
00100 00001 I

crandc
P1 XL

0010

00101 0010

00110
00110 00001 I

crxor
P1 XL

0011

00111
00111 00001 I

crnand
P1 XL

0011

01000
01000 00001 I

crand
P1 XL

0100

01001
01001 00001 I

creqv
P1 XL

0100

01010 0101

01011 010

01100 0110

01101
01101 00001 I

crorc
P1 XL

0110

01110
01110 00001 I

cror
P1 XL

0111

01111 0111

10000 1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

00000 00001 00010 00011 00100 00101 00110 00111
Power ISA™ Appendices1360

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

01000 01001 01010 01011 01100 01101 01110 01111

00000 000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

01000 01001 01010 01011 01100 01101 01110 01111

Table 21: EXT019: Extended Opcode Map for Opcode Space 0, Primary Opcode 19 (bits 28:31) (Sheet 2 of 4)
Appendix D. Opcode Maps 1361

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

10000 10001 10010 10011 10100 10101 10110 10111

00000
00000 10000 I

bclr[l]
P1 XL

00000 10010 III
rfid

PPC XL
0000

00001
00001 10010

{reserved} XL

00001 10011

{reserved}
0000

00010
00010 10010 III

rfscv
v3.0 XL

0001

00011 000

00100
00100 10010 I

rfebb
v2.07 XL

00100 10110 II
isync

P1 XL
0010

00101 0010

00110 0011

00111 0011

01000
01000 10010 III

hrfid
v2.02 XL

0100

01001
01001 10010 III

urfid
v3.0C XL

0100

01010 0101

01011
01011 10010 III

stop
v3.0 XL

010

01100
01100 10010

{reserved}
0110

01101
01101 10010

{reserved}
0110

01110
01110 10010

{reserved}
0111

01111
01111 10010

{reserved}
0111

10000
10000 10000 I

bcctrl
P1 XL

1000

10001
10001 10000 I

bctarl
v2.07 XL

1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

10000 10001 10010 10011 10100 10101 10110 10111

Table 21: EXT019: Extended Opcode Map for Opcode Space 0, Primary Opcode 19 (bits 28:31) (Sheet 3 of 4)
Power ISA™ Appendices1362

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

11000 11001 11010 11011 11100 11101 11110 11111

00000 000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

11000 11001 11010 11011 11100 11101 11110 11111

Table 21: EXT019: Extended Opcode Map for Opcode Space 0, Primary Opcode 19 (bits 28:31) (Sheet 4 of 4)
Appendix D. Opcode Maps 1363

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

Table 22: EXT031: Extended Opcode Map for Opcode Space 0, Primary Opcode 31 (bits 21:30) (Sheet 1 of 4)
00000 00001 00010 00011 00100 00101 00110 00111

00000
00000 00000 I

cmp
P1 X

00000 00100 I
tw

P1 X

00000 00110 I
lvsl

v2.03 X

00000 00111 I
lvebx

v2.03 X
0000

00001
00001 00000 I

cmpl
P1 X

....1 00100

{reserved}

00001 00110 I
lvsr

v2.03 X

00001 00111 I
lvehx

v2.03 X
0000

00010
00010 00000 I

cmpla
PPCAS X

00010 00100 I
td

PPC X

00010 00111 I
lvewx

v2.03 X
0001

00011
....1 00100

{reserved}

00011 00111 I
lvx

v2.03 X
000

00100
00100 00000 I

setb
v3.0 V

00100 00011

{reserved}

00100 00111 I
stvebx

v2.03 X
0010

00101
00101 00011

{reserved}

....1 00100

{reserved}

00101 00111 I
stvehx

v2.03 X
0010

00110
00110 00000 I

cmprb
v3.0 X

00110 00111 I
stvewx

v2.03 X
0011

00111
00111 00000 I

cmpeqb
v3.0 X

....1 00100

{reserved}

00111 00111 I
stvx

v2.03 X
0011

01000
01000 00110

{reserved}
0100

01001
....1 00100

{reserved}
0100

01010
01010 00011

{reserved}
0101

01011
....1 00100

{reserved}

01011 00111 I
lvxl

v2.03 X
010

01100
01100 00000 I

setbc
v3.1 X

0110

01101
01101 00000 I

setbcr
v3.1 X

....1 00100

{reserved}
0110

01110
01110 00000 I

setnbc
v3.1 X

01110 00011

{reserved}

01110 00110

{reserved}
0111

01111
01111 00000 I

setnbcr
v3.1 X

....1 00100

{reserved}

01111 00110

{reserved}

01111 00111 I
stvxl

v2.03 X
0111

10000
10000 00000

{reserved}

1.000 00111

{reserved}
1000

10001
10001 00000 I

mcrxrt
PPCAS X

....1 00100

{reserved}

1.001 00111

{reserved}
1000

10010
10010 00000 I

mcrxrx
v3.0 X

10010 00110 II
lwat

v3.0 X
1001

10011
....1 00100

{reserved}

10011 00110 II
ldat

v3.0 X
100

10100
1.100 00111

{reserved}
1010

10101
....1 00100

{reserved}

1.101 00111

{reserved}
1010

10110
10110 00110 II

stwat
v3.0 X

1011

10111
....1 00100

{reserved}

10111 00110 II
stdat

v3.0 X
1011

11000
11000 00110 II

copy
v3.0 X

1.000 00111

{reserved}
1100

11001
....1 00100

{reserved}

1.001 00111

{reserved}
1100

11010
11010 00110 II

cpabort
v3.0 X

1101

11011
....1 00100

{reserved}
1101

11100
11100 00110 II

paste[.]
v3.0 X

1.100 00111

{reserved}
1110

11101
....1 00100

{reserved}

1.101 00111

{reserved}
1110

11110
11110 00110

{reserved}
1111

11111
....1 00100

{reserved}

11111 00110

{reserved}
1111

00000 00001 00010 00011 00100 00101 00110 00111
Power ISA™ Appendices1364

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

01000 01001 01010 01011 01100 01101 01110 01111

00000
00000 01000 I

subfc[.]
P1 XO

/0000 01001 I
mulhdu[.]

PPC XO

00000 01010 I
addc[.]

P1 XO

/0000 01011 I
mulhwu[.]

PPC XO

00000 01100 I
lxsiwzx

v2.07 X

00000 01101 I
lxvrbx

v3.1 X

..... 01111 I
isel

v2.03 A
000

00001
00001 01000 I

subf[.]
PPC XO

00001 01101 I
lxvrhx

v3.1 X
000

00010
/0010 01001 I

mulhd[.]
PPC XO

/0010 01010 I
addg6s

v2.06 XO

/0010 01011 I
mulhw[.]

PPC XO

00010 01100 I
lxsiwax

v2.07 X

00010 01101 I
lxvrwx

v3.1 X

00010 01110 III
msgsndu

v3.0C X
000

00011
00011 01000 I

neg[.]
P1 XO

00011 01011

{reserved}

00011 01101 I
lxvrdx

v3.1 X

00011 01110 III
msgclru

v3.0C X
000

00100
00100 01000 I

subfe[.]
P1 XO

00100 01010 I
adde[.]

P1 XO

00100 01100 I
stxsiwx

v2.07 X

00100 01101 I
stxvrbx

v3.1 X

00100 01110 III
msgsndp

v2.07 X
001

00101
..101 01010 I

addex
v3.0B Z23

00101 01101 I
stxvrhx

v3.1 X

00101 01110 III
msgclrp

v2.07 X
001

00110
00110 01000 I

subfze[.]
P1 XO

00110 01010 I
addze[.]

P1 XO

00110 01101 I
stxvrwx

v3.1 X

00110 01110 III
msgsnd

v2.07 X
0011

00111
00111 01000 I

subfme[.]
P1 XO

00111 01001 I
mulld[.]

PPC XO

00111 01010 I
addme[.]

P1 XO

00111 01011 I
mullw[.]

P1 XO

00111 01101 I
stxvrdx

v3.1 X

00111 01110 III
msgclr

v2.07 X
001

01000
01000 01000

{reserved}

01000 01001 I
modud

v3.0 X

01000 01010 I
add[.]

P1 XO

01000 01011 I
moduw

v3.0 X

0100/ 01100 I
lxvx

v3.0 X

01000 01101 I
lxvl

v3.0 X
010

01001
0100/ 01100

lxvx
{invalid}

01001 01101 I
lxvll

v3.0 X

01001 01110 I
mfbhrbe

v2.07 XFX
010

01010
01010 01011

{reserved}

01010 01100 I
lxvdsx

v2.06 X

01010 01101 I
lxvpx

v3.1 X
010

01011
01011 01000

{reserved}

01011 01011

{reserved}

01011 01100 I
lxvwsx

v3.0 X
010

01100
01100 01001 I

divdeu[.]
v2.06 XO

01100 01011 I
divweu[.]

v2.06 XO

01100 01100 I
stxvx

v3.0 X

01100 01101 I
stxvl

v3.0 X
0110

01101
01101 01001 I

divde[.]
v2.06 XO

..101 01010 I
addex

v3.0B Z23

01101 01011 I
divwe[.]

v2.06 XO

01101 01101 I
stxvll

v3.0 X

01101 01110 I
clrbhrb

v2.07 X
0110

01110
01110 01001 I

divdu[.]
PPC XO

01110 01011 I
divwu[.]

PPC XO

01110 01101 I
stxvpx

v3.1 X
0111

01111
01111 01000

{reserved}

01111 01001 I
divd[.]

PPC XO

01111 01011 I
divw[.]

PPC XO
0111

10000
10000 01000 I

subfco[.]
P1 XO

/0000 01001
mulhdu[.]

{invalid}

10000 01010 I
addco[.]

P1 XO

/0000 01011
mulhwu[.]

{invalid}

10000 01100 I
lxsspx

v2.07 X
100

10001
10001 01000 I

subfo[.]
PPC XO

100

10010
/0010 01001

mulhd[.]
{invalid}

/0010 01010
addg6s

{invalid}

/0010 01011
mulhw[.]

{invalid}

10010 01100 I
lxsdx

v2.06 X
100

10011
10011 01000 I

nego[.]
P1 XO

10011 01011

{reserved}
100

10100
10100 01000 I

subfeo[.]
P1 XO

10100 01010 I
addeo[.]

P1 XO

10100 01100 I
stxsspx

v2.07 X

10100 01110 II
tbegin.

v2.07 {reserved} X
101

10101
..101 01010 I

addex
v3.0B Z23

10101 01110 II
tend.

v2.07 {reserved} X
101

10110
10110 01000 I

subfzeo[.]
P1 XO

10110 01010 I
addzeo[.]

P1 XO

10110 01100 I
stxsdx

v2.06 X

10110 01110 II
tcheck

v2.07 {reserved} X
1011

10111
10111 01000 I

subfmeo[.]
P1 XO

10111 01001 I
mulldo[.]

PPC XO

10111 01010 I
addmeo[.]

P1 XO

10111 01011 I
mullwo[.]

P1 XO

10111 01110 II
tsr.

v2.07 {reserved} X
101

11000
11000 01000

{reserved}

11000 01001 I
modsd

v3.0 X

11000 01010 I
addo[.]

P1 XO

11000 01011 I
modsw

v3.0 X

11000 01100 I
lxvw4x

v2.06 X

11000 01101 I
lxsibzx

v3.0 X

11000 01110 II
tabortwc.

v2.07 {reserved} X
1100

11001
11001 01100 I

lxvh8x
v3.0 X

11001 01101 I
lxsihzx

v3.0 X

11001 01110 II
tabortdc.

v2.07 {reserved} X
1100

11010
11010 01011

{reserved}

11010 01100 I
lxvd2x

v2.06 X

11010 01110 II
tabortwci.

v2.07 {reserved} X
1101

11011
11011 01000

{reserved}

11011 01011

{reserved}

11011 01100 I
lxvb16x

v3.0 X

11011 01110 II
tabortdci.

v2.07 {reserved} X
110

11100
11100 01001 I

divdeuo[.]
v2.06 XO

11100 01011 I
divweuo[.]

v2.06 XO

11100 01100 I
stxvw4x

v2.06 X

11100 01101 I
stxsibx

v3.0 X

11100 01110 II
tabort.

v2.07 {reserved} X
1110

11101
11101 01001 I

divdeo[.]
v2.06 XO

..101 01010 I
addex

v3.0B Z23

11101 01011 I
divweo[.]

v2.06 XO

11101 01100 I
stxvh8x

v3.0 X

11101 01101 I
stxsihx

v3.0 X

11101 01110 III
treclaim.

v2.07 {reserved} X
1110

11110
11110 01001 I

divduo[.]
PPC XO

11110 01011 I
divwuo[.]

PPC XO

11110 01100 I
stxvd2x

v2.06 X
1111

11111
11111 01000

{reserved}

11111 01001 I
divdo[.]

PPC XO

11111 01011 I
divwo[.]

PPC XO

11111 01100 I
stxvb16x

v3.0 X

11111 01110 III
trechkpt.

v2.07 {reserved} X
1111

01000 01001 01010 01011 01100 01101 01110 01111

Table 22: EXT031: Extended Opcode Map for Opcode Space 0, Primary Opcode 31 (bits 21:30) (Sheet 2 of 4)
Appendix D. Opcode Maps 1365

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

10000 10001 10010 10011 10100 10101 10110 10111

00000
00000 10011 I

mfcr/mfocrf
P1/v2.01 XFX

00000 10100 II
lwarx

PPC X

00000 10101 I
ldx

PPC X

00000 10110 II
icbt

v2.07 X

00000 10111 I
lwzx

P1 X
0000

00001
00001 10011 I

mfvsrd
v2.07 X

00001 10100 II
lbarx

v2.06 X

00001 10101 I
ldux

PPC X

00001 10110 II
dcbst

PPC X

00001 10111 I
lwzux

P1 X
0000

00010
00010 10010

{reserved}

00010 10011 III
mfmsr

P1 X

00010 10100 II
ldarx

PPC X

00010 10110 II
dcbf

PPC X

00010 10111 I
lbzx

P1 X
0001

00011
00011 10010

{reserved}

00011 10011 I
mfvsrwz

v2.07 X

00011 10100 II
lharx

v2.06 X

00011 10110

{reserved}

00011 10111 I
lbzux

P1 X
000

00100
00100 10000 I

mtcrf/mtocrf
P1/v2.01 XFX

00100 10010 III
mtmsr

P1 X

00100 10011

{reserved}

00100 10101 I
stdx

PPC X

00100 10110 II
stwcx.

PPC X

00100 10111 I
stwx

P1 X
0010

00101
00101 10001

XPND031
{expanded}

00101 10010 III
mtmsrd

PPC X

00101 10011 I
mtvsrd

v2.07 X

00101 10101 I
stdux

PPC X

00101 10110 I
stqcx.

v2.07 X

00101 10111 I
stwux

P1 X
0010

00110
00110 10010 III

{reserved}

00110 10011 I
mtvsrwa

v2.07 X

00110 10110 II
stdcx.

PPC X

00110 10111 I
stbx

P1 X
0011

00111
00111 10010 III

{reserved}

00111 10011 I
mtvsrwz

v2.07 X

00111 10110 II
dcbtst

PPC X

00111 10111 I
stbux

P1 X
0011

01000
01000 10010 III

tlbiel
v2.03 X

01000 10100 I
lqarx

v2.07 X

01000 10101

{reserved}

01000 10110 II
dcbt

PPC X

01000 10111 I
lhzx

P1 X
0100

01001
01001 10010 III

tlbie
P1 X

01001 10011 I
mfvsrld

v3.0 X

01001 10100

{reserved}

01001 10110

{reserved}

01001 10111 I
lhzux

P1 X
0100

01010
01010 10010 III

slbsync
v3.0 X

01010 10011 X
mfspr

P1 XFX

01010 10101 I
lwax

PPC X

01010 10110

{reserved}

01010 10111 I
lhax

P1 X
0101

01011
01011 10010

{reserved}

01011 10011 II
mftb

PPC XFX

01011 10101 I
lwaux

PPC X

01011 10110

{reserved}

01011 10111 I
lhaux

P1 X
010

01100
01100 10010 III

slbmte
v2.00 X

01100 10011 I
mtvsrws

v3.0 X

01100 10111 I
sthx

P1 X
0110

01101
01101 10010 III

slbie
PPC X

01101 10011 I
mtvsrdd

v3.0 X

01101 10110

{reserved}

01101 10111 I
sthux

P1 X
0110

01110
01110 10010 III

slbieg
v3.0 X

01110 10011 X
mtspr

P1 XFX

01110 10110

{reserved}
0111

01111
01111 10010 III

slbia
PPC X

01111 10011

{reserved}

01111 10110

{reserved}

01111 10111 III
spom

v3.1 X
0111

10000
10000 10010

{reserved-nop}

10000 10011

{reserved}

10000 10100 I
ldbrx

v2.06 X

10000 10101 I
lswx

P1 X

10000 10110 I
lwbrx

P1 X

10000 10111 I
lfsx

P1 X
1000

10001
10001 10010

{reserved-nop}

10001 10101

{reserved}

10001 10110 III
tlbsync

PPC X

10001 10111 I
lfsux

P1 X
1000

10010
10010 10010

{reserved-nop}

10010 10011

{reserved}

10010 10101 I
lswi

P1 X

10010 10110 II
sync

P1 X

10010 10111 I
lfdx

P1 X
1001

10011
10011 10010

{reserved-nop}

10011 10011

{reserved}

10011 10101

{reserved}

10011 10110

{reserved}

10011 10111 I
lfdux

P1 X
100

10100
10100 10010

{reserved-nop}

10100 10011

{reserved}

10100 10100 I
stdbrx

v2.06 X

10100 10101 I
stswx

P1 X

10100 10110 I
stwbrx

P1 X

10100 10111 I
stfsx

P1 X
1010

10101
10101 10010

{reserved-nop}

10101 10101

{reserved}

10101 10110 II
stbcx.

v2.06 X

10101 10111 I
stfsux

P1 X
1010

10110
10110 10010

{reserved-nop}

10110 10101 I
stswi

P1 X

10110 10110 II
sthcx.

v2.06 X

10110 10111 I
stfdx

P1 X
1011

10111
10111 10010

{reserved-nop}

10111 10011 I
darn

v3.0 X

10111 10101

{reserved}

10111 10110

{reserved}

10111 10111 I
stfdux

P1 X
1011

11000
11000 10101 III

lwzcix
v2.05 X

11000 10110 I
lhbrx

P1 X

11000 10111 I
lfdpx

v2.05 X
1100

11001
11001 10010

{reserved}

11001 10101 III
lhzcix

v2.05 X

11001 10110

{reserved}

11001 10111

{reserved}
1100

11010
11010 10010 III

slbiag
v3.0B X

11010 10011 III
slbmfev

v2.00 X

11010 10101 III
lbzcix

v2.05 X

11010 10110 II
eieio

PPC X

11010 10111 I
lfiwax

v2.05 X
1101

11011
11011 10101 III

ldcix
v2.05 X

11011 10110 III
msgsync

v3.0 X

11011 10111 I
lfiwzx

v2.06 X
1101

11100
11100 10010

{reserved}

11100 10011 III
slbmfee

v2.00 X

11100 10101 III
stwcix

v2.05 X

11100 10110 I
sthbrx

P1 X

11100 10111 I
stfdpx

v2.05 X
1110

11101
11101 10010

{reserved}

11101 10101 III
sthcix

v2.05 X

11101 10111

{reserved}
1110

11110
11110 10010

{reserved}

11110 10011 III
slbfee.

v2.05 X

11110 10101 III
stbcix

v2.05 X

11110 10110 II
icbi

PPC X

11110 10111 I
stfiwx

PPC X
1111

11111
11111 10010

{reserved}

11111 10101 III
stdcix

v2.05 X

11111 10110 II
dcbz

P1 X

11111 10111 III
lqm

v3.1 X
1111

10000 10001 10010 10011 10100 10101 10110 10111

Table 22: EXT031: Extended Opcode Map for Opcode Space 0, Primary Opcode 31 (bits 21:30) (Sheet 3 of 4)
Power ISA™ Appendices1366

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

11000 11001 11010 11011 11100 11101 11110 11111

00000
00000 11000 I

slw[.]
P1 X

00000 11010 I
cntlzw[.]

P1 X

00000 11011 I
sld[.]

PPC X

00000 11100 I
and[.]

P1 X

00000 11101

{reserved}

00000 11110 II
wait

v2.03 X
000

00001
00001 11010 I

cntlzd[.]
PPC X

00001 11011 I
cntlzdm

v3.1 X

00001 11100 I
andc[.]

P1 X

00001 11101

{reserved}
000

00010
00010 11101

{reserved}
000

00011
00011 11010 I

popcntb
v2.02 X

00011 11100 I
nor[.]

P1 X
000

00100
00100 11000

{reserved}

00100 11001

{reserved}

00100 11010 I
prtyw

v2.05 X

00100 11011 I
brw

v3.1 X

00100 11100 I
pdepd

v3.1 X
001

00101
00101 11000

{reserved}

00101 11010 I
prtyd

v2.05 X

00101 11011 I
brd

v3.1 X

00101 11100 I
pextd

v3.1 X
001

00110
00110 11000

{reserved}

00110 11001

{reserved}

00110 11011 I
brh

v3.1 X

00110 11100 I
cfuged

v3.1 X
0011

00111
00111 11000

{reserved}

00111 11100 I
bpermd

v2.06 X
001

01000
01000 11010 I

cdtbcd
v2.06 X

01000 11100 I
eqv[.]

P1 X
010

01001
01001 11010 I

cbcdtd
v2.06 X

01001 11100 I
xor[.]

P1 X
010

01010 010

01011
01011 11010 I

popcntw
v2.06 X

010

01100
01100 11100 I

orc[.]
P1 X

0110

01101
01101 11100 I

or[.]
P1 X

0110

01110
01110 11100 I

nand[.]
P1 X

0111

01111
01111 11010 I

popcntd
v2.06 X

01111 11100 I
cmpb

v2.05 X
0111

10000
10000 11000 I

srw[.]
P1 X

10000 11001

{reserved}

10000 11010 I
cnttzw[.]

v3.0 X

10000 11011 I
srd[.]

PPC X

10000 11101

{reserved}
100

10001
10001 11010 I

cnttzd[.]
v3.0 X

10001 11011 I
cnttzdm

v3.1 X
100

10010 100

10011 100

10100
10100 11000

{reserved}

10100 11001

{reserved}
101

10101
10101 11000

{reserved}
101

10110
10110 11000

{reserved}

10110 11001

{reserved}
1011

10111
10111 11000

{reserved}
101

11000
11000 11000 I

sraw[.]
P1 X

11000 11010 I
srad[.]

PPC X
1100

11001
11001 11000 I

srawi[.]
P1 X

11001 1101. I
sradi[.]

PPC XS

11001 1101. I
sradi[.]

PPC XS
1100

11010 1101

11011
11011 1101. I

extswsli[.]
v3.0 XS

11011 1101. I
extswsli[.]

v3.0 XS
110

11100
11100 11000

{reserved}

11100 11001

{reserved}

11100 11010 I
extsh[.]

P1 X
1110

11101
11101 11000

{reserved}

11101 11010 I
extsb[.]

PPC X
1110

11110
11110 11010 I

extsw[.]
PPC X

1111

11111 1111

11000 11001 11010 11011 11100 11101 11110 11111

Table 22: EXT031: Extended Opcode Map for Opcode Space 0, Primary Opcode 31 (bits 21:30) (Sheet 4 of 4)
Appendix D. Opcode Maps 1367

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

Table 23: EXT059: Extended Opcode Map for Opcode Space 0, Primary Opcode 59 (bits 21:30) (Sheet 1 of 4)
00000 00001 00010 00011 00100 00101 00110 00111

00000
00000 00010 I

dadd[.]
v2.05 X

..000 00011 I
dqua[.]

v2.05 Z23
0000

00001
00001 00010 I

dmul[.]
v2.05 X

..001 00011 I
drrnd[.]

v2.05 Z23
0000

00010
.0010 00010 I

dscli[.]
v2.05 Z22

..010 00011 I
dquai[.]

v2.05 Z23
0001

00011
.0011 00010 I

dscri[.]
v2.05 Z22

..011 00011 I
drintx[.]

v2.05 Z23
000

00100
00100 00010 I

dcmpo
v2.05 X

0010

00101
00101 00010 I

dtstex
v2.05 X

0010

00110
.0110 00010 I

dtstdc
v2.05 Z22

0011

00111
.0111 00010 I

dtstdg
v2.05 Z22

..111 00011 I
drintn[.]

v2.05 Z23
0011

01000
01000 00010 I

dctdp[.]
v2.05 X

..000 00011 I
dqua[.]

v2.05 Z23
0100

01001
01001 00010 I

dctfix[.]
v2.05 X

..001 00011 I
drrnd[.]

v2.05 Z23
0100

01010
01010 00010 I

ddedpd[.]
v2.05 X

..010 00011 I
dquai[.]

v2.05 Z23
0101

01011
01011 00010 I

dxex[.]
v2.05 X

..011 00011 I
drintx[.]

v2.05 Z23
010

01100 0110

01101 0110

01110 0111

01111
..111 00011 I

drintn[.]
v2.05 Z23

0111

10000
10000 00010 I

dsub[.]
v2.05 X

..000 00011 I
dqua[.]

v2.05 Z23
1000

10001
10001 00010 I

ddiv[.]
v2.05 X

..001 00011 I
drrnd[.]

v2.05 Z23
1000

10010
.0010 00010 I

dscli[.]
v2.05 Z22

..010 00011 I
dquai[.]

v2.05 Z23
1001

10011
.0011 00010 I

dscri[.]
v2.05 Z22

..011 00011 I
drintx[.]

v2.05 Z23
100

10100
10100 00010 I

dcmpu
v2.05 X

1010

10101
10101 00010 I

dtstsf
v2.05 X

10101 00011 I
dtstsfi

v3.0 X
1010

10110
.0110 00010 I

dtstdc
v2.05 Z22

1011

10111
.0111 00010 I

dtstdg
v2.05 Z22

..111 00011 I
drintn[.]

v2.05 Z23
1011

11000
11000 00010 I

drsp[.]
v2.05 X

..000 00011 I
dqua[.]

v2.05 Z23
1100

11001
11001 00010 I

dcffix[.]
v2.06 X

..001 00011 I
drrnd[.]

v2.05 Z23
1100

11010
11010 00010 I

denbcd[.]
v2.05 X

..010 00011 I
dquai[.]

v2.05 Z23
1101

11011
11011 00010 I

diex[.]
v2.05 X

..011 00011 I
drintx[.]

v2.05 Z23
1101

11100 1110

11101 1110

11110 1111

11111
..111 00011 I

drintn[.]
v2.05 Z23

1111

00000 00001 00010 00011 00100 00101 00110 00111
Power ISA™ Appendices1368

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

01000 01001 01010 01011 01100 01101 01110 01111

00000
00000 010.. I

[pm]xvi8ger4pp
v3.1 [MMIRR:]XX3

00000 011.. I
[pm]xvi8ger4

v3.1 [MMIRR:]XX3
000

00001 000

00010
00010 010.. I
[pm]xvf16ger2pp

v3.1 [MMIRR:]XX3

00010 011.. I
[pm]xvf16ger2

v3.1 [MMIRR:]XX3
000

00011
00011 010.. I

[pm]xvf32gerpp
v3.1 [MMIRR:]XX3

00011 011.. I
[pm]xvf32ger

v3.1 [MMIRR:]XX3
000

00100
00100 010.. I

[pm]xvi4ger8pp
v3.1 [MMIRR:]XX3

00100 011.. I
[pm]xvi4ger8

v3.1 [MMIRR:]XX3
001

00101
00101 010.. I
[pm]xvi16ger2spp
v3.1 [MMIRR:]XX3

00101 011.. I
[pm]xvi16ger2s

v3.1 [MMIRR:]XX3
001

00110
00110 010.. I
[pm]xvbf16ger2pp
v3.1 [MMIRR:]XX3

00110 011.. I
[pm]xvbf16ger2

v3.1 [MMIRR:]XX3
0011

00111
00111 010.. I

[pm]xvf64gerpp
v3.1 [MMIRR:]XX3

00111 011.. I
[pm]xvf64ger

v3.1 [MMIRR:]XX3
001

01000 010

01001
01001 011.. I

[pm]xvi16ger2
v3.1 [MMIRR:]XX3

010

01010
01010 010.. I
[pm]xvf16ger2np

v3.1 [MMIRR:]XX3
010

01011
01011 010.. I

[pm]xvf32gernp
v3.1 [MMIRR:]XX3

010

01100
01100 011.. I
[pm]xvi8ger4spp

v3.1 [MMIRR:]XX3
0110

01101
01101 011.. I
[pm]xvi16ger2pp

v3.1 [MMIRR:]XX3
0110

01110
01110 010.. I
[pm]xvbf16ger2np
v3.1 [MMIRR:]XX3

0111

01111
01111 010.. I

[pm]xvf64gernp
v3.1 [MMIRR:]XX3

0111

10000 100

10001 100

10010
10010 010.. I
[pm]xvf16ger2pn

v3.1 [MMIRR:]XX3
100

10011
10011 010.. I

[pm]xvf32gerpn
v3.1 [MMIRR:]XX3

100

10100 101

10101 101

10110
10110 010.. I
[pm]xvbf16ger2pn
v3.1 [MMIRR:]XX3

1011

10111
10111 010.. I

[pm]xvf64gerpn
v3.1 [MMIRR:]XX3

101

11000 1100

11001 1100

11010
11010 010.. I
[pm]xvf16ger2nn

v3.1 [MMIRR:]XX3

11010 01110 I
fcfids[.]

v2.06 X
1101

11011
11011 010.. I

[pm]xvf32gernn
v3.1 [MMIRR:]XX3

110

11100 1110

11101 1110

11110
11110 010.. I
[pm]xvbf16ger2nn
v3.1 [MMIRR:]XX3

11110 01110 I
fcfidus[.]

v2.06 X
1111

11111
11111 010.. I

[pm]xvf64gernn
v3.1 [MMIRR:]XX3

1111

01000 01001 01010 01011 01100 01101 01110 01111

Table 23: EXT059: Extended Opcode Map for Opcode Space 0, Primary Opcode 59 (bits 21:30) (Sheet 2 of 4)
Appendix D. Opcode Maps 1369

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

10000 10001 10010 10011 10100 10101 10110 10111

00000
///// 10010 I

fdivs[.]
PPC A

///// 10100 I
fsubs[.]

PPC A

///// 10101 I
fadds[.]

PPC A

///// 10110 I
fsqrts[.]

PPC A
0000

00001
///// 10010

fdivs[.]
{invalid}

///// 10100
fsubs[.]

{invalid}

///// 10101
fadds[.]

{invalid}

///// 10110
fsqrts[.]

{invalid}
0000

00010 0001

00011 000

00100 0010

00101 0010

00110 0011

00111 0011

01000 0100

01001 0100

01010 0101

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

10000 10001 10010 10011 10100 10101 10110 10111

Table 23: EXT059: Extended Opcode Map for Opcode Space 0, Primary Opcode 59 (bits 21:30) (Sheet 3 of 4)
Power ISA™ Appendices1370

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

11000 11001 11010 11011 11100 11101 11110 11111

00000
///// 11000 I

fres[.]
PPC A

..... 11001 I
fmuls[.]

PPC A

///// 11010 I
frsqrtes[.]

v2.02 A

..... 11100 I
fmsubs[.]

PPC A

..... 11101 I
fmadds[.]

PPC A

..... 11110 I
fnmsubs[.]

PPC A

..... 11111 I
fnmadds[.]

PPC A
000

00001
///// 11000

fres[.]
{invalid}

///// 11010
frsqrtes[.]

{invalid}
000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

11000 11001 11010 11011 11100 11101 11110 11111

Table 23: EXT059: Extended Opcode Map for Opcode Space 0, Primary Opcode 59 (bits 21:30) (Sheet 4 of 4)
Appendix D. Opcode Maps 1371

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

Table 24: EXT060: Extended Opcode Map for Opcode Space 0, Primary Opcode 60 (bits 21:30) (Sheet 1 of 4)
00000 00001 00010 00011 00100 00101 00110 00111

00000
00000 000.. I

xsaddsp
v2.07 XX3

00000 001.. I
xsmaddasp

v2.07 XX3
0000

00001
00001 000.. I

xssubsp
v2.07 XX3

00001 001.. I
xsmaddmsp

v2.07 XX3
0000

00010
00010 000.. I

xsmulsp
v2.07 XX3

00010 001.. I
xsmsubasp

v2.07 XX3
0001

00011
00011 000.. I

xsdivsp
v2.07 XX3

00011 001.. I
xsmsubmsp

v2.07 XX3
000

00100
00100 000.. I

xsadddp
v2.06 XX3

00100 001.. I
xsmaddadp

v2.06 XX3
0010

00101
00101 000.. I

xssubdp
v2.06 XX3

00101 001.. I
xsmaddmdp

v2.06 XX3
0010

00110
00110 000.. I

xsmuldp
v2.06 XX3

00110 001.. I
xsmsubadp

v2.06 XX3
0011

00111
00111 000.. I

xsdivdp
v2.06 XX3

00111 001.. I
xsmsubmdp

v2.06 XX3
0011

01000
01000 000.. I

xvaddsp
v2.06 XX3

01000 001.. I
xvmaddasp

v2.06 XX3
0100

01001
01001 000.. I

xvsubsp
v2.06 XX3

01001 001.. I
xvmaddmsp

v2.06 XX3
0100

01010
01010 000.. I

xvmulsp
v2.06 XX3

01010 001.. I
xvmsubasp

v2.06 XX3
0101

01011
01011 000.. I

xvdivsp
v2.06 XX3

01011 001.. I
xvmsubmsp

v2.06 XX3
010

01100
01100 000.. I

xvadddp
v2.06 XX3

01100 001.. I
xvmaddadp

v2.06 XX3
0110

01101
01101 000.. I

xvsubdp
v2.06 XX3

01101 001.. I
xvmaddmdp

v2.06 XX3
0110

01110
01110 000.. I

xvmuldp
v2.06 XX3

01110 001.. I
xvmsubadp

v2.06 XX3
0111

01111
01111 000.. I

xvdivdp
v2.06 XX3

01111 001.. I
xvmsubmdp

v2.06 XX3
0111

10000
10000 000.. I

xsmaxcdp
v3.0 XX3

10000 001.. I
xsnmaddasp

v2.07 XX3
1000

10001
10001 000.. I

xsmincdp
v3.0 XX3

10001 001.. I
xsnmaddmsp

v2.07 XX3
1000

10010
10010 000.. I

xsmaxjdp
v3.0 XX3

10010 001.. I
xsnmsubasp

v2.07 XX3
1001

10011
10011 000.. I

xsminjdp
v3.0 XX3

10011 001.. I
xsnmsubmsp

v2.07 XX3
100

10100
10100 000.. I

xsmaxdp
v2.06 XX3

10100 001.. I
xsnmaddadp

v2.06 XX3
1010

10101
10101 000.. I

xsmindp
v2.06 XX3

10101 001.. I
xsnmaddmdp

v2.06 XX3
1010

10110
10110 000.. I

xscpsgndp
v2.06 XX3

10110 001.. I
xsnmsubadp

v2.06 XX3
1011

10111
10111 001.. I

xsnmsubmdp
v2.06 XX3

1011

11000
11000 000.. I

xvmaxsp
v2.06 XX3

11000 001.. I
xvnmaddasp

v2.06 XX3
1100

11001
11001 000.. I

xvminsp
v2.06 XX3

11001 001.. I
xvnmaddmsp

v2.06 XX3
1100

11010
11010 000.. I

xvcpsgnsp
v2.06 XX3

11010 001.. I
xvnmsubasp

v2.06 XX3
1101

11011
11011 000.. I

xviexpsp
v3.0 XX3

11011 001.. I
xvnmsubmsp

v2.06 XX3
1101

11100
11100 000.. I

xvmaxdp
v2.06 XX3

11100 001.. I
xvnmaddadp

v2.06 XX3
1110

11101
11101 000.. I

xvmindp
v2.06 XX3

11101 001.. I
xvnmaddmdp

v2.06 XX3
1110

11110
11110 000.. I

xvcpsgndp
v2.06 XX3

11110 001.. I
xvnmsubadp

v2.06 XX3
1111

11111
11111 000.. I

xviexpdp
v3.0 XX3

11111 001.. I
xvnmsubmdp

v2.06 XX3
1111

00000 00001 00010 00011 00100 00101 00110 00111
Power ISA™ Appendices1372

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

01000 01001 01010 01011 01100 01101 01110 01111

00000
0..00 010.. I

xxsldwi
v2.06 XX3

00000 011.. I
xscmpeqdp

v3.0 XX3
000

00001
0..01 010.. I

xxpermdi
v2.06 XX3

00001 011.. I
xscmpgtdp

v3.0 XX3
000

00010
00010 010.. I

xxmrghw
v2.06 XX3

00010 011.. I
xscmpgedp

v3.0 XX3
000

00011
00011 010.. I

xxperm
v3.0 XX3

000

00100
0..00 010.. I

xxsldwi
v2.06 XX3

00100 011.. I
xscmpudp

v2.06 XX3
001

00101
0..01 010.. I

xxpermdi
v2.06 XX3

00101 011.. I
xscmpodp

v2.06 XX3
001

00110
00110 010.. I

xxmrglw
v2.06 XX3

0011

00111
00111 010.. I

xxpermr
v3.0 XX3

00111 011.. I
xscmpexpdp

v3.0 XX3
001

01000
0..00 010.. I

xxsldwi
v2.06 XX3

01000 011.. I
xvcmpeqsp

v2.06 XX3
010

01001
0..01 010.. I

xxpermdi
v2.06 XX3

01001 011.. I
xvcmpgtsp

v2.06 XX3
010

01010
01010 0100. I

xxspltw
v2.06 XX2

01010 0101. I
xxextractuw

v3.0 XX2

01010 011.. I
xvcmpgesp

v2.06 XX3
010

01011
01011 01000

XPND060-1
{expanded}

01011 0101. I
xxinsertw

v3.0 XX2
010

01100
0..00 010.. I

xxsldwi
v2.06 XX3

01100 011.. I
xvcmpeqdp

v2.06 XX3
0110

01101
0..01 010.. I

xxpermdi
v2.06 XX3

01101 011.. I
xvcmpgtdp

v2.06 XX3
0110

01110
01110 011.. I

xvcmpgedp
v2.06 XX3

0111

01111 0111

10000
10000 010.. I

xxland
v2.06 XX3

100

10001
10001 010.. I

xxlandc
v2.06 XX3

100

10010
10010 010.. I

xxlor
v2.06 XX3

100

10011
10011 010.. I

xxlxor
v2.06 XX3

100

10100
10100 010.. I

xxlnor
v2.06 XX3

101

10101
10101 010.. I

xxlorc
v2.07 XX3

101

10110
10110 010.. I

xxlnand
v2.07 XX3

1011

10111
10111 010.. I

xxleqv
v2.07 XX3

101

11000
11000 011.. I

xvcmpeqsp.
v2.06 XX3

1100

11001
11001 011.. I

xvcmpgtsp.
v2.06 XX3

1100

11010
11010 011.. I

xvcmpgesp.
v2.06 XX3

1101

11011 110

11100
11100 011.. I

xvcmpeqdp.
v2.06 XX3

1110

11101
11101 011.. I

xvcmpgtdp.
v2.06 XX3

1110

11110
11110 011.. I

xvcmpgedp.
v2.06 XX3

1111

11111 1111

01000 01001 01010 01011 01100 01101 01110 01111

Table 24: EXT060: Extended Opcode Map for Opcode Space 0, Primary Opcode 60 (bits 21:30) (Sheet 2 of 4)
Appendix D. Opcode Maps 1373

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

10000 10001 10010 10011 10100 10101 10110 10111

00000
00000 1010. I

xsrsqrtesp
v2.07 XX2

00000 1011. I
xssqrtsp

v2.07 XX2
0000

00001
00001 1010. I

xsresp
v2.07 XX2

0000

00010 0001

00011 000

00100
00100 1000. I

xscvdpuxws
v2.06 XX2

00100 1001. I
xsrdpi

v2.06 XX2

00100 1010. I
xsrsqrtedp

v2.06 XX2

00100 1011. I
xssqrtdp

v2.06 XX2
0010

00101
00101 1000. I

xscvdpsxws
v2.06 XX2

00101 1001. I
xsrdpiz

v2.06 XX2

00101 1010. I
xsredp

v2.06 XX2
0010

00110
00110 1001. I

xsrdpip
v2.06 XX2

00110 1010. I
xstsqrtdp

v2.06 XX2

00110 1011. I
xsrdpic

v2.06 XX2
0011

00111
00111 1001. I

xsrdpim
v2.06 XX2

00111 101.. I
xstdivdp

v2.06 XX3
0011

01000
01000 1000. I

xvcvspuxws
v2.06 XX2

01000 1001. I
xvrspi

v2.06 XX2

01000 1010. I
xvrsqrtesp

v2.06 XX2

01000 1011. I
xvsqrtsp

v2.06 XX2
0100

01001
01001 1000. I

xvcvspsxws
v2.06 XX2

01001 1001. I
xvrspiz

v2.06 XX2

01001 1010. I
xvresp

v2.06 XX2
0100

01010
01010 1000. I

xvcvuxwsp
v2.06 XX2

01010 1001. I
xvrspip

v2.06 XX2

01010 1010. I
xvtsqrtsp

v2.06 XX2

01010 1011. I
xvrspic

v2.06 XX2
0101

01011
01011 1000. I

xvcvsxwsp
v2.06 XX2

01011 1001. I
xvrspim

v2.06 XX2

01011 101.. I
xvtdivsp

v2.06 XX3
010

01100
01100 1000. I

xvcvdpuxws
v2.06 XX2

01100 1001. I
xvrdpi

v2.06 XX2

01100 1010. I
xvrsqrtedp

v2.06 XX2

01100 1011. I
xvsqrtdp

v2.06 XX2
0110

01101
01101 1000. I

xvcvdpsxws
v2.06 XX2

01101 1001. I
xvrdpiz

v2.06 XX2

01101 1010. I
xvredp

v2.06 XX2
0110

01110
01110 1000. I

xvcvuxwdp
v2.06 XX2

01110 1001. I
xvrdpip

v2.06 XX2

01110 1010. I
xvtsqrtdp

v2.06 XX2

01110 1011. I
xvrdpic

v2.06 XX2
0111

01111
01111 1000. I

xvcvsxwdp
v2.06 XX2

01111 1001. I
xvrdpim

v2.06 XX2

01111 101.. I
xvtdivdp

v2.06 XX3
0111

10000
10000 1001. I

xscvdpsp
v2.06 XX2

10000 1011. I
xscvdpspn

v2.07 XX2
1000

10001
10001 1001. I

xsrsp
v2.07 XX2

1000

10010
10010 1000. I

xscvuxdsp
v2.07 XX2

10010 1010. I
xststdcsp

v3.0 XX2
1001

10011
10011 1000. I

xscvsxdsp
v2.07 XX2

100

10100
10100 1000. I

xscvdpuxds
v2.06 XX2

10100 1001. I
xscvspdp

v2.06 XX2

10100 1011. I
xscvspdpn

v2.07 XX2
1010

10101
10101 1000. I

xscvdpsxds
v2.06 XX2

10101 1001. I
xsabsdp

v2.06 XX2

10101 1011.
XPND060-2

{expanded}
1010

10110
10110 1000. I

xscvuxddp
v2.06 XX2

10110 1001. I
xsnabsdp

v2.06 XX2

10110 1010. I
xststdcdp

v3.0 XX2
1011

10111
10111 1000. I

xscvsxddp
v2.06 XX2

10111 1001. I
xsnegdp

v2.06 XX2
1011

11000
11000 1000. I

xvcvspuxds
v2.06 XX2

11000 1001. I
xvcvdpsp

v2.06 XX2
1100

11001
11001 1000. I

xvcvspsxds
v2.06 XX2

11001 1001. I
xvabssp

v2.06 XX2
1100

11010
11010 1000. I

xvcvuxdsp
v2.06 XX2

11010 1001. I
xvnabssp

v2.06 XX2

1101. 101.. I
xvtstdcsp

v3.0 XX2
1101

11011
11011 1000. I

xvcvsxdsp
v2.06 XX2

11011 1001. I
xvnegsp

v2.06 XX2
1101

11100
11100 1000. I

xvcvdpuxds
v2.06 XX2

11100 1001. I
xvcvspdp

v2.06 XX2

11100 10100 I
xxgenpcvbm

v3.1 X

11100 10101 I
xxgenpcvhm

v3.1 X

11100 10110 I
xsiexpdp

v3.0 X
1110

11101
11101 1000. I

xvcvdpsxds
v2.06 XX2

11101 1001. I
xvabsdp

v2.06 XX2

11101 10100 I
xxgenpcvwm

v3.1 X

11101 10101 I
xxgenpcvdm

v3.1 X

11101 1011.
XPND060-3

{expanded}
1110

11110
11110 1000. I

xvcvuxddp
v2.06 XX2

11110 1001. I
xvnabsdp

v2.06 XX2

1111. 101.. I
xvtstdcdp

v3.0 XX2
1111

11111
11111 1000. I

xvcvsxddp
v2.06 XX2

11111 1001. I
xvnegdp

v2.06 XX2
1111

10000 10001 10010 10011 10100 10101 10110 10111

Table 24: EXT060: Extended Opcode Map for Opcode Space 0, Primary Opcode 60 (bits 21:30) (Sheet 3 of 4)
Power ISA™ Appendices1374

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

11000 11001 11010 11011 11100 11101 11110 11111

00000
..... 11... I

xxsel
v2.06 XX4

000

00001 000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

11000 11001 11010 11011 11100 11101 11110 11111

Table 24: EXT060: Extended Opcode Map for Opcode Space 0, Primary Opcode 60 (bits 21:30) (Sheet 4 of 4)
Appendix D. Opcode Maps 1375

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

Table 25: EXT063: Extended Opcode Map for Opcode Space 0, Primary Opcode 63 (bits 21:30) (Sheet 1 of 4)
00000 00001 00010 00011 00100 00101 00110 00111

00000
00000 00000 I

fcmpu
P1 X

00000 00010 I
daddq[.]

v2.05 X

..000 00011 I
dquaq[.]

v2.05 Z23

00000 00100 I
xsaddqp[o]

v3.0 X

..000 00101 I
xsrqpi[x]

v3.0 Z23
0000

00001
00001 00000 I

fcmpo
P1 X

00001 00010 I
dmulq[.]

v2.05 X

..001 00011 I
drrndq[.]

v2.05 Z23

00001 00100 I
xsmulqp[o]

v3.0 X

..001 00101 I
xsrqpxp

v3.0 Z23

00001 00110 I
mtfsb1[.]

P1 X
0000

00010
00010 00000 I

mcrfs
P1 X

.0010 00010 I
dscliq[.]

v2.05 Z22

..010 00011 I
dquaiq[.]

v2.05 Z23

00010 00100 I
xscmpeqqp

v3.1 X

00010 00110 I
mtfsb0[.]

P1 X
0001

00011
.0011 00010 I

dscriq[.]
v2.05 Z22

..011 00011 I
drintxq[.]

v2.05 Z23

00011 00100 I
xscpsgnqp

v3.0 X
000

00100
00100 00000 I

ftdiv
v2.06 X

00100 00010 I
dcmpoq

v2.05 X

00100 00100 I
xscmpoqp

v3.0 X

00100 00110 I
mtfsfi[.]

P1 X
0010

00101
00101 00000 I

ftsqrt
v2.06 X

00101 00010 I
dtstexq

v2.05 X

00101 00100 I
xscmpexpqp

v3.0 X
0010

00110
.0110 00010 I

dtstdcq
v2.05 Z22

00110 00100 I
xscmpgeqp

v3.1 X
0011

00111
.0111 00010 I

dtstdgq
v2.05 Z22

..111 00011 I
drintnq[.]

v2.05 Z23

00111 00100 I
xscmpgtqp

v3.1 X
0011

01000
01000 00010 I

dctqpq[.]
v2.05 X

..000 00011 I
dquaq[.]

v2.05 Z23

..000 00101 I
xsrqpi[x]

v3.0 Z23
0100

01001
01001 00010 I

dctfixq[.]
v2.05 X

..001 00011 I
drrndq[.]

v2.05 Z23

..001 00101 I
xsrqpxp

v3.0 Z23
0100

01010
01010 00010 I

ddedpdq[.]
v2.05 X

..010 00011 I
dquaiq[.]

v2.05 Z23
0101

01011
01011 00010 I

dxexq[.]
v2.05 X

..011 00011 I
drintxq[.]

v2.05 Z23
010

01100
01100 00100 I

xsmaddqp[o]
v3.0 X

0110

01101
01101 00100 I

xsmsubqp[o]
v3.0 X

0110

01110
01110 00100 I

xsnmaddqp[o]
v3.0 X

0111

01111
..111 00011 I

drintnq[.]
v2.05 Z23

01111 00100 I
xsnmsubqp[o]

v3.0 X
0111

10000
10000 00010 I

dsubq[.]
v2.05 X

..000 00011 I
dquaq[.]

v2.05 Z23

10000 00100 I
xssubqp[o]

v3.0 X

..000 00101 I
xsrqpi[x]

v3.0 Z23
1000

10001
10001 00010 I

ddivq[.]
v2.05 X

..001 00011 I
drrndq[.]

v2.05 Z23

10001 00100 I
xsdivqp[o]

v3.0 X

..001 00101 I
xsrqpxp

v3.0 Z23
1000

10010
.0010 00010 I

dscliq[.]
v2.05 Z22

..010 00011 I
dquaiq[.]

v2.05 Z23

10010 00111
XPND063-4

{expanded}
1001

10011
.0011 00010 I

dscriq[.]
v2.05 Z22

..011 00011 I
drintxq[.]

v2.05 Z23
100

10100
10100 00010 I

dcmpuq
v2.05 X

10100 00100 I
xscmpuqp

v3.0 X
1010

10101
10101 00010 I

dtstsfq
v2.05 X

10101 00011 I
dtstsfiq

v3.0 X

10101 00100 I
xsmaxcqp

v3.1 X
1010

10110
.0110 00010 I

dtstdcq
v2.05 Z22

10110 00100 I
xststdcqp

v3.0 X

10110 00111 I
mtfsf[.]

P1 XFL
1011

10111
.0111 00010 I

dtstdgq
v2.05 Z22

..111 00011 I
drintnq[.]

v2.05 Z23

10111 00100 I
xsmincqp

v3.1 X
1011

11000
11000 00010 I

drdpq[.]
v2.05 X

..000 00011 I
dquaq[.]

v2.05 Z23

..000 00101 I
xsrqpi[x]

v3.0 Z23
1100

11001
11001 00010 I

dcffixq[.]
v2.05 X

..001 00011 I
drrndq[.]

v2.05 Z23

11001 00100
XPND063-2

{expanded}

..001 00101 I
xsrqpxp

v3.0 Z23
1100

11010
11010 00010 I

denbcdq[.]
v2.05 X

..010 00011 I
dquaiq[.]

v2.05 Z23

11010 00100
XPND063-3

{expanded}

11010 00110 I
fmrgow

v2.07 X
1101

11011
11011 00010 I

diexq[.]
v2.05 X

..011 00011 I
drintxq[.]

v2.05 Z23

11011 00100 I
xsiexpqp

v3.0 X
1101

11100 1110

11101 1110

11110
11110 00110 I

fmrgew
v2.07 X

1111

11111
11111 00010

XPND063-1
{expanded}

..111 00011 I
drintnq[.]

v2.05 Z23
1111

00000 00001 00010 00011 00100 00101 00110 00111
Power ISA™ Appendices1376

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

01000 01001 01010 01011 01100 01101 01110 01111

00000
00000 01000 I

fcpsgn[.]
v2.05 X

00000 01100 I
frsp[.]

P1 X

00000 01110 I
fctiw[.]

P2 X

00000 01111 I
fctiwz[.]

P2 X
000

00001
00001 01000 I

fneg[.]
P1 X

000

00010
00010 01000 I

fmr[.]
P1 X

000

00011 000

00100
00100 01000 I

fnabs[.]
P1 X

00100 01110 I
fctiwu[.]

v2.06 X

00100 01111 I
fctiwuz[.]

v2.06 X
001

00101 001

00110 0011

00111 001

01000
01000 01000 I

fabs[.]
P1 X

010

01001 010

01010 010

01011 010

01100
01100 01000 I

frin[.]
v2.02 X

0110

01101
01101 01000 I

friz[.]
v2.02 X

0110

01110
01110 01000 I

frip[.]
v2.02 X

0111

01111
01111 01000 I

frim[.]
v2.02 X

0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001
11001 01110 I

fctid[.]
PPC X

11001 01111 I
fctidz[.]

PPC X
1100

11010
11010 01110 I

fcfid[.]
PPC X

1101

11011 110

11100 1110

11101
11101 01110 I

fctidu[.]
v2.06 X

11101 01111 I
fctiduz[.]

v2.06 X
1110

11110
11110 01110 I

fcfidu[.]
v2.06 X

1111

11111 1111

01000 01001 01010 01011 01100 01101 01110 01111

Table 25: EXT063: Extended Opcode Map for Opcode Space 0, Primary Opcode 63 (bits 21:30) (Sheet 2 of 4)
Appendix D. Opcode Maps 1377

Version 3.1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

11

0

1

0

1

0

1

0

1

0

1

0

1

10000 10001 10010 10011 10100 10101 10110 10111

00000
///// 10010 I

fdiv[.]
P1 A

///// 10100 I
fsub[.]

P1 A

///// 10101 I
fadd[.]

P1 A

///// 10110 I
fsqrt[.]

P2 A

..... 10111 I
fsel[.]

PPC A
0000

00001
///// 10010

fdiv[.]
{invalid}

///// 10100
fsub[.]

{invalid}

///// 10101
fadd[.]

{invalid}

///// 10110
fsqrt[.]

{invalid}
0000

00010 0001

00011 000

00100 0010

00101 0010

00110 0011

00111 0011

01000 0100

01001 0100

01010 0101

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 1000

10001 1000

10010 1001

10011 100

10100 1010

10101 1010

10110 1011

10111 1011

11000 1100

11001 1100

11010 1101

11011 1101

11100 1110

11101 1110

11110 1111

11111 1111

10000 10001 10010 10011 10100 10101 10110 10111

Table 25: EXT063: Extended Opcode Map for Opcode Space 0, Primary Opcode 63 (bits 21:30) (Sheet 3 of 4)
Power ISA™ Appendices1378

Version 3.1

00

01

10

11

00

01

0

11

00

01

10

11

0

1

0

1

00

01

10

11

00

01

0

11

0

1

0

11

0

1

0

1

11000 11001 11010 11011 11100 11101 11110 11111

00000
///// 11000 I

fre[.]
v2.02 A

..... 11001 I
fmul[.]

P1 A

///// 11010 I
frsqrte[.]

PPC A

..... 11100 I
fmsub[.]

P1 A

..... 11101 I
fmadd[.]

P1 A

..... 11110 I
fnmsub[.]

P1 A

..... 11111 I
fnmadd[.]

P1 A
000

00001
///// 11000

fre[.]
{invalid}

///// 11010
frsqrte[.]

{invalid}
000

00010 000

00011 000

00100 001

00101 001

00110 0011

00111 001

01000 010

01001 010

01010 010

01011 010

01100 0110

01101 0110

01110 0111

01111 0111

10000 100

10001 100

10010 100

10011 100

10100 101

10101 101

10110 1011

10111 101

11000 1100

11001 1100

11010 1101

11011 110

11100 1110

11101 1110

11110 1111

11111 1111

11000 11001 11010 11011 11100 11101 11110 11111

Table 25: EXT063: Extended Opcode Map for Opcode Space 0, Primary Opcode 63 (bits 21:30) (Sheet 4 of 4)
Appendix D. Opcode Maps 1379

Version 3.1
Table 26: EXT132: Extended Opcode Map for Opcode Space 1, Primary Opcode 32 (bits 21:30)
00 01 10 11

00
000.. I

xxsplti32dx
v3.1 8RR:D

0010. I
xxspltidp

v3.1 8RR:D

0011. I
xxspltiw

v3.1 8RR:D
00

01 01

10 10

11 11

00 01 10 11

Table 27: EXT133: Extended Opcode Map for Opcode Space 1, Primary Opcode 33 (bits 26:27)
000 001 010 011 100 101 110 111

00
00... I

xxblendvb
v3.1 8RR:XX4

00

01
01... I

xxblendvh
v3.1 8RR:XX4

01

10
10... I

xxblendvw
v3.1 8RR:XX4

10

11
11... I

xxblendvd
v3.1 8RR:XX4

11

000 001 010 011 100 101 110 111

Table 28: EXT134: Extended Opcode Map for Opcode Space 1, Primary Opcode 34 (bits 26:30)
000 001 010 011 100 101 110 111

00
00... I

xxpermx
v3.1 8RR:XX4

00

01
01... I

xxeval
v3.1 8RR:XX4

01

10 10

11 11

000 001 010 011 100 101 110 111
Power ISA™ Appendices1380

Version 3.1
Table 29: XPND004-1A: Expanded Opcode Map for Instruction 0x10000581 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 1/110 000001 I

bcdctsq.
v3.0 VX

00010 1.110 000001 I
bcdcfsq.

v3.0 VX

00100 1.110 000001 I
bcdctz.

v3.0 VX

00101 1/110 000001 I
bcdctn.

v3.0 VX

00110 1.110 000001 I
bcdcfz.

v3.0 VX

00111 1.110 000001 I
bcdcfn.

v3.0 VX
00

01 01

10 10

11
11111 1.110 000001 I

bcdsetsgn.
v3.0 VX

11

000 001 010 011 100 101 110 111

Table 30: XPND004-1B: Expanded Opcode Map for Instruction 0x10000781 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 1/110 000001

bcdctsq.
{invalid}

00010 1.110 000001 I
bcdcfsq.

v3.0 VX

00100 1.110 000001 I
bcdctz.

v3.0 VX

00101 1/110 000001
bcdctn.

{invalid}

00110 1.110 000001 I
bcdcfz.

v3.0 VX

00111 1.110 000001 I
bcdcfn.

v3.0 VX
00

01 01

10 10

11
11111 1.110 000001 I

bcdsetsgn.
v3.0 VX

11

000 001 010 011 100 101 110 111

Table 31: XPND004-2: Expanded Opcode Map for Instruction 0x10000602 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11000 000010 I

vclzlsbb
v3.0 VX

00001 11000 000010 I
vctzlsbb

v3.0 VX

00110 11000 000010 I
vnegw

v3.0 VX

00111 11000 000010 I
vnegd

v3.0 VX
00

01
01000 11000 000010 I

vprtybw
v3.0 VX

01001 11000 000010 I
vprtybd

v3.0 VX

01010 11000 000010 I
vprtybq

v3.0 VX
01

10
10000 11000 000010 I

vextsb2w
v3.0 VX

10001 11000 000010 I
vextsh2w

v3.0 VX
10

11
11000 11000 000010 I

vextsb2d
v3.0 VX

11001 11000 000010 I
vextsh2d

v3.0 VX

11010 11000 000010 I
vextsw2d

v3.0 VX

11011 11000 000010 I
vextsd2q

v3.1 VX

11100 11000 000010 I
vctzb

v3.0 VX

11101 11000 000010 I
vctzh

v3.0 VX

11110 11000 000010 I
vctzw

v3.0 VX

11111 11000 000010 I
vctzd

v3.0 VX
11

000 001 010 011 100 101 110 111

Table 32: XPND004-3: Expanded Opcode Map for Instruction 0x1000_0642 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11001 000010 I

vexpandbm
v3.1 VX

00001 11001 000010 I
vexpandhm

v3.1 VX

00010 11001 000010 I
vexpandwm

v3.1 VX

00011 11001 000010 I
vexpanddm

v3.1 VX

00100 11001 000010 I
vexpandqm

v3.1 VX
00

01
01000 11001 000010 I

vextractbm
v3.1 VX

01001 11001 000010 I
vextracthm

v3.1 VX

01010 11001 000010 I
vextractwm

v3.1 VX

01011 11001 000010 I
vextractdm

v3.1 VX

01100 11001 000010 I
vextractqm

v3.1 VX
01

10
10000 11001 000010 I

mtvsrbm
v3.1 VX

10001 11001 000010 I
mtvsrhm

v3.1 VX

10010 11001 000010 I
mtvsrwm

v3.1 VX

10011 11001 000010 I
mtvsrdm

v3.1 VX

10100 11001 000010 I
mtvsrqm

v3.1 VX
10

11
1100. 11001 000010 I

vcntmbb
v3.1 VX

1101. 11001 000010 I
vcntmbd

v3.1 VX

1110. 11001 000010 I
vcntmbh

v3.1 VX

1111. 11001 000010 I
vcntmbw

v3.1 VX
11

000 001 010 011 100 101 110 111

Table 33: XPND004-4A: Expanded Opcode Map for Instruction 0x1000000D (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 00000 001101 I

vstribl
v3.1 VC

00001 00000 001101 I
vstribr

v3.1 VC

00010 00000 001101 I
vstrihl

v3.1 VC

00011 00000 001101 I
vstrihr

v3.1 VC
00

01 01

10 10

11 11

000 001 010 011 100 101 110 111
Appendix D. Opcode Maps 1381

Version 3.1
Table 34: XPND004-4B: Expanded Opcode Map for Instruction 0x1000040D (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 10000 001101 I

vstribl.
v3.1 VC

00001 10000 001101 I
vstribr.

v3.1 VC

00010 10000 001101 I
vstrihl.

v3.1 VC

00011 10000 001101 I
vstrihr.

v3.1 VC
00

01 01

10 10

11 11

000 001 010 011 100 101 110 111

Table 35: XPND031: Expanded Opcode Map for Instruction 0x7C000162 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 00101 10001 I

xxmfacc
v3.1 X

00001 00101 10001 I
xxmtacc

v3.1 X

00011 00101 10001 I
xxsetaccz

v3.1 X
00

01 01

10 10

11 11

000 001 010 011 100 101 110 111

Table 36: XPND060-1: Expanded Opcode Map for Instruction 0xF000_02D0 (bits 11:15)
000 001 010 011 100 101 110 111

00
00... 01011 01000 I

xxspltib
v3.0 X

00

01 01

10 10

11
11111 01011 01000 I

lxvkq
v3.1 X

11

000 001 010 011 100 101 110 111

Table 37: XPND060-2: Expanded Opcode Map for Instruction 0xF000_056C (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 10101 1011. I

xsxexpdp
v3.0 XX2

00001 10101 1011. I
xsxsigdp

v3.0 XX2
00

01 01

10
10000 10101 1011. I

xscvhpdp
v3.0 XX2

10001 10101 1011. I
xscvdphp

v3.0 XX2
10

11 11

000 001 010 011 100 101 110 111

Table 38: XPND060-3: Expanded Opcode Map for Instruction 0xF000_076C (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11101 1011. I

xvxexpdp
v3.0 XX2

00001 11101 1011. I
xvxsigdp

v3.0 XX2

00010 11101 1011. I
xvtlsbb

v3.1 XX2

00111 11101 1011. I
xxbrh

v3.0 XX2
00

01
01000 11101 1011. I

xvxexpsp
v3.0 XX2

01001 11101 1011. I
xvxsigsp

v3.0 XX2

01111 11101 1011. I
xxbrw

v3.0 XX2
01

10
10000 11101 1011. I

xvcvbf16sp
v3.1 XX2

10001 11101 1011. I
xvcvspbf16

v3.1 XX2

10111 11101 1011. I
xxbrd

v3.0 XX2
10

11
11000 11101 1011. I

xvcvhpsp
v3.0 XX2

11001 11101 1011. I
xvcvsphp

v3.0 XX2

11111 11101 1011. I
xxbrq

v3.0 XX2
11

000 001 010 011 100 101 110 111
Power ISA™ Appendices1382

Version 3.1
Table 39: XPND063-1: Expanded Opcode Map for Instruction 0xFC00_07C4 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11111 00010 I

dcffixqq
v3.1 X

00001 11111 00010 I
dctfixqq

v3.1 X
00

01 01

10 10

11 11

000 001 010 011 100 101 110 111

Table 40: XPND063-2: Expanded Opcode Map for Instruction 0xFC00_0648 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11001 00100 I

xsabsqp
v3.0 X

00010 11001 00100 I
xsxexpqp

v3.0 X
00

01
01000 11001 00100 I

xsnabsqp
v3.0 X

01

10
10000 11001 00100 I

xsnegqp
v3.0 X

10010 11001 00100 I
xsxsigqp

v3.0 X
10

11
11011 11001 00100 I

xssqrtqp[o]
v3.0 X

11

000 001 010 011 100 101 110 111

Table 41: XPND063-3: Expanded Opcode Map for Instruction 0xFC00_0688 (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 11010 00100 I

xscvqpuqz
v3.1 X

00001 11010 00100 I
xscvqpuwz

v3.0 X

00010 11010 00100 I
xscvudqp

v3.0 X

00011 11010 00100 I
xscvuqqp

v3.1 X
00

01
01000 11010 00100 I

xscvqpsqz
v3.1 X

01001 11010 00100 I
xscvqpswz

v3.0 X

01010 11010 00100 I
xscvsdqp

v3.0 X

01011 11010 00100 I
xscvsqqp

v3.1 X
01

10
10001 11010 00100 I

xscvqpudz
v3.0 X

10100 11010 00100 I
xscvqpdp[o]

v3.0 X

10110 11010 00100 I
xscvdpqp

v3.0 X
10

11
11001 11010 00100 I

xscvqpsdz
v3.0 X

11

000 001 010 011 100 101 110 111

Table 42: XPND063-4: Expanded Opcode Map for Instruction 0xFC00_048E (bits 11:15)
000 001 010 011 100 101 110 111

00
00000 10010 00111 I

mffs[.]
P1 X

00001 10010 00111 I
mffsce

v3.0B X
00

01 01

10
10100 10010 00111 I

mffscdrn
v3.0B X

10101 10010 00111 I
mffscdrni

v3.0B X

10110 10010 00111 I
mffscrn

v3.0B X

10111 10010 00111 I
mffscrni

v3.0B X
10

11
11000 10010 00111 I

mtffsl
v3.0B X

11

000 001 010 011 100 101 110 111
Appendix D. Opcode Maps 1383

Version 3.1
Power ISA™ Appendices1384

Version 3.1
Appendix E. Power ISA Instruction Set Sorted by
Opcode

This appendix lists all the instructions in the Power ISA, sorted by primary opcode (bits 0-5), then by extended
opcode column (bits 26:31, if any), then by extended opcode row (bits 21:25, if any), then by expanded opcode (bits
11:15, if any).

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name
000010 I ..XX tdi PPC 98 Trap Doubleword Immediate D-form
000011 I XXXX twi P1 97 Trap Word Immediate D-form
000100 00000 000000 I ..XX vaddubm v2.03 325 Vector Add Unsigned Byte Modulo VX-form
000100 00001 000000 I ..XX vadduhm v2.03 325 Vector Add Unsigned Halfword Modulo VX-form
000100 00010 000000 I ..XX vadduwm v2.03 326 Vector Add Unsigned Word Modulo VX-form
000100 00011 000000 I ..XX vaddudm v2.07 326 Vector Add Unsigned Doubleword Modulo VX-form
000100 00100 000000 I ..XX vadduqm v2.07 329 Vector Add Unsigned Quadword Modulo VX-form
000100 00101 000000 I ..XX vaddcuq v2.07 330 Vector Add & write Carry Unsigned Quadword VX-form
000100 00110 000000 I ..XX vaddcuw v2.03 323 Vector Add & write Carry Unsigned Word VX-form
000100 01000 000000 I ..XX vaddubs v2.03 327 Vector Add Unsigned Byte Saturate VX-form
000100 01001 000000 I ..XX vadduhs v2.03 327 Vector Add Unsigned Halfword Saturate VX-form
000100 01010 000000 I ..XX vadduws v2.03 328 Vector Add Unsigned Word Saturate VX-form
000100 01100 000000 I ..XX vaddsbs v2.03 323 Vector Add Signed Byte Saturate VX-form
000100 01101 000000 I ..XX vaddshs v2.03 324 Vector Add Signed Halfword Saturate VX-form
000100 01110 000000 I ..XX vaddsws v2.03 324 Vector Add Signed Word Saturate VX-form
000100 10000 000000 I ..XX vsububm v2.03 333 Vector Subtract Unsigned Byte Modulo VX-form
000100 10001 000000 I ..XX vsubuhm v2.03 333 Vector Subtract Unsigned Halfword Modulo VX-form
000100 10010 000000 I ..XX vsubuwm v2.03 334 Vector Subtract Unsigned Word Modulo VX-form
000100 10011 000000 I ..XX vsubudm v2.07 334 Vector Subtract Unsigned Doubleword Modulo VX-form
000100 10100 000000 I ..XX vsubuqm v2.07 337 Vector Subtract Unsigned Quadword Modulo VX-form

000100 10101 000000 I ..XX vsubcuq v2.07 338 Vector Subtract & write Carry-out Unsigned Quadword
VX-form

000100 10110 000000 I ..XX vsubcuw v2.03 331 Vector Subtract & Write Carry-out Unsigned Word
VX-form

000100 11000 000000 I ..XX vsububs v2.03 335 Vector Subtract Unsigned Byte Saturate VX-form
000100 11001 000000 I ..XX vsubuhs v2.03 335 Vector Subtract Unsigned Halfword Saturate VX-form
000100 11010 000000 I ..XX vsubuws v2.03 336 Vector Subtract Unsigned Word Saturate VX-form
000100 11100 000000 I ..XX vsubsbs v2.03 331 Vector Subtract Signed Byte Saturate VX-form
000100 11101 000000 I ..XX vsubshs v2.03 332 Vector Subtract Signed Halfword Saturate VX-form
000100 11110 000000 I ..XX vsubsws v2.03 332 Vector Subtract Signed Word Saturate VX-form

000100 ///// 00000 000001 I ..XX vmul10cuq v3.0 487 Vector Multiply-by-10 & write Carry-out Unsigned
Quadword VX-form

000100 00001 000001 I ..XX vmul10ecuq v3.0 488 Vector Multiply-by-10 Extended & write Carry-out
Unsigned Quadword VX-form

000100 ...// 00100 000001 I ..XX vcmpuq v3.1 401 Vector Compare Unsigned Quadword VX-form

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 1 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1385

Version 3.1
000100 ...// 00101 000001 I ..XX vcmpsq v3.1 401 Vector Compare Signed Quadword VX-form
000100 ///// 01000 000001 I ..XX vmul10uq v3.0 487 Vector Multiply-by-10 Unsigned Quadword VX-form

000100 01001 000001 I ..XX vmul10euq v3.0 488 Vector Multiply-by-10 Extended Unsigned Quadword
VX-form

000100 01101 000001 I ..XX bcdcpsgn. v3.0 489 Decimal Copy Sign VX-form
000100 1.000 000001 I ..XX bcdadd. v2.07 478 Decimal Add Modulo VX-form
000100 1.001 000001 I ..XX bcdsub. v2.07 478 Decimal Subtract Modulo VX-form
000100 1/010 000001 I ..XX bcdus. v3.0 492 Decimal Unsigned Shift VX-form
000100 1.011 000001 I ..XX bcds. v3.0 491 Decimal Shift VX-form
000100 1.100 000001 I ..XX bcdtrunc. v3.0 494 Decimal Truncate VX-form
000100 1/101 000001 I ..XX bcdutrunc. v3.0 495 Decimal Unsigned Truncate VX-form
000100 00000 1/110 000001 I ..XX bcdctsq. v3.0 486 Decimal Convert To Signed Quadword VX-form
000100 00010 1.110 000001 I ..XX bcdcfsq. v3.0 485 Decimal Convert From Signed Quadword VX-form
000100 00100 1.110 000001 I ..XX bcdctz. v3.0 484 Decimal Convert To Zoned VX-form
000100 00101 1/110 000001 I ..XX bcdctn. v3.0 483 Decimal Convert To National VX-form
000100 00110 1.110 000001 I ..XX bcdcfz. v3.0 481 Decimal Convert From Zoned VX-form
000100 00111 1.110 000001 I ..XX bcdcfn. v3.0 480 Decimal Convert From National VX-form
000100 11111 1.110 000001 I ..XX bcdsetsgn. v3.0 490 Decimal Set Sign VX-form
000100 1.111 000001 I ..XX bcdsr. v3.0 493 Decimal Shift and Round VX-form
000100 00000 000010 I ..XX vmaxub v2.03 380 Vector Maximum Unsigned Byte VX-form
000100 00001 000010 I ..XX vmaxuh v2.03 381 Vector Maximum Unsigned Halfword VX-form
000100 00010 000010 I ..XX vmaxuw v2.03 382 Vector Maximum Unsigned Word VX-form
000100 00011 000010 I ..XX vmaxud v2.07 383 Vector Maximum Unsigned Doubleword VX-form
000100 00100 000010 I ..XX vmaxsb v2.03 380 Vector Maximum Signed Byte VX-form
000100 00101 000010 I ..XX vmaxsh v2.03 381 Vector Maximum Signed Halfword VX-form
000100 00110 000010 I ..XX vmaxsw v2.03 382 Vector Maximum Signed Word VX-form
000100 00111 000010 I ..XX vmaxsd v2.07 383 Vector Maximum Signed Doubleword VX-form
000100 01000 000010 I ..XX vminub v2.03 384 Vector Minimum Unsigned Byte VX-form
000100 01001 000010 I ..XX vminuh v2.03 385 Vector Minimum Unsigned Halfword VX-form
000100 01010 000010 I ..XX vminuw v2.03 386 Vector Minimum Unsigned Word VX-form
000100 01011 000010 I ..XX vminud v2.07 387 Vector Minimum Unsigned Doubleword VX-form
000100 01100 000010 I ..XX vminsb v2.03 384 Vector Minimum Signed Byte VX-form
000100 01101 000010 I ..XX vminsh v2.03 385 Vector Minimum Signed Halfword VX-form
000100 01110 000010 I ..XX vminsw v2.03 386 Vector Minimum Signed Word VX-form
000100 01111 000010 I ..XX vminsd v2.07 387 Vector Minimum Signed Doubleword VX-form
000100 10000 000010 I ..XX vavgub v2.03 375 Vector Average Unsigned Byte VX-form
000100 10001 000010 I ..XX vavguh v2.03 376 Vector Average Unsigned Halfword VX-form
000100 10010 000010 I ..XX vavguw v2.03 377 Vector Average Unsigned Word VX-form
000100 10100 000010 I ..XX vavgsb v2.03 375 Vector Average Signed Byte VX-form
000100 10101 000010 I ..XX vavgsh v2.03 376 Vector Average Signed Halfword VX-form
000100 10110 000010 I ..XX vavgsw v2.03 377 Vector Average Signed Word VX-form

000100 00000 11000 000010 I ..XX vclzlsbb v3.0 453 Vector Count Leading Zero Least-Significant Bits Byte
VX-form

000100 00001 11000 000010 I ..XX vctzlsbb v3.0 453 Vector Count Trailing Zero Least-Significant Bits Byte
VX-form

000100 00110 11000 000010 I ..XX vnegw v3.0 371 Vector Negate Word VX-form
000100 00111 11000 000010 I ..XX vnegd v3.0 371 Vector Negate Doubleword VX-form
000100 01000 11000 000010 I ..XX vprtybw v3.0 459 Vector Parity Byte Word VX-form
000100 01001 11000 000010 I ..XX vprtybd v3.0 459 Vector Parity Byte Doubleword VX-form
000100 01010 11000 000010 I ..XX vprtybq v3.0 460 Vector Parity Byte Quadword VX-form
000100 10000 11000 000010 I ..XX vextsb2w v3.0 372 Vector Extend Sign Byte To Word VX-form
000100 10001 11000 000010 I ..XX vextsh2w v3.0 372 Vector Extend Sign Halfword To Word VX-form
000100 11000 11000 000010 I ..XX vextsb2d v3.0 373 Vector Extend Sign Byte To Doubleword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 2 of 30)
Power ISA™ Appendices1386

Version 3.1
000100 11001 11000 000010 I ..XX vextsh2d v3.0 373 Vector Extend Sign Halfword To Doubleword VX-form
000100 11010 11000 000010 I ..XX vextsw2d v3.0 372 Vector Extend Sign Word To Doubleword VX-form
000100 11011 11000 000010 I ..XX vextsd2q v3.1 374 Vector Extend Sign Doubleword to Quadword VX-form
000100 11100 11000 000010 I ..XX vctzb v3.0 450 Vector Count Trailing Zeros Byte VX-form
000100 11101 11000 000010 I ..XX vctzh v3.0 450 Vector Count Trailing Zeros Halfword VX-form
000100 11110 11000 000010 I ..XX vctzw v3.0 451 Vector Count Trailing Zeros Word VX-form
000100 11111 11000 000010 I ..XX vctzd v3.0 452 Vector Count Trailing Zeros Doubleword VX-form
000100 00000 11001 000010 I ..XX vexpandbm v3.1 466 Vector Expand Byte Mask VX-form
000100 00001 11001 000010 I ..XX vexpandhm v3.1 466 Vector Expand Halfword Mask VX-form
000100 00010 11001 000010 I ..XX vexpandwm v3.1 467 Vector Expand Word Mask VX-form
000100 00011 11001 000010 I ..XX vexpanddm v3.1 467 Vector Expand Doubleword Mask VX-form
000100 00100 11001 000010 I ..XX vexpandqm v3.1 468 Vector Expand Quadword Mask VX-form
000100 01000 11001 000010 I ..XX vextractbm v3.1 471 Vector Extract Byte Mask VX-form
000100 01001 11001 000010 I ..XX vextracthm v3.1 471 Vector Extract Halfword Mask VX-form
000100 01010 11001 000010 I ..XX vextractwm v3.1 472 Vector Extract Word Mask VX-form
000100 01011 11001 000010 I ..XX vextractdm v3.1 472 Vector Extract Doubleword Mask VX-form
000100 01100 11001 000010 I ..XX vextractqm v3.1 473 Vector Extract Quadword Mask VX-form
000100 10000 11001 000010 I ..XX mtvsrbm v3.1 463 Move to VSR Byte Mask VX-form
000100 10001 11001 000010 I ..XX mtvsrhm v3.1 463 Move to VSR Halfword Mask VX-form
000100 10010 11001 000010 I ..XX mtvsrwm v3.1 464 Move to VSR Word Mask VX-form
000100 10011 11001 000010 I ..XX mtvsrdm v3.1 464 Move to VSR Doubleword Mask VX-form
000100 10100 11001 000010 I ..XX mtvsrqm v3.1 465 Move to VSR Quadword Mask VX-form
000100 1100. 11001 000010 I ..XX vcntmbb v3.1 469 Vector Count Mask Bits Byte VX-form
000100 1101. 11001 000010 I ..XX vcntmbd v3.1 470 Vector Count Mask Bits Doubleword VX-form
000100 1110. 11001 000010 I ..XX vcntmbh v3.1 469 Vector Count Mask Bits Halfword VX-form
000100 1111. 11001 000010 I ..XX vcntmbw v3.1 470 Vector Count Mask Bits Word VX-form
000100 11010 000010 I ..XX vshasigmaw v2.07 439 Vector SHA-256 Sigma Word VX-form
000100 11011 000010 I ..XX vshasigmad v2.07 438 Vector SHA-512 Sigma Doubleword VX-form
000100 ///// 11100 000010 I ..XX vclzb v2.07 447 Vector Count Leading Zeros Byte VX-form
000100 ///// 11101 000010 I ..XX vclzh v2.07 447 Vector Count Leading Zeros Halfword VX-form
000100 ///// 11110 000010 I ..XX vclzw v2.07 448 Vector Count Leading Zeros Word VX-form
000100 ///// 11111 000010 I ..XX vclzd v2.07 449 Vector Count Leading Zeros Doubleword VX-form
000100 10000 000011 I ..XX vabsdub v3.0 378 Vector Absolute Difference Unsigned Byte VX-form
000100 10001 000011 I ..XX vabsduh v3.0 378 Vector Absolute Difference Unsigned Halfword VX-form
000100 10010 000011 I ..XX vabsduw v3.0 379 Vector Absolute Difference Unsigned Word VX-form
000100 ///// 11100 000011 I ..XX vpopcntb v2.07 457 Vector Population Count Byte VX-form
000100 ///// 11101 000011 I ..XX vpopcnth v2.07 457 Vector Population Count Halfword VX-form
000100 ///// 11110 000011 I ..XX vpopcntw v2.07 458 Vector Population Count Word VX-form
000100 ///// 11111 000011 I ..XX vpopcntd v2.07 458 Vector Population Count Doubleword VX-form
000100 00000 000100 I ..XX vrlb v2.03 404 Vector Rotate Left Byte VX-form
000100 00001 000100 I ..XX vrlh v2.03 404 Vector Rotate Left Halfword VX-form
000100 00010 000100 I ..XX vrlw v2.03 404 Vector Rotate Left Word VX-form
000100 00011 000100 I ..XX vrld v2.07 405 Vector Rotate Left Doubleword VX-form
000100 00100 000100 I ..XX vslb v2.03 413 Vector Shift Left Byte VX-form
000100 00101 000100 I ..XX vslh v2.03 413 Vector Shift Left Halfword VX-form
000100 00110 000100 I ..XX vslw v2.03 414 Vector Shift Left Word VX-form
000100 00111 000100 I ..XX vsl v2.03 300 Vector Shift Left VX-form
000100 01000 000100 I ..XX vsrb v2.03 416 Vector Shift Right Byte VX-form
000100 01001 000100 I ..XX vsrh v2.03 416 Vector Shift Right Halfword VX-form
000100 01010 000100 I ..XX vsrw v2.03 417 Vector Shift Right Word VX-form
000100 01011 000100 I ..XX vsr v2.03 300 Vector Shift Right VX-form
000100 01100 000100 I ..XX vsrab v2.03 419 Vector Shift Right Algebraic Byte VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 3 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1387

Version 3.1
000100 01101 000100 I ..XX vsrah v2.03 419 Vector Shift Right Algebraic Halfword VX-form
000100 01110 000100 I ..XX vsraw v2.03 420 Vector Shift Right Algebraic Word VX-form
000100 01111 000100 I ..XX vsrad v2.07 420 Vector Shift Right Algebraic Doubleword VX-form
000100 10000 000100 I ..XX vand v2.03 402 Vector Logical AND VX-form
000100 10001 000100 I ..XX vandc v2.03 402 Vector Logical AND with Complement VX-form
000100 10010 000100 I ..XX vor v2.03 403 Vector Logical OR VX-form
000100 10011 000100 I ..XX vxor v2.03 403 Vector Logical XOR VX-form
000100 10100 000100 I ..XX vnor v2.03 403 Vector Logical NOR VX-form
000100 10101 000100 I ..XX vorc v2.07 403 Vector Logical OR with Complement VX-form
000100 10110 000100 I ..XX vnand v2.07 403 Vector Logical NAND VX-form
000100 10111 000100 I ..XX vsld v2.07 414 Vector Shift Left Doubleword VX-form
000100 ///// ///// 11000 000100 I ..XX mfvscr v2.03 496 Move From Vector Status and Control Register VX-form
000100 ///// ///// 11001 000100 I ..XX mtvscr v2.03 496 Move To Vector Status and Control Register VX-form
000100 11010 000100 I ..XX veqv v2.07 403 Vector Logical Equivalence VX-form
000100 11011 000100 I ..XX vsrd v2.07 417 Vector Shift Right Doubleword VX-form
000100 11100 000100 I ..XX vsrv v3.0 302 Vector Shift Right Variable VX-form
000100 11101 000100 I ..XX vslv v3.0 302 Vector Shift Left Variable VX-form

000100 11110 000100 I ..XX vclzdm v3.1 449 Vector Count Leading Zeros Doubleword under bit Mask
VX-form

000100 11111 000100 I ..XX vctzdm v3.1 452 Vector Count Trailing Zeros Doubleword under bit Mask
VX-form

000100 00000 000101 I ..XX vrlq v3.1 405 Vector Rotate Left Quadword VX-form
000100 00001 000101 I ..XX vrlqmi v3.1 412 Vector Rotate Left Quadword then Mask Insert VX-form
000100 00010 000101 I ..XX vrlwmi v3.0 410 Vector Rotate Left Word then Mask Insert VX-form

000100 00011 000101 I ..XX vrldmi v3.0 411 Vector Rotate Left Doubleword then Mask Insert
VX-form

000100 00100 000101 I ..XX vslq v3.1 415 Vector Shift Left Quadword VX-form

000100 00101 000101 I ..XX vrlqnm v3.1 409 Vector Rotate Left Quadword then AND with Mask
VX-form

000100 00110 000101 I ..XX vrlwnm v3.0 407 Vector Rotate Left Word then AND with Mask VX-form

000100 00111 000101 I ..XX vrldnm v3.0 408 Vector Rotate Left Doubleword then AND with Mask
VX-form

000100 01000 000101 I ..XX vsrq v3.1 418 Vector Shift Right Quadword VX-form
000100 01100 000101 I ..XX vsraq v3.1 421 Vector Shift Right Algebraic Quadword VX-form
0001000000 000110 I ..XX vcmpequb[.] v2.03 388 Vector Compare Equal Unsigned Byte VC-form
0001000001 000110 I ..XX vcmpequh[.] v2.03 389 Vector Compare Equal Unsigned Halfword VC-form
0001000010 000110 I ..XX vcmpequw[.] v2.03 388 Vector Compare Equal Unsigned Word VC-form
0001000011 000110 I ..XX vcmpeqfp[.] v2.03 430 Vector Compare Equal Floating-Point VC-form

0001000111 000110 I ..XX vcmpgefp[.] v2.03 430 Vector Compare Greater Than or Equal Floating-Point
VC-form

0001001000 000110 I ..XX vcmpgtub[.] v2.03 393 Vector Compare Greater Than Unsigned Byte VC-form

0001001001 000110 I ..XX vcmpgtuh[.] v2.03 394 Vector Compare Greater Than Unsigned Halfword
VC-form

0001001010 000110 I ..XX vcmpgtuw[.] v2.03 395 Vector Compare Greater Than Unsigned Word VC-form
0001001011 000110 I ..XX vcmpgtfp[.] v2.03 431 Vector Compare Greater Than Floating-Point VC-form
0001001100 000110 I ..XX vcmpgtsb[.] v2.03 393 Vector Compare Greater Than Signed Byte VC-form

0001001101 000110 I ..XX vcmpgtsh[.] v2.03 394 Vector Compare Greater Than Signed Halfword
VC-form

0001001110 000110 I ..XX vcmpgtsw[.] v2.03 395 Vector Compare Greater Than Signed Word VC-form
0001001111 000110 I ..XX vcmpbfp[.] v2.03 429 Vector Compare Bounds Floating-Point VC-form
0001000000 000111 I ..XX vcmpneb[.] v3.0 398 Vector Compare Not Equal Byte VC-form
0001000001 000111 I ..XX vcmpneh[.] v3.0 399 Vector Compare Not Equal Halfword VC-form
0001000010 000111 I ..XX vcmpnew[.] v3.0 400 Vector Compare Not Equal Word VC-form
0001000011 000111 I ..XX vcmpequd[.] v2.07 391 Vector Compare Equal Unsigned Doubleword VC-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 4 of 30)
Power ISA™ Appendices1388

Version 3.1
0001000100 000111 I ..XX vcmpnezb[.] v3.0 398 Vector Compare Not Equal or Zero Byte VC-form
0001000101 000111 I ..XX vcmpnezh[.] v3.0 399 Vector Compare Not Equal or Zero Halfword VC-form
0001000110 000111 I ..XX vcmpnezw[.] v3.0 400 Vector Compare Not Equal or Zero Word VC-form
0001000111 000111 I ..XX vcmpequq[.] v3.1 392 Vector Compare Equal Quadword VC-form

0001001010 000111 I ..XX vcmpgtuq[.] v3.1 397 Vector Compare Greater Than Unsigned Quadword
VC-form

0001001011 000111 I ..XX vcmpgtud[.] v2.07 396 Vector Compare Greater Than Unsigned Doubleword
VC-form

0001001110 000111 I ..XX vcmpgtsq[.] v3.1 397 Vector Compare Greater Than Signed Quadword
VC-form

0001001111 000111 I ..XX vcmpgtsd[.] v2.07 396 Vector Compare Greater Than Signed Doubleword
VC-form

000100 00000 001000 I ..XX vmuloub v2.03 340 Vector Multiply Odd Unsigned Byte VX-form
000100 00001 001000 I ..XX vmulouh v2.03 342 Vector Multiply Odd Unsigned Halfword VX-form
000100 00010 001000 I ..XX vmulouw v2.07 344 Vector Multiply Odd Unsigned Word VX-form
000100 00011 001000 I ..XX vmuloud v3.1 345 Vector Multiply Odd Unsigned Doubleword VX-form
000100 00100 001000 I ..XX vmulosb v2.03 339 Vector Multiply Odd Signed Byte VX-form
000100 00101 001000 I ..XX vmulosh v2.03 341 Vector Multiply Odd Signed Halfword VX-form
000100 00110 001000 I ..XX vmulosw v2.07 343 Vector Multiply Odd Signed Word VX-form
000100 00111 001000 I ..XX vmulosd v3.1 346 Vector Multiply Odd Signed Doubleword VX-form
000100 01000 001000 I ..XX vmuleub v2.03 340 Vector Multiply Even Unsigned Byte VX-form
000100 01001 001000 I ..XX vmuleuh v2.03 342 Vector Multiply Even Unsigned Halfword VX-form
000100 01010 001000 I ..XX vmuleuw v2.07 344 Vector Multiply Even Unsigned Word VX-form
000100 01011 001000 I ..XX vmuleud v3.1 345 Vector Multiply Even Unsigned Doubleword VX-form
000100 01100 001000 I ..XX vmulesb v2.03 339 Vector Multiply Even Signed Byte VX-form
000100 01101 001000 I ..XX vmulesh v2.03 341 Vector Multiply Even Signed Halfword VX-form
000100 01110 001000 I ..XX vmulesw v2.07 343 Vector Multiply Even Signed Word VX-form
000100 01111 001000 I ..XX vmulesd v3.1 346 Vector Multiply Even Signed Doubleword VX-form
000100 10000 001000 I ..XX vpmsumb v2.07 440 Vector Polynomial Multiply-Sum Byte VX-form
000100 10001 001000 I ..XX vpmsumh v2.07 441 Vector Polynomial Multiply-Sum Halfword VX-form
000100 10010 001000 I ..XX vpmsumw v2.07 442 Vector Polynomial Multiply-Sum Word VX-form
000100 10011 001000 I ..XX vpmsumd v2.07 443 Vector Polynomial Multiply-Sum Doubleword VX-form
000100 10100 001000 I ..XX vcipher v2.07 435 Vector AES Cipher VX-form
000100 10101 001000 I ..XX vncipher v2.07 436 Vector AES Inverse Cipher VX-form
000100 ///// 10111 001000 I ..XX vsbox v2.07 437 Vector AES SubBytes VX-form

000100 11000 001000 I ..XX vsum4ubs v2.03 370 Vector Sum across Quarter Unsigned Byte Saturate
VX-form

000100 11001 001000 I ..XX vsum4shs v2.03 369 Vector Sum across Quarter Signed Halfword Saturate
VX-form

000100 11010 001000 I ..XX vsum2sws v2.03 368 Vector Sum across Half Signed Word Saturate VX-form

000100 11100 001000 I ..XX vsum4sbs v2.03 369 Vector Sum across Quarter Signed Byte Saturate
VX-form

000100 11110 001000 I ..XX vsumsws v2.03 367 Vector Sum across Signed Word Saturate VX-form
000100 00010 001001 I ..XX vmuluwm v2.07 347 Vector Multiply Unsigned Word Modulo VX-form
000100 00111 001001 I ..XX vmulld v3.1 350 Vector Multiply Low Doubleword VX-form
000100 01010 001001 I ..XX vmulhuw v3.1 348 Vector Multiply High Unsigned Word VX-form
000100 01011 001001 I ..XX vmulhud v3.1 349 Vector Multiply High Unsigned Doubleword VX-form
000100 01110 001001 I ..XX vmulhsw v3.1 347 Vector Multiply High Signed Word VX-form
000100 01111 001001 I ..XX vmulhsd v3.1 349 Vector Multiply High Signed Doubleword VX-form
000100 10100 001001 I ..XX vcipherlast v2.07 435 Vector AES Cipher Last VX-form
000100 10101 001001 I ..XX vncipherlast v2.07 436 Vector AES Inverse Cipher Last VX-form
000100 00000 001010 I ..XX vaddfp v2.03 422 Vector Add Floating-Point VX-form
000100 00001 001010 I ..XX vsubfp v2.03 422 Vector Subtract Floating-Point VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 5 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1389

Version 3.1
000100 ///// 00100 001010 I ..XX vrefp v2.03 434 Vector Reciprocal Estimate Floating-Point VX-form

000100 ///// 00101 001010 I ..XX vrsqrtefp v2.03 434 Vector Reciprocal Square Root Estimate Floating-Point
VX-form

000100 ///// 00110 001010 I ..XX vexptefp v2.03 432 Vector 2 Raised to the Exponent Estimate Floating-Point
VX-form

000100 ///// 00111 001010 I ..XX vlogefp v2.03 433 Vector Log Base 2 Estimate Floating-Point VX-form
000100 ///// 01000 001010 I ..XX vrfin v2.03 427 Vector Round to Floating-Point Integer Nearest VX-form

000100 ///// 01001 001010 I ..XX vrfiz v2.03 428 Vector Round to Floating-Point Integer toward Zero
VX-form

000100 ///// 01010 001010 I ..XX vrfip v2.03 428 Vector Round to Floating-Point Integer toward +Infinity
VX-form

000100 ///// 01011 001010 I ..XX vrfim v2.03 427 Vector Round to Floating-Point Integer toward -Infinity
VX-form

000100 01100 001010 I ..XX vcfux v2.03 425 Vector Convert with round to nearest From Unsigned
Word to floating-point format VX-form

000100 01101 001010 I ..XX vcfsx v2.03 425 Vector Convert with round to nearest From Signed Word
to floating-point format VX-form

000100 01110 001010 I ..XX vctuxs v2.03 426 Vector Convert with round to zero from floating-point To
Unsigned Word format Saturate VX-form

000100 01111 001010 I ..XX vctsxs v2.03 426 Vector Convert with round to zero from floating-point To
Signed Word format Saturate VX-form

000100 10000 001010 I ..XX vmaxfp v2.03 424 Vector Maximum Floating-Point VX-form
000100 10001 001010 I ..XX vminfp v2.03 424 Vector Minimum Floating-Point VX-form
000100 00000 001011 I ..XX vdivuq v3.1 362 Vector Divide Unsigned Quadword VX-form
000100 00010 001011 I ..XX vdivuw v3.1 358 Vector Divide Unsigned Word VX-form
000100 00011 001011 I ..XX vdivud v3.1 360 Vector Divide Unsigned Doubleword VX-form
000100 00100 001011 I ..XX vdivsq v3.1 362 Vector Divide Signed Quadword VX-form
000100 00110 001011 I ..XX vdivsw v3.1 358 Vector Divide Signed Word VX-form
000100 00111 001011 I ..XX vdivsd v3.1 360 Vector Divide Signed Doubleword VX-form
000100 01000 001011 I ..XX vdiveuq v3.1 363 Vector Divide Extended Unsigned Quadword VX-form
000100 01010 001011 I ..XX vdiveuw v3.1 359 Vector Divide Extended Unsigned Word VX-form
000100 01011 001011 I ..XX vdiveud v3.1 361 Vector Divide Extended Unsigned Doubleword VX-form
000100 01100 001011 I ..XX vdivesq v3.1 363 Vector Divide Extended Signed Quadword VX-form
000100 01110 001011 I ..XX vdivesw v3.1 359 Vector Divide Extended Signed Word VX-form
000100 01111 001011 I ..XX vdivesd v3.1 361 Vector Divide Extended Signed Doubleword VX-form
000100 11000 001011 I ..XX vmoduq v3.1 366 Vector Modulo Unsigned Quadword VX-form
000100 11010 001011 I ..XX vmoduw v3.1 364 Vector Modulo Unsigned Word VX-form
000100 11011 001011 I ..XX vmodud v3.1 365 Vector Modulo Unsigned Doubleword VX-form
000100 11100 001011 I ..XX vmodsq v3.1 366 Vector Modulo Signed Quadword VX-form
000100 11110 001011 I ..XX vmodsw v3.1 364 Vector Modulo Signed Word VX-form
000100 11111 001011 I ..XX vmodsd v3.1 365 Vector Modulo Signed Doubleword VX-form
000100 00000 001100 I ..XX vmrghb v2.03 289 Vector Merge High Byte VX-form
000100 00001 001100 I ..XX vmrghh v2.03 290 Vector Merge High Halfword VX-form
000100 00010 001100 I ..XX vmrghw v2.03 291 Vector Merge High Word VX-form
000100 00100 001100 I ..XX vmrglb v2.03 289 Vector Merge Low Byte VX-form
000100 00101 001100 I ..XX vmrglh v2.03 290 Vector Merge Low Halfword VX-form
000100 00110 001100 I ..XX vmrglw v2.03 291 Vector Merge Low Word VX-form
000100 /.... 01000 001100 I ..XX vspltb v2.03 293 Vector Splat Byte VX-form
000100 //... 01001 001100 I ..XX vsplth v2.03 293 Vector Splat Halfword VX-form
000100 ///.. 01010 001100 I ..XX vspltw v2.03 294 Vector Splat Word VX-form
000100 ///// 01100 001100 I ..XX vspltisb v2.03 295 Vector Splat Immediate Signed Byte VX-form
000100 ///// 01101 001100 I ..XX vspltish v2.03 295 Vector Splat Immediate Signed Halfword VX-form
000100 ///// 01110 001100 I ..XX vspltisw v2.03 295 Vector Splat Immediate Signed Word VX-form
000100 10000 001100 I ..XX vslo v2.03 301 Vector Shift Left by Octet VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 6 of 30)
Power ISA™ Appendices1390

Version 3.1
000100 10001 001100 I ..XX vsro v2.03 301 Vector Shift Right by Octet VX-form
000100 //... 10011 001100 I ..XX vgnb v3.1 446 Vector Gather every Nth Bit VX-form
000100 ///// 10100 001100 I ..XX vgbbd v2.07 445 Vector Gather Bits by Bytes by Doubleword VX-form
000100 10101 001100 I ..XX vbpermq v2.07 462 Vector Bit Permute Quadword VX-form
000100 10111 001100 I ..XX vbpermd v3.0 461 Vector Bit Permute Doubleword VX-form
000100 11010 001100 I ..XX vmrgow v2.07 292 Vector Merge Odd Word VX-form
000100 11110 001100 I ..XX vmrgew v2.07 292 Vector Merge Even Word VX-form
000100 000000000 001101 I ..XX vstribl[.] v3.1 474 Vector String Isolate Byte Left-justified VX-form
000100 000010000 001101 I ..XX vstribr[.] v3.1 475 Vector String Isolate Byte Right-justified VX-form
000100 000100000 001101 I ..XX vstrihl[.] v3.1 475 Vector String Isolate Halfword Left-justified VX-form
000100 000110000 001101 I ..XX vstrihr[.] v3.1 474 Vector String Isolate Halfword Right-justified VX-form
000100 00110 001101 I ..XX vclrlb v3.1 476 Vector Clear Leftmost Bytes VX-form
000100 00111 001101 I ..XX vclrrb v3.1 476 Vector Clear Rightmost Bytes VX-form

000100 /.... 01000 001101 I ..XX vextractub v3.0 304 Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

000100 /.... 01001 001101 I ..XX vextractuh v3.0 304 Vector Extract Unsigned Halfword to VSR using
immediate-specified index VX-form

000100 /.... 01010 001101 I ..XX vextractuw v3.0 305 Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

000100 /.... 01011 001101 I ..XX vextractd v3.0 305 Vector Extract Doubleword to VSR using
immediate-specified index VX-form

000100 /.... 01100 001101 I ..XX vinsertb v3.0 313 Vector Insert Byte from VSR using immediate-specified
index VX-form

000100 /.... 01101 001101 I ..XX vinserth v3.0 313 Vector Insert Halfword from VSR using
immediate-specified index VX-form

000100 /.... 01110 001101 I ..XX vinsertw v3.0 314 Vector Insert Word from VSR using immediate-specified
index VX-form

000100 /.... 01111 001101 I ..XX vinsertd v3.0 314 Vector Insert Doubleword from VSR using
immediate-specified index VX-form

000100 10101 001101 I ..XX vcfuged v3.1 456 Vector Centrifuge Doubleword VX-form
000100 10110 001101 I ..XX vpextd v3.1 455 Vector Parallel Bits Extract Doubleword VX-form
000100 10111 001101 I ..XX vpdepd v3.1 454 Vector Parallel Bits Deposit Doubleword VX-form

000100 11000 001101 I ..XX vextublx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

000100 11001 001101 I ..XX vextuhlx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Left-Index VX-form

000100 11010 001101 I ..XX vextuwlx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

000100 11100 001101 I ..XX vextubrx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

000100 11101 001101 I ..XX vextuhrx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Right-Index VX-form

000100 11110 001101 I ..XX vextuwrx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

000100 00000 001110 I ..XX vpkuhum v2.03 282 Vector Pack Unsigned Halfword Unsigned Modulo
VX-form

000100 00001 001110 I ..XX vpkuwum v2.03 283 Vector Pack Unsigned Word Unsigned Modulo VX-form

000100 00010 001110 I ..XX vpkuhus v2.03 282 Vector Pack Unsigned Halfword Unsigned Saturate
VX-form

000100 00011 001110 I ..XX vpkuwus v2.03 283 Vector Pack Unsigned Word Unsigned Saturate
VX-form

000100 00100 001110 I ..XX vpkshus v2.03 279 Vector Pack Signed Halfword Unsigned Saturate
VX-form

000100 00101 001110 I ..XX vpkswus v2.03 280 Vector Pack Signed Word Unsigned Saturate VX-form
000100 00110 001110 I ..XX vpkshss v2.03 279 Vector Pack Signed Halfword Signed Saturate VX-form
000100 00111 001110 I ..XX vpkswss v2.03 280 Vector Pack Signed Word Signed Saturate VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 7 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1391

Version 3.1
000100 ///// 01000 001110 I ..XX vupkhsb v2.03 285 Vector Unpack High Signed Byte VX-form
000100 ///// 01001 001110 I ..XX vupkhsh v2.03 286 Vector Unpack High Signed Halfword VX-form
000100 ///// 01010 001110 I ..XX vupklsb v2.03 285 Vector Unpack Low Signed Byte VX-form
000100 ///// 01011 001110 I ..XX vupklsh v2.03 286 Vector Unpack Low Signed Halfword VX-form
000100 01100 001110 I ..XX vpkpx v2.03 278 Vector Pack Pixel VX-form
000100 ///// 01101 001110 I ..XX vupkhpx v2.03 288 Vector Unpack High Pixel VX-form
000100 ///// 01111 001110 I ..XX vupklpx v2.03 288 Vector Unpack Low Pixel VX-form

000100 10001 001110 I ..XX vpkudum v2.07 284 Vector Pack Unsigned Doubleword Unsigned Modulo
VX-form

000100 10011 001110 I ..XX vpkudus v2.07 284 Vector Pack Unsigned Doubleword Unsigned Saturate
VX-form

000100 10101 001110 I ..XX vpksdus v2.07 281 Vector Pack Signed Doubleword Unsigned Saturate
VX-form

000100 10111 001110 I ..XX vpksdss v2.07 281 Vector Pack Signed Doubleword Signed Saturate
VX-form

000100 ///// 11001 001110 I ..XX vupkhsw v2.07 287 Vector Unpack High Signed Word VX-form
000100 ///// 11011 001110 I ..XX vupklsw v2.07 287 Vector Unpack Low Signed Word VX-form

000100 00000 001111 I ..XX vinsbvlx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Left-Index VX-form

000100 00001 001111 I ..XX vinshvlx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Left-Index VX-form

000100 00010 001111 I ..XX vinswvlx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 /.... 00011 001111 I ..XX vinsw v3.1 319 Vector Insert Word from GPR using immediate-specified
index VX-form

000100 00100 001111 I ..XX vinsbvrx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Right-Index VX-form

000100 00101 001111 I ..XX vinshvrx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Right-Index VX-form

000100 00110 001111 I ..XX vinswvrx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 /.... 00111 001111 I ..XX vinsd v3.1 319 Vector Insert Doubleword from GPR using
immediate-specified index VX-form

000100 01000 001111 I ..XX vinsblx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Left-Index VX-form

000100 01001 001111 I ..XX vinshlx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Left-Index VX-form

000100 01010 001111 I ..XX vinswlx v3.1 317 Vector Insert Word from GPR using GPR-specified
Left-Index VX-form

000100 01011 001111 I ..XX vinsdlx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

000100 01100 001111 I ..XX vinsbrx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Right-Index VX-form

000100 01101 001111 I ..XX vinshrx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Right-Index VX-form

000100 01110 001111 I ..XX vinswrx v3.1 317 Vector Insert Word from GPR using GPR-specified
Right-Index VX-form

000100 01111 001111 I ..XX vinsdrx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

000100 01010. I ..XX mtvsrbmi v3.1 465 Move To VSR Byte Mask Immediate DX-form
000100 00... 010110 I ..XX vsldbi v3.1 298 Vector Shift Left Double by Bit Immediate VN-form
000100 01... 010110 I ..XX vsrdbi v3.1 299 Vector Shift Right Double by Bit Immediate VN-form

000100 010111 I ..XX vmsumcud v3.1 357 Vector Multiply-Sum & write Carry-out Unsigned
Doubleword VA-form

000100 011000 I ..XX vextdubvlx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Left-Index VA-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 8 of 30)
Power ISA™ Appendices1392

Version 3.1
000100 011001 I ..XX vextdubvrx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Right-Index VA-form

000100 011010 I ..XX vextduhvlx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Left-Index VA-form

000100 011011 I ..XX vextduhvrx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Right-Index VA-form

000100 011100 I ..XX vextduwvlx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Left-Index VA-form

000100 011101 I ..XX vextduwvrx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Right-Index VA-form

000100 011110 I ..XX vextddvlx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Left-Index VA-form

000100 011111 I ..XX vextddvrx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Right-Index VA-form

000100 100000 I ..XX vmhaddshs v2.03 351 Vector Multiply-High-Add Signed Halfword Saturate
VA-form

000100 100001 I ..XX vmhraddshs v2.03 351 Vector Multiply-High-Round-Add Signed Halfword
Saturate VA-form

000100 100010 I ..XX vmladduhm v2.03 352 Vector Multiply-Low-Add Unsigned Halfword Modulo
VA-form

000100 100011 I ..XX vmsumudm v3.0B 356 Vector Multiply-Sum Unsigned Doubleword Modulo
VA-form

000100 100100 I ..XX vmsumubm v2.03 352 Vector Multiply-Sum Unsigned Byte Modulo VA-form
000100 100101 I ..XX vmsummbm v2.03 353 Vector Multiply-Sum Mixed Byte Modulo VA-form

000100 100110 I ..XX vmsumuhm v2.03 354 Vector Multiply-Sum Unsigned Halfword Modulo
VA-form

000100 100111 I ..XX vmsumuhs v2.03 355 Vector Multiply-Sum Unsigned Halfword Saturate
VA-form

000100 101000 I ..XX vmsumshm v2.03 353 Vector Multiply-Sum Signed Halfword Modulo VA-form
000100 101001 I ..XX vmsumshs v2.03 354 Vector Multiply-Sum Signed Halfword Saturate VA-form
000100 101010 I ..XX vsel v2.03 297 Vector Select VA-form
000100 101011 I ..XX vperm v2.03 296 Vector Permute VA-form
000100 /.... 101100 I ..XX vsldoi v2.03 298 Vector Shift Left Double by Octet Immediate VA-form
000100 101101 I ..XX vpermxor v2.07 444 Vector Permute & Exclusive-OR VA-form
000100 101110 I ..XX vmaddfp v2.03 423 Vector Multiply-Add Floating-Point VA-form

000100 101111 I ..XX vnmsubfp v2.03 423 Vector Negative Multiply-Subtract Floating-Point
VA-form

000100 110000 I ..XX maddhd v3.0 88 Multiply-Add High Doubleword VA-form
000100 110001 I ..XX maddhdu v3.0 88 Multiply-Add High Doubleword Unsigned VA-form
000100 110011 I ..XX maddld v3.0 88 Multiply-Add Low Doubleword VA-form
000100 111011 I ..XX vpermr v3.0 296 Vector Permute Right-indexed VA-form

000100 111100 I ..XX vaddeuqm v2.07 329 Vector Add Extended Unsigned Quadword Modulo
VA-form

000100 111101 I ..XX vaddecuq v2.07 330 Vector Add Extended & write Carry Unsigned Quadword
VA-form

000100 111110 I ..XX vsubeuqm v2.07 337 Vector Subtract Extended Unsigned Quadword Modulo
VA-form

000100 111111 I ..XX vsubecuq v2.07 338 Vector Subtract Extended & write Carry-out Unsigned
Quadword VA-form

0001100000 I ..XX lxvp v3.1 625 Load VSX Vector Paired DQ-form
0001100001 I ..XX stxvp v3.1 654 Store VSX Vector Paired DQ-form
000111 I XXXX mulli P1 81 Multiply Low Immediate D-form
001000 I XXXX subfic P1 SR 77 Subtract From Immediate Carrying D-form
001010 .../. I XXXX cmpli P1 93 Compare Logical Immediate D-form
001011 .../. I XXXX cmpi P1 93 Compare Immediate D-form
001100 I XXXX addic P1 SR 77 Add Immediate Carrying D-formy

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 9 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1393

Version 3.1
001101 I XXXX addic. P1 SR 77 Add Immediate Carrying and Record D-form
001110 I XXXX addi P1 76 Add Immediate D-form
000001 100// .//..
001110

I ..XX paddi v3.1 76 Prefixed Add Immediate MLS:D-form

001111 I XXXX addis P1 76 Add Immediate Shifted D-form
010000 I XXXX bc[l][a] P1 CT 41 Branch Conditional B-form
010001 ///// ///// ////.///01 I XXXX scv v3.0 47 System Call Vectored SC-form
010001 ///// ///// ////.///1/ I XXXX sc PPC 47 System Call SC-form
010010 I XXXX b[l][a] P1 41 Branch I-form
010011 ...// ...// ///// 00000 00000/ I XXXX mcrf P1 46 Move Condition Register Field XL-form
010011 00001 00001/ I XXXX crnor P1 45 Condition Register NOR XL-form
010011 00100 00001/ I XXXX crandc P1 45 Condition Register AND with Complement XL-form
010011 00110 00001/ I XXXX crxor P1 44 Condition Register XOR XL-form
010011 00111 00001/ I XXXX crnand P1 44 Condition Register NAND XL-form
010011 01000 00001/ I XXXX crand P1 44 Condition Register AND XL-form
010011 01001 00001/ I XXXX creqv P1 45 Condition Register Equivalent XL-form
010011 01101 00001/ I XXXX crorc P1 45 Condition Register OR with Complement XL-form
010011 01110 00001/ I XXXX cror P1 44 Condition Register OR XL-form
010011 00010. I XXXX addpcis v3.0 76 Add PC Immediate Shifted DX-form
010011 ///.. 00000 10000. I XXXX bclr[l] P1 CT 42 Branch Conditional to Link Register XL-form
010011 ///.. 10000 10000. I XXXX bcctr[l] P1 CT 42 Branch Conditional to Count Register XL-form

010011 ///.. 10001 10000. I XXXX bctar[l] v2.07 43 Branch Conditional to Branch Target Address Register
XL-form

010011 ///// ///// ///// 00000 10010/ III ..XX rfid PPC P 1152 Return from Interrupt Doubleword XL-form
010011 ///// ///// ///// 00010 10010/ III ..XX rfscv v3.0 P 1151 Return From System Call Vectored XL-form
010011 ///// ///// ////. 00100 10010/ I ...X EBB rfebb v2.07 Return from Event Based Branch XL-form
010011 ///// ///// ///// 01000 10010/ III ...X hrfid v2.02 HV 1152 Return From Interrupt Doubleword Hypervisor XL-form
010011 ///// ///// ///// 01001 10010/ III ..?X urfid v3.0C UV 1153 Ultravisor Return From Interrupt Doubleword XL-form
010011 ///// ///// ///// 01011 10010/ III ...X stop v3.0 P 1155 Stop XL-form
010011 ///// ///// ///// 00100 10110/ II ...X isync P1 1076 Instruction Synchronize XL-form
010100 I XXXX rlwimi[.] P1 SR 108 Rotate Left Word Immediate then Mask Insert M-form

010101 I XXXX rlwinm[.] P1 SR 107 Rotate Left Word Immediate then AND with Mask
M-form

010111 I XXXX rlwnm[.] P1 SR 108 Rotate Left Word then AND with Mask M-form
011000 I XXXX ori P1 99 OR Immediate D-form
011001 I XXXX oris P1 100 OR Immediate Shifted D-form
011010 I XXXX xori P1 100 XOR Immediate D-form
011011 I XXXX xoris P1 100 XOR Immediate Shifted D-form
011100 I XXXX andi. P1 SR 99 AND Immediate D-form
011101 I XXXX andis. P1 SR 99 AND Immediate Shifted D-form

011110000.. I ..XX rldicl[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Left
MD-form

011110001.. I ..XX rldicr[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Right
MD-form

011110010.. I ..XX rldic[.] PPC SR 111 Rotate Left Doubleword Immediate then Clear MD-form

011110011.. I ..XX rldimi[.] PPC SR 112 Rotate Left Doubleword Immediate then Mask Insert
MD-form

0111101000. I ..XX rldcl[.] PPC SR 111 Rotate Left Doubleword then Clear Left MDS-form
0111101001. I ..XX rldcr[.] PPC SR 112 Rotate Left Doubleword then Clear Right MDS-form
011111 .../. 00000 00000/ I XXXX cmp P1 93 Compare X-form
011111 .../. 00001 00000/ I XXXX cmpl P1 93 Compare Logical X-form
011111// ///// 00100 00000/ I XXXX setb v3.0 129 Set Boolean X-form
011111 .../. 00110 00000/ I XXXX cmprb v3.0 94 Compare Ranged Byte X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 10 of 30)
Power ISA™ Appendices1394

Version 3.1
011111 ...// 00111 00000/ I XXXX cmpeqb v3.0 95 Compare Equal Byte X-form
011111 ///// 01100 00000/ I XXXX setbc v3.1 129 Set Boolean Condition X-form
011111 ///// 01101 00000/ I XXXX setbcr v3.1 129 Set Boolean Condition Reverse X-form
011111 ///// 01110 00000/ I XXXX setnbc v3.1 129 Set Negative Boolean Condition X-form
011111 ///// 01111 00000/ I XXXX setnbcr v3.1 129 Set Negative Boolean Condition Reverse X-form
011111 ...// ///// ///// 10010 00000/ I XXXX mcrxrx v3.0 127 Move to CR from XER Extended X-form
011111 00000 00100/ I XXXX tw P1 97 Trap Word X-form
011111 00010 00100/ I ..XX td PPC 98 Trap Doubleword X-form
011111 00000 00110/ I ..XX lvsl v2.03 277 Load Vector for Shift Left Indexed X-form
011111 00001 00110/ I ..XX lvsr v2.03 277 Load Vector for Shift Right Indexed X-form
011111 10010 00110/ II ...X AMO lwat v3.0 1073 Load Word ATomic X-form
011111 10011 00110/ II ...X AMO ldat v3.0 1073 Load Doubleword ATomic X-form
011111 10110 00110/ II ...X AMO stwat v3.0 1075 Store Word ATomic X-form
011111 10111 00110/ II ...X AMO stdat v3.0 1075 Store Doubleword ATomic X-form
011111 ////. 11000 00110/ II ...X copy v3.0 1068 Copy X-form
011111 ///// ///// ///// 11010 00110/ II ...X cpabort v3.0 1069 Copy-Paste Abort X-form
011111 ////. 11100 00110. II ..XX paste[.] v3.0 1068 Paste X-form
011111 00000 00111/ I ..XX lvebx v2.03 268 Load Vector Element Byte Indexed X-form
011111 00001 00111/ I ..XX lvehx v2.03 269 Load Vector Element Halfword Indexed X-form
011111 00010 00111/ I ..XX lvewx v2.03 270 Load Vector Element Word Indexed X-form
011111 00011 00111/ I ..XX lvx v2.03 271 Load Vector Indexed X-form
011111 00100 00111/ I ..XX stvebx v2.03 272 Store Vector Element Byte Indexed X-form
011111 00101 00111/ I ..XX stvehx v2.03 273 Store Vector Element Halfword Indexed X-form
011111 00110 00111/ I ..XX stvewx v2.03 274 Store Vector Element Word Indexed X-form
011111 00111 00111/ I ..XX stvx v2.03 275 Store Vector Indexed X-form
011111 01011 00111/ I ..XX lvxl v2.03 271 Load Vector Indexed Last X-form
011111 01111 00111/ I ..XX stvxl v2.03 275 Store Vector Indexed Last X-form
011111 00000 01000. I XXXX subfc[.] P1 SR 78 Subtract From Carrying XO-form
011111 00001 01000. I XXXX subf[.] PPC SR 77 Subtract From XO-form
011111 ///// 00011 01000. I XXXX neg[.] P1 SR 80 Negate XO-form
011111 00100 01000. I XXXX subfe[.] P1 SR 78 Subtract From Extended XO-form
011111 ///// 00110 01000. I XXXX subfze[.] P1 SR 78 Subtract From Zero Extended XO-form
011111 ///// 00111 01000. I XXXX subfme[.] P1 SR 79 Subtract From Minus One Extended XO-form
011111 10000 01000. I ..XX subfco[.] P1 SR 78 Subtract From Carrying & record OV XO-form
011111 10001 01000. I ..XX subfo[.] PPC SR 77 Subtract From & record OV XO-form
011111 ///// 10011 01000. I ..XX nego[.] P1 SR 80 Negate & record OV XO-form
011111 10100 01000. I ..XX subfeo[.] P1 SR 78 Subtract From Extended & record OV XO-form
011111 ///// 10110 01000. I ..XX subfzeo[.] P1 SR 78 Subtract From Zero Extended & record OV XO-form

011111 ///// 10111 01000. I ..XX subfmeo[.] P1 SR 79 Subtract From Minus One Extended & record OV
XO-form

011111 /0000 01001. I ..XX mulhdu[.] PPC SR 87 Multiply High Doubleword Unsigned XO-form
011111 /0010 01001. I ..XX mulhd[.] PPC SR 87 Multiply High Doubleword XO-form
011111 00111 01001. I ..XX mulld[.] PPC SR 87 Multiply Low Doubleword XO-form
011111 01000 01001/ I ..XX modud v3.0 91 Modulo Unsigned Doubleword X-form
011111 01100 01001. I ..XX divdeu[.] v2.06 SR 90 Divide Doubleword Extended Unsigned XO-form
011111 01101 01001. I ..XX divde[.] v2.06 SR 90 Divide Doubleword Extended XO-form
011111 01110 01001. I ..XX divdu[.] PPC SR 89 Divide Doubleword Unsigned XO-form
011111 01111 01001. I ..XX divd[.] PPC SR 89 Divide Doubleword XO-form
011111 10111 01001. I ..XX mulldo[.] PPC SR 87 Multiply Low Doubleword & record OV XO-form
011111 11000 01001/ I ..XX modsd v3.0 91 Modulo Signed Doubleword X-form

011111 11100 01001. I ..XX divdeuo[.] v2.06 SR 90 Divide Doubleword Extended Unsigned & record OV
XO-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 11 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1395

Version 3.1
011111 11101 01001. I ..XX divdeo[.] v2.06 SR 90 Divide Doubleword Extended & record OV XO-form
011111 11110 01001. I ..XX divduo[.] PPC SR 89 Divide Doubleword Unsigned & record OV XO-form
011111 11111 01001. I ..XX divdo[.] PPC SR 89 Divide Doubleword & record OV XO-form
011111101 01010/ I XXXX addex v3.0B 80 Add Extended using alternate carry bit Z23-form
011111 /0010 01010/ I XXXX addg6s v2.06 118 Add and Generate Sixes XO-form
011111 00000 01010. I XXXX addc[.] P1 SR 78 Add Carrying XO-form
011111 00100 01010. I XXXX adde[.] P1 SR 78 Add Extended XO-form
011111 ///// 00110 01010. I XXXX addze[.] P1 SR 79 Add to Zero Extended XO-form
011111 ///// 00111 01010. I XXXX addme[.] P1 SR 79 Add to Minus One Extended XO-form
011111 01000 01010. I XXXX add[.] P1 SR 77 Add XO-form
011111 10000 01010. I ..XX addco[.] P1 SR 78 Add Carrying & record OV XO-form
011111 10100 01010. I ..XX addeo[.] P1 SR 78 Add Extended & record OV XO-form
011111 ///// 10110 01010. I ..XX addzeo[.] P1 SR 79 Add to Zero Extended & record OV XO-form
011111 ///// 10111 01010. I ..XX addmeo[.] P1 SR 79 Add to Minus One Extended & record OV XO-form
011111 11000 01010. I ..XX addo[.] P1 SR 77 Add & record OV XO-form
011111 /0000 01011. I XXXX mulhwu[.] PPC SR 81 Multiply High Word Unsigned XO-form
011111 /0010 01011. I XXXX mulhw[.] PPC SR 81 Multiply High Word XO-form
011111 00111 01011. I XXXX mullw[.] P1 SR 81 Multiply Low Word XO-form
011111 01000 01011/ I XXXX moduw v3.0 85 Modulo Unsigned Word X-form
011111 01100 01011. I XXXX divweu[.] v2.06 SR 83 Divide Word Extended Unsigned XO-form
011111 01101 01011. I XXXX divwe[.] v2.06 SR 83 Divide Word Extended XO-form
011111 01110 01011. I XXXX divwu[.] PPC SR 82 Divide Word Unsigned XO-form
011111 01111 01011. I XXXX divw[.] PPC SR 82 Divide Word XO-form
011111 10111 01011. I ..XX mullwo[.] P1 SR 81 Multiply Low Word & record OV XO-form
011111 11000 01011/ I XXXX modsw v3.0 85 Modulo Signed Word X-form
011111 11100 01011. I ..XX divweuo[.] v2.06 SR 83 Divide Word Extended Unsigned & record OV XO-form
011111 11101 01011. I ..XX divweo[.] v2.06 SR 83 Divide Word Extended & record OV XO-form
011111 11110 01011. I ..XX divwuo[.] PPC SR 82 Divide Word Unsigned & record OV XO-form
011111 11111 01011. I ..XX divwo[.] PPC SR 82 Divide Word & record OV XO-form

011111 00000 01100. I ..XX lxsiwzx v2.07 614 Load VSX Scalar as Integer Word & Zero Indexed
X-form

011111 00010 01100. I ..XX lxsiwax v2.07 613 Load VSX Scalar as Integer Word Algebraic Indexed
X-form

011111 00100 01100. I ..XX stxsiwx v2.07 641 Store VSX Scalar as Integer Word Indexed X-form
011111 0100/ 01100. I ..XX lxvx v3.0 631 Load VSX Vector Indexed X-form
011111 01010 01100. I ..XX lxvdsx v2.06 633 Load VSX Vector Doubleword & Splat Indexed X-form
011111 01011 01100. I ..XX lxvwsx v3.0 636 Load VSX Vector Word & Splat Indexed X-form
011111 01100 01100. I ..XX stxvx v3.0 656 Store VSX Vector Indexed X-form
011111 10000 01100. I ..XX lxsspx v2.07 616 Load VSX Scalar Single-Precision Indexed X-form
011111 10010 01100. I ..XX lxsdx v2.06 611 Load VSX Scalar Doubleword Indexed X-form
011111 10100 01100. I ..XX stxsspx v2.07 643 Store VSX Scalar Single-Precision Indexed X-form
011111 10110 01100. I ..XX stxsdx v2.06 639 Store VSX Scalar Doubleword Indexed X-form
011111 11000 01100. I ..XX lxvw4x v2.06 635 Load VSX Vector Word*4 Indexed X-form
011111 11001 01100. I ..XX lxvh8x v3.0 634 Load VSX Vector Halfword*8 Indexed X-form
011111 11010 01100. I ..XX lxvd2x v2.06 619 Load VSX Vector Doubleword*2 Indexed X-form
011111 11011 01100. I ..XX lxvb16x v3.0 618 Load VSX Vector Byte*16 Indexed X-form
011111 11100 01100. I ..XX stxvw4x v2.06 653 Store VSX Vector Word*4 Indexed X-form
011111 11101 01100. I ..XX stxvh8x v3.0 647 Store VSX Vector Halfword*8 Indexed X-form
011111 11110 01100. I ..XX stxvd2x v2.06 646 Store VSX Vector Doubleword*2 Indexed X-form
011111 11111 01100. I ..XX stxvb16x v3.0 645 Store VSX Vector Byte*16 Indexed X-form
011111 00000 01101. I ..XX lxvrbx v3.1 627 Load VSX Vector Rightmost Byte Indexed X-form
011111 00001 01101. I ..XX lxvrhx v3.1 629 Load VSX Vector Rightmost Halfword Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 12 of 30)
Power ISA™ Appendices1396

Version 3.1
011111 00010 01101. I ..XX lxvrwx v3.1 630 Load VSX Vector Rightmost Word Indexed X-form

011111 00011 01101. I ..XX lxvrdx v3.1 628 Load VSX Vector Rightmost Doubleword Indexed
X-form

011111 00100 01101. I ..XX stxvrbx v3.1 651 Store VSX Vector Rightmost Byte Indexed X-form
011111 00101 01101. I ..XX stxvrhx v3.1 652 Store VSX Vector Rightmost Halfword Indexed X-form
011111 00110 01101. I ..XX stxvrwx v3.1 652 Store VSX Vector Rightmost Word Indexed X-form

011111 00111 01101. I ..XX stxvrdx v3.1 651 Store VSX Vector Rightmost Doubleword Indexed
X-form

011111 01000 01101. I ..XX lxvl v3.0 621 Load VSX Vector with Length X-form
011111 01001 01101. I ..XX lxvll v3.0 623 Load VSX Vector with Length Left-justified X-form
011111 01010 01101/ I ..XX lxvpx v3.1 626 Load VSX Vector Paired Indexed X-form
011111 01100 01101. I ..XX stxvl v3.0 648 Store VSX Vector with Length X-form
011111 01101 01101. I ..XX stxvll v3.0 650 Store VSX Vector with Length Left-justified X-form
011111 01110 01101/ I ..XX stxvpx v3.1 655 Store VSX Vector Paired Indexed X-form
011111 11000 01101. I ..XX lxsibzx v3.0 612 Load VSX Scalar as Integer Byte & Zero Indexed X-form

011111 11001 01101. I ..XX lxsihzx v3.0 612 Load VSX Scalar as Integer Halfword & Zero Indexed
X-form

011111 11100 01101. I ..XX stxsibx v3.0 640 Store VSX Scalar as Integer Byte Indexed X-form
011111 11101 01101. I ..XX stxsihx v3.0 640 Store VSX Scalar as Integer Halfword Indexed X-form
011111 ///// ///// 00010 01110/ III ..?X msgsndu v3.0C UV 1327 Ultravisor Message SendX-form
011111 ///// ///// 00011 01110/ III ..?X msgclru v3.0C UV 1328 Ultravisor Message Clear X-form
011111 ///// ///// 00100 01110/ III ...X msgsndp v2.07 P 1330 Message Send Privileged X-form
011111 ///// ///// 00101 01110/ III ...X msgclrp v2.07 P 1331 Message Clear Privileged X-form
011111 ///// ///// 00110 01110/ III ...X msgsnd v2.07 HV 1328 Message Send X-form
011111 ///// ///// 00111 01110/ III ...X msgclr v2.07 HV 1329 Message Clear X-form
011111 01001 01110/ I ...X BHRB mfbhrbe v2.07 Move From BHRB XFX-form
011111 ///// ///// ///// 01101 01110/ I ...X BHRB clrbhrb v2.07 Clear BHRB X-form
011111 01111/ I ...X isel v2.03 98 Integer Select A-form
011111 0..../ 00100 10000/ I XXXX mtcrf P1 127 Move To Condition Register Fields XFX-form
011111 1..../ 00100 10000/ I XXXX mtocrf v2.01 127 Move To One Condition Register Field XFX-form
011111 ...// 00000 ///// 00101 10001/ I MMA MMA xxmfacc v3.1 983 VSX Move From Accumulator X-form
011111 ...// 00001 ///// 00101 10001/ I MMA MMA xxmtacc v3.1 984 VSX Move To Accumulator X-form
011111 ...// 00011 ///// 00101 10001/ I MMA MMA xxsetaccz v3.1 989 VSX Set Accumulator to Zero X-form
011111 ////. ///// 00100 10010/ III XXXX mtmsr P1 P 1174 Move To MSR X-form
011111 ////. ///// 00101 10010/ III ...X mtmsrd PPC P 1175 Move To MSR Doubleword X-form
011111 /.... 01000 10010/ III ...X tlbiel v2.03 P 64 1236 TLB Invalidate Entry Local X-form
011111 /.... 01001 10010/ III ...X tlbie P1 HV 64 1231 TLB Invalidate Entry X-form
011111 ///// ///// ///// 01010 10010/ III ...X slbsync v3.0 P 1230 SLB Synchronize X-form
011111 ///// 01100 10010/ III ...X slbmte v2.00 P 1227 SLB Move To Entry X-form
011111 ///// ///// 01101 10010/ III ...X slbie PPC P 1221 SLB Invalidate Entry X-form
011111 ///// 01110 10010/ III ...X slbieg v3.0 P 1222 SLB Invalidate Entry Global X-form
011111 //... ///// ///// 01111 10010/ III ...X slbia PPC P 1224 SLB Invalidate All X-form
011111 ///// 11010 10010/ III ...X slbiag v3.0B P 1226 SLB Invalidate All Global X-form
011111 0//// ///// 00000 10011/ I XXXX mfcr P1 128 Move From Condition Register XFX-form
011111 1..../ 00000 10011/ I XXXX mfocrf v2.01 128 Move From One Condition Register Field XFX-form
011111 ///// 00001 10011. I ..XX mfvsrd v2.07 120 Move From VSR Doubleword X-form
011111 ///// ///// 00010 10011/ III XXXX mfmsr P1 P 1176 Move From MSR X-form
011111 ///// 00011 10011. I ..XX mfvsrwz v2.07 121 Move From VSR Word and Zero X-form
011111 ///// 00101 10011. I ..XX mtvsrd v2.07 121 Move To VSR Doubleword X-form
011111 ///// 00110 10011. I ..XX mtvsrwa v2.07 122 Move To VSR Word Algebraic X-form
011111 ///// 00111 10011. I ..XX mtvsrwz v2.07 122 Move To VSR Word and Zero X-form
011111 ///// 01001 10011. I ..XX mfvsrld v3.0 120 Move From VSR Lower Doubleword X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 13 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1397

Version 3.1
011111 01010 10011/
I
III

XXXX mfspr P1 O 126
1173 Move From Special Purpose Register XFX-form

011111 01011 10011/ II XXXX mftb PPC 1094 Move From Time Base XFX-form
011111 ///// 01100 10011. I ..XX mtvsrws v3.0 123 Move To VSR Word & Splat X-form
011111 01101 10011. I ..XX mtvsrdd v3.0 123 Move To VSR Double Doubleword X-form

011111 01110 10011/
I
III

XXXX mtspr P1 O 124
1171 Move To Special Purpose Register XFX-form

011111 ///.. ///// 10111 10011/ I ...X darn v3.0 86 Deliver A Random Number X-form
011111 ///// 11010 10011/ III ...X slbmfev v2.00 P 1228 SLB Move From Entry VSID X-form
011111 ///// 11100 10011/ III ...X slbmfee v2.00 P 1229 SLB Move From Entry ESID X-form
011111 ///// 11110 100111 III ...X slbfee. v2.05 P SR 1229 SLB Find Entry ESID X-form
011111 00000 10100/ II ..XX lwarx PPC 1078 Load Word & Reserve Indexed X-form
011111 00001 10100. II ...X lbarx v2.06 1077 Load Byte And Reserve Indexed X-form
011111 00010 10100/ II ..XX ldarx PPC 1082 Load Doubleword And Reserve Indexed X-form
011111 00011 10100. II ...X lharx v2.06 1078 Load Halfword And Reserve Indexed Xform
011111 01000 10100. I ..XX lqarx v2.07 Load Quadword And Reserve Indexed X-form
011111 10000 10100/ I ..XX ldbrx v2.06 69 Load Doubleword Byte-Reverse Indexed X-form
011111 10100 10100/ I ..XX stdbrx v2.06 69 Store Doubleword Byte-Reverse Indexed X-form
011111 00000 10101/ I ..XX ldx PPC 57 Load Doubleword Indexed X-form
011111 00001 10101/ I ..XX ldux PPC 57 Load Doubleword with Update Indexed X-form
011111 00100 10101/ I ..XX stdx PPC 62 Store Doubleword Indexed X-form
011111 00101 10101/ I ..XX stdux PPC 63 Store Doubleword with Update Indexed X-form
011111 01010 10101/ I ..XX lwax PPC 56 Load Word Algebraic Indexed X-form
011111 01011 10101/ I ..XX lwaux PPC 56 Load Word Algebraic with Update Indexed X-form
011111 10000 10101/ I ...X lswx P1 72 Load String Word Indexed X-form
011111 10010 10101/ I ...X lswi P1 72 Load String Word Immediate X-form
011111 10100 10101/ I ...X stswx P1 73 Store String Word Indexed X-form
011111 10110 10101/ I ...X stswi P1 73 Store String Word Immediate X-form
011111 11000 10101/ III ...X lwzcix v2.05 HV 1164 Load Word & Zero Caching Inhibited Indexed X-form
011111 11001 10101/ III ...X lhzcix v2.05 HV 1164 Load Halfword & Zero Caching Inhibited Indexed X-form
011111 11010 10101/ III ...X lbzcix v2.05 HV 1164 Load Byte & Zero Caching Inhibited Indexed X-form
011111 11011 10101/ III ...X ldcix v2.05 HV 1164 Load Doubleword Caching Inhibited Indexed X-form
011111 11100 10101/ III ...X stwcix v2.05 HV 1165 Store Word Caching Inhibited Indexed X-form
011111 11101 10101/ III ...X sthcix v2.05 HV 1165 Store Halfword Caching Inhibited Indexed X-form
011111 11110 10101/ III ...X stbcix v2.05 HV 1165 Store Byte Caching Inhibited Indexed X-form
011111 11111 10101/ III ...X stdcix v2.05 HV 1165 Store Doubleword Caching Inhibited Indexed X-form
011111 /.... 00000 10110/ II ...X icbt v2.07 1052 Instruction Cache Block Touch X-form
011111 ///// 00001 10110/ II ...X dcbst PPC 1063 Data Cache Block Store X-form
011111 ///.. 00010 10110/ II ...X dcbf PPC 1064 Data Cache Block Flush X-form
011111 00111 10110/ II ...X dcbtst PPC 1062 Data Cache Block Touch for Store X-form
011111 01000 10110/ II ...X dcbt PPC 1061 Data Cache Block Touch X-form
011111 10000 10110/ I XXXX lwbrx P1 68 Load Word Byte-Reverse Indexed X-form
011111 ///// ///// ///// 10001 10110/ III ...X tlbsync PPC HV/P 1240 TLB Synchronize X-form
011111 ///.. ///// ///// 10010 10110/ II ..XX sync P1 1086 Synchronize X-form
011111 10100 10110/ I XXXX stwbrx P1 68 Store Word Byte-Reverse Indexed X-form
011111 11000 10110/ I ...X lhbrx P1 67 Load Halfword Byte-Reverse Indexed X-form
011111 ///// ///// ///// 11010 10110/ II ...X eieio PPC 1088 Enforce In-order Execution of I/O X-form
011111 ///// ///// ///// 11011 10110/ III ...X msgsync v3.0 HV 1331 Message Synchronize X-form
011111 11100 10110/ I XXXX sthbrx P1 67 Store Halfword Byte-Reverse Indexed X-form
011111 ///// 11110 10110/ II ...X icbi PPC 1052 Instruction Cache Block Invalidate X-form
011111 ///// 11111 10110/ II ...X dcbz P1 1063 Data Cache Block set to Zero X-form
011111 00100 101101 II ..XX stwcx. PPC 1081 Store Word Conditional Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 14 of 30)
Power ISA™ Appendices1398

Version 3.1
011111 00101 101101 I ...X stqcx. v2.07 Store Quadword Conditional Indexed X-form
011111 00110 101101 II ..XX stdcx. PPC 1082 Store Doubleword Conditional Indexed X-form
011111 10101 101101 II ...X stbcx. v2.06 1079 Store Byte Conditional Indexed X-form
011111 10110 101101 II ...X sthcx. v2.06 1080 Store Halfword Conditional Indexed X-form
011111 00000 10111/ I XXXX lwzx P1 55 Load Word and Zero Indexed X-form
011111 00001 10111/ I XXXX lwzux P1 55 Load Word and Zero with Update Indexed X-form
011111 00010 10111/ I XXXX lbzx P1 52 Load Byte and Zero Indexed X-form
011111 00011 10111/ I XXXX lbzux P1 52 Load Byte and Zero with Update Indexed X-form
011111 00100 10111/ I XXXX stwx P1 61 Store Word Indexed X-form
011111 00101 10111/ I XXXX stwux P1 61 Store Word with Update Indexed X-form
011111 00110 10111/ I XXXX stbx P1 59 Store Byte Indexed X-form
011111 00111 10111/ I XXXX stbux P1 59 Store Byte with Update Indexed X-form
011111 01000 10111/ I XXXX lhzx P1 53 Load Halfword and Zero Indexed X-form
011111 01001 10111/ I XXXX lhzux P1 53 Load Halfword and Zero with Update Indexed X-form
011111 01010 10111/ I XXXX lhax P1 54 Load Halfword Algebraic Indexed X-form
011111 01011 10111/ I XXXX lhaux P1 54 Load Halfword Algebraic with Update Indexed X-form
011111 01100 10111/ I XXXX sthx P1 60 Store Halfword Indexed X-form
011111 01101 10111/ I XXXX sthux P1 60 Store Halfword with Update Indexed X-form
011111 ///.. 01111 10111/ III ..XX spom v3.1 ?? ?? Splat Octword Metadata
011111 10000 10111/ I .XXX lfsx P1 150 Load Floating-Point Single Indexed X-form
011111 10001 10111/ I .XXX lfsux P1 151 Load Floating-Point Single with Update Indexed X-form
011111 10010 10111/ I .XXX lfdx P1 152 Load Floating-Point Double Indexed X-form
011111 10011 10111/ I .XXX lfdux P1 152 Load Floating-Point Double with Update Indexed X-form
011111 10100 10111/ I .XXX stfsx P1 155 Store Floating-Point Single Indexed X-form
011111 10101 10111/ I .XXX stfsux P1 156 Store Floating-Point Single with Update Indexed X-form
011111 10110 10111/ I .XXX stfdx P1 157 Store Floating-Point Double Indexed X-form
011111 10111 10111/ I .XXX stfdux P1 158 Store Floating-Point Double with Update Indexed X-form
011111 11000 10111/ I ...X lfdpx v2.05 159 Load Floating-Point Double Pair Indexed X-form

011111 11010 10111/ I .XXX lfiwax v2.05 153 Load Floating-Point as Integer Word Algebraic Indexed
X-form

011111 11011 10111/ I .XXX lfiwzx v2.06 153 Load Floating-Point as Integer Word & Zero Indexed
X-form

011111 11100 10111/ I .XXX stfdpx v2.05 160 Store Floating-Point Double Pair Indexed X-form
011111 11110 10111/ I .XXX stfiwx PPC 158 Store Floating-Point as Integer Word Indexed X-form
011111 ///// 11111 10111/ III ..XX lqm v3.1 ?? ?? Load Quadword Metadata
011111 00000 11000. I XXXX slw[.] P1 SR 113 Shift Left Word X-form
011111 10000 11000. I XXXX srw[.] P1 SR 113 Shift Right Word X-form
011111 11000 11000. I XXXX sraw[.] P1 SR 114 Shift Right Algebraic Word X-form
011111 11001 11000. I XXXX srawi[.] P1 SR 114 Shift Right Algebraic Word Immediate X-form
011111 11001 1101.. I ..XX sradi[.] PPC SR 115 Shift Right Algebraic Doubleword Immediate XS-form
011111 11011 1101.. I ..XX extswsli[.] v3.0 116 Extend Sign Word and Shift Left Immediate XS-form
011111 ///// 00000 11010. I XXXX cntlzw[.] P1 SR 102 Count Leading Zeros Word X-form
011111 ///// 00001 11010. I ..XX cntlzd[.] PPC SR 104 Count Leading Zeros Doubleword X-form
011111 ///// 00011 11010/ I XXXX popcntb v2.02 103 Population Count Bytes X-form
011111 ///// 00100 11010/ I XXXX prtyw v2.05 103 Parity Word X-form
011111 ///// 00101 11010/ I ..XX prtyd v2.05 104 Parity Doubleword X-form
011111 ///// 01000 11010/ I XXXX cdtbcd v2.06 117 Convert Declets To Binary Coded Decimal X-form
011111 ///// 01001 11010/ I XXXX cbcdtd v2.06 117 Convert Binary Coded Decimal To Declets X-form
011111 ///// 01011 11010/ I XXXX popcntw v2.06 103 Population Count Words X-form
011111 ///// 01111 11010/ I ..XX popcntd v2.06 104 Population Count Doubleword X-form
011111 ///// 10000 11010. I XXXX cnttzw[.] v3.0 102 Count Trailing Zeros Word X-form
011111 ///// 10001 11010. I ..XX cnttzd[.] v3.0 104 Count Trailing Zeros Doubleword X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 15 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1399

Version 3.1
011111 11000 11010. I ..XX srad[.] PPC SR 115 Shift Right Algebraic Doubleword X-form
011111 ///// 11100 11010. I XXXX extsh[.] P1 SR 102 Extend Sign Halfword X-form
011111 ///// 11101 11010. I XXXX extsb[.] PPC SR 102 Extend Sign Byte X-form
011111 ///// 11110 11010. I ..XX extsw[.] PPC SR 104 Extend Sign Word X-form
011111 00000 11011. I ..XX sld[.] PPC SR 115 Shift Left Doubleword X-form

011111 00001 11011/ I ..XX cntlzdm v3.1 105 Count Leading Zeros Doubleword under bit Mask
X-form

011111 ///// 00100 11011/ I XXXX brw v3.1 119 Byte-Reverse Word X-form
011111 ///// 00101 11011/ I ..XX brd v3.1 119 Byte-Reverse Doubleword X-form
011111 ///// 00110 11011/ I XXXX brh v3.1 119 Byte-Reverse Halfword X-form
011111 10000 11011. I ..XX srd[.] PPC SR 115 Shift Right Doubleword X-form
011111 10001 11011/ I ..XX cnttzdm v3.1 105 Count Trailing Zeros Doubleword under bit Mask X-form
011111 00000 11100. I XXXX and[.] P1 SR 100 AND X-form
011111 00001 11100. I XXXX andc[.] P1 SR 101 AND with Complement X-form
011111 00011 11100. I XXXX nor[.] P1 SR 101 NOR X-form
011111 00100 11100/ I ..XX pdepd v3.1 106 Parallel Bits Deposit Doubleword X-form
011111 00101 11100/ I ..XX pextd v3.1 106 Parallel Bits Extract Doubleword X-form
011111 00110 11100/ I ..XX cfuged v3.1 106 Centrifuge Doubleword X-form
011111 00111 11100/ I ..XX bpermd v2.06 105 Bit Permute Doubleword X-form
011111 01000 11100. I XXXX eqv[.] P1 SR 101 Equivalent X-form
011111 01001 11100. I XXXX xor[.] P1 SR 100 XOR X-form
011111 01100 11100. I XXXX orc[.] P1 SR 101 OR with Complement X-form
011111 01101 11100. I XXXX or[.] P1 SR 101 OR X-form
011111 01110 11100. I XXXX nand[.] P1 SR 100 NAND X-form
011111 01111 11100/ I XXXX cmpb v2.05 102 Compare Bytes X-form
011111 ///.. ///// ///// 00000 11110/ II ...X wait v3.0 1090 Wait X-form
100000 I XXXX lwz P1 55 Load Word and Zero D-form
000001 100// .//..
100000

I ..XX plwz v3.1 55 Prefixed Load Word and Zero MLS:D-form

000001 01000 0////
100000 000..

I ..XX xxsplti32dx v3.1 992 VSX Vector Splat Immediate32 Doubleword Indexed
8RR:D-form

000001 01000 0////
100000 0010.

I ..XX xxspltidp v3.1 991 VSX Vector Splat Immediate Double-Precision
8RR:D-form

000001 01000 0////
100000 0011.

I ..XX xxspltiw v3.1 992 VSX Vector Splat Immediate Word 8RR:D-form

100001 I XXXX lwzu P1 55 Load Word and Zero with Update D-form
000001 01000 0//// ///// ///// //////
100001 00....

I ..XX xxblendvb v3.1 962 VSX Vector Blend Variable Byte 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 01....

I ..XX xxblendvh v3.1 962 VSX Vector Blend Variable Halfword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 10....

I ..XX xxblendvw v3.1 963 VSX Vector Blend Variable Word 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 11....

I ..XX xxblendvd v3.1 963 VSX Vector Blend Variable Doubleword 8RR:XX4-form

100010 I XXXX lbz P1 52 Load Byte and Zero D-form
000001 100// .//..
100010 I ..XX plbz v3.1 52 Prefixed Load Byte and Zero MLS:D-form

000001 01000 0//// ///// ///// ///...
100010 00.... I ..XX xxpermx v3.1 987 VSX Vector Permute Extended 8RR:XX4-form

000001 01000 0//// ///// ///..
100010 01.... I ..XX xxeval v3.1 967 VSX Vector Evaluate 8RR-XX4-form

100011 I XXXX lbzu P1 52 Load Byte and Zero with Update D-form
100100 I XXXX stw P1 61 Store Word D-form
000001 100// .//..
100100 I ..XX pstw v3.1 61 Prefixed Store Word MLS:D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 16 of 30)
Power ISA™ Appendices1400

Version 3.1
100101 I XXXX stwu P1 61 Store Word with Update D-form
100110 I XXXX stb P1 59 Store Byte D-form
000001 100// .//..
100110

I ..XX pstb v3.1 59 Prefixed Store Byte MLS:D-form

100111 I XXXX stbu P1 59 Store Byte with Update D-form
101000 I XXXX lhz P1 53 Load Halfword and Zero D-form
000001 100// .//..
101000 I ..XX plhz v3.1 53 Prefixed Load Halfword and Zero MLS:D-form

101001 I XXXX lhzu P1 53 Load Halfword and Zero with Update D-form
000001 000// .//..
101001

I ..XX plwa v3.1 56 Prefixed Load Word Algebraic 8LS:D-form

101010 I XXXX lha P1 54 Load Halfword Algebraic D-form
000001 000// .//..
101010

I ..XX plxsd v3.1 610 Prefixed Load VSX Scalar Doubleword 8LS:D-form

000001 100// .//..
101010

I ..XX plha v3.1 54 Prefixed Load Halfword Algebraic MLS:D-form

101011 I XXXX lhau P1 54 Load Halfword Algebraic with Update D-form
000001 000// .//..
101011

I ..XX plxssp v3.1 615 Prefixed Load VSX Scalar Single-Precision 8LS:D-form

101100 I XXXX sth P1 60 Store Halfword D-form
000001 100// .//..
101100

I ..XX psth v3.1 60 Prefixed Store Halfword MLS:D-form

101101 I XXXX sthu P1 60 Store Halfword with Update D-form
101110 I ...X lmw P1 70 Load Multiple Word D-form
000001 000// .//..
101110

I ..XX pstxsd v3.1 638 Prefixed Store VSX Scalar Doubleword 8LS:D-form

101111 I ...X stmw P1 70 Store Multiple Word D-form
000001 000// .//..
101111

I ..XX pstxssp v3.1 642 Prefixed Store VSX Scalar Single-Precision 8LS:D-form

110000 I .XXX lfs P1 150 Load Floating-Point Single D-form
000001 100// .//..
110000

I ..XX plfs v3.1 150 Prefixed Load Floating-Point Single MLS:D-form

110001 I .XXX lfsu P1 150 Load Floating-Point Single with Update D-form
000001 000// .//..
11001.

I ..XX plxv v3.1 617 Prefixed Load VSX Vector 8LS:D-form

110010 I .XXX lfd P1 152 Load Floating-Point Double D-form
000001 100// .//..
110010

I ..XX plfd v3.1 152 Prefixed Load Floating-Point Double MLS:D-form

110011 I .XXX lfdu P1 152 Load Floating-Point Double with Update D-form
110100 I .XXX stfs P1 155 Store Floating-Point Single D-form
000001 100// .//..
110100 I ..XX pstfs v3.1 155 Prefixed Store Floating-Point Single MLS:D-form

110101 I .XXX stfsu P1 155 Store Floating-Point Single with Update D-form
000001 000// .//..
11011.

I ..XX pstxv v3.1 644 Prefixed Store VSX Vector 8LS:D-form

110110 I .XXX stfd P1 157 Store Floating-Point Double D-form
000001 100// .//..
110110 I ..XX pstfd v3.1 157 Prefixed Store Floating-Point Double MLS:D-form

110111 I .XXX stfdu P1 157 Store Floating-Point Double with Update D-form
111000 I ..XX lq v2.03 65 Load Quadword DQ-form
000001 000// .//..
111000

I ..XX plq v3.1 65 Prefixed Load Quadword 8LS:D-form

000001 000// .//..
111001

I ..XX pld v3.1 57 Prefixed Load Doubleword 8LS:D-form

11100100 I ...X lfdp v2.05 159 Load Floating-Point Double Pair DS-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 17 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1401

Version 3.1
11100110 I ..XX lxsd v3.0 610 Load VSX Scalar Doubleword DS-form
11100111 I ..XX lxssp v3.0 615 Load VSX Scalar Single-Precision DS-form
000001 000// .//..
111010

I ..XX plxvp v3.1 625 Prefixed Load VSX Vector Paired 8LS:D-form

11101000 I ..XX ld PPC 57 Load Doubleword DS-form
11101001 I ..XX ldu PPC 57 Load Doubleword with Update DS-form
11101010 I ..XX lwa PPC 56 Load Word Algebraic DS-form
1110110010 00010. I ...X DFP dscli[.] v2.05 238 DFP Shift Significand Left Immediate Z22-form
1110110011 00010. I ...X DFP dscri[.] v2.05 238 DFP Shift Significand Right Immediate Z22-form
111011 ...//0110 00010/ I ...X DFP dtstdc v2.05 213 DFP Test Data Class Z22-form
111011 ...//0111 00010/ I ...X DFP dtstdg v2.05 213 DFP Test Data Group Z22-form
111011 00000 00010. I ...X DFP dadd[.] v2.05 206 DFP Add X-form
111011 00001 00010. I ...X DFP dmul[.] v2.05 208 DFP Multiply X-form
111011 ...// 00100 00010/ I ...X DFP dcmpo v2.05 212 DFP Compare Ordered X-form
111011 ...// 00101 00010/ I ...X DFP dtstex v2.05 214 DFP Test Exponent X-form
111011 ///// 01000 00010. I ...X DFP dctdp[.] v2.05 229 DFP Convert To DFP Long X-form
111011 ///// 01001 00010. I ...X DFP dctfix[.] v2.05 233 DFP Convert To Fixed X-form
111011/// 01010 00010. I ...X DFP ddedpd[.] v2.05 235 DFP Decode DPD To BCD X-form
111011 ///// 01011 00010. I ...X DFP dxex[.] v2.05 236 DFP Extract Biased Exponent X-form
111011 10000 00010. I ...X DFP dsub[.] v2.05 206 DFP Subtract X-form
111011 10001 00010. I ...X DFP ddiv[.] v2.05 209 DFP Divide X-form
111011 ...// 10100 00010/ I ...X DFP dcmpu v2.05 211 DFP Compare Unordered X-form
111011 ...// 10101 00010/ I ...X DFP dtstsf v2.05 215 DFP Test Significance X-form
111011 ///// 11000 00010. I ...X DFP drsp[.] v2.05 230 DFP Round To DFP Short X-form
111011 ///// 11001 00010. I ...X DFP dcffix[.] v2.06 231 DFP Convert From Fixed X-form
111011//// 11010 00010. I ...X DFP denbcd[.] v2.05 235 DFP Encode BCD To DPD X-form
111011 11011 00010. I ...X DFP diex[.] v2.05 236 DFP Insert Biased Exponent X-form
111011000 00011. I ...X DFP dqua[.] v2.05 219 DFP Quantize Z23-form
111011001 00011. I ...X DFP drrnd[.] v2.05 221 DFP Reround Z23-form
111011010 00011. I ...X DFP dquai[.] v2.05 217 DFP Quantize Immediate Z23-form
111011 ////.011 00011. I ...X DFP drintx[.] v2.05 224 DFP Round To FP Integer With Inexact Z23-form
111011 ////.111 00011. I ...X DFP drintn[.] v2.05 226 DFP Round To FP Integer Without Inexact Z23-form
111011 ...// 10101 00011/ I ...X DFP dtstsfi v3.0 216 DFP Test Significance Immediate X-form

111011 ...// 00000 010../ I MMA MMA xvi8ger4pp v3.1 886
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) Positive multiply, Positive accumulate
XX3-form

000001 11100 1///// ///..
111011 ...// 00000 010../ I MMA MMA pmxvi8ger4pp v3.1 886

Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 00010 010../ I MMA MMA xvf16ger2pp v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 010../

I MMA MMA pmxvf16ger2pp v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 00011 010../ I MMA MMA xvf32gerpp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 010../

I MMA MMA pmxvf32gerpp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 00100 010../ I MMA MMA xvi4ger8pp v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
Positive multiply, Positive accumulate XX3-form

000001 11100 1////
111011 ...// 00100 010../

I MMA MMA pmxvi4ger8pp v3.1 883
Prefixed Masked VSX Vector 4-bit Signed Integer GER

(rank-8 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 18 of 30)
Power ISA™ Appendices1402

Version 3.1
111011 ...// 00101 010../ I MMA MMA xvi16ger2spp v3.1 893
VSX Vector 16-bit Signed Integer GER (rank-2 update)

with Saturation Positive multiply, Positive
accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 010../

I MMA MMA pmxvi16ger2spp v3.1 893
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) with Saturation Positive multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 00110 010../ I MMA MMA xvbf16ger2pp v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00110 010../ I MMA MMA pmxvbf16ger2pp v3.1 827

Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) Positive multiply, Positive accumulate
MMIRR:XX3-form

111011 ...// 00111 010../ I MMA MMA xvf64gerpp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 010../

I MMA MMA pmxvf64gerpp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 01010 010../ I MMA MMA xvf16ger2np v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Positive accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01010 010../

I MMA MMA pmxvf16ger2np v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 01011 010../ I MMA MMA xvf32gernp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01011 010../

I MMA MMA pmxvf32gernp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 01110 010../ I MMA MMA xvbf16ger2np v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01110 010../

I MMA MMA pmxvbf16ger2np v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
MMIRR:XX3-form

111011 ...// 01111 010../ I MMA MMA xvf64gernp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01111 010../

I MMA MMA pmxvf64gernp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

111011 ...// 10010 010../ I MMA MMA xvf16ger2pn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Negative accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10010 010../

I MMA MMA pmxvf16ger2pn v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

111011 ...// 10011 010../ I MMA MMA xvf32gerpn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10011 010../

I MMA MMA pmxvf32gerpn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

111011 ...// 10110 010../ I MMA MMA xvbf16ger2pn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10110 010../ I MMA MMA pmxvbf16ger2pn v3.1 827

Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) Positive multiply, Negative accumulate
MMIRR:XX3-form

111011 ...// 10111 010../ I MMA MMA xvf64gerpn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10111 010../

I MMA MMA pmxvf64gerpn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 19 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1403

Version 3.1
111011 ...// 11010 010../ I MMA MMA xvf16ger2nn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Negative accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11010 010../ I MMA MMA pmxvf16ger2nn v3.1 871

Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

111011 ...// 11011 010../ I MMA MMA xvf32gernn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11011 010../

I MMA MMA pmxvf32gernn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

111011 ...// 11110 010../ I MMA MMA xvbf16ger2nn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11110 010../

I MMA MMA pmxvbf16ger2nn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
MMIRR:XX3-form

111011 ...// 11111 010../ I MMA MMA xvf64gernn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11111 010../

I MMA MMA pmxvf64gernn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

111011 ...// 00000 011../ I MMA MMA xvi8ger4 v3.1 886 VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4
update) XX3-form

000001 11100 1///// ///..
111011 ...// 00000 011../

I MMA MMA pmxvi8ger4 v3.1 886 Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) MMIRR:XX3-form

111011 ...// 00010 011../ I MMA MMA xvf16ger2 v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 011../

I MMA MMA pmxvf16ger2 v3.1 871 Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) MMIRR:XX3-form

111011 ...// 00011 011../ I MMA MMA xvf32ger v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 011../

I MMA MMA pmxvf32ger v3.1 875 Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

111011 ...// 00100 011../ I MMA MMA xvi4ger8 v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
XX3-form

000001 11100 1////
111011 ...// 00100 011../

I MMA MMA pmxvi4ger8 v3.1 883 Prefixed Masked VSX Vector 4-bit Signed Integer GER
(rank-8 update) MMIRR:XX3-form

111011 ...// 00101 011../ I MMA MMA xvi16ger2s v3.1 893 VSX Vector 16-bit Signed Integer GER (rank-2 update)
with Saturation XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 011../ I MMA MMA pmxvi16ger2s v3.1 893 Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) with Saturation MMIRR:XX3-form
111011 ...// 00110 011../ I MMA MMA xvbf16ger2 v3.1 827 VSX Vector bfloat16 GER (Rank-2 Update) XX3-form
000001 11100 1//// ../// ///..
111011 ...// 00110 011../

I MMA MMA pmxvbf16ger2 v3.1 827 Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) MMIRR:XX3-form

111011 ...// 00111 011../ I MMA MMA xvf64ger v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 011../

I MMA MMA pmxvf64ger v3.1 879 Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

111011 ...// 01001 011../ I MMA MMA xvi16ger2 v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01001 011../

I MMA MMA pmxvi16ger2 v3.1 891 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) MMIRR:XX3-form

111011 ...// 01100 011../ I MMA MMA xvi8ger4spp v3.1 889
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) with Saturate Positive multiply, Positive
accumulate XX3-form

000001 11100 1///// ///..
111011 ...// 01100 011../

I MMA MMA pmxvi8ger4spp v3.1 889
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) with Saturate Positive
multiply, Positive accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 20 of 30)
Power ISA™ Appendices1404

Version 3.1
111011 ...// 01101 011../ I MMA MMA xvi16ger2pp v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01101 011../ I MMA MMA pmxvi16ger2pp v3.1 891

Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

111011 ///// 11010 01110. I .XXX fcfids[.] v2.06 175 Floating Convert with round Signed Doubleword to
Single-Precision format X-form

111011 ///// 11110 01110. I .XXX fcfidus[.] v2.06 176 Floating Convert with round Unsigned Doubleword to
Single-Precision format X-form

111011 ///// 10010. I .XXX fdivs[.] PPC 164 Floating Divide Single A-form
111011 ///// 10100. I .XXX fsubs[.] PPC 163 Floating Subtract Single A-form
111011 ///// 10101. I .XXX fadds[.] PPC 163 Floating Add Single A-form
111011 ///// ///// 10110. I .XXX fsqrts[.] PPC 165 Floating Square Root Single A-form
111011 ///// ///// 11000. I .XXX fres[.] PPC 165 Floating Reciprocal Estimate Single A-form
111011 ///// 11001. I .XXX fmuls[.] PPC 164 Floating Multiply Single A-form
111011 ///// ///// 11010. I .XXX frsqrtes[.] v2.02 166 Floating Reciprocal Square Root Estimate Single A-form
111011 11100. I .XXX fmsubs[.] PPC 168 Floating Multiply-Subtract Single A-form
111011 11101. I .XXX fmadds[.] PPC 168 Floating Multiply-Add Single A-form
111011 11110. I .XXX fnmsubs[.] PPC 169 Floating Negative Multiply-Subtract Single A-form
111011 11111. I .XXX fnmadds[.] PPC 169 Floating Negative Multiply-Add Single A-form
000001 000// .//..
111100

I ..XX pstq v3.1 66 Prefixed Store Quadword 8LS:D-form

111100 00000 000... I ..XX xsaddsp v2.07 664 VSX Scalar Add Single-Precision XX3-form
111100 00001 000... I ..XX xssubsp v2.07 811 VSX Scalar Subtract Single-Precision XX3-form
111100 00010 000... I ..XX xsmulsp v2.07 761 VSX Scalar Multiply Single-Precision XX3-form
111100 00011 000... I ..XX xsdivsp v2.07 721 VSX Scalar Divide Single-Precision XX3-form
111100 00100 000... I ..XX xsadddp v2.06 659 VSX Scalar Add Double-Precision XX3-form
111100 00101 000... I ..XX xssubdp v2.06 807 VSX Scalar Subtract Double-Precision XX3-form
111100 00110 000... I ..XX xsmuldp v2.06 757 VSX Scalar Multiply Double-Precision XX3-form
111100 00111 000... I ..XX xsdivdp v2.06 717 VSX Scalar Divide Double-Precision XX3-form
111100 01000 000... I ..XX xvaddsp v2.06 825 VSX Vector Add Single-Precision XX3-form
111100 01001 000... I ..XX xvsubsp v2.06 952 VSX Vector Subtract Single-Precision XX3-form
111100 01010 000... I ..XX xvmulsp v2.06 919 VSX Vector Multiply Single-Precision XX3-form
111100 01011 000... I ..XX xvdivsp v2.06 869 VSX Vector Divide Single-Precision XX3-form
111100 01100 000... I ..XX xvadddp v2.06 821 VSX Vector Add Double-Precision XX3-form
111100 01101 000... I ..XX xvsubdp v2.06 950 VSX Vector Subtract Double-Precision XX3-form
111100 01110 000... I ..XX xvmuldp v2.06 917 VSX Vector Multiply Double-Precision XX3-form
111100 01111 000... I ..XX xvdivdp v2.06 867 VSX Vector Divide Double-Precision XX3-form

111100 10000 000... I ..XX xsmaxcdp v3.0 736 VSX Scalar Maximum Type-C Double-Precision
XX3-form

111100 10001 000... I ..XX xsmincdp v3.0 743 VSX Scalar Minimum Type-C Double-Precision
XX3-form

111100 10010 000... I ..XX xsmaxjdp v3.0 739 VSX Scalar Maximum Type-J Double-Precision
XX3-form

111100 10011 000... I ..XX xsminjdp v3.0 746 VSX Scalar Minimum Type-J Double-Precision
XX3-form

111100 10100 000... I ..XX xsmaxdp v2.06 734 VSX Scalar Maximum Double-Precision XX3-form
111100 10101 000... I ..XX xsmindp v2.06 741 VSX Scalar Minimum Double-Precision XX3-form
111100 10110 000... I ..XX xscpsgndp v2.06 682 VSX Scalar Copy Sign Double-Precision XX3-form
111100 11000 000... I ..XX xvmaxsp v2.06 905 VSX Vector Maximum Single-Precision XX3-form
111100 11001 000... I ..XX xvminsp v2.06 909 VSX Vector Minimum Single-Precision XX3-form
111100 11010 000... I ..XX xvcpsgnsp v2.06 838 VSX Vector Copy Sign Single-Precision XX3-form
111100 11011 000... I ..XX xviexpsp v3.0 896 VSX Vector Insert Exponent Single-Precision XX3-form
111100 11100 000... I ..XX xvmaxdp v2.06 903 VSX Vector Maximum Double-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 21 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1405

Version 3.1
111100 11101 000... I ..XX xvmindp v2.06 907 VSX Vector Minimum Double-Precision XX3-form
111100 11110 000... I ..XX xvcpsgndp v2.06 838 VSX Vector Copy Sign Double-Precision XX3-form
111100 11111 000... I ..XX xviexpdp v3.0 896 VSX Vector Insert Exponent Double-Precision XX3-form

111100 00000 001... I ..XX xsmaddasp v2.07 728 VSX Scalar Multiply-Add Type-A Single-Precision
XX3-form

111100 00001 001... I ..XX xsmaddmsp v2.07 728 VSX Scalar Multiply-Add Type-M Single-Precision
XX3-form

111100 00010 001... I ..XX xsmsubasp v2.07 751 VSX Scalar Multiply-Subtract Type-A Single-Precision
XX3-form

111100 00011 001... I ..XX xsmsubmsp v2.07 751 VSX Scalar Multiply-Subtract Type-M Single-Precision
XX3-form

111100 00100 001... I ..XX xsmaddadp v2.06 725 VSX Scalar Multiply-Add Type-A Double-Precision
XX3-form

111100 00101 001... I ..XX xsmaddmdp v2.06 725 VSX Scalar Multiply-Add Type-M Double-Precision
XX3-form

111100 00110 001... I ..XX xsmsubadp v2.06 748 VSX Scalar Multiply-Subtract Type-A Double-Precision
XX3-form

111100 00111 001... I ..XX xsmsubmdp v2.06 748 VSX Scalar Multiply-Subtract Type-M Double-Precision
XX3-form

111100 01000 001... I ..XX xvmaddasp v2.06 900 VSX Vector Multiply-Add Type-A Single-Precision
XX3-form

111100 01001 001... I ..XX xvmaddmsp v2.06 900 VSX Vector Multiply-Add Type-M Single-Precision
XX3-form

111100 01010 001... I ..XX xvmsubasp v2.06 914 VSX Vector Multiply-Subtract Type-A Single-Precision
XX3-form

111100 01011 001... I ..XX xvmsubmsp v2.06 914 VSX Vector Multiply-Subtract Type-M Single-Precision
XX3-form

111100 01100 001... I ..XX xvmaddadp v2.06 897 VSX Vector Multiply-Add Type-A Double-Precision
XX3-form

111100 01101 001... I ..XX xvmaddmdp v2.06 897 VSX Vector Multiply-Add Type-M Double-Precision
XX3-form

111100 01110 001... I ..XX xvmsubadp v2.06 911 VSX Vector Multiply-Subtract Type-A Double-Precision
XX3-form

111100 01111 001... I ..XX xvmsubmdp v2.06 911 VSX Vector Multiply-Subtract Type-M Double-Precision
XX3-form

111100 10000 001... I ..XX xsnmaddasp v2.07 770 VSX Scalar Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 10001 001... I ..XX xsnmaddmsp v2.07 770 VSX Scalar Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 10010 001... I ..XX xsnmsubasp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 10011 001... I ..XX xsnmsubmsp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 10100 001... I ..XX xsnmaddadp v2.06 765 VSX Scalar Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 10101 001... I ..XX xsnmaddmdp v2.06 765 VSX Scalar Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 10110 001... I ..XX xsnmsubadp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 10111 001... I ..XX xsnmsubmdp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 11000 001... I ..XX xvnmaddasp v2.06 927 VSX Vector Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 11001 001... I ..XX xvnmaddmsp v2.06 927 VSX Vector Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 11010 001... I ..XX xvnmsubasp v2.06 933 VSX Vector Negative Multiply-Subtract Type-A
Single-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 22 of 30)
Power ISA™ Appendices1406

Version 3.1
111100 11011 001... I ..XX xvnmsubmsp v2.06 933 VSX Vector Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 11100 001... I ..XX xvnmaddadp v2.06 923 VSX Vector Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 11101 001... I ..XX xvnmaddmdp v2.06 923 VSX Vector Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 11110 001... I ..XX xvnmsubadp v2.06 930 VSX Vector Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 11111 001... I ..XX xvnmsubmdp v2.06 930 VSX Vector Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 0..00 010... I ..XX xxsldwi v2.06 990 VSX Vector Shift Left Double by Word Immediate
XX3-form

111100 0..01 010... I ..XX xxpermdi v2.06 986 VSX Vector Permute Doubleword Immediate XX3-form
111100 00010 010... I ..XX xxmrghw v2.06 982 VSX Vector Merge High Word XX3-form
111100 00011 010... I ..XX xxperm v3.0 985 VSX Vector Permute XX3-form
111100 00110 010... I ..XX xxmrglw v2.06 982 VSX Vector Merge Low Word XX3-form
111100 00111 010... I ..XX xxpermr v3.0 985 VSX Vector Permute Right-indexed XX3-form
111100 10000 010... I ..XX xxland v2.06 978 VSX Vector Logical AND XX3-form
111100 10001 010... I ..XX xxlandc v2.06 978 VSX Vector Logical AND with Complement XX3-form
111100 10010 010... I ..XX xxlor v2.06 981 VSX Vector Logical OR XX3-form
111100 10011 010... I ..XX xxlxor v2.06 981 VSX Vector Logical XOR XX3-form
111100 10100 010... I ..XX xxlnor v2.06 980 VSX Vector Logical NOR XX3-form
111100 10101 010... I ..XX xxlorc v2.07 980 VSX Vector Logical OR with Complement XX3-form
111100 10110 010... I ..XX xxlnand v2.07 979 VSX Vector Logical NAND XX3-form
111100 10111 010... I ..XX xxleqv v2.07 979 VSX Vector Logical Equivalence XX3-form
111100 ///.. 01010 0100.. I ..XX xxspltw v2.06 993 VSX Vector Splat Word XX2-form
111100 00... 01011 01000. I ..XX xxspltib v3.0 991 VSX Vector Splat Immediate Byte X-form
111100 11111 01011 01000. I ..XX lxvkq v3.1 620 Load VSX Vector Special Value Quadword X-form
111100 /.... 01010 0101.. I ..XX xxextractuw v3.0 969 VSX Vector Extract Unsigned Word XX2-form
111100 /.... 01011 0101.. I ..XX xxinsertw v3.0 969 VSX Vector Insert Word XX2-form

1111001000 011... I ..XX xvcmpeqsp[.] v2.06 833 VSX Vector Compare Equal To Single-Precision
XX3-form

1111001001 011... I ..XX xvcmpgtsp[.] v2.06 837 VSX Vector Compare Greater Than Single-Precision
XX3-form

1111001010 011... I ..XX xvcmpgesp[.] v2.06 835 VSX Vector Compare Greater Than or Equal To
Single-Precision XX3-form

1111001100 011... I ..XX xvcmpeqdp[.] v2.06 832 VSX Vector Compare Equal To Double-Precision
XX3-form

1111001101 011... I ..XX xvcmpgtdp[.] v2.06 836 VSX Vector Compare Greater Than Double-Precision
XX3-form

1111001110 011... I ..XX xvcmpgedp[.] v2.06 834 VSX Vector Compare Greater Than or Equal To
Double-Precision XX3-form

111100 00000 011... I ..XX xscmpeqdp v3.0 670 VSX Scalar Compare Equal Double-Precision XX3-form

111100 00001 011... I ..XX xscmpgtdp v3.0 674 VSX Scalar Compare Greater Than Double-Precision
XX3-form

111100 00010 011... I ..XX xscmpgedp v3.0 672 VSX Scalar Compare Greater Than or Equal
Double-Precision XX3-form

111100 ...// 00100 011../ I ..XX xscmpudp v2.06 679 VSX Scalar Compare Unordered Double-Precision
XX3-form

111100 ...// 00101 011../ I ..XX xscmpodp v2.06 676 VSX Scalar Compare Ordered Double-Precision
XX3-form

111100 ...// 00111 011../ I ..XX xscmpexpdp v3.0 668 VSX Scalar Compare Exponents Double-Precision
XX3-form

111100 ///// 00100 1000.. I ..XX xscvdpuxws v2.06 693
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 23 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1407

Version 3.1
111100 ///// 00101 1000.. I ..XX xscvdpsxws v2.06 689 VSX Scalar Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 01000 1000.. I ..XX xvcvspuxws v2.06 859 VSX Vector Convert with round to zero Single-Precision
to Unsigned Word format XX2-form

111100 ///// 01001 1000.. I ..XX xvcvspsxws v2.06 855 VSX Vector Convert with round to zero Single-Precision
to Signed Word format XX2-form

111100 ///// 01010 1000.. I ..XX xvcvuxwsp v2.06 866 VSX Vector Convert with round Unsigned Word to
Single-Precision format XX2-form

111100 ///// 01011 1000.. I ..XX xvcvsxwsp v2.06 863 VSX Vector Convert with round Signed Word to
Single-Precision format XX2-form

111100 ///// 01100 1000.. I ..XX xvcvdpuxws v2.06 847
VSX Vector Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 ///// 01101 1000.. I ..XX xvcvdpsxws v2.06 843 VSX Vector Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 01110 1000.. I ..XX xvcvuxwdp v2.06 866 VSX Vector Convert Unsigned Word to
Double-Precision format XX2-form

111100 ///// 01111 1000.. I ..XX xvcvsxwdp v2.06 863 VSX Vector Convert Signed Word to Double-Precision
format XX2-form

111100 ///// 10010 1000.. I ..XX xscvuxdsp v2.07 716 VSX Scalar Convert with round Unsigned Doubleword
to Single-Precision XX2-form

111100 ///// 10011 1000.. I ..XX xscvsxdsp v2.07 713 VSX Scalar Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 10100 1000.. I ..XX xscvdpuxds v2.06 691
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 10101 1000.. I ..XX xscvdpsxds v2.06 687
VSX Scalar Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 10110 1000.. I ..XX xscvuxddp v2.06 715 VSX Scalar Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 10111 1000.. I ..XX xscvsxddp v2.06 712 VSX Scalar Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 11000 1000.. I ..XX xvcvspuxds v2.06 857 VSX Vector Convert with round to zero Single-Precision
to Unsigned Doubleword format XX2-form

111100 ///// 11001 1000.. I ..XX xvcvspsxds v2.06 853 VSX Vector Convert with round to zero Single-Precision
to Signed Doubleword format XX2-form

111100 ///// 11010 1000.. I ..XX xvcvuxdsp v2.06 865 VSX Vector Convert with round Unsigned Doubleword
to Single-Precision format XX2-form

111100 ///// 11011 1000.. I ..XX xvcvsxdsp v2.06 862 VSX Vector Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 11100 1000.. I ..XX xvcvdpuxds v2.06 845
VSX Vector Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 11101 1000.. I ..XX xvcvdpsxds v2.06 841
VSX Vector Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 11110 1000.. I ..XX xvcvuxddp v2.06 864 VSX Vector Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 11111 1000.. I ..XX xvcvsxddp v2.06 861 VSX Vector Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 00100 1001.. I ..XX xsrdpi v2.06 785 VSX Scalar Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 00101 1001.. I ..XX xsrdpiz v2.06 789 VSX Scalar Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 00110 1001.. I ..XX xsrdpip v2.06 788 VSX Scalar Round to Double-Precision Integer using
round toward +Infinity XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 24 of 30)
Power ISA™ Appendices1408

Version 3.1
111100 ///// 00111 1001.. I ..XX xsrdpim v2.06 787 VSX Scalar Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01000 1001.. I ..XX xvrspi v2.06 942 VSX Vector Round to Single-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01001 1001.. I ..XX xvrspiz v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward Zero XX2-form

111100 ///// 01010 1001.. I ..XX xvrspip v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01011 1001.. I ..XX xvrspim v2.06 944 VSX Vector Round to Single-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01100 1001.. I ..XX xvrdpi v2.06 936 VSX Vector Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01101 1001.. I ..XX xvrdpiz v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 01110 1001.. I ..XX xvrdpip v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01111 1001.. I ..XX xvrdpim v2.06 938 VSX Vector Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 10000 1001.. I ..XX xscvdpsp v2.06 685 VSX Scalar Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 10001 1001.. I ..XX xsrsp v2.07 797 VSX Scalar Round to Single-Precision XX2-form

111100 ///// 10100 1001.. I ..XX xscvspdp v2.06 709 VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form

111100 ///// 10101 1001.. I ..XX xsabsdp v2.06 658 VSX Scalar Absolute Double-Precision XX2-form

111100 ///// 10110 1001.. I ..XX xsnabsdp v2.06 763 VSX Scalar Negative Absolute Double-Precision
XX2-form

111100 ///// 10111 1001.. I ..XX xsnegdp v2.06 764 VSX Scalar Negate Double-Precision XX2-form

111100 ///// 11000 1001.. I ..XX xvcvdpsp v2.06 840 VSX Vector Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 11001 1001.. I ..XX xvabssp v2.06 820 VSX Vector Absolute Value Single-Precision XX2-form

111100 ///// 11010 1001.. I ..XX xvnabssp v2.06 921 VSX Vector Negative Absolute Single-Precision
XX2-form

111100 ///// 11011 1001.. I ..XX xvnegsp v2.06 922 VSX Vector Negate Single-Precision XX2-form

111100 ///// 11100 1001.. I ..XX xvcvspdp v2.06 851 VSX Vector Convert Single-Precision to
Double-Precision format XX2-form

111100 ///// 11101 1001.. I ..XX xvabsdp v2.06 820 VSX Vector Absolute Value Double-Precision XX2-form

111100 ///// 11110 1001.. I ..XX xvnabsdp v2.06 921 VSX Vector Negative Absolute Double-Precision
XX2-form

111100 ///// 11111 1001.. I ..XX xvnegdp v2.06 922 VSX Vector Negate Double-Precision XX2-form

111100 ...// 00111 101../ I ..XX xstdivdp v2.06 813 VSX Scalar Test for software Divide Double-Precision
XX3-form

111100 ...// 01011 101../ I ..XX xvtdivsp v2.06 955 VSX Vector Test for software Divide Single-Precision
XX3-form

111100 ...// 01111 101../ I ..XX xvtdivdp v2.06 954 VSX Vector Test for software Divide Double-Precision
XX3-form

111100 1101. 101... I ..XX xvtstdcsp v3.0 958 VSX Vector Test Data Class Single-Precision XX2-form
111100 1111. 101... I ..XX xvtstdcdp v3.0 957 VSX Vector Test Data Class Double-Precision XX2-form

111100 ///// 00000 1010.. I ..XX xsrsqrtesp v2.07 799 VSX Scalar Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 00001 1010.. I ..XX xsresp v2.07 791 VSX Scalar Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 00100 1010.. I ..XX xsrsqrtedp v2.06 798 VSX Scalar Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 00101 1010.. I ..XX xsredp v2.06 790 VSX Scalar Reciprocal Estimate Double-Precision
XX2-form

111100 ...// ///// 00110 1010./ I ..XX xstsqrtdp v2.06 814 VSX Scalar Test for software Square Root
Double-Precision XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 25 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1409

Version 3.1
111100 ///// 01000 1010.. I ..XX xvrsqrtesp v2.06 947 VSX Vector Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 01001 1010.. I ..XX xvresp v2.06 941 VSX Vector Reciprocal Estimate Single-Precision
XX2-form

111100 ...// ///// 01010 1010./ I ..XX xvtsqrtsp v2.06 956 VSX Vector Test for software Square Root
Single-Precision XX2-form

111100 ///// 01100 1010.. I ..XX xvrsqrtedp v2.06 946 VSX Vector Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 01101 1010.. I ..XX xvredp v2.06 940 VSX Vector Reciprocal Estimate Double-Precision
XX2-form

111100 ...// ///// 01110 1010./ I ..XX xvtsqrtdp v2.06 956 VSX Vector Test for software Square Root
Double-Precision XX2-form

111100 10010 1010./ I ..XX xststdcsp v3.0 817 VSX Scalar Test Data Class Single-Precision XX2-form
111100 10110 1010./ I ..XX xststdcdp v3.0 815 VSX Scalar Test Data Class Double-Precision XX2-form
111100 11100 10100. I ..XX xxgenpcvbm v3.1 970 VSX Vector Generate PCV from Byte Mask X-form
111100 11101 10100. I ..XX xxgenpcvwm v3.1 974 VSX Vector Generate PCV from Word Mask X-form
111100 11100 10101. I ..XX xxgenpcvhm v3.1 972 VSX Vector Generate PCV from Halfword Mask X-form

111100 11101 10101. I ..XX xxgenpcvdm v3.1 976 VSX Vector Generate PCV from Doubleword Mask
X-form

111100 ///// 00000 1011.. I ..XX xssqrtsp v2.07 805 VSX Scalar Square Root Single-Precision XX2-form
111100 ///// 00100 1011.. I ..XX xssqrtdp v2.06 801 VSX Scalar Square Root Double-Precision XX2-form

111100 ///// 00110 1011.. I ..XX xsrdpic v2.06 786 VSX Scalar Round to Double-Precision Integer exact
using Current rounding mode XX2-form

111100 ///// 01000 1011.. I ..XX xvsqrtsp v2.06 949 VSX Vector Square Root Single-Precision XX2-form

111100 ///// 01010 1011.. I ..XX xvrspic v2.06 943 VSX Vector Round to Single-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01100 1011.. I ..XX xvsqrtdp v2.06 948 VSX Vector Square Root Double-Precision XX2-form

111100 ///// 01110 1011.. I ..XX xvrdpic v2.06 937 VSX Vector Round to Double-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 10000 1011.. I ..XX xscvdpspn v2.07 686 VSX Scalar Convert Scalar Single-Precision to Vector
Single-Precision format Non-signalling XX2-form

111100 ///// 10100 1011.. I ..XX xscvspdpn v2.07 710 VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling XX2-form

111100 00000 10101 1011./ I ..XX xsxexpdp v3.0 818 VSX Scalar Extract Exponent Double-Precision
XX2-form

111100 00001 10101 1011./ I ..XX xsxsigdp v3.0 819 VSX Scalar Extract Significand Double-Precision
XX2-form

111100 10000 10101 1011.. I ..XX xscvhpdp v3.0 695 VSX Scalar Convert Half-Precision to Double-Precision
format XX2-form

111100 10001 10101 1011.. I ..XX xscvdphp v3.0 683 VSX Scalar Convert with round Double-Precision to
Half-Precision format XX2-form

111100 00000 11101 1011.. I ..XX xvxexpdp v3.0 960 VSX Vector Extract Exponent Double-Precision
XX2-form

111100 00001 11101 1011.. I ..XX xvxsigdp v3.0 961 VSX Vector Extract Significand Double-Precision
XX2-form

111100 ...// 00010 11101 1011./ I ..XX xvtlsbb v3.1 959 VSX Vector Test Least-Significant Bit by Byte XX2-form
111100 00111 11101 1011.. I ..XX xxbrh v3.0 965 VSX Vector Byte-Reverse Halfword XX2-form

111100 01000 11101 1011.. I ..XX xvxexpsp v3.0 960 VSX Vector Extract Exponent Single-Precision
XX2-form

111100 01001 11101 1011.. I ..XX xvxsigsp v3.0 961 VSX Vector Extract Significand Single-Precision
XX2-form

111100 01111 11101 1011.. I ..XX xxbrw v3.0 967 VSX Vector Byte-Reverse Word XX2-form

111100 10000 11101 1011.. I ..XX xvcvbf16sp v3.1 839 VSX Vector Convert bfloat16 to Single-Precision format
XX2-form

111100 10001 11101 1011.. I ..XX xvcvspbf16 v3.1 850 VSX Vector Convert with round Single-Precision to
bfloat16 format XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 26 of 30)
Power ISA™ Appendices1410

Version 3.1
111100 10111 11101 1011.. I ..XX xxbrd v3.0 964 VSX Vector Byte-Reverse Doubleword XX2-form

111100 11000 11101 1011.. I ..XX xvcvhpsp v3.0 849 VSX Vector Convert Half-Precision to Single-Precision
format XX2-form

111100 11001 11101 1011.. I ..XX xvcvsphp v3.0 852 VSX Vector Convert with round Single-Precision to
Half-Precision format XX2-form

111100 11111 11101 1011.. I ..XX xxbrq v3.0 966 VSX Vector Byte-Reverse Quadword XX2-form
111100 11100 10110. I ..XX xsiexpdp v3.0 723 VSX Scalar Insert Exponent Double-Precision X-form
111100 11.... I ..XX xxsel v2.06 988 VSX Vector Select XX4-form
000001 000// .//..
111101 I ..XX pstd v3.1 62 Prefixed Store Doubleword 8LS:D-form

11110100 I .XXX stfdp v2.05 160 Store Floating-Point Double Pair DS-form
11110110 I ..XX stxsd v3.0 638 Store VSX Scalar Doubleword DS-form
11110111 I ..XX stxssp v3.0 642 Store VSX Scalar Single DS-form
111101001 I ..XX lxv v3.0 617 Load VSX Vector DQ-form
111101101 I ..XX stxv v3.0 644 Store VSX Vector DQ-form
000001 000// .//..
111110

I ..XX pstxvp v3.1 654 Prefixed Store VSX Vector Paired 8LS:D-form

11111000 I ..XX std PPC 62 Store Doubleword DS-form
11111001 I ..XX stdu PPC 62 Store Doubleword with Update DS-form
11111010 I ...X stq v2.03 66 Store Quadword DS-form
111111 ...// 00000 00000/ I .XXX fcmpu P1 179 Floating Compare Unordered X-form
111111 ...// 00001 00000/ I .XXX fcmpo P1 179 Floating Compare Ordered X-form
111111 ...// ...// ///// 00010 00000/ I .XXX mcrfs P1 184 Move to Condition Register from FPSCR X-form
111111 ...// 00100 00000/ I .XXX ftdiv v2.06 166 Floating Test for software Divide X-form
111111 ...// ///// 00101 00000/ I .XXX ftsqrt v2.06 167 Floating Test for software Square Root X-form
1111110010 00010. I ...X DFP dscliq[.] v2.05 238 DFP Shift Significand Left Immediate Quad Z22-form
1111110011 00010. I ...X DFP dscriq[.] v2.05 238 DFP Shift Significand Right Immediate Quad Z22-form
111111 ...//0110 00010/ I ...X DFP dtstdcq v2.05 213 DFP Test Data Class Quad Z22-form
111111 ...//0111 00010/ I ...X DFP dtstdgq v2.05 213 DFP Test Data Group Quad Z22-form
111111 00000 00010. I ...X DFP daddq[.] v2.05 206 DFP Add Quad X-form
111111 00001 00010. I ...X DFP dmulq[.] v2.05 208 DFP Multiply Quad X-form
111111 ...// 00100 00010/ I ...X DFP dcmpoq v2.05 212 DFP Compare Ordered Quad X-form
111111 ...// 00101 00010/ I ...X DFP dtstexq v2.05 214 DFP Test Exponent Quad X-form
111111 ///// 01000 00010. I ...X DFP dctqpq[.] v2.05 229 DFP Convert To DFP Extended X-form
111111 ///// 01001 00010. I ...X DFP dctfixq[.] v2.05 233 DFP Convert To Fixed Quad X-form
111111/// 01010 00010. I ...X DFP ddedpdq[.] v2.05 235 DFP Decode DPD To BCD Quad X-form
111111 ///// 01011 00010. I ...X DFP dxexq[.] v2.05 236 DFP Extract Biased Exponent Quad X-form
111111 10000 00010. I ...X DFP dsubq[.] v2.05 206 DFP Subtract Quad X-form
111111 10001 00010. I ...X DFP ddivq[.] v2.05 209 DFP Divide Quad X-form
111111 ...// 10100 00010/ I ...X DFP dcmpuq v2.05 211 DFP Compare Unordered Quad X-form
111111 ...// 10101 00010/ I ...X DFP dtstsfq v2.05 215 DFP Test Significance Quad X-form
111111 ///// 11000 00010. I ...X DFP drdpq[.] v2.05 230 DFP Round To DFP Long X-form
111111 ///// 11001 00010. I ...X DFP dcffixq[.] v2.05 231 DFP Convert From Fixed Quad X-form
111111//// 11010 00010. I ...X DFP denbcdq[.] v2.05 235 DFP Encode BCD To DPD Quad X-form
111111 11011 00010. I ...X DFP diexq[.] v2.05 236 DFP Insert Biased Exponent Quad X-form
111111 00000 11111 00010/ I ...X DFP dcffixqq v3.1 232 DFP Convert From Fixed Quadword Quad X-form
111111 00001 11111 00010/ I ...X DFP dctfixqq v3.1 233 DFP Convert To Fixed Quadword Quad X-form
111111000 00011. I ...X DFP dquaq[.] v2.05 219 DFP Quantize Quad Z23-form
111111001 00011. I ...X DFP drrndq[.] v2.05 221 DFP Reround Quad Z23-form
111111010 00011. I ...X DFP dquaiq[.] v2.05 217 DFP Quantize Immediate Quad Z23-form
111111 ////.011 00011. I ...X DFP drintxq[.] v2.05 224 DFP Round To FP Integer With Inexact Quad Z23-form

111111 ////.111 00011. I ...X DFP drintnq[.] v2.05 226 DFP Round To FP Integer Without Inexact Quad
Z23-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 27 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1411

Version 3.1
111111 ...// 10101 00011/ I ...X DFP dtstsfiq v3.0 216 DFP Test Significance Immediate Quad X-form

111111 00000 00100. I ...X BFP128 xsaddqp[o] v3.0 666 VSX Scalar Add Quad-Precision [using round to Odd]
X-form

111111 00001 00100. I ...X BFP128 xsmulqp[o] v3.0 759 VSX Scalar Multiply Quad-Precision [using round to
Odd] X-form

111111 00010 00100/ I ..XX xscmpeqqp v3.1 671 VSX Scalar Compare Equal Quad-Precision X-form
111111 00011 00100/ I ...X BFP128 xscpsgnqp v3.0 682 VSX Scalar Copy Sign Quad-Precision X-form
111111 ...// 00100 00100/ I ...X BFP128 xscmpoqp v3.0 678 VSX Scalar Compare Ordered Quad-Precision X-form
111111 ...// 00101 00100/ I ...X BFP128 xscmpexpqp v3.0 669 VSX Scalar Compare Exponents Quad-Precision X-form

111111 00110 00100/ I ..XX xscmpgeqp v3.1 673 VSX Scalar Compare Greater Than or Equal
Quad-Precision X-form

111111 00111 00100/ I ..XX xscmpgtqp v3.1 675 VSX Scalar Compare Greater Than Quad-Precision
X-form

111111 01100 00100. I ...X BFP128 xsmaddqp[o] v3.0 731 VSX Scalar Multiply-Add Quad-Precision [using round to
Odd] X-form

111111 01101 00100. I ...X BFP128 xsmsubqp[o] v3.0 754 VSX Scalar Multiply-Subtract Quad-Precision [using
round to Odd] X-form

111111 01110 00100. I ...X BFP128 xsnmaddqp[o] v3.0 773 VSX Scalar Negative Multiply-Add Quad-Precision
[using round to Odd] X-form

111111 01111 00100. I ...X BFP128 xsnmsubqp[o] v3.0 782 VSX Scalar Negative Multiply-Subtract Quad-Precision
[using round to Odd] X-form

111111 10000 00100. I ...X BFP128 xssubqp[o] v3.0 809 VSX Scalar Subtract Quad-Precision [using round to
Odd] X-form

111111 10001 00100. I ...X BFP128 xsdivqp[o] v3.0 719 VSX Scalar Divide Quad-Precision [using round to Odd]
X-form

111111 ...// 10100 00100/ I ...X BFP128 xscmpuqp v3.0 681 VSX Scalar Compare Unordered Quad-Precision X-form
111111 10101 00100/ I ..XX xsmaxcqp v3.1 738 VSX Scalar Maximum Type-C Quad-Precision X-form
111111 10110 00100/ I ...X BFP128 xststdcqp v3.0 816 VSX Scalar Test Data Class Quad-Precision X-form
111111 10111 00100/ I ..XX xsmincqp v3.1 745 VSX Scalar Minimum Type-C Quad-Precision X-form
111111 00000 11001 00100/ I ...X BFP128 xsabsqp v3.0 658 VSX Scalar Absolute Quad-Precision X-form
111111 00010 11001 00100/ I ...X BFP128 xsxexpqp v3.0 818 VSX Scalar Extract Exponent Quad-Precision X-form
111111 01000 11001 00100/ I ...X BFP128 xsnabsqp v3.0 763 VSX Scalar Negative Absolute Quad-Precision X-form
111111 10000 11001 00100/ I ...X BFP128 xsnegqp v3.0 764 VSX Scalar Negate Quad-Precision X-form
111111 10010 11001 00100/ I ...X BFP128 xsxsigqp v3.0 819 VSX Scalar Extract Significand Quad-Precision X-form

111111 11011 11001 00100. I ...X BFP128 xssqrtqp[o] v3.0 803 VSX Scalar Square Root Quad-Precision [using round
to Odd] X-form

111111 00000 11010 00100/ I ..XX xscvqpuqz v3.1 705 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Quadword X-form

111111 00001 11010 00100/ I ...X BFP128 xscvqpuwz v3.0 707 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Word format X-form

111111 00010 11010 00100/ I ...X BFP128 xscvudqp v3.0 714 VSX Scalar Convert Unsigned Doubleword to
Quad-Precision format X-form

111111 00011 11010 00100/ I ..XX xscvuqqp v3.1 715 VSX Scalar Convert with round Unsigned Quadword to
Quad-Precision X-form

111111 01000 11010 00100/ I ..XX xscvqpsqz v3.1 699 VSX Scalar Convert with round to zero Quad-Precision
to Signed Quadword X-form

111111 01001 11010 00100/ I ...X BFP128 xscvqpswz v3.0 701 VSX Scalar Convert with round to zero Quad-Precision
to Signed Word format X-form

111111 01010 11010 00100/ I ...X BFP128 xscvsdqp v3.0 714 VSX Scalar Convert Signed Doubleword to
Quad-Precision format X-form

111111 01011 11010 00100/ I ..XX xscvsqqp v3.1 711 VSX Scalar Convert with round Signed Quadword to
Quad-Precision X-form

111111 10001 11010 00100/ I ...X BFP128 xscvqpudz v3.0 703 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Doubleword format X-form

111111 10100 11010 00100. I ...X BFP128 xscvqpdp[o] v3.0 696 VSX Scalar Convert with round Quad-Precision to
Double-Precision format [using round to Odd] X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 28 of 30)
Power ISA™ Appendices1412

Version 3.1
111111 10110 11010 00100/ I ...X BFP128 xscvdpqp v3.0 684 VSX Scalar Convert Double-Precision to
Quad-Precision format X-form

111111 11001 11010 00100/ I ...X BFP128 xscvqpsdz v3.0 697 VSX Scalar Convert with round to zero Quad-Precision
to Signed Doubleword format X-form

111111 11011 00100/ I ...X BFP128 xsiexpqp v3.0 724 VSX Scalar Insert Exponent Quad-Precision X-form

111111 ////.000 00101. I ...X BFP128 xsrqpi[x] v3.0 793 VSX Scalar Round to Quad-Precision Integer [with
Inexact] Z23-form

111111 ////.001 00101/ I ...X BFP128 xsrqpxp v3.0 795 VSX Scalar Round Quad-Precision to Double-Extended
Precision Z23-form

111111 ///// ///// 00001 00110. I .XXX mtfsb1[.] P1 185 Move To FPSCR Bit 1 X-form
111111 ///// ///// 00010 00110. I .XXX mtfsb0[.] P1 185 Move To FPSCR Bit 0 X-form
111111 ...// ////./ 00100 00110. I .XXX mtfsfi[.] P1 184 Move To FPSCR Field Immediate X-form
111111 11010 00110/ I .XXX fmrgow v2.07 162 Floating Merge Odd Word X-form
111111 11110 00110/ I .XXX fmrgew v2.07 162 Floating Merge Even Word X-form
111111 00000 ///// 10010 00111. I .XXX mffs[.] P1 182 Move From FPSCR X-form
111111 00001 ///// 10010 00111/ I .XXX mffsce v3.0B 182 Move From FPSCR & Clear Enables X-form
111111 10100 10010 00111/ I .XXX mffscdrn v3.0B 182 Move From FPSCR Control & Set DRN X-form

111111 10101 //... 10010 00111/ I .XXX mffscdrni v3.0B 183 Move From FPSCR Control & Set DRN Immediate
X-form

111111 10110 10010 00111/ I .XXX mffscrn v3.0B 183 Move From FPSCR Control & Set RN X-form
111111 10111 ///.. 10010 00111/ I .XXX mffscrni v3.0B 183 Move From FPSCR Control & Set RN Immediate X-form
111111 11000 ///// 10010 00111/ I .XXX mffsl v3.0B 183 Move From FPSCR Lightweight X-form
111111 10110 00111. I .XXX mtfsf[.] P1 184 Move To FPSCR Fields XFL-form
111111 00000 01000. I .XXX fcpsgn[.] v2.05 161 Floating Copy Sign X-form
111111 ///// 00001 01000. I .XXX fneg[.] P1 161 Floating Negate X-form
111111 ///// 00010 01000. I .XXX fmr[.] P1 161 Floating Move Register X-form
111111 ///// 00100 01000. I .XXX fnabs[.] P1 161 Floating Negative Absolute Value X-form
111111 ///// 01000 01000. I .XXX fabs[.] P1 161 Floating Absolute Value X-form
111111 ///// 01100 01000. I .XXX frin[.] v2.02 178 Floating Round to Integer Nearest X-form
111111 ///// 01101 01000. I .XXX friz[.] v2.02 178 Floating Round to Integer Toward Zero X-form
111111 ///// 01110 01000. I .XXX frip[.] v2.02 178 Floating Round to Integer Plus X-form
111111 ///// 01111 01000. I .XXX frim[.] v2.02 178 Floating Round to Integer Minus X-form
111111 ///// 00000 01100. I .XXX frsp[.] P1 170 Floating Round to Single-Precision X-form

111111 ///// 00000 01110. I .XXX fctiw[.] P2 172 Floating Convert with round Double-Precision To Signed
Word format X-form

111111 ///// 00100 01110. I .XXX fctiwu[.] v2.06 173 Floating Convert with round Double-Precision To
Unsigned Word format X-form

111111 ///// 11001 01110. I .XXX fctid[.] PPC 170 Floating Convert with round Double-Precision To Signed
Doubleword format X-form

111111 ///// 11010 01110. I .XXX fcfid[.] PPC 174 Floating Convert with round Signed Doubleword to
Double-Precision format X-form

111111 ///// 11101 01110. I .XXX fctidu[.] v2.06 171 Floating Convert with round Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11110 01110. I .XXX fcfidu[.] v2.06 175 Floating Convert with round Unsigned Doubleword to
Double-Precision format X-form

111111 ///// 00000 01111. I .XXX fctiwz[.] P2 173 Floating Convert with truncate Double-Precision To
Signed Word fomat X-form

111111 ///// 00100 01111. I .XXX fctiwuz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Word format X-form

111111 ///// 11001 01111. I .XXX fctidz[.] PPC 171 Floating Convert with truncate Double-Precision To
Signed Doubleword format X-form

111111 ///// 11101 01111. I .XXX fctiduz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 10010. I .XXX fdiv[.] P1 164 Floating Divide A-form
111111 ///// 10100. I .XXX fsub[.] P1 163 Floating Subtract A-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 29 of 30)
Appendix E. Power ISA Instruction Set Sorted by Opcode 1413

Version 3.1
111111 ///// 10101. I .XXX fadd[.] P1 163 Floating Add A-form
111111 ///// ///// 10110. I .XXX fsqrt[.] P2 165 Floating Square Root A-form
111111 10111. I .XXX fsel[.] PPC 180 Floating Select A-form
111111 ///// ///// 11000. I .XXX fre[.] v2.02 165 Floating Reciprocal Estimate A-form
111111 ///// 11001. I .XXX fmul[.] P1 164 Floating Multiply A-form
111111 ///// ///// 11010. I .XXX frsqrte[.] PPC 166 Floating Reciprocal Square Root Estimate A-form
111111 11100. I .XXX fmsub[.] P1 168 Floating Multiply-Subtract A-form
111111 11101. I .XXX fmadd[.] P1 168 Floating Multiply-Add A-form
111111 11110. I .XXX fnmsub[.] P1 169 Floating Negative Multiply-Subtract A-form
111111 11111. I .XXX fnmadd[.] P1 169 Floating Negative Multiply-Add A-form
000001 11000 000// ///// ///// //////
?????? ????? ????? ????? ????? ??????

I ..XX pnop v3.1 130 Prefixed Nop MRR:*-form

1. Instruction

/ Instruction bit that corresponds to a reserved field, must have a value of 0, otherwise invalid form.
- Instruction bit that corresponds to an operand bit, may have a value of either 0 or 1.
0 Instruction bit that corresponds to an opcode bit having a value 0.
1 Instruction bit that corresponds to an opcode bit having a value 1.

2. OpenPOWER Compliancy Subsets
X... Instruction included in the Scalar Fixed-Point Compliancy subset
.X.. Instruction included in the Scalar Fixed-Point + Floating-Point Compliancy subset.
..X. Instruction included in the Linux Compliancy subset.
...X Instruction included in the AIX Compliancy subset.

3. Linux Optional Category
AMO Instruction part of Atomic Memory Operations category.
BFP128 Instruction part of Quad-Precision Floating-Point category.
BHRB Instruction part of Branch History Rolling Buffer category.
DFP Instruction part of Decimal Floating-Point category.
EBB Instruction part of Event-Based Branch category.
MMA Instruction part of Matrix-Multiplication Assist category.

4. Always Optional Category
MMA Instruction part of Matrix-Multiplication Assist category.

5. Version

P1 Instruction introduced in POWER Architecture.
P2 Instruction introduced in POWER2 Architecture.
PPC Instruction introduced in PowerPC Architecture prior to v2.00.
v2.00 Instruction introduced in PowerPC Architecture Version 2.00.
v2.01 Instruction introduced in PowerPC Architecture Version 2.01.
v2.02 Instruction introduced in PowerPC Architecture Version 2.02.
v2.03 Instruction introduced in Power ISA Version 2.03.
v2.04 Instruction introduced in Power ISA Version 2.04.
v2.05 Instruction introduced in Power ISA Version 2.05.
v2.06 Instruction introduced in Power ISA Version 2.06.
v2.07 Instruction introduced in Power ISA Version 2.07.
v3.0 Instruction introduced in Power ISA Version 3.0.
v3.0B Instruction introduced in Power ISA Version 3.0B.
v3.0C Instruction introduced in Power ISA Version 3.0C.
v3.1 Instruction introduced in Power ISA Version 3.1.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 91. Power ISA AS Instruction Set Sorted by Opcode (Sheet 30 of 30)
Power ISA™ Appendices1414

Version 3.1
6. Privilege

P Denotes an instruction that is treated as privileged.
O Denotes an instruction that is treated as privileged or nonprivileged (or hypervisor-privileged for mtspr), depending on the

SPR or PMR number.
PI Denotes an instruction that is illegal in privileged state.
HV Denotes an instruction that can be executed only in hypervisor state.
UV Denotes an instruction that can be executed only in ultravisor state.

7. Mode Dependency.
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are independent of wheth-
er the processor is in 32-bit or 64-bit mode.

CT If the instruction tests the Count Register, it tests the low-order 32 bits in 32-bit mode and all 64 bits in 64-bit mode.
SR The setting of status registers (such as XER and CR0) is mode-dependent.
SF=1 The instruction can be executed only in 64-bit mode.
Appendix E. Power ISA Instruction Set Sorted by Opcode 1415

Version 3.1
Power ISA™ Appendices1416

Version 3.1
Appendix F. Power ISA Instruction Set Sorted by
Version

This appendix lists all the instructions in the Power ISA, sorted in reverse order by ISA version, then by mnemonic.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name
011111 ///// 00101 11011/ I ..XX brd v3.1 119 Byte-Reverse Doubleword X-form
011111 ///// 00110 11011/ I XXXX brh v3.1 119 Byte-Reverse Halfword X-form
011111 ///// 00100 11011/ I XXXX brw v3.1 119 Byte-Reverse Word X-form
011111 00110 11100/ I ..XX cfuged v3.1 106 Centrifuge Doubleword X-form

011111 00001 11011/ I ..XX cntlzdm v3.1 105 Count Leading Zeros Doubleword under bit Mask
X-form

011111 10001 11011/ I ..XX cnttzdm v3.1 105 Count Trailing Zeros Doubleword under bit Mask X-form
111111 00000 11111 00010/ I ...X DFP dcffixqq v3.1 232 DFP Convert From Fixed Quadword Quad X-form
111111 00001 11111 00010/ I ...X DFP dctfixqq v3.1 233 DFP Convert To Fixed Quadword Quad X-form
011111 ///// 11111 10111/ III ..XX lqm v3.1 ?? ?? Load Quadword Metadata
111100 11111 01011 01000. I ..XX lxvkq v3.1 620 Load VSX Vector Special Value Quadword X-form
0001100000 I ..XX lxvp v3.1 625 Load VSX Vector Paired DQ-form
011111 01010 01101/ I ..XX lxvpx v3.1 626 Load VSX Vector Paired Indexed X-form
011111 00000 01101. I ..XX lxvrbx v3.1 627 Load VSX Vector Rightmost Byte Indexed X-form

011111 00011 01101. I ..XX lxvrdx v3.1 628 Load VSX Vector Rightmost Doubleword Indexed
X-form

011111 00001 01101. I ..XX lxvrhx v3.1 629 Load VSX Vector Rightmost Halfword Indexed X-form
011111 00010 01101. I ..XX lxvrwx v3.1 630 Load VSX Vector Rightmost Word Indexed X-form
000100 10000 11001 000010 I ..XX mtvsrbm v3.1 463 Move to VSR Byte Mask VX-form
000100 01010. I ..XX mtvsrbmi v3.1 465 Move To VSR Byte Mask Immediate DX-form
000100 10011 11001 000010 I ..XX mtvsrdm v3.1 464 Move to VSR Doubleword Mask VX-form
000100 10001 11001 000010 I ..XX mtvsrhm v3.1 463 Move to VSR Halfword Mask VX-form
000100 10100 11001 000010 I ..XX mtvsrqm v3.1 465 Move to VSR Quadword Mask VX-form
000100 10010 11001 000010 I ..XX mtvsrwm v3.1 464 Move to VSR Word Mask VX-form
000001 100// .//..
001110

I ..XX paddi v3.1 76 Prefixed Add Immediate MLS:D-form

011111 00100 11100/ I ..XX pdepd v3.1 106 Parallel Bits Deposit Doubleword X-form
011111 00101 11100/ I ..XX pextd v3.1 106 Parallel Bits Extract Doubleword X-form
000001 100// .//..
100010

I ..XX plbz v3.1 52 Prefixed Load Byte and Zero MLS:D-form

000001 000// .//..
111001

I ..XX pld v3.1 57 Prefixed Load Doubleword 8LS:D-form

000001 100// .//..
110010

I ..XX plfd v3.1 152 Prefixed Load Floating-Point Double MLS:D-form

000001 100// .//..
110000

I ..XX plfs v3.1 150 Prefixed Load Floating-Point Single MLS:D-form

000001 100// .//..
101010

I ..XX plha v3.1 54 Prefixed Load Halfword Algebraic MLS:D-form

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 1 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1417

Version 3.1
000001 100// .//..
101000

I ..XX plhz v3.1 53 Prefixed Load Halfword and Zero MLS:D-form

000001 000// .//..
111000

I ..XX plq v3.1 65 Prefixed Load Quadword 8LS:D-form

000001 000// .//..
101001

I ..XX plwa v3.1 56 Prefixed Load Word Algebraic 8LS:D-form

000001 100// .//..
100000

I ..XX plwz v3.1 55 Prefixed Load Word and Zero MLS:D-form

000001 000// .//..
101010

I ..XX plxsd v3.1 610 Prefixed Load VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101011

I ..XX plxssp v3.1 615 Prefixed Load VSX Scalar Single-Precision 8LS:D-form

000001 000// .//..
11001.

I ..XX plxv v3.1 617 Prefixed Load VSX Vector 8LS:D-form

000001 000// .//..
111010

I ..XX plxvp v3.1 625 Prefixed Load VSX Vector Paired 8LS:D-form

000001 11100 1//// ../// ///..
111011 ...// 00110 011../

I MMA MMA pmxvbf16ger2 v3.1 827 Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11110 010../

I MMA MMA pmxvbf16ger2nn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01110 010../

I MMA MMA pmxvbf16ger2np v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10110 010../

I MMA MMA pmxvbf16ger2pn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00110 010../

I MMA MMA pmxvbf16ger2pp v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 011../

I MMA MMA pmxvf16ger2 v3.1 871 Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11010 010../

I MMA MMA pmxvf16ger2nn v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01010 010../

I MMA MMA pmxvf16ger2np v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10010 010../ I MMA MMA pmxvf16ger2pn v3.1 871

Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 010../

I MMA MMA pmxvf16ger2pp v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 011../ I MMA MMA pmxvf32ger v3.1 875 Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11011 010../

I MMA MMA pmxvf32gernn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01011 010../

I MMA MMA pmxvf32gernp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10011 010../ I MMA MMA pmxvf32gerpn v3.1 875

Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 010../

I MMA MMA pmxvf32gerpp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 2 of 30)
Power ISA™ Appendices1418

Version 3.1
000001 11100 1//// ///// ///..
111011 ...// 00111 011../

I MMA MMA pmxvf64ger v3.1 879 Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11111 010../ I MMA MMA pmxvf64gernn v3.1 879

Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01111 010../

I MMA MMA pmxvf64gernp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10111 010../

I MMA MMA pmxvf64gerpn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 010../

I MMA MMA pmxvf64gerpp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01001 011../

I MMA MMA pmxvi16ger2 v3.1 891 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01101 011../

I MMA MMA pmxvi16ger2pp v3.1 891
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 011../

I MMA MMA pmxvi16ger2s v3.1 893 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) with Saturation MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 010../

I MMA MMA pmxvi16ger2spp v3.1 893
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) with Saturation Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 011../

I MMA MMA pmxvi4ger8 v3.1 883 Prefixed Masked VSX Vector 4-bit Signed Integer GER
(rank-8 update) MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 010../

I MMA MMA pmxvi4ger8pp v3.1 883
Prefixed Masked VSX Vector 4-bit Signed Integer GER

(rank-8 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 00000 011../

I MMA MMA pmxvi8ger4 v3.1 886 Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 00000 010../

I MMA MMA pmxvi8ger4pp v3.1 886
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 01100 011../

I MMA MMA pmxvi8ger4spp v3.1 889
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) with Saturate Positive
multiply, Positive accumulate MMIRR:XX3-form

000001 11000 000// ///// ///// //////
?????? ????? ????? ????? ????? ??????

I ..XX pnop v3.1 130 Prefixed Nop MRR:*-form

000001 100// .//..
100110

I ..XX pstb v3.1 59 Prefixed Store Byte MLS:D-form

000001 000// .//..
111101

I ..XX pstd v3.1 62 Prefixed Store Doubleword 8LS:D-form

000001 100// .//..
110110

I ..XX pstfd v3.1 157 Prefixed Store Floating-Point Double MLS:D-form

000001 100// .//..
110100

I ..XX pstfs v3.1 155 Prefixed Store Floating-Point Single MLS:D-form

000001 100// .//..
101100

I ..XX psth v3.1 60 Prefixed Store Halfword MLS:D-form

000001 000// .//..
111100 I ..XX pstq v3.1 66 Prefixed Store Quadword 8LS:D-form

000001 100// .//..
100100 I ..XX pstw v3.1 61 Prefixed Store Word MLS:D-form

000001 000// .//..
101110 I ..XX pstxsd v3.1 638 Prefixed Store VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101111 I ..XX pstxssp v3.1 642 Prefixed Store VSX Scalar Single-Precision 8LS:D-form

000001 000// .//..
11011. I ..XX pstxv v3.1 644 Prefixed Store VSX Vector 8LS:D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 3 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1419

Version 3.1
000001 000// .//..
111110

I ..XX pstxvp v3.1 654 Prefixed Store VSX Vector Paired 8LS:D-form

011111 ///// 01100 00000/ I XXXX setbc v3.1 129 Set Boolean Condition X-form
011111 ///// 01101 00000/ I XXXX setbcr v3.1 129 Set Boolean Condition Reverse X-form
011111 ///// 01110 00000/ I XXXX setnbc v3.1 129 Set Negative Boolean Condition X-form
011111 ///// 01111 00000/ I XXXX setnbcr v3.1 129 Set Negative Boolean Condition Reverse X-form
011111 ///.. 01111 10111/ III ..XX spom v3.1 ?? ?? Splat Octword Metadata
0001100001 I ..XX stxvp v3.1 654 Store VSX Vector Paired DQ-form
011111 01110 01101/ I ..XX stxvpx v3.1 655 Store VSX Vector Paired Indexed X-form
011111 00100 01101. I ..XX stxvrbx v3.1 651 Store VSX Vector Rightmost Byte Indexed X-form

011111 00111 01101. I ..XX stxvrdx v3.1 651 Store VSX Vector Rightmost Doubleword Indexed
X-form

011111 00101 01101. I ..XX stxvrhx v3.1 652 Store VSX Vector Rightmost Halfword Indexed X-form
011111 00110 01101. I ..XX stxvrwx v3.1 652 Store VSX Vector Rightmost Word Indexed X-form
000100 10101 001101 I ..XX vcfuged v3.1 456 Vector Centrifuge Doubleword VX-form
000100 00110 001101 I ..XX vclrlb v3.1 476 Vector Clear Leftmost Bytes VX-form
000100 00111 001101 I ..XX vclrrb v3.1 476 Vector Clear Rightmost Bytes VX-form

000100 11110 000100 I ..XX vclzdm v3.1 449 Vector Count Leading Zeros Doubleword under bit Mask
VX-form

0001000111 000111 I ..XX vcmpequq[.] v3.1 392 Vector Compare Equal Quadword VC-form

0001001110 000111 I ..XX vcmpgtsq[.] v3.1 397 Vector Compare Greater Than Signed Quadword
VC-form

0001001010 000111 I ..XX vcmpgtuq[.] v3.1 397 Vector Compare Greater Than Unsigned Quadword
VC-form

000100 ...// 00101 000001 I ..XX vcmpsq v3.1 401 Vector Compare Signed Quadword VX-form
000100 ...// 00100 000001 I ..XX vcmpuq v3.1 401 Vector Compare Unsigned Quadword VX-form
000100 1100. 11001 000010 I ..XX vcntmbb v3.1 469 Vector Count Mask Bits Byte VX-form
000100 1101. 11001 000010 I ..XX vcntmbd v3.1 470 Vector Count Mask Bits Doubleword VX-form
000100 1110. 11001 000010 I ..XX vcntmbh v3.1 469 Vector Count Mask Bits Halfword VX-form
000100 1111. 11001 000010 I ..XX vcntmbw v3.1 470 Vector Count Mask Bits Word VX-form

000100 11111 000100 I ..XX vctzdm v3.1 452 Vector Count Trailing Zeros Doubleword under bit Mask
VX-form

000100 01111 001011 I ..XX vdivesd v3.1 361 Vector Divide Extended Signed Doubleword VX-form
000100 01100 001011 I ..XX vdivesq v3.1 363 Vector Divide Extended Signed Quadword VX-form
000100 01110 001011 I ..XX vdivesw v3.1 359 Vector Divide Extended Signed Word VX-form
000100 01011 001011 I ..XX vdiveud v3.1 361 Vector Divide Extended Unsigned Doubleword VX-form
000100 01000 001011 I ..XX vdiveuq v3.1 363 Vector Divide Extended Unsigned Quadword VX-form
000100 01010 001011 I ..XX vdiveuw v3.1 359 Vector Divide Extended Unsigned Word VX-form
000100 00111 001011 I ..XX vdivsd v3.1 360 Vector Divide Signed Doubleword VX-form
000100 00100 001011 I ..XX vdivsq v3.1 362 Vector Divide Signed Quadword VX-form
000100 00110 001011 I ..XX vdivsw v3.1 358 Vector Divide Signed Word VX-form
000100 00011 001011 I ..XX vdivud v3.1 360 Vector Divide Unsigned Doubleword VX-form
000100 00000 001011 I ..XX vdivuq v3.1 362 Vector Divide Unsigned Quadword VX-form
000100 00010 001011 I ..XX vdivuw v3.1 358 Vector Divide Unsigned Word VX-form
000100 00000 11001 000010 I ..XX vexpandbm v3.1 466 Vector Expand Byte Mask VX-form
000100 00011 11001 000010 I ..XX vexpanddm v3.1 467 Vector Expand Doubleword Mask VX-form
000100 00001 11001 000010 I ..XX vexpandhm v3.1 466 Vector Expand Halfword Mask VX-form
000100 00100 11001 000010 I ..XX vexpandqm v3.1 468 Vector Expand Quadword Mask VX-form
000100 00010 11001 000010 I ..XX vexpandwm v3.1 467 Vector Expand Word Mask VX-form

000100 011110 I ..XX vextddvlx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Left-Index VA-form

000100 011111 I ..XX vextddvrx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Right-Index VA-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 4 of 30)
Power ISA™ Appendices1420

Version 3.1
000100 011000 I ..XX vextdubvlx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Left-Index VA-form

000100 011001 I ..XX vextdubvrx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Right-Index VA-form

000100 011010 I ..XX vextduhvlx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Left-Index VA-form

000100 011011 I ..XX vextduhvrx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Right-Index VA-form

000100 011100 I ..XX vextduwvlx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Left-Index VA-form

000100 011101 I ..XX vextduwvrx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Right-Index VA-form

000100 01000 11001 000010 I ..XX vextractbm v3.1 471 Vector Extract Byte Mask VX-form
000100 01011 11001 000010 I ..XX vextractdm v3.1 472 Vector Extract Doubleword Mask VX-form
000100 01001 11001 000010 I ..XX vextracthm v3.1 471 Vector Extract Halfword Mask VX-form
000100 01100 11001 000010 I ..XX vextractqm v3.1 473 Vector Extract Quadword Mask VX-form
000100 01010 11001 000010 I ..XX vextractwm v3.1 472 Vector Extract Word Mask VX-form
000100 11011 11000 000010 I ..XX vextsd2q v3.1 374 Vector Extend Sign Doubleword to Quadword VX-form
000100 //... 10011 001100 I ..XX vgnb v3.1 446 Vector Gather every Nth Bit VX-form

000100 01000 001111 I ..XX vinsblx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Left-Index VX-form

000100 01100 001111 I ..XX vinsbrx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Right-Index VX-form

000100 00000 001111 I ..XX vinsbvlx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Left-Index VX-form

000100 00100 001111 I ..XX vinsbvrx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Right-Index VX-form

000100 /.... 00111 001111 I ..XX vinsd v3.1 319 Vector Insert Doubleword from GPR using
immediate-specified index VX-form

000100 01011 001111 I ..XX vinsdlx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

000100 01111 001111 I ..XX vinsdrx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

000100 01001 001111 I ..XX vinshlx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Left-Index VX-form

000100 01101 001111 I ..XX vinshrx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Right-Index VX-form

000100 00001 001111 I ..XX vinshvlx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Left-Index VX-form

000100 00101 001111 I ..XX vinshvrx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Right-Index VX-form

000100 /.... 00011 001111 I ..XX vinsw v3.1 319 Vector Insert Word from GPR using immediate-specified
index VX-form

000100 01010 001111 I ..XX vinswlx v3.1 317 Vector Insert Word from GPR using GPR-specified
Left-Index VX-form

000100 01110 001111 I ..XX vinswrx v3.1 317 Vector Insert Word from GPR using GPR-specified
Right-Index VX-form

000100 00010 001111 I ..XX vinswvlx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 00110 001111 I ..XX vinswvrx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 11111 001011 I ..XX vmodsd v3.1 365 Vector Modulo Signed Doubleword VX-form
000100 11100 001011 I ..XX vmodsq v3.1 366 Vector Modulo Signed Quadword VX-form
000100 11110 001011 I ..XX vmodsw v3.1 364 Vector Modulo Signed Word VX-form
000100 11011 001011 I ..XX vmodud v3.1 365 Vector Modulo Unsigned Doubleword VX-form
000100 11000 001011 I ..XX vmoduq v3.1 366 Vector Modulo Unsigned Quadword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 5 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1421

Version 3.1
000100 11010 001011 I ..XX vmoduw v3.1 364 Vector Modulo Unsigned Word VX-form

000100 010111 I ..XX vmsumcud v3.1 357 Vector Multiply-Sum & write Carry-out Unsigned
Doubleword VA-form

000100 01111 001000 I ..XX vmulesd v3.1 346 Vector Multiply Even Signed Doubleword VX-form
000100 01011 001000 I ..XX vmuleud v3.1 345 Vector Multiply Even Unsigned Doubleword VX-form
000100 01111 001001 I ..XX vmulhsd v3.1 349 Vector Multiply High Signed Doubleword VX-form
000100 01110 001001 I ..XX vmulhsw v3.1 347 Vector Multiply High Signed Word VX-form
000100 01011 001001 I ..XX vmulhud v3.1 349 Vector Multiply High Unsigned Doubleword VX-form
000100 01010 001001 I ..XX vmulhuw v3.1 348 Vector Multiply High Unsigned Word VX-form
000100 00111 001001 I ..XX vmulld v3.1 350 Vector Multiply Low Doubleword VX-form
000100 00111 001000 I ..XX vmulosd v3.1 346 Vector Multiply Odd Signed Doubleword VX-form
000100 00011 001000 I ..XX vmuloud v3.1 345 Vector Multiply Odd Unsigned Doubleword VX-form
000100 10111 001101 I ..XX vpdepd v3.1 454 Vector Parallel Bits Deposit Doubleword VX-form
000100 10110 001101 I ..XX vpextd v3.1 455 Vector Parallel Bits Extract Doubleword VX-form
000100 00000 000101 I ..XX vrlq v3.1 405 Vector Rotate Left Quadword VX-form
000100 00001 000101 I ..XX vrlqmi v3.1 412 Vector Rotate Left Quadword then Mask Insert VX-form

000100 00101 000101 I ..XX vrlqnm v3.1 409 Vector Rotate Left Quadword then AND with Mask
VX-form

000100 00... 010110 I ..XX vsldbi v3.1 298 Vector Shift Left Double by Bit Immediate VN-form
000100 00100 000101 I ..XX vslq v3.1 415 Vector Shift Left Quadword VX-form
000100 01100 000101 I ..XX vsraq v3.1 421 Vector Shift Right Algebraic Quadword VX-form
000100 01... 010110 I ..XX vsrdbi v3.1 299 Vector Shift Right Double by Bit Immediate VN-form
000100 01000 000101 I ..XX vsrq v3.1 418 Vector Shift Right Quadword VX-form
000100 000000000 001101 I ..XX vstribl[.] v3.1 474 Vector String Isolate Byte Left-justified VX-form
000100 000010000 001101 I ..XX vstribr[.] v3.1 475 Vector String Isolate Byte Right-justified VX-form
000100 000100000 001101 I ..XX vstrihl[.] v3.1 475 Vector String Isolate Halfword Left-justified VX-form
000100 000110000 001101 I ..XX vstrihr[.] v3.1 474 Vector String Isolate Halfword Right-justified VX-form
111111 00010 00100/ I ..XX xscmpeqqp v3.1 671 VSX Scalar Compare Equal Quad-Precision X-form

111111 00110 00100/ I ..XX xscmpgeqp v3.1 673 VSX Scalar Compare Greater Than or Equal
Quad-Precision X-form

111111 00111 00100/ I ..XX xscmpgtqp v3.1 675 VSX Scalar Compare Greater Than Quad-Precision
X-form

111111 01000 11010 00100/ I ..XX xscvqpsqz v3.1 699 VSX Scalar Convert with round to zero Quad-Precision
to Signed Quadword X-form

111111 00000 11010 00100/ I ..XX xscvqpuqz v3.1 705 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Quadword X-form

111111 01011 11010 00100/ I ..XX xscvsqqp v3.1 711 VSX Scalar Convert with round Signed Quadword to
Quad-Precision X-form

111111 00011 11010 00100/ I ..XX xscvuqqp v3.1 715 VSX Scalar Convert with round Unsigned Quadword to
Quad-Precision X-form

111111 10101 00100/ I ..XX xsmaxcqp v3.1 738 VSX Scalar Maximum Type-C Quad-Precision X-form
111111 10111 00100/ I ..XX xsmincqp v3.1 745 VSX Scalar Minimum Type-C Quad-Precision X-form
111011 ...// 00110 011../ I MMA MMA xvbf16ger2 v3.1 827 VSX Vector bfloat16 GER (Rank-2 Update) XX3-form

111011 ...// 11110 010../ I MMA MMA xvbf16ger2nn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
XX3-form

111011 ...// 01110 010../ I MMA MMA xvbf16ger2np v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
XX3-form

111011 ...// 10110 010../ I MMA MMA xvbf16ger2pn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
XX3-form

111011 ...// 00110 010../ I MMA MMA xvbf16ger2pp v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 6 of 30)
Power ISA™ Appendices1422

Version 3.1
111100 10000 11101 1011.. I ..XX xvcvbf16sp v3.1 839 VSX Vector Convert bfloat16 to Single-Precision format
XX2-form

111100 10001 11101 1011.. I ..XX xvcvspbf16 v3.1 850 VSX Vector Convert with round Single-Precision to
bfloat16 format XX2-form

111011 ...// 00010 011../ I MMA MMA xvf16ger2 v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
XX3-form

111011 ...// 11010 010../ I MMA MMA xvf16ger2nn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01010 010../ I MMA MMA xvf16ger2np v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10010 010../ I MMA MMA xvf16ger2pn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00010 010../ I MMA MMA xvf16ger2pp v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00011 011../ I MMA MMA xvf32ger v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11011 010../ I MMA MMA xvf32gernn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01011 010../ I MMA MMA xvf32gernp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10011 010../ I MMA MMA xvf32gerpn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00011 010../ I MMA MMA xvf32gerpp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00111 011../ I MMA MMA xvf64ger v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11111 010../ I MMA MMA xvf64gernn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01111 010../ I MMA MMA xvf64gernp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10111 010../ I MMA MMA xvf64gerpn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00111 010../ I MMA MMA xvf64gerpp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 01001 011../ I MMA MMA xvi16ger2 v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
XX3-form

111011 ...// 01101 011../ I MMA MMA xvi16ger2pp v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00101 011../ I MMA MMA xvi16ger2s v3.1 893 VSX Vector 16-bit Signed Integer GER (rank-2 update)
with Saturation XX3-form

111011 ...// 00101 010../ I MMA MMA xvi16ger2spp v3.1 893
VSX Vector 16-bit Signed Integer GER (rank-2 update)

with Saturation Positive multiply, Positive
accumulate XX3-form

111011 ...// 00100 011../ I MMA MMA xvi4ger8 v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
XX3-form

111011 ...// 00100 010../ I MMA MMA xvi4ger8pp v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00000 011../ I MMA MMA xvi8ger4 v3.1 886 VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4
update) XX3-form

111011 ...// 00000 010../ I MMA MMA xvi8ger4pp v3.1 886
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) Positive multiply, Positive accumulate
XX3-form

111011 ...// 01100 011../ I MMA MMA xvi8ger4spp v3.1 889
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) with Saturate Positive multiply, Positive
accumulate XX3-form

111100 ...// 00010 11101 1011./ I ..XX xvtlsbb v3.1 959 VSX Vector Test Least-Significant Bit by Byte XX2-form
000001 01000 0//// ///// ///// //////
100001 00....

I ..XX xxblendvb v3.1 962 VSX Vector Blend Variable Byte 8RR:XX4-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 7 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1423

Version 3.1
000001 01000 0//// ///// ///// //////
100001 11....

I ..XX xxblendvd v3.1 963 VSX Vector Blend Variable Doubleword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 01....

I ..XX xxblendvh v3.1 962 VSX Vector Blend Variable Halfword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 10....

I ..XX xxblendvw v3.1 963 VSX Vector Blend Variable Word 8RR:XX4-form

000001 01000 0//// ///// ///..
100010 01....

I ..XX xxeval v3.1 967 VSX Vector Evaluate 8RR-XX4-form

111100 11100 10100. I ..XX xxgenpcvbm v3.1 970 VSX Vector Generate PCV from Byte Mask X-form

111100 11101 10101. I ..XX xxgenpcvdm v3.1 976 VSX Vector Generate PCV from Doubleword Mask
X-form

111100 11100 10101. I ..XX xxgenpcvhm v3.1 972 VSX Vector Generate PCV from Halfword Mask X-form
111100 11101 10100. I ..XX xxgenpcvwm v3.1 974 VSX Vector Generate PCV from Word Mask X-form
011111 ...// 00000 ///// 00101 10001/ I MMA MMA xxmfacc v3.1 983 VSX Move From Accumulator X-form
011111 ...// 00001 ///// 00101 10001/ I MMA MMA xxmtacc v3.1 984 VSX Move To Accumulator X-form
000001 01000 0//// ///// ///// ///...
100010 00....

I ..XX xxpermx v3.1 987 VSX Vector Permute Extended 8RR:XX4-form

011111 ...// 00011 ///// 00101 10001/ I MMA MMA xxsetaccz v3.1 989 VSX Set Accumulator to Zero X-form
000001 01000 0////
100000 000..

I ..XX xxsplti32dx v3.1 992 VSX Vector Splat Immediate32 Doubleword Indexed
8RR:D-form

000001 01000 0////
100000 0010.

I ..XX xxspltidp v3.1 991 VSX Vector Splat Immediate Double-Precision
8RR:D-form

000001 01000 0////
100000 0011.

I ..XX xxspltiw v3.1 992 VSX Vector Splat Immediate Word 8RR:D-form

011111 ///// ///// 00011 01110/ III ..?X msgclru v3.0C UV 1328 Ultravisor Message Clear X-form
011111 ///// ///// 00010 01110/ III ..?X msgsndu v3.0C UV 1327 Ultravisor Message SendX-form
010011 ///// ///// ///// 01001 10010/ III ..?X urfid v3.0C UV 1153 Ultravisor Return From Interrupt Doubleword XL-form
011111101 01010/ I XXXX addex v3.0B 80 Add Extended using alternate carry bit Z23-form
111111 10100 10010 00111/ I .XXX mffscdrn v3.0B 182 Move From FPSCR Control & Set DRN X-form

111111 10101 //... 10010 00111/ I .XXX mffscdrni v3.0B 183 Move From FPSCR Control & Set DRN Immediate
X-form

111111 00001 ///// 10010 00111/ I .XXX mffsce v3.0B 182 Move From FPSCR & Clear Enables X-form
111111 10110 10010 00111/ I .XXX mffscrn v3.0B 183 Move From FPSCR Control & Set RN X-form
111111 10111 ///.. 10010 00111/ I .XXX mffscrni v3.0B 183 Move From FPSCR Control & Set RN Immediate X-form
111111 11000 ///// 10010 00111/ I .XXX mffsl v3.0B 183 Move From FPSCR Lightweight X-form
011111 ///// 11010 10010/ III ...X slbiag v3.0B P 1226 SLB Invalidate All Global X-form

000100 100011 I ..XX vmsumudm v3.0B 356 Vector Multiply-Sum Unsigned Doubleword Modulo
VA-form

010011 00010. I XXXX addpcis v3.0 76 Add PC Immediate Shifted DX-form
000100 00111 1.110 000001 I ..XX bcdcfn. v3.0 480 Decimal Convert From National VX-form
000100 00010 1.110 000001 I ..XX bcdcfsq. v3.0 485 Decimal Convert From Signed Quadword VX-form
000100 00110 1.110 000001 I ..XX bcdcfz. v3.0 481 Decimal Convert From Zoned VX-form
000100 01101 000001 I ..XX bcdcpsgn. v3.0 489 Decimal Copy Sign VX-form
000100 00101 1/110 000001 I ..XX bcdctn. v3.0 483 Decimal Convert To National VX-form
000100 00000 1/110 000001 I ..XX bcdctsq. v3.0 486 Decimal Convert To Signed Quadword VX-form
000100 00100 1.110 000001 I ..XX bcdctz. v3.0 484 Decimal Convert To Zoned VX-form
000100 1.011 000001 I ..XX bcds. v3.0 491 Decimal Shift VX-form
000100 11111 1.110 000001 I ..XX bcdsetsgn. v3.0 490 Decimal Set Sign VX-form
000100 1.111 000001 I ..XX bcdsr. v3.0 493 Decimal Shift and Round VX-form
000100 1.100 000001 I ..XX bcdtrunc. v3.0 494 Decimal Truncate VX-form
000100 1/010 000001 I ..XX bcdus. v3.0 492 Decimal Unsigned Shift VX-form
000100 1/101 000001 I ..XX bcdutrunc. v3.0 495 Decimal Unsigned Truncate VX-form
011111 ...// 00111 00000/ I XXXX cmpeqb v3.0 95 Compare Equal Byte X-form
011111 .../. 00110 00000/ I XXXX cmprb v3.0 94 Compare Ranged Byte X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 8 of 30)
Power ISA™ Appendices1424

Version 3.1
011111 ///// 10001 11010. I ..XX cnttzd[.] v3.0 104 Count Trailing Zeros Doubleword X-form
011111 ///// 10000 11010. I XXXX cnttzw[.] v3.0 102 Count Trailing Zeros Word X-form
011111 ////. 11000 00110/ II ...X copy v3.0 1068 Copy X-form
011111 ///// ///// ///// 11010 00110/ II ...X cpabort v3.0 1069 Copy-Paste Abort X-form
011111 ///.. ///// 10111 10011/ I ...X darn v3.0 86 Deliver A Random Number X-form
111011 ...// 10101 00011/ I ...X DFP dtstsfi v3.0 216 DFP Test Significance Immediate X-form
111111 ...// 10101 00011/ I ...X DFP dtstsfiq v3.0 216 DFP Test Significance Immediate Quad X-form
011111 11011 1101.. I ..XX extswsli[.] v3.0 116 Extend Sign Word and Shift Left Immediate XS-form
011111 10011 00110/ II ...X AMO ldat v3.0 1073 Load Doubleword ATomic X-form
011111 10010 00110/ II ...X AMO lwat v3.0 1073 Load Word ATomic X-form
11100110 I ..XX lxsd v3.0 610 Load VSX Scalar Doubleword DS-form
011111 11000 01101. I ..XX lxsibzx v3.0 612 Load VSX Scalar as Integer Byte & Zero Indexed X-form

011111 11001 01101. I ..XX lxsihzx v3.0 612 Load VSX Scalar as Integer Halfword & Zero Indexed
X-form

11100111 I ..XX lxssp v3.0 615 Load VSX Scalar Single-Precision DS-form
111101001 I ..XX lxv v3.0 617 Load VSX Vector DQ-form
011111 11011 01100. I ..XX lxvb16x v3.0 618 Load VSX Vector Byte*16 Indexed X-form
011111 11001 01100. I ..XX lxvh8x v3.0 634 Load VSX Vector Halfword*8 Indexed X-form
011111 01000 01101. I ..XX lxvl v3.0 621 Load VSX Vector with Length X-form
011111 01001 01101. I ..XX lxvll v3.0 623 Load VSX Vector with Length Left-justified X-form
011111 01011 01100. I ..XX lxvwsx v3.0 636 Load VSX Vector Word & Splat Indexed X-form
011111 0100/ 01100. I ..XX lxvx v3.0 631 Load VSX Vector Indexed X-form
000100 110000 I ..XX maddhd v3.0 88 Multiply-Add High Doubleword VA-form
000100 110001 I ..XX maddhdu v3.0 88 Multiply-Add High Doubleword Unsigned VA-form
000100 110011 I ..XX maddld v3.0 88 Multiply-Add Low Doubleword VA-form
011111 ...// ///// ///// 10010 00000/ I XXXX mcrxrx v3.0 127 Move to CR from XER Extended X-form
011111 ///// 01001 10011. I ..XX mfvsrld v3.0 120 Move From VSR Lower Doubleword X-form
011111 11000 01001/ I ..XX modsd v3.0 91 Modulo Signed Doubleword X-form
011111 11000 01011/ I XXXX modsw v3.0 85 Modulo Signed Word X-form
011111 01000 01001/ I ..XX modud v3.0 91 Modulo Unsigned Doubleword X-form
011111 01000 01011/ I XXXX moduw v3.0 85 Modulo Unsigned Word X-form
011111 ///// ///// ///// 11011 10110/ III ...X msgsync v3.0 HV 1331 Message Synchronize X-form
011111 01101 10011. I ..XX mtvsrdd v3.0 123 Move To VSR Double Doubleword X-form
011111 ///// 01100 10011. I ..XX mtvsrws v3.0 123 Move To VSR Word & Splat X-form
011111 ////. 11100 00110. II ..XX paste[.] v3.0 1068 Paste X-form
011111// ///// 00100 00000/ I XXXX setb v3.0 129 Set Boolean X-form
011111 ///// 01110 10010/ III ...X slbieg v3.0 P 1222 SLB Invalidate Entry Global X-form
011111 ///// ///// ///// 01010 10010/ III ...X slbsync v3.0 P 1230 SLB Synchronize X-form
011111 10111 00110/ II ...X AMO stdat v3.0 1075 Store Doubleword ATomic X-form
010011 ///// ///// ///// 01011 10010/ III ...X stop v3.0 P 1155 Stop XL-form
011111 10110 00110/ II ...X AMO stwat v3.0 1075 Store Word ATomic X-form
11110110 I ..XX stxsd v3.0 638 Store VSX Scalar Doubleword DS-form
011111 11100 01101. I ..XX stxsibx v3.0 640 Store VSX Scalar as Integer Byte Indexed X-form
011111 11101 01101. I ..XX stxsihx v3.0 640 Store VSX Scalar as Integer Halfword Indexed X-form
11110111 I ..XX stxssp v3.0 642 Store VSX Scalar Single DS-form
111101101 I ..XX stxv v3.0 644 Store VSX Vector DQ-form
011111 11111 01100. I ..XX stxvb16x v3.0 645 Store VSX Vector Byte*16 Indexed X-form
011111 11101 01100. I ..XX stxvh8x v3.0 647 Store VSX Vector Halfword*8 Indexed X-form
011111 01100 01101. I ..XX stxvl v3.0 648 Store VSX Vector with Length X-form
011111 01101 01101. I ..XX stxvll v3.0 650 Store VSX Vector with Length Left-justified X-form
011111 01100 01100. I ..XX stxvx v3.0 656 Store VSX Vector Indexed X-form
000100 10000 000011 I ..XX vabsdub v3.0 378 Vector Absolute Difference Unsigned Byte VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 9 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1425

Version 3.1
000100 10001 000011 I ..XX vabsduh v3.0 378 Vector Absolute Difference Unsigned Halfword VX-form
000100 10010 000011 I ..XX vabsduw v3.0 379 Vector Absolute Difference Unsigned Word VX-form
000100 10111 001100 I ..XX vbpermd v3.0 461 Vector Bit Permute Doubleword VX-form

000100 00000 11000 000010 I ..XX vclzlsbb v3.0 453 Vector Count Leading Zero Least-Significant Bits Byte
VX-form

0001000000 000111 I ..XX vcmpneb[.] v3.0 398 Vector Compare Not Equal Byte VC-form
0001000001 000111 I ..XX vcmpneh[.] v3.0 399 Vector Compare Not Equal Halfword VC-form
0001000010 000111 I ..XX vcmpnew[.] v3.0 400 Vector Compare Not Equal Word VC-form
0001000100 000111 I ..XX vcmpnezb[.] v3.0 398 Vector Compare Not Equal or Zero Byte VC-form
0001000101 000111 I ..XX vcmpnezh[.] v3.0 399 Vector Compare Not Equal or Zero Halfword VC-form
0001000110 000111 I ..XX vcmpnezw[.] v3.0 400 Vector Compare Not Equal or Zero Word VC-form
000100 11100 11000 000010 I ..XX vctzb v3.0 450 Vector Count Trailing Zeros Byte VX-form
000100 11111 11000 000010 I ..XX vctzd v3.0 452 Vector Count Trailing Zeros Doubleword VX-form
000100 11101 11000 000010 I ..XX vctzh v3.0 450 Vector Count Trailing Zeros Halfword VX-form

000100 00001 11000 000010 I ..XX vctzlsbb v3.0 453 Vector Count Trailing Zero Least-Significant Bits Byte
VX-form

000100 11110 11000 000010 I ..XX vctzw v3.0 451 Vector Count Trailing Zeros Word VX-form

000100 /.... 01011 001101 I ..XX vextractd v3.0 305 Vector Extract Doubleword to VSR using
immediate-specified index VX-form

000100 /.... 01000 001101 I ..XX vextractub v3.0 304 Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

000100 /.... 01001 001101 I ..XX vextractuh v3.0 304 Vector Extract Unsigned Halfword to VSR using
immediate-specified index VX-form

000100 /.... 01010 001101 I ..XX vextractuw v3.0 305 Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

000100 11000 11000 000010 I ..XX vextsb2d v3.0 373 Vector Extend Sign Byte To Doubleword VX-form
000100 10000 11000 000010 I ..XX vextsb2w v3.0 372 Vector Extend Sign Byte To Word VX-form
000100 11001 11000 000010 I ..XX vextsh2d v3.0 373 Vector Extend Sign Halfword To Doubleword VX-form
000100 10001 11000 000010 I ..XX vextsh2w v3.0 372 Vector Extend Sign Halfword To Word VX-form
000100 11010 11000 000010 I ..XX vextsw2d v3.0 372 Vector Extend Sign Word To Doubleword VX-form

000100 11000 001101 I ..XX vextublx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

000100 11100 001101 I ..XX vextubrx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

000100 11001 001101 I ..XX vextuhlx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Left-Index VX-form

000100 11101 001101 I ..XX vextuhrx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Right-Index VX-form

000100 11010 001101 I ..XX vextuwlx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

000100 11110 001101 I ..XX vextuwrx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

000100 /.... 01100 001101 I ..XX vinsertb v3.0 313 Vector Insert Byte from VSR using immediate-specified
index VX-form

000100 /.... 01111 001101 I ..XX vinsertd v3.0 314 Vector Insert Doubleword from VSR using
immediate-specified index VX-form

000100 /.... 01101 001101 I ..XX vinserth v3.0 313 Vector Insert Halfword from VSR using
immediate-specified index VX-form

000100 /.... 01110 001101 I ..XX vinsertw v3.0 314 Vector Insert Word from VSR using immediate-specified
index VX-form

000100 ///// 00000 000001 I ..XX vmul10cuq v3.0 487 Vector Multiply-by-10 & write Carry-out Unsigned
Quadword VX-form

000100 00001 000001 I ..XX vmul10ecuq v3.0 488 Vector Multiply-by-10 Extended & write Carry-out
Unsigned Quadword VX-form

000100 01001 000001 I ..XX vmul10euq v3.0 488 Vector Multiply-by-10 Extended Unsigned Quadword
VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 10 of 30)
Power ISA™ Appendices1426

Version 3.1
000100 ///// 01000 000001 I ..XX vmul10uq v3.0 487 Vector Multiply-by-10 Unsigned Quadword VX-form
000100 00111 11000 000010 I ..XX vnegd v3.0 371 Vector Negate Doubleword VX-form
000100 00110 11000 000010 I ..XX vnegw v3.0 371 Vector Negate Word VX-form
000100 111011 I ..XX vpermr v3.0 296 Vector Permute Right-indexed VA-form
000100 01001 11000 000010 I ..XX vprtybd v3.0 459 Vector Parity Byte Doubleword VX-form
000100 01010 11000 000010 I ..XX vprtybq v3.0 460 Vector Parity Byte Quadword VX-form
000100 01000 11000 000010 I ..XX vprtybw v3.0 459 Vector Parity Byte Word VX-form

000100 00011 000101 I ..XX vrldmi v3.0 411 Vector Rotate Left Doubleword then Mask Insert
VX-form

000100 00111 000101 I ..XX vrldnm v3.0 408 Vector Rotate Left Doubleword then AND with Mask
VX-form

000100 00010 000101 I ..XX vrlwmi v3.0 410 Vector Rotate Left Word then Mask Insert VX-form
000100 00110 000101 I ..XX vrlwnm v3.0 407 Vector Rotate Left Word then AND with Mask VX-form
000100 11101 000100 I ..XX vslv v3.0 302 Vector Shift Left Variable VX-form
000100 11100 000100 I ..XX vsrv v3.0 302 Vector Shift Right Variable VX-form
011111 ///.. ///// ///// 00000 11110/ II ...X wait v3.0 1090 Wait X-form
111111 00000 11001 00100/ I ...X BFP128 xsabsqp v3.0 658 VSX Scalar Absolute Quad-Precision X-form

111111 00000 00100. I ...X BFP128 xsaddqp[o] v3.0 666 VSX Scalar Add Quad-Precision [using round to Odd]
X-form

111100 00000 011... I ..XX xscmpeqdp v3.0 670 VSX Scalar Compare Equal Double-Precision XX3-form

111100 ...// 00111 011../ I ..XX xscmpexpdp v3.0 668 VSX Scalar Compare Exponents Double-Precision
XX3-form

111111 ...// 00101 00100/ I ...X BFP128 xscmpexpqp v3.0 669 VSX Scalar Compare Exponents Quad-Precision X-form

111100 00010 011... I ..XX xscmpgedp v3.0 672 VSX Scalar Compare Greater Than or Equal
Double-Precision XX3-form

111100 00001 011... I ..XX xscmpgtdp v3.0 674 VSX Scalar Compare Greater Than Double-Precision
XX3-form

111111 ...// 00100 00100/ I ...X BFP128 xscmpoqp v3.0 678 VSX Scalar Compare Ordered Quad-Precision X-form
111111 ...// 10100 00100/ I ...X BFP128 xscmpuqp v3.0 681 VSX Scalar Compare Unordered Quad-Precision X-form
111111 00011 00100/ I ...X BFP128 xscpsgnqp v3.0 682 VSX Scalar Copy Sign Quad-Precision X-form

111100 10001 10101 1011.. I ..XX xscvdphp v3.0 683 VSX Scalar Convert with round Double-Precision to
Half-Precision format XX2-form

111111 10110 11010 00100/ I ...X BFP128 xscvdpqp v3.0 684 VSX Scalar Convert Double-Precision to
Quad-Precision format X-form

111100 10000 10101 1011.. I ..XX xscvhpdp v3.0 695 VSX Scalar Convert Half-Precision to Double-Precision
format XX2-form

111111 10100 11010 00100. I ...X BFP128 xscvqpdp[o] v3.0 696 VSX Scalar Convert with round Quad-Precision to
Double-Precision format [using round to Odd] X-form

111111 11001 11010 00100/ I ...X BFP128 xscvqpsdz v3.0 697 VSX Scalar Convert with round to zero Quad-Precision
to Signed Doubleword format X-form

111111 01001 11010 00100/ I ...X BFP128 xscvqpswz v3.0 701 VSX Scalar Convert with round to zero Quad-Precision
to Signed Word format X-form

111111 10001 11010 00100/ I ...X BFP128 xscvqpudz v3.0 703 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Doubleword format X-form

111111 00001 11010 00100/ I ...X BFP128 xscvqpuwz v3.0 707 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Word format X-form

111111 01010 11010 00100/ I ...X BFP128 xscvsdqp v3.0 714 VSX Scalar Convert Signed Doubleword to
Quad-Precision format X-form

111111 00010 11010 00100/ I ...X BFP128 xscvudqp v3.0 714 VSX Scalar Convert Unsigned Doubleword to
Quad-Precision format X-form

111111 10001 00100. I ...X BFP128 xsdivqp[o] v3.0 719 VSX Scalar Divide Quad-Precision [using round to Odd]
X-form

111100 11100 10110. I ..XX xsiexpdp v3.0 723 VSX Scalar Insert Exponent Double-Precision X-form
111111 11011 00100/ I ...X BFP128 xsiexpqp v3.0 724 VSX Scalar Insert Exponent Quad-Precision X-form

111111 01100 00100. I ...X BFP128 xsmaddqp[o] v3.0 731 VSX Scalar Multiply-Add Quad-Precision [using round to
Odd] X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 11 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1427

Version 3.1
111100 10000 000... I ..XX xsmaxcdp v3.0 736 VSX Scalar Maximum Type-C Double-Precision
XX3-form

111100 10010 000... I ..XX xsmaxjdp v3.0 739 VSX Scalar Maximum Type-J Double-Precision
XX3-form

111100 10001 000... I ..XX xsmincdp v3.0 743 VSX Scalar Minimum Type-C Double-Precision
XX3-form

111100 10011 000... I ..XX xsminjdp v3.0 746 VSX Scalar Minimum Type-J Double-Precision
XX3-form

111111 01101 00100. I ...X BFP128 xsmsubqp[o] v3.0 754 VSX Scalar Multiply-Subtract Quad-Precision [using
round to Odd] X-form

111111 00001 00100. I ...X BFP128 xsmulqp[o] v3.0 759 VSX Scalar Multiply Quad-Precision [using round to
Odd] X-form

111111 01000 11001 00100/ I ...X BFP128 xsnabsqp v3.0 763 VSX Scalar Negative Absolute Quad-Precision X-form
111111 10000 11001 00100/ I ...X BFP128 xsnegqp v3.0 764 VSX Scalar Negate Quad-Precision X-form

111111 01110 00100. I ...X BFP128 xsnmaddqp[o] v3.0 773 VSX Scalar Negative Multiply-Add Quad-Precision
[using round to Odd] X-form

111111 01111 00100. I ...X BFP128 xsnmsubqp[o] v3.0 782 VSX Scalar Negative Multiply-Subtract Quad-Precision
[using round to Odd] X-form

111111 ////.000 00101. I ...X BFP128 xsrqpi[x] v3.0 793 VSX Scalar Round to Quad-Precision Integer [with
Inexact] Z23-form

111111 ////.001 00101/ I ...X BFP128 xsrqpxp v3.0 795 VSX Scalar Round Quad-Precision to Double-Extended
Precision Z23-form

111111 11011 11001 00100. I ...X BFP128 xssqrtqp[o] v3.0 803 VSX Scalar Square Root Quad-Precision [using round
to Odd] X-form

111111 10000 00100. I ...X BFP128 xssubqp[o] v3.0 809 VSX Scalar Subtract Quad-Precision [using round to
Odd] X-form

111100 10110 1010./ I ..XX xststdcdp v3.0 815 VSX Scalar Test Data Class Double-Precision XX2-form
111111 10110 00100/ I ...X BFP128 xststdcqp v3.0 816 VSX Scalar Test Data Class Quad-Precision X-form
111100 10010 1010./ I ..XX xststdcsp v3.0 817 VSX Scalar Test Data Class Single-Precision XX2-form

111100 00000 10101 1011./ I ..XX xsxexpdp v3.0 818 VSX Scalar Extract Exponent Double-Precision
XX2-form

111111 00010 11001 00100/ I ...X BFP128 xsxexpqp v3.0 818 VSX Scalar Extract Exponent Quad-Precision X-form

111100 00001 10101 1011./ I ..XX xsxsigdp v3.0 819 VSX Scalar Extract Significand Double-Precision
XX2-form

111111 10010 11001 00100/ I ...X BFP128 xsxsigqp v3.0 819 VSX Scalar Extract Significand Quad-Precision X-form

111100 11000 11101 1011.. I ..XX xvcvhpsp v3.0 849 VSX Vector Convert Half-Precision to Single-Precision
format XX2-form

111100 11001 11101 1011.. I ..XX xvcvsphp v3.0 852 VSX Vector Convert with round Single-Precision to
Half-Precision format XX2-form

111100 11111 000... I ..XX xviexpdp v3.0 896 VSX Vector Insert Exponent Double-Precision XX3-form
111100 11011 000... I ..XX xviexpsp v3.0 896 VSX Vector Insert Exponent Single-Precision XX3-form
111100 1111. 101... I ..XX xvtstdcdp v3.0 957 VSX Vector Test Data Class Double-Precision XX2-form
111100 1101. 101... I ..XX xvtstdcsp v3.0 958 VSX Vector Test Data Class Single-Precision XX2-form

111100 00000 11101 1011.. I ..XX xvxexpdp v3.0 960 VSX Vector Extract Exponent Double-Precision
XX2-form

111100 01000 11101 1011.. I ..XX xvxexpsp v3.0 960 VSX Vector Extract Exponent Single-Precision
XX2-form

111100 00001 11101 1011.. I ..XX xvxsigdp v3.0 961 VSX Vector Extract Significand Double-Precision
XX2-form

111100 01001 11101 1011.. I ..XX xvxsigsp v3.0 961 VSX Vector Extract Significand Single-Precision
XX2-form

111100 10111 11101 1011.. I ..XX xxbrd v3.0 964 VSX Vector Byte-Reverse Doubleword XX2-form
111100 00111 11101 1011.. I ..XX xxbrh v3.0 965 VSX Vector Byte-Reverse Halfword XX2-form
111100 11111 11101 1011.. I ..XX xxbrq v3.0 966 VSX Vector Byte-Reverse Quadword XX2-form
111100 01111 11101 1011.. I ..XX xxbrw v3.0 967 VSX Vector Byte-Reverse Word XX2-form
111100 /.... 01010 0101.. I ..XX xxextractuw v3.0 969 VSX Vector Extract Unsigned Word XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 12 of 30)
Power ISA™ Appendices1428

Version 3.1
111100 /.... 01011 0101.. I ..XX xxinsertw v3.0 969 VSX Vector Insert Word XX2-form
111100 00011 010... I ..XX xxperm v3.0 985 VSX Vector Permute XX3-form
111100 00111 010... I ..XX xxpermr v3.0 985 VSX Vector Permute Right-indexed XX3-form
111100 00... 01011 01000. I ..XX xxspltib v3.0 991 VSX Vector Splat Immediate Byte X-form
000100 1.000 000001 I ..XX bcdadd. v2.07 478 Decimal Add Modulo VX-form
000100 1.001 000001 I ..XX bcdsub. v2.07 478 Decimal Subtract Modulo VX-form

010011 ///.. 10001 10000. I XXXX bctar[l] v2.07 43 Branch Conditional to Branch Target Address Register
XL-form

011111 ///// ///// ///// 01101 01110/ I ...X BHRB clrbhrb v2.07 Clear BHRB X-form
111111 11110 00110/ I .XXX fmrgew v2.07 162 Floating Merge Even Word X-form
111111 11010 00110/ I .XXX fmrgow v2.07 162 Floating Merge Odd Word X-form
011111 /.... 00000 10110/ II ...X icbt v2.07 1052 Instruction Cache Block Touch X-form
011111 01000 10100. I ..XX lqarx v2.07 Load Quadword And Reserve Indexed X-form

011111 00010 01100. I ..XX lxsiwax v2.07 613 Load VSX Scalar as Integer Word Algebraic Indexed
X-form

011111 00000 01100. I ..XX lxsiwzx v2.07 614 Load VSX Scalar as Integer Word & Zero Indexed
X-form

011111 10000 01100. I ..XX lxsspx v2.07 616 Load VSX Scalar Single-Precision Indexed X-form
011111 01001 01110/ I ...X BHRB mfbhrbe v2.07 Move From BHRB XFX-form
011111 ///// 00001 10011. I ..XX mfvsrd v2.07 120 Move From VSR Doubleword X-form
011111 ///// 00011 10011. I ..XX mfvsrwz v2.07 121 Move From VSR Word and Zero X-form
011111 ///// ///// 00111 01110/ III ...X msgclr v2.07 HV 1329 Message Clear X-form
011111 ///// ///// 00101 01110/ III ...X msgclrp v2.07 P 1331 Message Clear Privileged X-form
011111 ///// ///// 00110 01110/ III ...X msgsnd v2.07 HV 1328 Message Send X-form
011111 ///// ///// 00100 01110/ III ...X msgsndp v2.07 P 1330 Message Send Privileged X-form
011111 ///// 00101 10011. I ..XX mtvsrd v2.07 121 Move To VSR Doubleword X-form
011111 ///// 00110 10011. I ..XX mtvsrwa v2.07 122 Move To VSR Word Algebraic X-form
011111 ///// 00111 10011. I ..XX mtvsrwz v2.07 122 Move To VSR Word and Zero X-form
010011 ///// ///// ////. 00100 10010/ I ...X EBB rfebb v2.07 Return from Event Based Branch XL-form
011111 00101 101101 I ...X stqcx. v2.07 Store Quadword Conditional Indexed X-form
011111 00100 01100. I ..XX stxsiwx v2.07 641 Store VSX Scalar as Integer Word Indexed X-form
011111 10100 01100. I ..XX stxsspx v2.07 643 Store VSX Scalar Single-Precision Indexed X-form
000100 00101 000000 I ..XX vaddcuq v2.07 330 Vector Add & write Carry Unsigned Quadword VX-form

000100 111101 I ..XX vaddecuq v2.07 330 Vector Add Extended & write Carry Unsigned Quadword
VA-form

000100 111100 I ..XX vaddeuqm v2.07 329 Vector Add Extended Unsigned Quadword Modulo
VA-form

000100 00011 000000 I ..XX vaddudm v2.07 326 Vector Add Unsigned Doubleword Modulo VX-form
000100 00100 000000 I ..XX vadduqm v2.07 329 Vector Add Unsigned Quadword Modulo VX-form
000100 10101 001100 I ..XX vbpermq v2.07 462 Vector Bit Permute Quadword VX-form
000100 10100 001000 I ..XX vcipher v2.07 435 Vector AES Cipher VX-form
000100 10100 001001 I ..XX vcipherlast v2.07 435 Vector AES Cipher Last VX-form
000100 ///// 11100 000010 I ..XX vclzb v2.07 447 Vector Count Leading Zeros Byte VX-form
000100 ///// 11111 000010 I ..XX vclzd v2.07 449 Vector Count Leading Zeros Doubleword VX-form
000100 ///// 11101 000010 I ..XX vclzh v2.07 447 Vector Count Leading Zeros Halfword VX-form
000100 ///// 11110 000010 I ..XX vclzw v2.07 448 Vector Count Leading Zeros Word VX-form
0001000011 000111 I ..XX vcmpequd[.] v2.07 391 Vector Compare Equal Unsigned Doubleword VC-form

0001001111 000111 I ..XX vcmpgtsd[.] v2.07 396 Vector Compare Greater Than Signed Doubleword
VC-form

0001001011 000111 I ..XX vcmpgtud[.] v2.07 396 Vector Compare Greater Than Unsigned Doubleword
VC-form

000100 11010 000100 I ..XX veqv v2.07 403 Vector Logical Equivalence VX-form
000100 ///// 10100 001100 I ..XX vgbbd v2.07 445 Vector Gather Bits by Bytes by Doubleword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 13 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1429

Version 3.1
000100 00111 000010 I ..XX vmaxsd v2.07 383 Vector Maximum Signed Doubleword VX-form
000100 00011 000010 I ..XX vmaxud v2.07 383 Vector Maximum Unsigned Doubleword VX-form
000100 01111 000010 I ..XX vminsd v2.07 387 Vector Minimum Signed Doubleword VX-form
000100 01011 000010 I ..XX vminud v2.07 387 Vector Minimum Unsigned Doubleword VX-form
000100 11110 001100 I ..XX vmrgew v2.07 292 Vector Merge Even Word VX-form
000100 11010 001100 I ..XX vmrgow v2.07 292 Vector Merge Odd Word VX-form
000100 01110 001000 I ..XX vmulesw v2.07 343 Vector Multiply Even Signed Word VX-form
000100 01010 001000 I ..XX vmuleuw v2.07 344 Vector Multiply Even Unsigned Word VX-form
000100 00110 001000 I ..XX vmulosw v2.07 343 Vector Multiply Odd Signed Word VX-form
000100 00010 001000 I ..XX vmulouw v2.07 344 Vector Multiply Odd Unsigned Word VX-form
000100 00010 001001 I ..XX vmuluwm v2.07 347 Vector Multiply Unsigned Word Modulo VX-form
000100 10110 000100 I ..XX vnand v2.07 403 Vector Logical NAND VX-form
000100 10101 001000 I ..XX vncipher v2.07 436 Vector AES Inverse Cipher VX-form
000100 10101 001001 I ..XX vncipherlast v2.07 436 Vector AES Inverse Cipher Last VX-form
000100 10101 000100 I ..XX vorc v2.07 403 Vector Logical OR with Complement VX-form
000100 101101 I ..XX vpermxor v2.07 444 Vector Permute & Exclusive-OR VA-form

000100 10111 001110 I ..XX vpksdss v2.07 281 Vector Pack Signed Doubleword Signed Saturate
VX-form

000100 10101 001110 I ..XX vpksdus v2.07 281 Vector Pack Signed Doubleword Unsigned Saturate
VX-form

000100 10001 001110 I ..XX vpkudum v2.07 284 Vector Pack Unsigned Doubleword Unsigned Modulo
VX-form

000100 10011 001110 I ..XX vpkudus v2.07 284 Vector Pack Unsigned Doubleword Unsigned Saturate
VX-form

000100 10000 001000 I ..XX vpmsumb v2.07 440 Vector Polynomial Multiply-Sum Byte VX-form
000100 10011 001000 I ..XX vpmsumd v2.07 443 Vector Polynomial Multiply-Sum Doubleword VX-form
000100 10001 001000 I ..XX vpmsumh v2.07 441 Vector Polynomial Multiply-Sum Halfword VX-form
000100 10010 001000 I ..XX vpmsumw v2.07 442 Vector Polynomial Multiply-Sum Word VX-form
000100 ///// 11100 000011 I ..XX vpopcntb v2.07 457 Vector Population Count Byte VX-form
000100 ///// 11111 000011 I ..XX vpopcntd v2.07 458 Vector Population Count Doubleword VX-form
000100 ///// 11101 000011 I ..XX vpopcnth v2.07 457 Vector Population Count Halfword VX-form
000100 ///// 11110 000011 I ..XX vpopcntw v2.07 458 Vector Population Count Word VX-form
000100 00011 000100 I ..XX vrld v2.07 405 Vector Rotate Left Doubleword VX-form
000100 ///// 10111 001000 I ..XX vsbox v2.07 437 Vector AES SubBytes VX-form
000100 11011 000010 I ..XX vshasigmad v2.07 438 Vector SHA-512 Sigma Doubleword VX-form
000100 11010 000010 I ..XX vshasigmaw v2.07 439 Vector SHA-256 Sigma Word VX-form
000100 10111 000100 I ..XX vsld v2.07 414 Vector Shift Left Doubleword VX-form
000100 01111 000100 I ..XX vsrad v2.07 420 Vector Shift Right Algebraic Doubleword VX-form
000100 11011 000100 I ..XX vsrd v2.07 417 Vector Shift Right Doubleword VX-form

000100 10101 000000 I ..XX vsubcuq v2.07 338 Vector Subtract & write Carry-out Unsigned Quadword
VX-form

000100 111111 I ..XX vsubecuq v2.07 338 Vector Subtract Extended & write Carry-out Unsigned
Quadword VA-form

000100 111110 I ..XX vsubeuqm v2.07 337 Vector Subtract Extended Unsigned Quadword Modulo
VA-form

000100 10011 000000 I ..XX vsubudm v2.07 334 Vector Subtract Unsigned Doubleword Modulo VX-form
000100 10100 000000 I ..XX vsubuqm v2.07 337 Vector Subtract Unsigned Quadword Modulo VX-form
000100 ///// 11001 001110 I ..XX vupkhsw v2.07 287 Vector Unpack High Signed Word VX-form
000100 ///// 11011 001110 I ..XX vupklsw v2.07 287 Vector Unpack Low Signed Word VX-form
111100 00000 000... I ..XX xsaddsp v2.07 664 VSX Scalar Add Single-Precision XX3-form

111100 ///// 10000 1011.. I ..XX xscvdpspn v2.07 686 VSX Scalar Convert Scalar Single-Precision to Vector
Single-Precision format Non-signalling XX2-form

111100 ///// 10100 1011.. I ..XX xscvspdpn v2.07 710 VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 14 of 30)
Power ISA™ Appendices1430

Version 3.1
111100 ///// 10011 1000.. I ..XX xscvsxdsp v2.07 713 VSX Scalar Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 10010 1000.. I ..XX xscvuxdsp v2.07 716 VSX Scalar Convert with round Unsigned Doubleword
to Single-Precision XX2-form

111100 00011 000... I ..XX xsdivsp v2.07 721 VSX Scalar Divide Single-Precision XX3-form

111100 00000 001... I ..XX xsmaddasp v2.07 728 VSX Scalar Multiply-Add Type-A Single-Precision
XX3-form

111100 00001 001... I ..XX xsmaddmsp v2.07 728 VSX Scalar Multiply-Add Type-M Single-Precision
XX3-form

111100 00010 001... I ..XX xsmsubasp v2.07 751 VSX Scalar Multiply-Subtract Type-A Single-Precision
XX3-form

111100 00011 001... I ..XX xsmsubmsp v2.07 751 VSX Scalar Multiply-Subtract Type-M Single-Precision
XX3-form

111100 00010 000... I ..XX xsmulsp v2.07 761 VSX Scalar Multiply Single-Precision XX3-form

111100 10000 001... I ..XX xsnmaddasp v2.07 770 VSX Scalar Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 10001 001... I ..XX xsnmaddmsp v2.07 770 VSX Scalar Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 10010 001... I ..XX xsnmsubasp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 10011 001... I ..XX xsnmsubmsp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 ///// 00001 1010.. I ..XX xsresp v2.07 791 VSX Scalar Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 10001 1001.. I ..XX xsrsp v2.07 797 VSX Scalar Round to Single-Precision XX2-form

111100 ///// 00000 1010.. I ..XX xsrsqrtesp v2.07 799 VSX Scalar Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 00000 1011.. I ..XX xssqrtsp v2.07 805 VSX Scalar Square Root Single-Precision XX2-form
111100 00001 000... I ..XX xssubsp v2.07 811 VSX Scalar Subtract Single-Precision XX3-form
111100 10111 010... I ..XX xxleqv v2.07 979 VSX Vector Logical Equivalence XX3-form
111100 10110 010... I ..XX xxlnand v2.07 979 VSX Vector Logical NAND XX3-form
111100 10101 010... I ..XX xxlorc v2.07 980 VSX Vector Logical OR with Complement XX3-form
011111 /0010 01010/ I XXXX addg6s v2.06 118 Add and Generate Sixes XO-form
011111 00111 11100/ I ..XX bpermd v2.06 105 Bit Permute Doubleword X-form
011111 ///// 01001 11010/ I XXXX cbcdtd v2.06 117 Convert Binary Coded Decimal To Declets X-form
011111 ///// 01000 11010/ I XXXX cdtbcd v2.06 117 Convert Declets To Binary Coded Decimal X-form
111011 ///// 11001 00010. I ...X DFP dcffix[.] v2.06 231 DFP Convert From Fixed X-form
011111 01101 01001. I ..XX divde[.] v2.06 SR 90 Divide Doubleword Extended XO-form
011111 11101 01001. I ..XX divdeo[.] v2.06 SR 90 Divide Doubleword Extended & record OV XO-form
011111 01100 01001. I ..XX divdeu[.] v2.06 SR 90 Divide Doubleword Extended Unsigned XO-form

011111 11100 01001. I ..XX divdeuo[.] v2.06 SR 90 Divide Doubleword Extended Unsigned & record OV
XO-form

011111 01101 01011. I XXXX divwe[.] v2.06 SR 83 Divide Word Extended XO-form
011111 11101 01011. I ..XX divweo[.] v2.06 SR 83 Divide Word Extended & record OV XO-form
011111 01100 01011. I XXXX divweu[.] v2.06 SR 83 Divide Word Extended Unsigned XO-form
011111 11100 01011. I ..XX divweuo[.] v2.06 SR 83 Divide Word Extended Unsigned & record OV XO-form

111011 ///// 11010 01110. I .XXX fcfids[.] v2.06 175 Floating Convert with round Signed Doubleword to
Single-Precision format X-form

111111 ///// 11110 01110. I .XXX fcfidu[.] v2.06 175 Floating Convert with round Unsigned Doubleword to
Double-Precision format X-form

111011 ///// 11110 01110. I .XXX fcfidus[.] v2.06 176 Floating Convert with round Unsigned Doubleword to
Single-Precision format X-form

111111 ///// 11101 01110. I .XXX fctidu[.] v2.06 171 Floating Convert with round Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11101 01111. I .XXX fctiduz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Doubleword format X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 15 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1431

Version 3.1
111111 ///// 00100 01110. I .XXX fctiwu[.] v2.06 173 Floating Convert with round Double-Precision To
Unsigned Word format X-form

111111 ///// 00100 01111. I .XXX fctiwuz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Word format X-form

111111 ...// 00100 00000/ I .XXX ftdiv v2.06 166 Floating Test for software Divide X-form
111111 ...// ///// 00101 00000/ I .XXX ftsqrt v2.06 167 Floating Test for software Square Root X-form
011111 00001 10100. II ...X lbarx v2.06 1077 Load Byte And Reserve Indexed X-form
011111 10000 10100/ I ..XX ldbrx v2.06 69 Load Doubleword Byte-Reverse Indexed X-form

011111 11011 10111/ I .XXX lfiwzx v2.06 153 Load Floating-Point as Integer Word & Zero Indexed
X-form

011111 00011 10100. II ...X lharx v2.06 1078 Load Halfword And Reserve Indexed Xform
011111 10010 01100. I ..XX lxsdx v2.06 611 Load VSX Scalar Doubleword Indexed X-form
011111 11010 01100. I ..XX lxvd2x v2.06 619 Load VSX Vector Doubleword*2 Indexed X-form
011111 01010 01100. I ..XX lxvdsx v2.06 633 Load VSX Vector Doubleword & Splat Indexed X-form
011111 11000 01100. I ..XX lxvw4x v2.06 635 Load VSX Vector Word*4 Indexed X-form
011111 ///// 01111 11010/ I ..XX popcntd v2.06 104 Population Count Doubleword X-form
011111 ///// 01011 11010/ I XXXX popcntw v2.06 103 Population Count Words X-form
011111 10101 101101 II ...X stbcx. v2.06 1079 Store Byte Conditional Indexed X-form
011111 10100 10100/ I ..XX stdbrx v2.06 69 Store Doubleword Byte-Reverse Indexed X-form
011111 10110 101101 II ...X sthcx. v2.06 1080 Store Halfword Conditional Indexed X-form
011111 10110 01100. I ..XX stxsdx v2.06 639 Store VSX Scalar Doubleword Indexed X-form
011111 11110 01100. I ..XX stxvd2x v2.06 646 Store VSX Vector Doubleword*2 Indexed X-form
011111 11100 01100. I ..XX stxvw4x v2.06 653 Store VSX Vector Word*4 Indexed X-form
111100 ///// 10101 1001.. I ..XX xsabsdp v2.06 658 VSX Scalar Absolute Double-Precision XX2-form
111100 00100 000... I ..XX xsadddp v2.06 659 VSX Scalar Add Double-Precision XX3-form

111100 ...// 00101 011../ I ..XX xscmpodp v2.06 676 VSX Scalar Compare Ordered Double-Precision
XX3-form

111100 ...// 00100 011../ I ..XX xscmpudp v2.06 679 VSX Scalar Compare Unordered Double-Precision
XX3-form

111100 10110 000... I ..XX xscpsgndp v2.06 682 VSX Scalar Copy Sign Double-Precision XX3-form

111100 ///// 10000 1001.. I ..XX xscvdpsp v2.06 685 VSX Scalar Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 10101 1000.. I ..XX xscvdpsxds v2.06 687
VSX Scalar Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 00101 1000.. I ..XX xscvdpsxws v2.06 689 VSX Scalar Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 10100 1000.. I ..XX xscvdpuxds v2.06 691
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 00100 1000.. I ..XX xscvdpuxws v2.06 693
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 ///// 10100 1001.. I ..XX xscvspdp v2.06 709 VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form

111100 ///// 10111 1000.. I ..XX xscvsxddp v2.06 712 VSX Scalar Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 10110 1000.. I ..XX xscvuxddp v2.06 715 VSX Scalar Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 00111 000... I ..XX xsdivdp v2.06 717 VSX Scalar Divide Double-Precision XX3-form

111100 00100 001... I ..XX xsmaddadp v2.06 725 VSX Scalar Multiply-Add Type-A Double-Precision
XX3-form

111100 00101 001... I ..XX xsmaddmdp v2.06 725 VSX Scalar Multiply-Add Type-M Double-Precision
XX3-form

111100 10100 000... I ..XX xsmaxdp v2.06 734 VSX Scalar Maximum Double-Precision XX3-form
111100 10101 000... I ..XX xsmindp v2.06 741 VSX Scalar Minimum Double-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 16 of 30)
Power ISA™ Appendices1432

Version 3.1
111100 00110 001... I ..XX xsmsubadp v2.06 748 VSX Scalar Multiply-Subtract Type-A Double-Precision
XX3-form

111100 00111 001... I ..XX xsmsubmdp v2.06 748 VSX Scalar Multiply-Subtract Type-M Double-Precision
XX3-form

111100 00110 000... I ..XX xsmuldp v2.06 757 VSX Scalar Multiply Double-Precision XX3-form

111100 ///// 10110 1001.. I ..XX xsnabsdp v2.06 763 VSX Scalar Negative Absolute Double-Precision
XX2-form

111100 ///// 10111 1001.. I ..XX xsnegdp v2.06 764 VSX Scalar Negate Double-Precision XX2-form

111100 10100 001... I ..XX xsnmaddadp v2.06 765 VSX Scalar Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 10101 001... I ..XX xsnmaddmdp v2.06 765 VSX Scalar Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 10110 001... I ..XX xsnmsubadp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 10111 001... I ..XX xsnmsubmdp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 ///// 00100 1001.. I ..XX xsrdpi v2.06 785 VSX Scalar Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 00110 1011.. I ..XX xsrdpic v2.06 786 VSX Scalar Round to Double-Precision Integer exact
using Current rounding mode XX2-form

111100 ///// 00111 1001.. I ..XX xsrdpim v2.06 787 VSX Scalar Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 00110 1001.. I ..XX xsrdpip v2.06 788 VSX Scalar Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 00101 1001.. I ..XX xsrdpiz v2.06 789 VSX Scalar Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 00101 1010.. I ..XX xsredp v2.06 790 VSX Scalar Reciprocal Estimate Double-Precision
XX2-form

111100 ///// 00100 1010.. I ..XX xsrsqrtedp v2.06 798 VSX Scalar Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 00100 1011.. I ..XX xssqrtdp v2.06 801 VSX Scalar Square Root Double-Precision XX2-form
111100 00101 000... I ..XX xssubdp v2.06 807 VSX Scalar Subtract Double-Precision XX3-form

111100 ...// 00111 101../ I ..XX xstdivdp v2.06 813 VSX Scalar Test for software Divide Double-Precision
XX3-form

111100 ...// ///// 00110 1010./ I ..XX xstsqrtdp v2.06 814 VSX Scalar Test for software Square Root
Double-Precision XX2-form

111100 ///// 11101 1001.. I ..XX xvabsdp v2.06 820 VSX Vector Absolute Value Double-Precision XX2-form
111100 ///// 11001 1001.. I ..XX xvabssp v2.06 820 VSX Vector Absolute Value Single-Precision XX2-form
111100 01100 000... I ..XX xvadddp v2.06 821 VSX Vector Add Double-Precision XX3-form
111100 01000 000... I ..XX xvaddsp v2.06 825 VSX Vector Add Single-Precision XX3-form

1111001100 011... I ..XX xvcmpeqdp[.] v2.06 832 VSX Vector Compare Equal To Double-Precision
XX3-form

1111001000 011... I ..XX xvcmpeqsp[.] v2.06 833 VSX Vector Compare Equal To Single-Precision
XX3-form

1111001110 011... I ..XX xvcmpgedp[.] v2.06 834 VSX Vector Compare Greater Than or Equal To
Double-Precision XX3-form

1111001010 011... I ..XX xvcmpgesp[.] v2.06 835 VSX Vector Compare Greater Than or Equal To
Single-Precision XX3-form

1111001101 011... I ..XX xvcmpgtdp[.] v2.06 836 VSX Vector Compare Greater Than Double-Precision
XX3-form

1111001001 011... I ..XX xvcmpgtsp[.] v2.06 837 VSX Vector Compare Greater Than Single-Precision
XX3-form

111100 11110 000... I ..XX xvcpsgndp v2.06 838 VSX Vector Copy Sign Double-Precision XX3-form
111100 11010 000... I ..XX xvcpsgnsp v2.06 838 VSX Vector Copy Sign Single-Precision XX3-form

111100 ///// 11000 1001.. I ..XX xvcvdpsp v2.06 840 VSX Vector Convert with round Double-Precision to
Single-Precision format XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 17 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1433

Version 3.1
111100 ///// 11101 1000.. I ..XX xvcvdpsxds v2.06 841
VSX Vector Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 01101 1000.. I ..XX xvcvdpsxws v2.06 843 VSX Vector Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 11100 1000.. I ..XX xvcvdpuxds v2.06 845
VSX Vector Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 01100 1000.. I ..XX xvcvdpuxws v2.06 847
VSX Vector Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 ///// 11100 1001.. I ..XX xvcvspdp v2.06 851 VSX Vector Convert Single-Precision to
Double-Precision format XX2-form

111100 ///// 11001 1000.. I ..XX xvcvspsxds v2.06 853 VSX Vector Convert with round to zero Single-Precision
to Signed Doubleword format XX2-form

111100 ///// 01001 1000.. I ..XX xvcvspsxws v2.06 855 VSX Vector Convert with round to zero Single-Precision
to Signed Word format XX2-form

111100 ///// 11000 1000.. I ..XX xvcvspuxds v2.06 857 VSX Vector Convert with round to zero Single-Precision
to Unsigned Doubleword format XX2-form

111100 ///// 01000 1000.. I ..XX xvcvspuxws v2.06 859 VSX Vector Convert with round to zero Single-Precision
to Unsigned Word format XX2-form

111100 ///// 11111 1000.. I ..XX xvcvsxddp v2.06 861 VSX Vector Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 11011 1000.. I ..XX xvcvsxdsp v2.06 862 VSX Vector Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 01111 1000.. I ..XX xvcvsxwdp v2.06 863 VSX Vector Convert Signed Word to Double-Precision
format XX2-form

111100 ///// 01011 1000.. I ..XX xvcvsxwsp v2.06 863 VSX Vector Convert with round Signed Word to
Single-Precision format XX2-form

111100 ///// 11110 1000.. I ..XX xvcvuxddp v2.06 864 VSX Vector Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 11010 1000.. I ..XX xvcvuxdsp v2.06 865 VSX Vector Convert with round Unsigned Doubleword
to Single-Precision format XX2-form

111100 ///// 01110 1000.. I ..XX xvcvuxwdp v2.06 866 VSX Vector Convert Unsigned Word to
Double-Precision format XX2-form

111100 ///// 01010 1000.. I ..XX xvcvuxwsp v2.06 866 VSX Vector Convert with round Unsigned Word to
Single-Precision format XX2-form

111100 01111 000... I ..XX xvdivdp v2.06 867 VSX Vector Divide Double-Precision XX3-form
111100 01011 000... I ..XX xvdivsp v2.06 869 VSX Vector Divide Single-Precision XX3-form

111100 01100 001... I ..XX xvmaddadp v2.06 897 VSX Vector Multiply-Add Type-A Double-Precision
XX3-form

111100 01000 001... I ..XX xvmaddasp v2.06 900 VSX Vector Multiply-Add Type-A Single-Precision
XX3-form

111100 01101 001... I ..XX xvmaddmdp v2.06 897 VSX Vector Multiply-Add Type-M Double-Precision
XX3-form

111100 01001 001... I ..XX xvmaddmsp v2.06 900 VSX Vector Multiply-Add Type-M Single-Precision
XX3-form

111100 11100 000... I ..XX xvmaxdp v2.06 903 VSX Vector Maximum Double-Precision XX3-form
111100 11000 000... I ..XX xvmaxsp v2.06 905 VSX Vector Maximum Single-Precision XX3-form
111100 11101 000... I ..XX xvmindp v2.06 907 VSX Vector Minimum Double-Precision XX3-form
111100 11001 000... I ..XX xvminsp v2.06 909 VSX Vector Minimum Single-Precision XX3-form

111100 01110 001... I ..XX xvmsubadp v2.06 911 VSX Vector Multiply-Subtract Type-A Double-Precision
XX3-form

111100 01010 001... I ..XX xvmsubasp v2.06 914 VSX Vector Multiply-Subtract Type-A Single-Precision
XX3-form

111100 01111 001... I ..XX xvmsubmdp v2.06 911 VSX Vector Multiply-Subtract Type-M Double-Precision
XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 18 of 30)
Power ISA™ Appendices1434

Version 3.1
111100 01011 001... I ..XX xvmsubmsp v2.06 914 VSX Vector Multiply-Subtract Type-M Single-Precision
XX3-form

111100 01110 000... I ..XX xvmuldp v2.06 917 VSX Vector Multiply Double-Precision XX3-form
111100 01010 000... I ..XX xvmulsp v2.06 919 VSX Vector Multiply Single-Precision XX3-form

111100 ///// 11110 1001.. I ..XX xvnabsdp v2.06 921 VSX Vector Negative Absolute Double-Precision
XX2-form

111100 ///// 11010 1001.. I ..XX xvnabssp v2.06 921 VSX Vector Negative Absolute Single-Precision
XX2-form

111100 ///// 11111 1001.. I ..XX xvnegdp v2.06 922 VSX Vector Negate Double-Precision XX2-form
111100 ///// 11011 1001.. I ..XX xvnegsp v2.06 922 VSX Vector Negate Single-Precision XX2-form

111100 11100 001... I ..XX xvnmaddadp v2.06 923 VSX Vector Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 11000 001... I ..XX xvnmaddasp v2.06 927 VSX Vector Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 11101 001... I ..XX xvnmaddmdp v2.06 923 VSX Vector Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 11001 001... I ..XX xvnmaddmsp v2.06 927 VSX Vector Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 11110 001... I ..XX xvnmsubadp v2.06 930 VSX Vector Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 11010 001... I ..XX xvnmsubasp v2.06 933 VSX Vector Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 11111 001... I ..XX xvnmsubmdp v2.06 930 VSX Vector Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 11011 001... I ..XX xvnmsubmsp v2.06 933 VSX Vector Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 ///// 01100 1001.. I ..XX xvrdpi v2.06 936 VSX Vector Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01110 1011.. I ..XX xvrdpic v2.06 937 VSX Vector Round to Double-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01111 1001.. I ..XX xvrdpim v2.06 938 VSX Vector Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01110 1001.. I ..XX xvrdpip v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01101 1001.. I ..XX xvrdpiz v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 01101 1010.. I ..XX xvredp v2.06 940 VSX Vector Reciprocal Estimate Double-Precision
XX2-form

111100 ///// 01001 1010.. I ..XX xvresp v2.06 941 VSX Vector Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 01000 1001.. I ..XX xvrspi v2.06 942 VSX Vector Round to Single-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01010 1011.. I ..XX xvrspic v2.06 943 VSX Vector Round to Single-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01011 1001.. I ..XX xvrspim v2.06 944 VSX Vector Round to Single-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01010 1001.. I ..XX xvrspip v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01001 1001.. I ..XX xvrspiz v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward Zero XX2-form

111100 ///// 01100 1010.. I ..XX xvrsqrtedp v2.06 946 VSX Vector Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 01000 1010.. I ..XX xvrsqrtesp v2.06 947 VSX Vector Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 01100 1011.. I ..XX xvsqrtdp v2.06 948 VSX Vector Square Root Double-Precision XX2-form
111100 ///// 01000 1011.. I ..XX xvsqrtsp v2.06 949 VSX Vector Square Root Single-Precision XX2-form
111100 01101 000... I ..XX xvsubdp v2.06 950 VSX Vector Subtract Double-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 19 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1435

Version 3.1
111100 01001 000... I ..XX xvsubsp v2.06 952 VSX Vector Subtract Single-Precision XX3-form

111100 ...// 01111 101../ I ..XX xvtdivdp v2.06 954 VSX Vector Test for software Divide Double-Precision
XX3-form

111100 ...// 01011 101../ I ..XX xvtdivsp v2.06 955 VSX Vector Test for software Divide Single-Precision
XX3-form

111100 ...// ///// 01110 1010./ I ..XX xvtsqrtdp v2.06 956 VSX Vector Test for software Square Root
Double-Precision XX2-form

111100 ...// ///// 01010 1010./ I ..XX xvtsqrtsp v2.06 956 VSX Vector Test for software Square Root
Single-Precision XX2-form

111100 10000 010... I ..XX xxland v2.06 978 VSX Vector Logical AND XX3-form
111100 10001 010... I ..XX xxlandc v2.06 978 VSX Vector Logical AND with Complement XX3-form
111100 10100 010... I ..XX xxlnor v2.06 980 VSX Vector Logical NOR XX3-form
111100 10010 010... I ..XX xxlor v2.06 981 VSX Vector Logical OR XX3-form
111100 10011 010... I ..XX xxlxor v2.06 981 VSX Vector Logical XOR XX3-form
111100 00010 010... I ..XX xxmrghw v2.06 982 VSX Vector Merge High Word XX3-form
111100 00110 010... I ..XX xxmrglw v2.06 982 VSX Vector Merge Low Word XX3-form
111100 0..01 010... I ..XX xxpermdi v2.06 986 VSX Vector Permute Doubleword Immediate XX3-form
111100 11.... I ..XX xxsel v2.06 988 VSX Vector Select XX4-form

111100 0..00 010... I ..XX xxsldwi v2.06 990 VSX Vector Shift Left Double by Word Immediate
XX3-form

111100 ///.. 01010 0100.. I ..XX xxspltw v2.06 993 VSX Vector Splat Word XX2-form
011111 01111 11100/ I XXXX cmpb v2.05 102 Compare Bytes X-form
111011 00000 00010. I ...X DFP dadd[.] v2.05 206 DFP Add X-form
111111 00000 00010. I ...X DFP daddq[.] v2.05 206 DFP Add Quad X-form
111111 ///// 11001 00010. I ...X DFP dcffixq[.] v2.05 231 DFP Convert From Fixed Quad X-form
111011 ...// 00100 00010/ I ...X DFP dcmpo v2.05 212 DFP Compare Ordered X-form
111111 ...// 00100 00010/ I ...X DFP dcmpoq v2.05 212 DFP Compare Ordered Quad X-form
111011 ...// 10100 00010/ I ...X DFP dcmpu v2.05 211 DFP Compare Unordered X-form
111111 ...// 10100 00010/ I ...X DFP dcmpuq v2.05 211 DFP Compare Unordered Quad X-form
111011 ///// 01000 00010. I ...X DFP dctdp[.] v2.05 229 DFP Convert To DFP Long X-form
111011 ///// 01001 00010. I ...X DFP dctfix[.] v2.05 233 DFP Convert To Fixed X-form
111111 ///// 01001 00010. I ...X DFP dctfixq[.] v2.05 233 DFP Convert To Fixed Quad X-form
111111 ///// 01000 00010. I ...X DFP dctqpq[.] v2.05 229 DFP Convert To DFP Extended X-form
111011/// 01010 00010. I ...X DFP ddedpd[.] v2.05 235 DFP Decode DPD To BCD X-form
111111/// 01010 00010. I ...X DFP ddedpdq[.] v2.05 235 DFP Decode DPD To BCD Quad X-form
111011 10001 00010. I ...X DFP ddiv[.] v2.05 209 DFP Divide X-form
111111 10001 00010. I ...X DFP ddivq[.] v2.05 209 DFP Divide Quad X-form
111011//// 11010 00010. I ...X DFP denbcd[.] v2.05 235 DFP Encode BCD To DPD X-form
111111//// 11010 00010. I ...X DFP denbcdq[.] v2.05 235 DFP Encode BCD To DPD Quad X-form
111011 11011 00010. I ...X DFP diex[.] v2.05 236 DFP Insert Biased Exponent X-form
111111 11011 00010. I ...X DFP diexq[.] v2.05 236 DFP Insert Biased Exponent Quad X-form
111011 00001 00010. I ...X DFP dmul[.] v2.05 208 DFP Multiply X-form
111111 00001 00010. I ...X DFP dmulq[.] v2.05 208 DFP Multiply Quad X-form
111011000 00011. I ...X DFP dqua[.] v2.05 219 DFP Quantize Z23-form
111011010 00011. I ...X DFP dquai[.] v2.05 217 DFP Quantize Immediate Z23-form
111111010 00011. I ...X DFP dquaiq[.] v2.05 217 DFP Quantize Immediate Quad Z23-form
111111000 00011. I ...X DFP dquaq[.] v2.05 219 DFP Quantize Quad Z23-form
111111 ///// 11000 00010. I ...X DFP drdpq[.] v2.05 230 DFP Round To DFP Long X-form
111011 ////.111 00011. I ...X DFP drintn[.] v2.05 226 DFP Round To FP Integer Without Inexact Z23-form

111111 ////.111 00011. I ...X DFP drintnq[.] v2.05 226 DFP Round To FP Integer Without Inexact Quad
Z23-form

111011 ////.011 00011. I ...X DFP drintx[.] v2.05 224 DFP Round To FP Integer With Inexact Z23-form
111111 ////.011 00011. I ...X DFP drintxq[.] v2.05 224 DFP Round To FP Integer With Inexact Quad Z23-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 20 of 30)
Power ISA™ Appendices1436

Version 3.1
111011001 00011. I ...X DFP drrnd[.] v2.05 221 DFP Reround Z23-form
111111001 00011. I ...X DFP drrndq[.] v2.05 221 DFP Reround Quad Z23-form
111011 ///// 11000 00010. I ...X DFP drsp[.] v2.05 230 DFP Round To DFP Short X-form
1110110010 00010. I ...X DFP dscli[.] v2.05 238 DFP Shift Significand Left Immediate Z22-form
1111110010 00010. I ...X DFP dscliq[.] v2.05 238 DFP Shift Significand Left Immediate Quad Z22-form
1110110011 00010. I ...X DFP dscri[.] v2.05 238 DFP Shift Significand Right Immediate Z22-form
1111110011 00010. I ...X DFP dscriq[.] v2.05 238 DFP Shift Significand Right Immediate Quad Z22-form
111011 10000 00010. I ...X DFP dsub[.] v2.05 206 DFP Subtract X-form
111111 10000 00010. I ...X DFP dsubq[.] v2.05 206 DFP Subtract Quad X-form
111011 ...//0110 00010/ I ...X DFP dtstdc v2.05 213 DFP Test Data Class Z22-form
111111 ...//0110 00010/ I ...X DFP dtstdcq v2.05 213 DFP Test Data Class Quad Z22-form
111011 ...//0111 00010/ I ...X DFP dtstdg v2.05 213 DFP Test Data Group Z22-form
111111 ...//0111 00010/ I ...X DFP dtstdgq v2.05 213 DFP Test Data Group Quad Z22-form
111011 ...// 00101 00010/ I ...X DFP dtstex v2.05 214 DFP Test Exponent X-form
111111 ...// 00101 00010/ I ...X DFP dtstexq v2.05 214 DFP Test Exponent Quad X-form
111011 ...// 10101 00010/ I ...X DFP dtstsf v2.05 215 DFP Test Significance X-form
111111 ...// 10101 00010/ I ...X DFP dtstsfq v2.05 215 DFP Test Significance Quad X-form
111011 ///// 01011 00010. I ...X DFP dxex[.] v2.05 236 DFP Extract Biased Exponent X-form
111111 ///// 01011 00010. I ...X DFP dxexq[.] v2.05 236 DFP Extract Biased Exponent Quad X-form
111111 00000 01000. I .XXX fcpsgn[.] v2.05 161 Floating Copy Sign X-form
011111 11010 10101/ III ...X lbzcix v2.05 HV 1164 Load Byte & Zero Caching Inhibited Indexed X-form
011111 11011 10101/ III ...X ldcix v2.05 HV 1164 Load Doubleword Caching Inhibited Indexed X-form
11100100 I ...X lfdp v2.05 159 Load Floating-Point Double Pair DS-form
011111 11000 10111/ I ...X lfdpx v2.05 159 Load Floating-Point Double Pair Indexed X-form

011111 11010 10111/ I .XXX lfiwax v2.05 153 Load Floating-Point as Integer Word Algebraic Indexed
X-form

011111 11001 10101/ III ...X lhzcix v2.05 HV 1164 Load Halfword & Zero Caching Inhibited Indexed X-form
011111 11000 10101/ III ...X lwzcix v2.05 HV 1164 Load Word & Zero Caching Inhibited Indexed X-form
011111 ///// 00101 11010/ I ..XX prtyd v2.05 104 Parity Doubleword X-form
011111 ///// 00100 11010/ I XXXX prtyw v2.05 103 Parity Word X-form
011111 ///// 11110 100111 III ...X slbfee. v2.05 P SR 1229 SLB Find Entry ESID X-form
011111 11110 10101/ III ...X stbcix v2.05 HV 1165 Store Byte Caching Inhibited Indexed X-form
011111 11111 10101/ III ...X stdcix v2.05 HV 1165 Store Doubleword Caching Inhibited Indexed X-form
11110100 I .XXX stfdp v2.05 160 Store Floating-Point Double Pair DS-form
011111 11100 10111/ I .XXX stfdpx v2.05 160 Store Floating-Point Double Pair Indexed X-form
011111 11101 10101/ III ...X sthcix v2.05 HV 1165 Store Halfword Caching Inhibited Indexed X-form
011111 11100 10101/ III ...X stwcix v2.05 HV 1165 Store Word Caching Inhibited Indexed X-form
011111 01111/ I ...X isel v2.03 98 Integer Select A-form
011111 00000 00111/ I ..XX lvebx v2.03 268 Load Vector Element Byte Indexed X-form
011111 00001 00111/ I ..XX lvehx v2.03 269 Load Vector Element Halfword Indexed X-form
011111 00010 00111/ I ..XX lvewx v2.03 270 Load Vector Element Word Indexed X-form
011111 00000 00110/ I ..XX lvsl v2.03 277 Load Vector for Shift Left Indexed X-form
011111 00001 00110/ I ..XX lvsr v2.03 277 Load Vector for Shift Right Indexed X-form
011111 00011 00111/ I ..XX lvx v2.03 271 Load Vector Indexed X-form
011111 01011 00111/ I ..XX lvxl v2.03 271 Load Vector Indexed Last X-form
000100 ///// ///// 11000 000100 I ..XX mfvscr v2.03 496 Move From Vector Status and Control Register VX-form
000100 ///// ///// 11001 000100 I ..XX mtvscr v2.03 496 Move To Vector Status and Control Register VX-form
011111 00100 00111/ I ..XX stvebx v2.03 272 Store Vector Element Byte Indexed X-form
011111 00101 00111/ I ..XX stvehx v2.03 273 Store Vector Element Halfword Indexed X-form
011111 00110 00111/ I ..XX stvewx v2.03 274 Store Vector Element Word Indexed X-form
011111 00111 00111/ I ..XX stvx v2.03 275 Store Vector Indexed X-form
011111 01111 00111/ I ..XX stvxl v2.03 275 Store Vector Indexed Last X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 21 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1437

Version 3.1
011111 /.... 01000 10010/ III ...X tlbiel v2.03 P 64 1236 TLB Invalidate Entry Local X-form
000100 00110 000000 I ..XX vaddcuw v2.03 323 Vector Add & write Carry Unsigned Word VX-form
000100 00000 001010 I ..XX vaddfp v2.03 422 Vector Add Floating-Point VX-form
000100 01100 000000 I ..XX vaddsbs v2.03 323 Vector Add Signed Byte Saturate VX-form
000100 01101 000000 I ..XX vaddshs v2.03 324 Vector Add Signed Halfword Saturate VX-form
000100 01110 000000 I ..XX vaddsws v2.03 324 Vector Add Signed Word Saturate VX-form
000100 00000 000000 I ..XX vaddubm v2.03 325 Vector Add Unsigned Byte Modulo VX-form
000100 01000 000000 I ..XX vaddubs v2.03 327 Vector Add Unsigned Byte Saturate VX-form
000100 00001 000000 I ..XX vadduhm v2.03 325 Vector Add Unsigned Halfword Modulo VX-form
000100 01001 000000 I ..XX vadduhs v2.03 327 Vector Add Unsigned Halfword Saturate VX-form
000100 00010 000000 I ..XX vadduwm v2.03 326 Vector Add Unsigned Word Modulo VX-form
000100 01010 000000 I ..XX vadduws v2.03 328 Vector Add Unsigned Word Saturate VX-form
000100 10000 000100 I ..XX vand v2.03 402 Vector Logical AND VX-form
000100 10001 000100 I ..XX vandc v2.03 402 Vector Logical AND with Complement VX-form
000100 10100 000010 I ..XX vavgsb v2.03 375 Vector Average Signed Byte VX-form
000100 10101 000010 I ..XX vavgsh v2.03 376 Vector Average Signed Halfword VX-form
000100 10110 000010 I ..XX vavgsw v2.03 377 Vector Average Signed Word VX-form
000100 10000 000010 I ..XX vavgub v2.03 375 Vector Average Unsigned Byte VX-form
000100 10001 000010 I ..XX vavguh v2.03 376 Vector Average Unsigned Halfword VX-form
000100 10010 000010 I ..XX vavguw v2.03 377 Vector Average Unsigned Word VX-form

000100 01101 001010 I ..XX vcfsx v2.03 425 Vector Convert with round to nearest From Signed Word
to floating-point format VX-form

000100 01100 001010 I ..XX vcfux v2.03 425 Vector Convert with round to nearest From Unsigned
Word to floating-point format VX-form

0001001111 000110 I ..XX vcmpbfp[.] v2.03 429 Vector Compare Bounds Floating-Point VC-form
0001000011 000110 I ..XX vcmpeqfp[.] v2.03 430 Vector Compare Equal Floating-Point VC-form
0001000000 000110 I ..XX vcmpequb[.] v2.03 388 Vector Compare Equal Unsigned Byte VC-form
0001000001 000110 I ..XX vcmpequh[.] v2.03 389 Vector Compare Equal Unsigned Halfword VC-form
0001000010 000110 I ..XX vcmpequw[.] v2.03 388 Vector Compare Equal Unsigned Word VC-form

0001000111 000110 I ..XX vcmpgefp[.] v2.03 430 Vector Compare Greater Than or Equal Floating-Point
VC-form

0001001011 000110 I ..XX vcmpgtfp[.] v2.03 431 Vector Compare Greater Than Floating-Point VC-form
0001001100 000110 I ..XX vcmpgtsb[.] v2.03 393 Vector Compare Greater Than Signed Byte VC-form

0001001101 000110 I ..XX vcmpgtsh[.] v2.03 394 Vector Compare Greater Than Signed Halfword
VC-form

0001001110 000110 I ..XX vcmpgtsw[.] v2.03 395 Vector Compare Greater Than Signed Word VC-form
0001001000 000110 I ..XX vcmpgtub[.] v2.03 393 Vector Compare Greater Than Unsigned Byte VC-form

0001001001 000110 I ..XX vcmpgtuh[.] v2.03 394 Vector Compare Greater Than Unsigned Halfword
VC-form

0001001010 000110 I ..XX vcmpgtuw[.] v2.03 395 Vector Compare Greater Than Unsigned Word VC-form

000100 01111 001010 I ..XX vctsxs v2.03 426 Vector Convert with round to zero from floating-point To
Signed Word format Saturate VX-form

000100 01110 001010 I ..XX vctuxs v2.03 426 Vector Convert with round to zero from floating-point To
Unsigned Word format Saturate VX-form

000100 ///// 00110 001010 I ..XX vexptefp v2.03 432 Vector 2 Raised to the Exponent Estimate Floating-Point
VX-form

000100 ///// 00111 001010 I ..XX vlogefp v2.03 433 Vector Log Base 2 Estimate Floating-Point VX-form
000100 101110 I ..XX vmaddfp v2.03 423 Vector Multiply-Add Floating-Point VA-form
000100 10000 001010 I ..XX vmaxfp v2.03 424 Vector Maximum Floating-Point VX-form
000100 00100 000010 I ..XX vmaxsb v2.03 380 Vector Maximum Signed Byte VX-form
000100 00101 000010 I ..XX vmaxsh v2.03 381 Vector Maximum Signed Halfword VX-form
000100 00110 000010 I ..XX vmaxsw v2.03 382 Vector Maximum Signed Word VX-form
000100 00000 000010 I ..XX vmaxub v2.03 380 Vector Maximum Unsigned Byte VX-form
000100 00001 000010 I ..XX vmaxuh v2.03 381 Vector Maximum Unsigned Halfword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 22 of 30)
Power ISA™ Appendices1438

Version 3.1
000100 00010 000010 I ..XX vmaxuw v2.03 382 Vector Maximum Unsigned Word VX-form

000100 100000 I ..XX vmhaddshs v2.03 351 Vector Multiply-High-Add Signed Halfword Saturate
VA-form

000100 100001 I ..XX vmhraddshs v2.03 351 Vector Multiply-High-Round-Add Signed Halfword
Saturate VA-form

000100 10001 001010 I ..XX vminfp v2.03 424 Vector Minimum Floating-Point VX-form
000100 01100 000010 I ..XX vminsb v2.03 384 Vector Minimum Signed Byte VX-form
000100 01101 000010 I ..XX vminsh v2.03 385 Vector Minimum Signed Halfword VX-form
000100 01110 000010 I ..XX vminsw v2.03 386 Vector Minimum Signed Word VX-form
000100 01000 000010 I ..XX vminub v2.03 384 Vector Minimum Unsigned Byte VX-form
000100 01001 000010 I ..XX vminuh v2.03 385 Vector Minimum Unsigned Halfword VX-form
000100 01010 000010 I ..XX vminuw v2.03 386 Vector Minimum Unsigned Word VX-form

000100 100010 I ..XX vmladduhm v2.03 352 Vector Multiply-Low-Add Unsigned Halfword Modulo
VA-form

000100 00000 001100 I ..XX vmrghb v2.03 289 Vector Merge High Byte VX-form
000100 00001 001100 I ..XX vmrghh v2.03 290 Vector Merge High Halfword VX-form
000100 00010 001100 I ..XX vmrghw v2.03 291 Vector Merge High Word VX-form
000100 00100 001100 I ..XX vmrglb v2.03 289 Vector Merge Low Byte VX-form
000100 00101 001100 I ..XX vmrglh v2.03 290 Vector Merge Low Halfword VX-form
000100 00110 001100 I ..XX vmrglw v2.03 291 Vector Merge Low Word VX-form
000100 100101 I ..XX vmsummbm v2.03 353 Vector Multiply-Sum Mixed Byte Modulo VA-form
000100 101000 I ..XX vmsumshm v2.03 353 Vector Multiply-Sum Signed Halfword Modulo VA-form
000100 101001 I ..XX vmsumshs v2.03 354 Vector Multiply-Sum Signed Halfword Saturate VA-form
000100 100100 I ..XX vmsumubm v2.03 352 Vector Multiply-Sum Unsigned Byte Modulo VA-form

000100 100110 I ..XX vmsumuhm v2.03 354 Vector Multiply-Sum Unsigned Halfword Modulo
VA-form

000100 100111 I ..XX vmsumuhs v2.03 355 Vector Multiply-Sum Unsigned Halfword Saturate
VA-form

000100 01100 001000 I ..XX vmulesb v2.03 339 Vector Multiply Even Signed Byte VX-form
000100 01101 001000 I ..XX vmulesh v2.03 341 Vector Multiply Even Signed Halfword VX-form
000100 01000 001000 I ..XX vmuleub v2.03 340 Vector Multiply Even Unsigned Byte VX-form
000100 01001 001000 I ..XX vmuleuh v2.03 342 Vector Multiply Even Unsigned Halfword VX-form
000100 00100 001000 I ..XX vmulosb v2.03 339 Vector Multiply Odd Signed Byte VX-form
000100 00101 001000 I ..XX vmulosh v2.03 341 Vector Multiply Odd Signed Halfword VX-form
000100 00000 001000 I ..XX vmuloub v2.03 340 Vector Multiply Odd Unsigned Byte VX-form
000100 00001 001000 I ..XX vmulouh v2.03 342 Vector Multiply Odd Unsigned Halfword VX-form

000100 101111 I ..XX vnmsubfp v2.03 423 Vector Negative Multiply-Subtract Floating-Point
VA-form

000100 10100 000100 I ..XX vnor v2.03 403 Vector Logical NOR VX-form
000100 10010 000100 I ..XX vor v2.03 403 Vector Logical OR VX-form
000100 101011 I ..XX vperm v2.03 296 Vector Permute VA-form
000100 01100 001110 I ..XX vpkpx v2.03 278 Vector Pack Pixel VX-form
000100 00110 001110 I ..XX vpkshss v2.03 279 Vector Pack Signed Halfword Signed Saturate VX-form

000100 00100 001110 I ..XX vpkshus v2.03 279 Vector Pack Signed Halfword Unsigned Saturate
VX-form

000100 00111 001110 I ..XX vpkswss v2.03 280 Vector Pack Signed Word Signed Saturate VX-form
000100 00101 001110 I ..XX vpkswus v2.03 280 Vector Pack Signed Word Unsigned Saturate VX-form

000100 00000 001110 I ..XX vpkuhum v2.03 282 Vector Pack Unsigned Halfword Unsigned Modulo
VX-form

000100 00010 001110 I ..XX vpkuhus v2.03 282 Vector Pack Unsigned Halfword Unsigned Saturate
VX-form

000100 00001 001110 I ..XX vpkuwum v2.03 283 Vector Pack Unsigned Word Unsigned Modulo VX-form

000100 00011 001110 I ..XX vpkuwus v2.03 283 Vector Pack Unsigned Word Unsigned Saturate
VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 23 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1439

Version 3.1
000100 ///// 00100 001010 I ..XX vrefp v2.03 434 Vector Reciprocal Estimate Floating-Point VX-form

000100 ///// 01011 001010 I ..XX vrfim v2.03 427 Vector Round to Floating-Point Integer toward -Infinity
VX-form

000100 ///// 01000 001010 I ..XX vrfin v2.03 427 Vector Round to Floating-Point Integer Nearest VX-form

000100 ///// 01010 001010 I ..XX vrfip v2.03 428 Vector Round to Floating-Point Integer toward +Infinity
VX-form

000100 ///// 01001 001010 I ..XX vrfiz v2.03 428 Vector Round to Floating-Point Integer toward Zero
VX-form

000100 00000 000100 I ..XX vrlb v2.03 404 Vector Rotate Left Byte VX-form
000100 00001 000100 I ..XX vrlh v2.03 404 Vector Rotate Left Halfword VX-form
000100 00010 000100 I ..XX vrlw v2.03 404 Vector Rotate Left Word VX-form

000100 ///// 00101 001010 I ..XX vrsqrtefp v2.03 434 Vector Reciprocal Square Root Estimate Floating-Point
VX-form

000100 101010 I ..XX vsel v2.03 297 Vector Select VA-form
000100 00111 000100 I ..XX vsl v2.03 300 Vector Shift Left VX-form
000100 00100 000100 I ..XX vslb v2.03 413 Vector Shift Left Byte VX-form
000100 /.... 101100 I ..XX vsldoi v2.03 298 Vector Shift Left Double by Octet Immediate VA-form
000100 00101 000100 I ..XX vslh v2.03 413 Vector Shift Left Halfword VX-form
000100 10000 001100 I ..XX vslo v2.03 301 Vector Shift Left by Octet VX-form
000100 00110 000100 I ..XX vslw v2.03 414 Vector Shift Left Word VX-form
000100 /.... 01000 001100 I ..XX vspltb v2.03 293 Vector Splat Byte VX-form
000100 //... 01001 001100 I ..XX vsplth v2.03 293 Vector Splat Halfword VX-form
000100 ///// 01100 001100 I ..XX vspltisb v2.03 295 Vector Splat Immediate Signed Byte VX-form
000100 ///// 01101 001100 I ..XX vspltish v2.03 295 Vector Splat Immediate Signed Halfword VX-form
000100 ///// 01110 001100 I ..XX vspltisw v2.03 295 Vector Splat Immediate Signed Word VX-form
000100 ///.. 01010 001100 I ..XX vspltw v2.03 294 Vector Splat Word VX-form
000100 01011 000100 I ..XX vsr v2.03 300 Vector Shift Right VX-form
000100 01100 000100 I ..XX vsrab v2.03 419 Vector Shift Right Algebraic Byte VX-form
000100 01101 000100 I ..XX vsrah v2.03 419 Vector Shift Right Algebraic Halfword VX-form
000100 01110 000100 I ..XX vsraw v2.03 420 Vector Shift Right Algebraic Word VX-form
000100 01000 000100 I ..XX vsrb v2.03 416 Vector Shift Right Byte VX-form
000100 01001 000100 I ..XX vsrh v2.03 416 Vector Shift Right Halfword VX-form
000100 10001 001100 I ..XX vsro v2.03 301 Vector Shift Right by Octet VX-form
000100 01010 000100 I ..XX vsrw v2.03 417 Vector Shift Right Word VX-form

000100 10110 000000 I ..XX vsubcuw v2.03 331 Vector Subtract & Write Carry-out Unsigned Word
VX-form

000100 00001 001010 I ..XX vsubfp v2.03 422 Vector Subtract Floating-Point VX-form
000100 11100 000000 I ..XX vsubsbs v2.03 331 Vector Subtract Signed Byte Saturate VX-form
000100 11101 000000 I ..XX vsubshs v2.03 332 Vector Subtract Signed Halfword Saturate VX-form
000100 11110 000000 I ..XX vsubsws v2.03 332 Vector Subtract Signed Word Saturate VX-form
000100 10000 000000 I ..XX vsububm v2.03 333 Vector Subtract Unsigned Byte Modulo VX-form
000100 11000 000000 I ..XX vsububs v2.03 335 Vector Subtract Unsigned Byte Saturate VX-form
000100 10001 000000 I ..XX vsubuhm v2.03 333 Vector Subtract Unsigned Halfword Modulo VX-form
000100 11001 000000 I ..XX vsubuhs v2.03 335 Vector Subtract Unsigned Halfword Saturate VX-form
000100 10010 000000 I ..XX vsubuwm v2.03 334 Vector Subtract Unsigned Word Modulo VX-form
000100 11010 000000 I ..XX vsubuws v2.03 336 Vector Subtract Unsigned Word Saturate VX-form
000100 11010 001000 I ..XX vsum2sws v2.03 368 Vector Sum across Half Signed Word Saturate VX-form

000100 11100 001000 I ..XX vsum4sbs v2.03 369 Vector Sum across Quarter Signed Byte Saturate
VX-form

000100 11001 001000 I ..XX vsum4shs v2.03 369 Vector Sum across Quarter Signed Halfword Saturate
VX-form

000100 11000 001000 I ..XX vsum4ubs v2.03 370 Vector Sum across Quarter Unsigned Byte Saturate
VX-form

000100 11110 001000 I ..XX vsumsws v2.03 367 Vector Sum across Signed Word Saturate VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 24 of 30)
Power ISA™ Appendices1440

Version 3.1
000100 ///// 01101 001110 I ..XX vupkhpx v2.03 288 Vector Unpack High Pixel VX-form
000100 ///// 01000 001110 I ..XX vupkhsb v2.03 285 Vector Unpack High Signed Byte VX-form
000100 ///// 01001 001110 I ..XX vupkhsh v2.03 286 Vector Unpack High Signed Halfword VX-form
000100 ///// 01111 001110 I ..XX vupklpx v2.03 288 Vector Unpack Low Pixel VX-form
000100 ///// 01010 001110 I ..XX vupklsb v2.03 285 Vector Unpack Low Signed Byte VX-form
000100 ///// 01011 001110 I ..XX vupklsh v2.03 286 Vector Unpack Low Signed Halfword VX-form
000100 10011 000100 I ..XX vxor v2.03 403 Vector Logical XOR VX-form
111111 ///// ///// 11000. I .XXX fre[.] v2.02 165 Floating Reciprocal Estimate A-form
111111 ///// 01111 01000. I .XXX frim[.] v2.02 178 Floating Round to Integer Minus X-form
111111 ///// 01100 01000. I .XXX frin[.] v2.02 178 Floating Round to Integer Nearest X-form
111111 ///// 01110 01000. I .XXX frip[.] v2.02 178 Floating Round to Integer Plus X-form
111111 ///// 01101 01000. I .XXX friz[.] v2.02 178 Floating Round to Integer Toward Zero X-form
111011 ///// ///// 11010. I .XXX frsqrtes[.] v2.02 166 Floating Reciprocal Square Root Estimate Single A-form
010011 ///// ///// ///// 01000 10010/ III ...X hrfid v2.02 HV 1152 Return From Interrupt Doubleword Hypervisor XL-form
011111 ///// 00011 11010/ I XXXX popcntb v2.02 103 Population Count Bytes X-form
011111 1..../ 00000 10011/ I XXXX mfocrf v2.01 128 Move From One Condition Register Field XFX-form
011111 1..../ 00100 10000/ I XXXX mtocrf v2.01 127 Move To One Condition Register Field XFX-form
011111 ///// 11100 10011/ III ...X slbmfee v2.00 P 1229 SLB Move From Entry ESID X-form
011111 ///// 11010 10011/ III ...X slbmfev v2.00 P 1228 SLB Move From Entry VSID X-form
011111 ///// 01100 10010/ III ...X slbmte v2.00 P 1227 SLB Move To Entry X-form
010011 ///// ///// ///// 00010 10010/ III ..XX rfscv v3.0 P 1151 Return From System Call Vectored XL-form
010001 ///// ///// ////.///01 I XXXX scv v3.0 47 System Call Vectored SC-form
111000 I ..XX lq v2.03 65 Load Quadword DQ-form
11111010 I ...X stq v2.03 66 Store Quadword DS-form
011111 ///// 00001 11010. I ..XX cntlzd[.] PPC SR 104 Count Leading Zeros Doubleword X-form
011111 ///.. 00010 10110/ II ...X dcbf PPC 1064 Data Cache Block Flush X-form
011111 ///// 00001 10110/ II ...X dcbst PPC 1063 Data Cache Block Store X-form
011111 01000 10110/ II ...X dcbt PPC 1061 Data Cache Block Touch X-form
011111 00111 10110/ II ...X dcbtst PPC 1062 Data Cache Block Touch for Store X-form
011111 01111 01001. I ..XX divd[.] PPC SR 89 Divide Doubleword XO-form
011111 11111 01001. I ..XX divdo[.] PPC SR 89 Divide Doubleword & record OV XO-form
011111 01110 01001. I ..XX divdu[.] PPC SR 89 Divide Doubleword Unsigned XO-form
011111 11110 01001. I ..XX divduo[.] PPC SR 89 Divide Doubleword Unsigned & record OV XO-form
011111 01111 01011. I XXXX divw[.] PPC SR 82 Divide Word XO-form
011111 11111 01011. I ..XX divwo[.] PPC SR 82 Divide Word & record OV XO-form
011111 01110 01011. I XXXX divwu[.] PPC SR 82 Divide Word Unsigned XO-form
011111 11110 01011. I ..XX divwuo[.] PPC SR 82 Divide Word Unsigned & record OV XO-form
011111 ///// ///// ///// 11010 10110/ II ...X eieio PPC 1088 Enforce In-order Execution of I/O X-form
011111 ///// 11101 11010. I XXXX extsb[.] PPC SR 102 Extend Sign Byte X-form
011111 ///// 11110 11010. I ..XX extsw[.] PPC SR 104 Extend Sign Word X-form
111011 ///// 10101. I .XXX fadds[.] PPC 163 Floating Add Single A-form

111111 ///// 11010 01110. I .XXX fcfid[.] PPC 174 Floating Convert with round Signed Doubleword to
Double-Precision format X-form

111111 ///// 11001 01110. I .XXX fctid[.] PPC 170 Floating Convert with round Double-Precision To Signed
Doubleword format X-form

111111 ///// 11001 01111. I .XXX fctidz[.] PPC 171 Floating Convert with truncate Double-Precision To
Signed Doubleword format X-form

111011 ///// 10010. I .XXX fdivs[.] PPC 164 Floating Divide Single A-form
111011 11101. I .XXX fmadds[.] PPC 168 Floating Multiply-Add Single A-form
111011 11100. I .XXX fmsubs[.] PPC 168 Floating Multiply-Subtract Single A-form
111011 ///// 11001. I .XXX fmuls[.] PPC 164 Floating Multiply Single A-form
111011 11111. I .XXX fnmadds[.] PPC 169 Floating Negative Multiply-Add Single A-form
111011 11110. I .XXX fnmsubs[.] PPC 169 Floating Negative Multiply-Subtract Single A-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 25 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1441

Version 3.1
111011 ///// ///// 11000. I .XXX fres[.] PPC 165 Floating Reciprocal Estimate Single A-form
111111 ///// ///// 11010. I .XXX frsqrte[.] PPC 166 Floating Reciprocal Square Root Estimate A-form
111111 10111. I .XXX fsel[.] PPC 180 Floating Select A-form
111011 ///// ///// 10110. I .XXX fsqrts[.] PPC 165 Floating Square Root Single A-form
111011 ///// 10100. I .XXX fsubs[.] PPC 163 Floating Subtract Single A-form
011111 ///// 11110 10110/ II ...X icbi PPC 1052 Instruction Cache Block Invalidate X-form
11101000 I ..XX ld PPC 57 Load Doubleword DS-form
011111 00010 10100/ II ..XX ldarx PPC 1082 Load Doubleword And Reserve Indexed X-form
11101001 I ..XX ldu PPC 57 Load Doubleword with Update DS-form
011111 00001 10101/ I ..XX ldux PPC 57 Load Doubleword with Update Indexed X-form
011111 00000 10101/ I ..XX ldx PPC 57 Load Doubleword Indexed X-form
11101010 I ..XX lwa PPC 56 Load Word Algebraic DS-form
011111 00000 10100/ II ..XX lwarx PPC 1078 Load Word & Reserve Indexed X-form
011111 01011 10101/ I ..XX lwaux PPC 56 Load Word Algebraic with Update Indexed X-form
011111 01010 10101/ I ..XX lwax PPC 56 Load Word Algebraic Indexed X-form
011111 01011 10011/ II XXXX mftb PPC 1094 Move From Time Base XFX-form
011111 ////. ///// 00101 10010/ III ...X mtmsrd PPC P 1175 Move To MSR Doubleword X-form
011111 /0010 01001. I ..XX mulhd[.] PPC SR 87 Multiply High Doubleword XO-form
011111 /0000 01001. I ..XX mulhdu[.] PPC SR 87 Multiply High Doubleword Unsigned XO-form
011111 /0010 01011. I XXXX mulhw[.] PPC SR 81 Multiply High Word XO-form
011111 /0000 01011. I XXXX mulhwu[.] PPC SR 81 Multiply High Word Unsigned XO-form
011111 00111 01001. I ..XX mulld[.] PPC SR 87 Multiply Low Doubleword XO-form
011111 10111 01001. I ..XX mulldo[.] PPC SR 87 Multiply Low Doubleword & record OV XO-form
010011 ///// ///// ///// 00000 10010/ III ..XX rfid PPC P 1152 Return from Interrupt Doubleword XL-form
0111101000. I ..XX rldcl[.] PPC SR 111 Rotate Left Doubleword then Clear Left MDS-form
0111101001. I ..XX rldcr[.] PPC SR 112 Rotate Left Doubleword then Clear Right MDS-form
011110010.. I ..XX rldic[.] PPC SR 111 Rotate Left Doubleword Immediate then Clear MD-form

011110000.. I ..XX rldicl[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Left
MD-form

011110001.. I ..XX rldicr[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Right
MD-form

011110011.. I ..XX rldimi[.] PPC SR 112 Rotate Left Doubleword Immediate then Mask Insert
MD-form

010001 ///// ///// ////.///1/ I XXXX sc PPC 47 System Call SC-form
011111 //... ///// ///// 01111 10010/ III ...X slbia PPC P 1224 SLB Invalidate All X-form
011111 ///// ///// 01101 10010/ III ...X slbie PPC P 1221 SLB Invalidate Entry X-form
011111 00000 11011. I ..XX sld[.] PPC SR 115 Shift Left Doubleword X-form
011111 11000 11010. I ..XX srad[.] PPC SR 115 Shift Right Algebraic Doubleword X-form
011111 11001 1101.. I ..XX sradi[.] PPC SR 115 Shift Right Algebraic Doubleword Immediate XS-form
011111 10000 11011. I ..XX srd[.] PPC SR 115 Shift Right Doubleword X-form
11111000 I ..XX std PPC 62 Store Doubleword DS-form
011111 00110 101101 II ..XX stdcx. PPC 1082 Store Doubleword Conditional Indexed X-form
11111001 I ..XX stdu PPC 62 Store Doubleword with Update DS-form
011111 00101 10101/ I ..XX stdux PPC 63 Store Doubleword with Update Indexed X-form
011111 00100 10101/ I ..XX stdx PPC 62 Store Doubleword Indexed X-form
011111 11110 10111/ I .XXX stfiwx PPC 158 Store Floating-Point as Integer Word Indexed X-form
011111 00100 101101 II ..XX stwcx. PPC 1081 Store Word Conditional Indexed X-form
011111 00001 01000. I XXXX subf[.] PPC SR 77 Subtract From XO-form
011111 10001 01000. I ..XX subfo[.] PPC SR 77 Subtract From & record OV XO-form
011111 00010 00100/ I ..XX td PPC 98 Trap Doubleword X-form
000010 I ..XX tdi PPC 98 Trap Doubleword Immediate D-form
011111 ///// ///// ///// 10001 10110/ III ...X tlbsync PPC HV/P 1240 TLB Synchronize X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 26 of 30)
Power ISA™ Appendices1442

Version 3.1
111111 ///// 00000 01110. I .XXX fctiw[.] P2 172 Floating Convert with round Double-Precision To Signed
Word format X-form

111111 ///// 00000 01111. I .XXX fctiwz[.] P2 173 Floating Convert with truncate Double-Precision To
Signed Word fomat X-form

111111 ///// ///// 10110. I .XXX fsqrt[.] P2 165 Floating Square Root A-form
011111 01000 01010. I XXXX add[.] P1 SR 77 Add XO-form
011111 00000 01010. I XXXX addc[.] P1 SR 78 Add Carrying XO-form
011111 10000 01010. I ..XX addco[.] P1 SR 78 Add Carrying & record OV XO-form
011111 00100 01010. I XXXX adde[.] P1 SR 78 Add Extended XO-form
011111 10100 01010. I ..XX addeo[.] P1 SR 78 Add Extended & record OV XO-form
001110 I XXXX addi P1 76 Add Immediate D-form
001100 I XXXX addic P1 SR 77 Add Immediate Carrying D-formy
001101 I XXXX addic. P1 SR 77 Add Immediate Carrying and Record D-form
001111 I XXXX addis P1 76 Add Immediate Shifted D-form
011111 ///// 00111 01010. I XXXX addme[.] P1 SR 79 Add to Minus One Extended XO-form
011111 ///// 10111 01010. I ..XX addmeo[.] P1 SR 79 Add to Minus One Extended & record OV XO-form
011111 11000 01010. I ..XX addo[.] P1 SR 77 Add & record OV XO-form
011111 ///// 00110 01010. I XXXX addze[.] P1 SR 79 Add to Zero Extended XO-form
011111 ///// 10110 01010. I ..XX addzeo[.] P1 SR 79 Add to Zero Extended & record OV XO-form
011111 00000 11100. I XXXX and[.] P1 SR 100 AND X-form
011111 00001 11100. I XXXX andc[.] P1 SR 101 AND with Complement X-form
011100 I XXXX andi. P1 SR 99 AND Immediate D-form
011101 I XXXX andis. P1 SR 99 AND Immediate Shifted D-form
010010 I XXXX b[l][a] P1 41 Branch I-form
010000 I XXXX bc[l][a] P1 CT 41 Branch Conditional B-form
010011 ///.. 10000 10000. I XXXX bcctr[l] P1 CT 42 Branch Conditional to Count Register XL-form
010011 ///.. 00000 10000. I XXXX bclr[l] P1 CT 42 Branch Conditional to Link Register XL-form
011111 .../. 00000 00000/ I XXXX cmp P1 93 Compare X-form
001011 .../. I XXXX cmpi P1 93 Compare Immediate D-form
011111 .../. 00001 00000/ I XXXX cmpl P1 93 Compare Logical X-form
001010 .../. I XXXX cmpli P1 93 Compare Logical Immediate D-form
011111 ///// 00000 11010. I XXXX cntlzw[.] P1 SR 102 Count Leading Zeros Word X-form
010011 01000 00001/ I XXXX crand P1 44 Condition Register AND XL-form
010011 00100 00001/ I XXXX crandc P1 45 Condition Register AND with Complement XL-form
010011 01001 00001/ I XXXX creqv P1 45 Condition Register Equivalent XL-form
010011 00111 00001/ I XXXX crnand P1 44 Condition Register NAND XL-form
010011 00001 00001/ I XXXX crnor P1 45 Condition Register NOR XL-form
010011 01110 00001/ I XXXX cror P1 44 Condition Register OR XL-form
010011 01101 00001/ I XXXX crorc P1 45 Condition Register OR with Complement XL-form
010011 00110 00001/ I XXXX crxor P1 44 Condition Register XOR XL-form
011111 ///// 11111 10110/ II ...X dcbz P1 1063 Data Cache Block set to Zero X-form
011111 01000 11100. I XXXX eqv[.] P1 SR 101 Equivalent X-form
011111 ///// 11100 11010. I XXXX extsh[.] P1 SR 102 Extend Sign Halfword X-form
111111 ///// 01000 01000. I .XXX fabs[.] P1 161 Floating Absolute Value X-form
111111 ///// 10101. I .XXX fadd[.] P1 163 Floating Add A-form
111111 ...// 00001 00000/ I .XXX fcmpo P1 179 Floating Compare Ordered X-form
111111 ...// 00000 00000/ I .XXX fcmpu P1 179 Floating Compare Unordered X-form
111111 ///// 10010. I .XXX fdiv[.] P1 164 Floating Divide A-form
111111 11101. I .XXX fmadd[.] P1 168 Floating Multiply-Add A-form
111111 ///// 00010 01000. I .XXX fmr[.] P1 161 Floating Move Register X-form
111111 11100. I .XXX fmsub[.] P1 168 Floating Multiply-Subtract A-form
111111 ///// 11001. I .XXX fmul[.] P1 164 Floating Multiply A-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 27 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1443

Version 3.1
111111 ///// 00100 01000. I .XXX fnabs[.] P1 161 Floating Negative Absolute Value X-form
111111 ///// 00001 01000. I .XXX fneg[.] P1 161 Floating Negate X-form
111111 11111. I .XXX fnmadd[.] P1 169 Floating Negative Multiply-Add A-form
111111 11110. I .XXX fnmsub[.] P1 169 Floating Negative Multiply-Subtract A-form
111111 ///// 00000 01100. I .XXX frsp[.] P1 170 Floating Round to Single-Precision X-form
111111 ///// 10100. I .XXX fsub[.] P1 163 Floating Subtract A-form
010011 ///// ///// ///// 00100 10110/ II ...X isync P1 1076 Instruction Synchronize XL-form
100010 I XXXX lbz P1 52 Load Byte and Zero D-form
100011 I XXXX lbzu P1 52 Load Byte and Zero with Update D-form
011111 00011 10111/ I XXXX lbzux P1 52 Load Byte and Zero with Update Indexed X-form
011111 00010 10111/ I XXXX lbzx P1 52 Load Byte and Zero Indexed X-form
110010 I .XXX lfd P1 152 Load Floating-Point Double D-form
110011 I .XXX lfdu P1 152 Load Floating-Point Double with Update D-form
011111 10011 10111/ I .XXX lfdux P1 152 Load Floating-Point Double with Update Indexed X-form
011111 10010 10111/ I .XXX lfdx P1 152 Load Floating-Point Double Indexed X-form
110000 I .XXX lfs P1 150 Load Floating-Point Single D-form
110001 I .XXX lfsu P1 150 Load Floating-Point Single with Update D-form
011111 10001 10111/ I .XXX lfsux P1 151 Load Floating-Point Single with Update Indexed X-form
011111 10000 10111/ I .XXX lfsx P1 150 Load Floating-Point Single Indexed X-form
101010 I XXXX lha P1 54 Load Halfword Algebraic D-form
101011 I XXXX lhau P1 54 Load Halfword Algebraic with Update D-form
011111 01011 10111/ I XXXX lhaux P1 54 Load Halfword Algebraic with Update Indexed X-form
011111 01010 10111/ I XXXX lhax P1 54 Load Halfword Algebraic Indexed X-form
011111 11000 10110/ I ...X lhbrx P1 67 Load Halfword Byte-Reverse Indexed X-form
101000 I XXXX lhz P1 53 Load Halfword and Zero D-form
101001 I XXXX lhzu P1 53 Load Halfword and Zero with Update D-form
011111 01001 10111/ I XXXX lhzux P1 53 Load Halfword and Zero with Update Indexed X-form
011111 01000 10111/ I XXXX lhzx P1 53 Load Halfword and Zero Indexed X-form
101110 I ...X lmw P1 70 Load Multiple Word D-form
011111 10010 10101/ I ...X lswi P1 72 Load String Word Immediate X-form
011111 10000 10101/ I ...X lswx P1 72 Load String Word Indexed X-form
011111 10000 10110/ I XXXX lwbrx P1 68 Load Word Byte-Reverse Indexed X-form
100000 I XXXX lwz P1 55 Load Word and Zero D-form
100001 I XXXX lwzu P1 55 Load Word and Zero with Update D-form
011111 00001 10111/ I XXXX lwzux P1 55 Load Word and Zero with Update Indexed X-form
011111 00000 10111/ I XXXX lwzx P1 55 Load Word and Zero Indexed X-form
010011 ...// ...// ///// 00000 00000/ I XXXX mcrf P1 46 Move Condition Register Field XL-form
111111 ...// ...// ///// 00010 00000/ I .XXX mcrfs P1 184 Move to Condition Register from FPSCR X-form
011111 0//// ///// 00000 10011/ I XXXX mfcr P1 128 Move From Condition Register XFX-form
111111 00000 ///// 10010 00111. I .XXX mffs[.] P1 182 Move From FPSCR X-form
011111 ///// ///// 00010 10011/ III XXXX mfmsr P1 P 1176 Move From MSR X-form

011111 01010 10011/ I
III

XXXX mfspr P1 O 126
1173 Move From Special Purpose Register XFX-form

011111 0..../ 00100 10000/ I XXXX mtcrf P1 127 Move To Condition Register Fields XFX-form
111111 ///// ///// 00010 00110. I .XXX mtfsb0[.] P1 185 Move To FPSCR Bit 0 X-form
111111 ///// ///// 00001 00110. I .XXX mtfsb1[.] P1 185 Move To FPSCR Bit 1 X-form
111111 10110 00111. I .XXX mtfsf[.] P1 184 Move To FPSCR Fields XFL-form
111111 ...// ////./ 00100 00110. I .XXX mtfsfi[.] P1 184 Move To FPSCR Field Immediate X-form
011111 ////. ///// 00100 10010/ III XXXX mtmsr P1 P 1174 Move To MSR X-form

011111 01110 10011/
I
III

XXXX mtspr P1 O 124
1171 Move To Special Purpose Register XFX-form

000111 I XXXX mulli P1 81 Multiply Low Immediate D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 28 of 30)
Power ISA™ Appendices1444

Version 3.1
011111 00111 01011. I XXXX mullw[.] P1 SR 81 Multiply Low Word XO-form
011111 10111 01011. I ..XX mullwo[.] P1 SR 81 Multiply Low Word & record OV XO-form
011111 01110 11100. I XXXX nand[.] P1 SR 100 NAND X-form
011111 ///// 00011 01000. I XXXX neg[.] P1 SR 80 Negate XO-form
011111 ///// 10011 01000. I ..XX nego[.] P1 SR 80 Negate & record OV XO-form
011111 00011 11100. I XXXX nor[.] P1 SR 101 NOR X-form
011111 01101 11100. I XXXX or[.] P1 SR 101 OR X-form
011111 01100 11100. I XXXX orc[.] P1 SR 101 OR with Complement X-form
011000 I XXXX ori P1 99 OR Immediate D-form
011001 I XXXX oris P1 100 OR Immediate Shifted D-form
010100 I XXXX rlwimi[.] P1 SR 108 Rotate Left Word Immediate then Mask Insert M-form

010101 I XXXX rlwinm[.] P1 SR 107 Rotate Left Word Immediate then AND with Mask
M-form

010111 I XXXX rlwnm[.] P1 SR 108 Rotate Left Word then AND with Mask M-form
011111 00000 11000. I XXXX slw[.] P1 SR 113 Shift Left Word X-form
011111 11000 11000. I XXXX sraw[.] P1 SR 114 Shift Right Algebraic Word X-form
011111 11001 11000. I XXXX srawi[.] P1 SR 114 Shift Right Algebraic Word Immediate X-form
011111 10000 11000. I XXXX srw[.] P1 SR 113 Shift Right Word X-form
100110 I XXXX stb P1 59 Store Byte D-form
100111 I XXXX stbu P1 59 Store Byte with Update D-form
011111 00111 10111/ I XXXX stbux P1 59 Store Byte with Update Indexed X-form
011111 00110 10111/ I XXXX stbx P1 59 Store Byte Indexed X-form
110110 I .XXX stfd P1 157 Store Floating-Point Double D-form
110111 I .XXX stfdu P1 157 Store Floating-Point Double with Update D-form
011111 10111 10111/ I .XXX stfdux P1 158 Store Floating-Point Double with Update Indexed X-form
011111 10110 10111/ I .XXX stfdx P1 157 Store Floating-Point Double Indexed X-form
110100 I .XXX stfs P1 155 Store Floating-Point Single D-form
110101 I .XXX stfsu P1 155 Store Floating-Point Single with Update D-form
011111 10101 10111/ I .XXX stfsux P1 156 Store Floating-Point Single with Update Indexed X-form
011111 10100 10111/ I .XXX stfsx P1 155 Store Floating-Point Single Indexed X-form
101100 I XXXX sth P1 60 Store Halfword D-form
011111 11100 10110/ I XXXX sthbrx P1 67 Store Halfword Byte-Reverse Indexed X-form
101101 I XXXX sthu P1 60 Store Halfword with Update D-form
011111 01101 10111/ I XXXX sthux P1 60 Store Halfword with Update Indexed X-form
011111 01100 10111/ I XXXX sthx P1 60 Store Halfword Indexed X-form
101111 I ...X stmw P1 70 Store Multiple Word D-form
011111 10110 10101/ I ...X stswi P1 73 Store String Word Immediate X-form
011111 10100 10101/ I ...X stswx P1 73 Store String Word Indexed X-form
100100 I XXXX stw P1 61 Store Word D-form
011111 10100 10110/ I XXXX stwbrx P1 68 Store Word Byte-Reverse Indexed X-form
100101 I XXXX stwu P1 61 Store Word with Update D-form
011111 00101 10111/ I XXXX stwux P1 61 Store Word with Update Indexed X-form
011111 00100 10111/ I XXXX stwx P1 61 Store Word Indexed X-form
011111 00000 01000. I XXXX subfc[.] P1 SR 78 Subtract From Carrying XO-form
011111 10000 01000. I ..XX subfco[.] P1 SR 78 Subtract From Carrying & record OV XO-form
011111 00100 01000. I XXXX subfe[.] P1 SR 78 Subtract From Extended XO-form
011111 10100 01000. I ..XX subfeo[.] P1 SR 78 Subtract From Extended & record OV XO-form
001000 I XXXX subfic P1 SR 77 Subtract From Immediate Carrying D-form
011111 ///// 00111 01000. I XXXX subfme[.] P1 SR 79 Subtract From Minus One Extended XO-form

011111 ///// 10111 01000. I ..XX subfmeo[.] P1 SR 79 Subtract From Minus One Extended & record OV
XO-form

011111 ///// 00110 01000. I XXXX subfze[.] P1 SR 78 Subtract From Zero Extended XO-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 29 of 30)
Appendix F. Power ISA Instruction Set Sorted by Version 1445

Version 3.1
011111 ///// 10110 01000. I ..XX subfzeo[.] P1 SR 78 Subtract From Zero Extended & record OV XO-form
011111 ///.. ///// ///// 10010 10110/ II ..XX sync P1 1086 Synchronize X-form
011111 /.... 01001 10010/ III ...X tlbie P1 HV 64 1231 TLB Invalidate Entry X-form
011111 00000 00100/ I XXXX tw P1 97 Trap Word X-form
000011 I XXXX twi P1 97 Trap Word Immediate D-form
011111 01001 11100. I XXXX xor[.] P1 SR 100 XOR X-form
011010 I XXXX xori P1 100 XOR Immediate D-form
011011 I XXXX xoris P1 100 XOR Immediate Shifted D-form

1. Instruction

/ Instruction bit that corresponds to a reserved field, must have a value of 0, otherwise invalid form.
- Instruction bit that corresponds to an operand bit, may have a value of either 0 or 1.
0 Instruction bit that corresponds to an opcode bit having a value 0.
1 Instruction bit that corresponds to an opcode bit having a value 1.

2. OpenPOWER Compliancy Subsets
X... Instruction included in the Scalar Fixed-Point Compliancy subset
.X.. Instruction included in the Scalar Fixed-Point + Floating-Point Compliancy subset.
..X. Instruction included in the Linux Compliancy subset.
...X Instruction included in the AIX Compliancy subset.

3. Linux Optional Category
AMO Instruction part of Atomic Memory Operations category.
BFP128 Instruction part of Quad-Precision Floating-Point category.
BHRB Instruction part of Branch History Rolling Buffer category.
DFP Instruction part of Decimal Floating-Point category.
EBB Instruction part of Event-Based Branch category.
MMA Instruction part of Matrix-Multiplication Assist category.

4. Always Optional Category
MMA Instruction part of Matrix-Multiplication Assist category.

5. Version

P1 Instruction introduced in POWER Architecture.
P2 Instruction introduced in POWER2 Architecture.
PPC Instruction introduced in PowerPC Architecture prior to v2.00.
v2.00 Instruction introduced in PowerPC Architecture Version 2.00.
v2.01 Instruction introduced in PowerPC Architecture Version 2.01.
v2.02 Instruction introduced in PowerPC Architecture Version 2.02.
v2.03 Instruction introduced in Power ISA Version 2.03.
v2.04 Instruction introduced in Power ISA Version 2.04.
v2.05 Instruction introduced in Power ISA Version 2.05.
v2.06 Instruction introduced in Power ISA Version 2.06.
v2.07 Instruction introduced in Power ISA Version 2.07.
v3.0 Instruction introduced in Power ISA Version 3.0.
v3.0B Instruction introduced in Power ISA Version 3.0B.
v3.0C Instruction introduced in Power ISA Version 3.0C.
v3.1 Instruction introduced in Power ISA Version 3.1.

6. Privilege

P Denotes an instruction that is treated as privileged.
O Denotes an instruction that is treated as privileged or nonprivileged (or hypervisor-privileged for mtspr), depending on the

SPR or PMR number.
PI Denotes an instruction that is illegal in privileged state.
HV Denotes an instruction that can be executed only in hypervisor state.
UV Denotes an instruction that can be executed only in ultravisor state.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 92. Power ISA AS Instruction Set Sorted by Version (Sheet 30 of 30)
Power ISA™ Appendices1446

Version 3.1
7. Mode Dependency.
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are independent of wheth-
er the processor is in 32-bit or 64-bit mode.

CT If the instruction tests the Count Register, it tests the low-order 32 bits in 32-bit mode and all 64 bits in 64-bit mode.
SR The setting of status registers (such as XER and CR0) is mode-dependent.
SF=1 The instruction can be executed only in 64-bit mode.
Appendix F. Power ISA Instruction Set Sorted by Version 1447

Version 3.1
Power ISA™ Appendices1448

Version 3.1
Appendix G. Power ISA Instruction Set Sorted by
OpenPOWER Compliancy Subset

This appendix lists all the instructions in the Power ISA, sorted by the instruction’s OpenPOWER compliancy subset
membership, then by mnemonic.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name
011111 01000 01010. I XXXX add[.] P1 SR 77 Add XO-form
011111 00000 01010. I XXXX addc[.] P1 SR 78 Add Carrying XO-form
011111 00100 01010. I XXXX adde[.] P1 SR 78 Add Extended XO-form
011111101 01010/ I XXXX addex v3.0B 80 Add Extended using alternate carry bit Z23-form
011111 /0010 01010/ I XXXX addg6s v2.06 118 Add and Generate Sixes XO-form
001110 I XXXX addi P1 76 Add Immediate D-form
001100 I XXXX addic P1 SR 77 Add Immediate Carrying D-formy
001101 I XXXX addic. P1 SR 77 Add Immediate Carrying and Record D-form
001111 I XXXX addis P1 76 Add Immediate Shifted D-form
011111 ///// 00111 01010. I XXXX addme[.] P1 SR 79 Add to Minus One Extended XO-form
010011 00010. I XXXX addpcis v3.0 76 Add PC Immediate Shifted DX-form
011111 ///// 00110 01010. I XXXX addze[.] P1 SR 79 Add to Zero Extended XO-form
011111 00000 11100. I XXXX and[.] P1 SR 100 AND X-form
011111 00001 11100. I XXXX andc[.] P1 SR 101 AND with Complement X-form
011100 I XXXX andi. P1 SR 99 AND Immediate D-form
011101 I XXXX andis. P1 SR 99 AND Immediate Shifted D-form
010010 I XXXX b[l][a] P1 41 Branch I-form
010000 I XXXX bc[l][a] P1 CT 41 Branch Conditional B-form
010011 ///.. 10000 10000. I XXXX bcctr[l] P1 CT 42 Branch Conditional to Count Register XL-form
010011 ///.. 00000 10000. I XXXX bclr[l] P1 CT 42 Branch Conditional to Link Register XL-form

010011 ///.. 10001 10000. I XXXX bctar[l] v2.07 43 Branch Conditional to Branch Target Address Register
XL-form

011111 ///// 00110 11011/ I XXXX brh v3.1 119 Byte-Reverse Halfword X-form
011111 ///// 00100 11011/ I XXXX brw v3.1 119 Byte-Reverse Word X-form
011111 ///// 01001 11010/ I XXXX cbcdtd v2.06 117 Convert Binary Coded Decimal To Declets X-form
011111 ///// 01000 11010/ I XXXX cdtbcd v2.06 117 Convert Declets To Binary Coded Decimal X-form
011111 .../. 00000 00000/ I XXXX cmp P1 93 Compare X-form
011111 01111 11100/ I XXXX cmpb v2.05 102 Compare Bytes X-form
011111 ...// 00111 00000/ I XXXX cmpeqb v3.0 95 Compare Equal Byte X-form
001011 .../. I XXXX cmpi P1 93 Compare Immediate D-form
011111 .../. 00001 00000/ I XXXX cmpl P1 93 Compare Logical X-form
001010 .../. I XXXX cmpli P1 93 Compare Logical Immediate D-form
011111 .../. 00110 00000/ I XXXX cmprb v3.0 94 Compare Ranged Byte X-form
011111 ///// 00000 11010. I XXXX cntlzw[.] P1 SR 102 Count Leading Zeros Word X-form
011111 ///// 10000 11010. I XXXX cnttzw[.] v3.0 102 Count Trailing Zeros Word X-form
010011 01000 00001/ I XXXX crand P1 44 Condition Register AND XL-form

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 1 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1449

Version 3.1
010011 00100 00001/ I XXXX crandc P1 45 Condition Register AND with Complement XL-form
010011 01001 00001/ I XXXX creqv P1 45 Condition Register Equivalent XL-form
010011 00111 00001/ I XXXX crnand P1 44 Condition Register NAND XL-form
010011 00001 00001/ I XXXX crnor P1 45 Condition Register NOR XL-form
010011 01110 00001/ I XXXX cror P1 44 Condition Register OR XL-form
010011 01101 00001/ I XXXX crorc P1 45 Condition Register OR with Complement XL-form
010011 00110 00001/ I XXXX crxor P1 44 Condition Register XOR XL-form
011111 01111 01011. I XXXX divw[.] PPC SR 82 Divide Word XO-form
011111 01101 01011. I XXXX divwe[.] v2.06 SR 83 Divide Word Extended XO-form
011111 01100 01011. I XXXX divweu[.] v2.06 SR 83 Divide Word Extended Unsigned XO-form
011111 01110 01011. I XXXX divwu[.] PPC SR 82 Divide Word Unsigned XO-form
011111 01000 11100. I XXXX eqv[.] P1 SR 101 Equivalent X-form
011111 ///// 11101 11010. I XXXX extsb[.] PPC SR 102 Extend Sign Byte X-form
011111 ///// 11100 11010. I XXXX extsh[.] P1 SR 102 Extend Sign Halfword X-form
100010 I XXXX lbz P1 52 Load Byte and Zero D-form
100011 I XXXX lbzu P1 52 Load Byte and Zero with Update D-form
011111 00011 10111/ I XXXX lbzux P1 52 Load Byte and Zero with Update Indexed X-form
011111 00010 10111/ I XXXX lbzx P1 52 Load Byte and Zero Indexed X-form
101010 I XXXX lha P1 54 Load Halfword Algebraic D-form
101011 I XXXX lhau P1 54 Load Halfword Algebraic with Update D-form
011111 01011 10111/ I XXXX lhaux P1 54 Load Halfword Algebraic with Update Indexed X-form
011111 01010 10111/ I XXXX lhax P1 54 Load Halfword Algebraic Indexed X-form
101000 I XXXX lhz P1 53 Load Halfword and Zero D-form
101001 I XXXX lhzu P1 53 Load Halfword and Zero with Update D-form
011111 01001 10111/ I XXXX lhzux P1 53 Load Halfword and Zero with Update Indexed X-form
011111 01000 10111/ I XXXX lhzx P1 53 Load Halfword and Zero Indexed X-form
011111 10000 10110/ I XXXX lwbrx P1 68 Load Word Byte-Reverse Indexed X-form
100000 I XXXX lwz P1 55 Load Word and Zero D-form
100001 I XXXX lwzu P1 55 Load Word and Zero with Update D-form
011111 00001 10111/ I XXXX lwzux P1 55 Load Word and Zero with Update Indexed X-form
011111 00000 10111/ I XXXX lwzx P1 55 Load Word and Zero Indexed X-form
010011 ...// ...// ///// 00000 00000/ I XXXX mcrf P1 46 Move Condition Register Field XL-form
011111 ...// ///// ///// 10010 00000/ I XXXX mcrxrx v3.0 127 Move to CR from XER Extended X-form
011111 0//// ///// 00000 10011/ I XXXX mfcr P1 128 Move From Condition Register XFX-form
011111 ///// ///// 00010 10011/ III XXXX mfmsr P1 P 1176 Move From MSR X-form
011111 1..../ 00000 10011/ I XXXX mfocrf v2.01 128 Move From One Condition Register Field XFX-form

011111 01010 10011/
I
III

XXXX mfspr P1 O 126
1173 Move From Special Purpose Register XFX-form

011111 01011 10011/ II XXXX mftb PPC 1094 Move From Time Base XFX-form
011111 11000 01011/ I XXXX modsw v3.0 85 Modulo Signed Word X-form
011111 01000 01011/ I XXXX moduw v3.0 85 Modulo Unsigned Word X-form
011111 0..../ 00100 10000/ I XXXX mtcrf P1 127 Move To Condition Register Fields XFX-form
011111 ////. ///// 00100 10010/ III XXXX mtmsr P1 P 1174 Move To MSR X-form
011111 1..../ 00100 10000/ I XXXX mtocrf v2.01 127 Move To One Condition Register Field XFX-form

011111 01110 10011/ I
III XXXX mtspr P1 O 124

1171 Move To Special Purpose Register XFX-form

011111 /0010 01011. I XXXX mulhw[.] PPC SR 81 Multiply High Word XO-form
011111 /0000 01011. I XXXX mulhwu[.] PPC SR 81 Multiply High Word Unsigned XO-form
000111 I XXXX mulli P1 81 Multiply Low Immediate D-form
011111 00111 01011. I XXXX mullw[.] P1 SR 81 Multiply Low Word XO-form
011111 01110 11100. I XXXX nand[.] P1 SR 100 NAND X-form
011111 ///// 00011 01000. I XXXX neg[.] P1 SR 80 Negate XO-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 2 of 30)
Power ISA™ Appendices1450

Version 3.1
011111 00011 11100. I XXXX nor[.] P1 SR 101 NOR X-form
011111 01101 11100. I XXXX or[.] P1 SR 101 OR X-form
011111 01100 11100. I XXXX orc[.] P1 SR 101 OR with Complement X-form
011000 I XXXX ori P1 99 OR Immediate D-form
011001 I XXXX oris P1 100 OR Immediate Shifted D-form
011111 ///// 00011 11010/ I XXXX popcntb v2.02 103 Population Count Bytes X-form
011111 ///// 01011 11010/ I XXXX popcntw v2.06 103 Population Count Words X-form
011111 ///// 00100 11010/ I XXXX prtyw v2.05 103 Parity Word X-form
010100 I XXXX rlwimi[.] P1 SR 108 Rotate Left Word Immediate then Mask Insert M-form

010101 I XXXX rlwinm[.] P1 SR 107 Rotate Left Word Immediate then AND with Mask
M-form

010111 I XXXX rlwnm[.] P1 SR 108 Rotate Left Word then AND with Mask M-form
010001 ///// ///// ////.///1/ I XXXX sc PPC 47 System Call SC-form
010001 ///// ///// ////.///01 I XXXX scv v3.0 47 System Call Vectored SC-form
011111// ///// 00100 00000/ I XXXX setb v3.0 129 Set Boolean X-form
011111 ///// 01100 00000/ I XXXX setbc v3.1 129 Set Boolean Condition X-form
011111 ///// 01101 00000/ I XXXX setbcr v3.1 129 Set Boolean Condition Reverse X-form
011111 ///// 01110 00000/ I XXXX setnbc v3.1 129 Set Negative Boolean Condition X-form
011111 ///// 01111 00000/ I XXXX setnbcr v3.1 129 Set Negative Boolean Condition Reverse X-form
011111 00000 11000. I XXXX slw[.] P1 SR 113 Shift Left Word X-form
011111 11000 11000. I XXXX sraw[.] P1 SR 114 Shift Right Algebraic Word X-form
011111 11001 11000. I XXXX srawi[.] P1 SR 114 Shift Right Algebraic Word Immediate X-form
011111 10000 11000. I XXXX srw[.] P1 SR 113 Shift Right Word X-form
100110 I XXXX stb P1 59 Store Byte D-form
100111 I XXXX stbu P1 59 Store Byte with Update D-form
011111 00111 10111/ I XXXX stbux P1 59 Store Byte with Update Indexed X-form
011111 00110 10111/ I XXXX stbx P1 59 Store Byte Indexed X-form
101100 I XXXX sth P1 60 Store Halfword D-form
011111 11100 10110/ I XXXX sthbrx P1 67 Store Halfword Byte-Reverse Indexed X-form
101101 I XXXX sthu P1 60 Store Halfword with Update D-form
011111 01101 10111/ I XXXX sthux P1 60 Store Halfword with Update Indexed X-form
011111 01100 10111/ I XXXX sthx P1 60 Store Halfword Indexed X-form
100100 I XXXX stw P1 61 Store Word D-form
011111 10100 10110/ I XXXX stwbrx P1 68 Store Word Byte-Reverse Indexed X-form
100101 I XXXX stwu P1 61 Store Word with Update D-form
011111 00101 10111/ I XXXX stwux P1 61 Store Word with Update Indexed X-form
011111 00100 10111/ I XXXX stwx P1 61 Store Word Indexed X-form
011111 00001 01000. I XXXX subf[.] PPC SR 77 Subtract From XO-form
011111 00000 01000. I XXXX subfc[.] P1 SR 78 Subtract From Carrying XO-form
011111 00100 01000. I XXXX subfe[.] P1 SR 78 Subtract From Extended XO-form
001000 I XXXX subfic P1 SR 77 Subtract From Immediate Carrying D-form
011111 ///// 00111 01000. I XXXX subfme[.] P1 SR 79 Subtract From Minus One Extended XO-form
011111 ///// 00110 01000. I XXXX subfze[.] P1 SR 78 Subtract From Zero Extended XO-form
011111 00000 00100/ I XXXX tw P1 97 Trap Word X-form
000011 I XXXX twi P1 97 Trap Word Immediate D-form
011111 01001 11100. I XXXX xor[.] P1 SR 100 XOR X-form
011010 I XXXX xori P1 100 XOR Immediate D-form
011011 I XXXX xoris P1 100 XOR Immediate Shifted D-form
111111 ///// 01000 01000. I .XXX fabs[.] P1 161 Floating Absolute Value X-form
111111 ///// 10101. I .XXX fadd[.] P1 163 Floating Add A-form
111011 ///// 10101. I .XXX fadds[.] PPC 163 Floating Add Single A-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 3 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1451

Version 3.1
111111 ///// 11010 01110. I .XXX fcfid[.] PPC 174 Floating Convert with round Signed Doubleword to
Double-Precision format X-form

111011 ///// 11010 01110. I .XXX fcfids[.] v2.06 175 Floating Convert with round Signed Doubleword to
Single-Precision format X-form

111111 ///// 11110 01110. I .XXX fcfidu[.] v2.06 175 Floating Convert with round Unsigned Doubleword to
Double-Precision format X-form

111011 ///// 11110 01110. I .XXX fcfidus[.] v2.06 176 Floating Convert with round Unsigned Doubleword to
Single-Precision format X-form

111111 ...// 00001 00000/ I .XXX fcmpo P1 179 Floating Compare Ordered X-form
111111 ...// 00000 00000/ I .XXX fcmpu P1 179 Floating Compare Unordered X-form
111111 00000 01000. I .XXX fcpsgn[.] v2.05 161 Floating Copy Sign X-form

111111 ///// 11001 01110. I .XXX fctid[.] PPC 170 Floating Convert with round Double-Precision To Signed
Doubleword format X-form

111111 ///// 11101 01110. I .XXX fctidu[.] v2.06 171 Floating Convert with round Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11101 01111. I .XXX fctiduz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11001 01111. I .XXX fctidz[.] PPC 171 Floating Convert with truncate Double-Precision To
Signed Doubleword format X-form

111111 ///// 00000 01110. I .XXX fctiw[.] P2 172 Floating Convert with round Double-Precision To Signed
Word format X-form

111111 ///// 00100 01110. I .XXX fctiwu[.] v2.06 173 Floating Convert with round Double-Precision To
Unsigned Word format X-form

111111 ///// 00100 01111. I .XXX fctiwuz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Word format X-form

111111 ///// 00000 01111. I .XXX fctiwz[.] P2 173 Floating Convert with truncate Double-Precision To
Signed Word fomat X-form

111111 ///// 10010. I .XXX fdiv[.] P1 164 Floating Divide A-form
111011 ///// 10010. I .XXX fdivs[.] PPC 164 Floating Divide Single A-form
111111 11101. I .XXX fmadd[.] P1 168 Floating Multiply-Add A-form
111011 11101. I .XXX fmadds[.] PPC 168 Floating Multiply-Add Single A-form
111111 ///// 00010 01000. I .XXX fmr[.] P1 161 Floating Move Register X-form
111111 11110 00110/ I .XXX fmrgew v2.07 162 Floating Merge Even Word X-form
111111 11010 00110/ I .XXX fmrgow v2.07 162 Floating Merge Odd Word X-form
111111 11100. I .XXX fmsub[.] P1 168 Floating Multiply-Subtract A-form
111011 11100. I .XXX fmsubs[.] PPC 168 Floating Multiply-Subtract Single A-form
111111 ///// 11001. I .XXX fmul[.] P1 164 Floating Multiply A-form
111011 ///// 11001. I .XXX fmuls[.] PPC 164 Floating Multiply Single A-form
111111 ///// 00100 01000. I .XXX fnabs[.] P1 161 Floating Negative Absolute Value X-form
111111 ///// 00001 01000. I .XXX fneg[.] P1 161 Floating Negate X-form
111111 11111. I .XXX fnmadd[.] P1 169 Floating Negative Multiply-Add A-form
111011 11111. I .XXX fnmadds[.] PPC 169 Floating Negative Multiply-Add Single A-form
111111 11110. I .XXX fnmsub[.] P1 169 Floating Negative Multiply-Subtract A-form
111011 11110. I .XXX fnmsubs[.] PPC 169 Floating Negative Multiply-Subtract Single A-form
111111 ///// ///// 11000. I .XXX fre[.] v2.02 165 Floating Reciprocal Estimate A-form
111011 ///// ///// 11000. I .XXX fres[.] PPC 165 Floating Reciprocal Estimate Single A-form
111111 ///// 01111 01000. I .XXX frim[.] v2.02 178 Floating Round to Integer Minus X-form
111111 ///// 01100 01000. I .XXX frin[.] v2.02 178 Floating Round to Integer Nearest X-form
111111 ///// 01110 01000. I .XXX frip[.] v2.02 178 Floating Round to Integer Plus X-form
111111 ///// 01101 01000. I .XXX friz[.] v2.02 178 Floating Round to Integer Toward Zero X-form
111111 ///// 00000 01100. I .XXX frsp[.] P1 170 Floating Round to Single-Precision X-form
111111 ///// ///// 11010. I .XXX frsqrte[.] PPC 166 Floating Reciprocal Square Root Estimate A-form
111011 ///// ///// 11010. I .XXX frsqrtes[.] v2.02 166 Floating Reciprocal Square Root Estimate Single A-form
111111 10111. I .XXX fsel[.] PPC 180 Floating Select A-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 4 of 30)
Power ISA™ Appendices1452

Version 3.1
111111 ///// ///// 10110. I .XXX fsqrt[.] P2 165 Floating Square Root A-form
111011 ///// ///// 10110. I .XXX fsqrts[.] PPC 165 Floating Square Root Single A-form
111111 ///// 10100. I .XXX fsub[.] P1 163 Floating Subtract A-form
111011 ///// 10100. I .XXX fsubs[.] PPC 163 Floating Subtract Single A-form
111111 ...// 00100 00000/ I .XXX ftdiv v2.06 166 Floating Test for software Divide X-form
111111 ...// ///// 00101 00000/ I .XXX ftsqrt v2.06 167 Floating Test for software Square Root X-form
110010 I .XXX lfd P1 152 Load Floating-Point Double D-form
110011 I .XXX lfdu P1 152 Load Floating-Point Double with Update D-form
011111 10011 10111/ I .XXX lfdux P1 152 Load Floating-Point Double with Update Indexed X-form
011111 10010 10111/ I .XXX lfdx P1 152 Load Floating-Point Double Indexed X-form

011111 11010 10111/ I .XXX lfiwax v2.05 153 Load Floating-Point as Integer Word Algebraic Indexed
X-form

011111 11011 10111/ I .XXX lfiwzx v2.06 153 Load Floating-Point as Integer Word & Zero Indexed
X-form

110000 I .XXX lfs P1 150 Load Floating-Point Single D-form
110001 I .XXX lfsu P1 150 Load Floating-Point Single with Update D-form
011111 10001 10111/ I .XXX lfsux P1 151 Load Floating-Point Single with Update Indexed X-form
011111 10000 10111/ I .XXX lfsx P1 150 Load Floating-Point Single Indexed X-form
111111 ...// ...// ///// 00010 00000/ I .XXX mcrfs P1 184 Move to Condition Register from FPSCR X-form
111111 00000 ///// 10010 00111. I .XXX mffs[.] P1 182 Move From FPSCR X-form
111111 10100 10010 00111/ I .XXX mffscdrn v3.0B 182 Move From FPSCR Control & Set DRN X-form

111111 10101 //... 10010 00111/ I .XXX mffscdrni v3.0B 183 Move From FPSCR Control & Set DRN Immediate
X-form

111111 00001 ///// 10010 00111/ I .XXX mffsce v3.0B 182 Move From FPSCR & Clear Enables X-form
111111 10110 10010 00111/ I .XXX mffscrn v3.0B 183 Move From FPSCR Control & Set RN X-form
111111 10111 ///.. 10010 00111/ I .XXX mffscrni v3.0B 183 Move From FPSCR Control & Set RN Immediate X-form
111111 11000 ///// 10010 00111/ I .XXX mffsl v3.0B 183 Move From FPSCR Lightweight X-form
111111 ///// ///// 00010 00110. I .XXX mtfsb0[.] P1 185 Move To FPSCR Bit 0 X-form
111111 ///// ///// 00001 00110. I .XXX mtfsb1[.] P1 185 Move To FPSCR Bit 1 X-form
111111 10110 00111. I .XXX mtfsf[.] P1 184 Move To FPSCR Fields XFL-form
111111 ...// ////./ 00100 00110. I .XXX mtfsfi[.] P1 184 Move To FPSCR Field Immediate X-form
110110 I .XXX stfd P1 157 Store Floating-Point Double D-form
11110100 I .XXX stfdp v2.05 160 Store Floating-Point Double Pair DS-form
011111 11100 10111/ I .XXX stfdpx v2.05 160 Store Floating-Point Double Pair Indexed X-form
110111 I .XXX stfdu P1 157 Store Floating-Point Double with Update D-form
011111 10111 10111/ I .XXX stfdux P1 158 Store Floating-Point Double with Update Indexed X-form
011111 10110 10111/ I .XXX stfdx P1 157 Store Floating-Point Double Indexed X-form
011111 11110 10111/ I .XXX stfiwx PPC 158 Store Floating-Point as Integer Word Indexed X-form
110100 I .XXX stfs P1 155 Store Floating-Point Single D-form
110101 I .XXX stfsu P1 155 Store Floating-Point Single with Update D-form
011111 10101 10111/ I .XXX stfsux P1 156 Store Floating-Point Single with Update Indexed X-form
011111 10100 10111/ I .XXX stfsx P1 155 Store Floating-Point Single Indexed X-form
011111 10000 01010. I ..XX addco[.] P1 SR 78 Add Carrying & record OV XO-form
011111 10100 01010. I ..XX addeo[.] P1 SR 78 Add Extended & record OV XO-form
011111 ///// 10111 01010. I ..XX addmeo[.] P1 SR 79 Add to Minus One Extended & record OV XO-form
011111 11000 01010. I ..XX addo[.] P1 SR 77 Add & record OV XO-form
011111 ///// 10110 01010. I ..XX addzeo[.] P1 SR 79 Add to Zero Extended & record OV XO-form
000100 1.000 000001 I ..XX bcdadd. v2.07 478 Decimal Add Modulo VX-form
000100 00111 1.110 000001 I ..XX bcdcfn. v3.0 480 Decimal Convert From National VX-form
000100 00010 1.110 000001 I ..XX bcdcfsq. v3.0 485 Decimal Convert From Signed Quadword VX-form
000100 00110 1.110 000001 I ..XX bcdcfz. v3.0 481 Decimal Convert From Zoned VX-form
000100 01101 000001 I ..XX bcdcpsgn. v3.0 489 Decimal Copy Sign VX-form
000100 00101 1/110 000001 I ..XX bcdctn. v3.0 483 Decimal Convert To National VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 5 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1453

Version 3.1
000100 00000 1/110 000001 I ..XX bcdctsq. v3.0 486 Decimal Convert To Signed Quadword VX-form
000100 00100 1.110 000001 I ..XX bcdctz. v3.0 484 Decimal Convert To Zoned VX-form
000100 1.011 000001 I ..XX bcds. v3.0 491 Decimal Shift VX-form
000100 11111 1.110 000001 I ..XX bcdsetsgn. v3.0 490 Decimal Set Sign VX-form
000100 1.111 000001 I ..XX bcdsr. v3.0 493 Decimal Shift and Round VX-form
000100 1.001 000001 I ..XX bcdsub. v2.07 478 Decimal Subtract Modulo VX-form
000100 1.100 000001 I ..XX bcdtrunc. v3.0 494 Decimal Truncate VX-form
000100 1/010 000001 I ..XX bcdus. v3.0 492 Decimal Unsigned Shift VX-form
000100 1/101 000001 I ..XX bcdutrunc. v3.0 495 Decimal Unsigned Truncate VX-form
011111 00111 11100/ I ..XX bpermd v2.06 105 Bit Permute Doubleword X-form
011111 ///// 00101 11011/ I ..XX brd v3.1 119 Byte-Reverse Doubleword X-form
011111 00110 11100/ I ..XX cfuged v3.1 106 Centrifuge Doubleword X-form
011111 ///// 00001 11010. I ..XX cntlzd[.] PPC SR 104 Count Leading Zeros Doubleword X-form

011111 00001 11011/ I ..XX cntlzdm v3.1 105 Count Leading Zeros Doubleword under bit Mask
X-form

011111 ///// 10001 11010. I ..XX cnttzd[.] v3.0 104 Count Trailing Zeros Doubleword X-form
011111 10001 11011/ I ..XX cnttzdm v3.1 105 Count Trailing Zeros Doubleword under bit Mask X-form
011111 01111 01001. I ..XX divd[.] PPC SR 89 Divide Doubleword XO-form
011111 01101 01001. I ..XX divde[.] v2.06 SR 90 Divide Doubleword Extended XO-form
011111 11101 01001. I ..XX divdeo[.] v2.06 SR 90 Divide Doubleword Extended & record OV XO-form
011111 01100 01001. I ..XX divdeu[.] v2.06 SR 90 Divide Doubleword Extended Unsigned XO-form

011111 11100 01001. I ..XX divdeuo[.] v2.06 SR 90 Divide Doubleword Extended Unsigned & record OV
XO-form

011111 11111 01001. I ..XX divdo[.] PPC SR 89 Divide Doubleword & record OV XO-form
011111 01110 01001. I ..XX divdu[.] PPC SR 89 Divide Doubleword Unsigned XO-form
011111 11110 01001. I ..XX divduo[.] PPC SR 89 Divide Doubleword Unsigned & record OV XO-form
011111 11101 01011. I ..XX divweo[.] v2.06 SR 83 Divide Word Extended & record OV XO-form
011111 11100 01011. I ..XX divweuo[.] v2.06 SR 83 Divide Word Extended Unsigned & record OV XO-form
011111 11111 01011. I ..XX divwo[.] PPC SR 82 Divide Word & record OV XO-form
011111 11110 01011. I ..XX divwuo[.] PPC SR 82 Divide Word Unsigned & record OV XO-form
011111 ///// 11110 11010. I ..XX extsw[.] PPC SR 104 Extend Sign Word X-form
011111 11011 1101.. I ..XX extswsli[.] v3.0 116 Extend Sign Word and Shift Left Immediate XS-form
11101000 I ..XX ld PPC 57 Load Doubleword DS-form
011111 00010 10100/ II ..XX ldarx PPC 1082 Load Doubleword And Reserve Indexed X-form
011111 10000 10100/ I ..XX ldbrx v2.06 69 Load Doubleword Byte-Reverse Indexed X-form
11101001 I ..XX ldu PPC 57 Load Doubleword with Update DS-form
011111 00001 10101/ I ..XX ldux PPC 57 Load Doubleword with Update Indexed X-form
011111 00000 10101/ I ..XX ldx PPC 57 Load Doubleword Indexed X-form
111000 I ..XX lq v2.03 65 Load Quadword DQ-form
011111 01000 10100. I ..XX lqarx v2.07 Load Quadword And Reserve Indexed X-form
011111 ///// 11111 10111/ III ..XX lqm v3.1 ?? ?? Load Quadword Metadata
011111 00000 00111/ I ..XX lvebx v2.03 268 Load Vector Element Byte Indexed X-form
011111 00001 00111/ I ..XX lvehx v2.03 269 Load Vector Element Halfword Indexed X-form
011111 00010 00111/ I ..XX lvewx v2.03 270 Load Vector Element Word Indexed X-form
011111 00000 00110/ I ..XX lvsl v2.03 277 Load Vector for Shift Left Indexed X-form
011111 00001 00110/ I ..XX lvsr v2.03 277 Load Vector for Shift Right Indexed X-form
011111 00011 00111/ I ..XX lvx v2.03 271 Load Vector Indexed X-form
011111 01011 00111/ I ..XX lvxl v2.03 271 Load Vector Indexed Last X-form
11101010 I ..XX lwa PPC 56 Load Word Algebraic DS-form
011111 00000 10100/ II ..XX lwarx PPC 1078 Load Word & Reserve Indexed X-form
011111 01011 10101/ I ..XX lwaux PPC 56 Load Word Algebraic with Update Indexed X-form
011111 01010 10101/ I ..XX lwax PPC 56 Load Word Algebraic Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 6 of 30)
Power ISA™ Appendices1454

Version 3.1
11100110 I ..XX lxsd v3.0 610 Load VSX Scalar Doubleword DS-form
011111 10010 01100. I ..XX lxsdx v2.06 611 Load VSX Scalar Doubleword Indexed X-form
011111 11000 01101. I ..XX lxsibzx v3.0 612 Load VSX Scalar as Integer Byte & Zero Indexed X-form

011111 11001 01101. I ..XX lxsihzx v3.0 612 Load VSX Scalar as Integer Halfword & Zero Indexed
X-form

011111 00010 01100. I ..XX lxsiwax v2.07 613 Load VSX Scalar as Integer Word Algebraic Indexed
X-form

011111 00000 01100. I ..XX lxsiwzx v2.07 614 Load VSX Scalar as Integer Word & Zero Indexed
X-form

11100111 I ..XX lxssp v3.0 615 Load VSX Scalar Single-Precision DS-form
011111 10000 01100. I ..XX lxsspx v2.07 616 Load VSX Scalar Single-Precision Indexed X-form
111101001 I ..XX lxv v3.0 617 Load VSX Vector DQ-form
011111 11011 01100. I ..XX lxvb16x v3.0 618 Load VSX Vector Byte*16 Indexed X-form
011111 11010 01100. I ..XX lxvd2x v2.06 619 Load VSX Vector Doubleword*2 Indexed X-form
011111 01010 01100. I ..XX lxvdsx v2.06 633 Load VSX Vector Doubleword & Splat Indexed X-form
011111 11001 01100. I ..XX lxvh8x v3.0 634 Load VSX Vector Halfword*8 Indexed X-form
111100 11111 01011 01000. I ..XX lxvkq v3.1 620 Load VSX Vector Special Value Quadword X-form
011111 01000 01101. I ..XX lxvl v3.0 621 Load VSX Vector with Length X-form
011111 01001 01101. I ..XX lxvll v3.0 623 Load VSX Vector with Length Left-justified X-form
0001100000 I ..XX lxvp v3.1 625 Load VSX Vector Paired DQ-form
011111 01010 01101/ I ..XX lxvpx v3.1 626 Load VSX Vector Paired Indexed X-form
011111 00000 01101. I ..XX lxvrbx v3.1 627 Load VSX Vector Rightmost Byte Indexed X-form

011111 00011 01101. I ..XX lxvrdx v3.1 628 Load VSX Vector Rightmost Doubleword Indexed
X-form

011111 00001 01101. I ..XX lxvrhx v3.1 629 Load VSX Vector Rightmost Halfword Indexed X-form
011111 00010 01101. I ..XX lxvrwx v3.1 630 Load VSX Vector Rightmost Word Indexed X-form
011111 11000 01100. I ..XX lxvw4x v2.06 635 Load VSX Vector Word*4 Indexed X-form
011111 01011 01100. I ..XX lxvwsx v3.0 636 Load VSX Vector Word & Splat Indexed X-form
011111 0100/ 01100. I ..XX lxvx v3.0 631 Load VSX Vector Indexed X-form
000100 110000 I ..XX maddhd v3.0 88 Multiply-Add High Doubleword VA-form
000100 110001 I ..XX maddhdu v3.0 88 Multiply-Add High Doubleword Unsigned VA-form
000100 110011 I ..XX maddld v3.0 88 Multiply-Add Low Doubleword VA-form
000100 ///// ///// 11000 000100 I ..XX mfvscr v2.03 496 Move From Vector Status and Control Register VX-form
011111 ///// 00001 10011. I ..XX mfvsrd v2.07 120 Move From VSR Doubleword X-form
011111 ///// 01001 10011. I ..XX mfvsrld v3.0 120 Move From VSR Lower Doubleword X-form
011111 ///// 00011 10011. I ..XX mfvsrwz v2.07 121 Move From VSR Word and Zero X-form
011111 11000 01001/ I ..XX modsd v3.0 91 Modulo Signed Doubleword X-form
011111 01000 01001/ I ..XX modud v3.0 91 Modulo Unsigned Doubleword X-form
000100 ///// ///// 11001 000100 I ..XX mtvscr v2.03 496 Move To Vector Status and Control Register VX-form
000100 10000 11001 000010 I ..XX mtvsrbm v3.1 463 Move to VSR Byte Mask VX-form
000100 01010. I ..XX mtvsrbmi v3.1 465 Move To VSR Byte Mask Immediate DX-form
011111 ///// 00101 10011. I ..XX mtvsrd v2.07 121 Move To VSR Doubleword X-form
011111 01101 10011. I ..XX mtvsrdd v3.0 123 Move To VSR Double Doubleword X-form
000100 10011 11001 000010 I ..XX mtvsrdm v3.1 464 Move to VSR Doubleword Mask VX-form
000100 10001 11001 000010 I ..XX mtvsrhm v3.1 463 Move to VSR Halfword Mask VX-form
000100 10100 11001 000010 I ..XX mtvsrqm v3.1 465 Move to VSR Quadword Mask VX-form
011111 ///// 00110 10011. I ..XX mtvsrwa v2.07 122 Move To VSR Word Algebraic X-form
000100 10010 11001 000010 I ..XX mtvsrwm v3.1 464 Move to VSR Word Mask VX-form
011111 ///// 01100 10011. I ..XX mtvsrws v3.0 123 Move To VSR Word & Splat X-form
011111 ///// 00111 10011. I ..XX mtvsrwz v2.07 122 Move To VSR Word and Zero X-form
011111 /0010 01001. I ..XX mulhd[.] PPC SR 87 Multiply High Doubleword XO-form
011111 /0000 01001. I ..XX mulhdu[.] PPC SR 87 Multiply High Doubleword Unsigned XO-form
011111 00111 01001. I ..XX mulld[.] PPC SR 87 Multiply Low Doubleword XO-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 7 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1455

Version 3.1
011111 10111 01001. I ..XX mulldo[.] PPC SR 87 Multiply Low Doubleword & record OV XO-form
011111 10111 01011. I ..XX mullwo[.] P1 SR 81 Multiply Low Word & record OV XO-form
011111 ///// 10011 01000. I ..XX nego[.] P1 SR 80 Negate & record OV XO-form
000001 100// .//..
001110

I ..XX paddi v3.1 76 Prefixed Add Immediate MLS:D-form

011111 ////. 11100 00110. II ..XX paste[.] v3.0 1068 Paste X-form
011111 00100 11100/ I ..XX pdepd v3.1 106 Parallel Bits Deposit Doubleword X-form
011111 00101 11100/ I ..XX pextd v3.1 106 Parallel Bits Extract Doubleword X-form
000001 100// .//..
100010

I ..XX plbz v3.1 52 Prefixed Load Byte and Zero MLS:D-form

000001 000// .//..
111001

I ..XX pld v3.1 57 Prefixed Load Doubleword 8LS:D-form

000001 100// .//..
110010

I ..XX plfd v3.1 152 Prefixed Load Floating-Point Double MLS:D-form

000001 100// .//..
110000

I ..XX plfs v3.1 150 Prefixed Load Floating-Point Single MLS:D-form

000001 100// .//..
101010

I ..XX plha v3.1 54 Prefixed Load Halfword Algebraic MLS:D-form

000001 100// .//..
101000

I ..XX plhz v3.1 53 Prefixed Load Halfword and Zero MLS:D-form

000001 000// .//..
111000

I ..XX plq v3.1 65 Prefixed Load Quadword 8LS:D-form

000001 000// .//..
101001

I ..XX plwa v3.1 56 Prefixed Load Word Algebraic 8LS:D-form

000001 100// .//..
100000

I ..XX plwz v3.1 55 Prefixed Load Word and Zero MLS:D-form

000001 000// .//..
101010

I ..XX plxsd v3.1 610 Prefixed Load VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101011

I ..XX plxssp v3.1 615 Prefixed Load VSX Scalar Single-Precision 8LS:D-form

000001 000// .//..
11001.

I ..XX plxv v3.1 617 Prefixed Load VSX Vector 8LS:D-form

000001 000// .//..
111010

I ..XX plxvp v3.1 625 Prefixed Load VSX Vector Paired 8LS:D-form

000001 11000 000// ///// ///// //////
?????? ????? ????? ????? ????? ??????

I ..XX pnop v3.1 130 Prefixed Nop MRR:*-form

011111 ///// 01111 11010/ I ..XX popcntd v2.06 104 Population Count Doubleword X-form
011111 ///// 00101 11010/ I ..XX prtyd v2.05 104 Parity Doubleword X-form
000001 100// .//..
100110

I ..XX pstb v3.1 59 Prefixed Store Byte MLS:D-form

000001 000// .//..
111101

I ..XX pstd v3.1 62 Prefixed Store Doubleword 8LS:D-form

000001 100// .//..
110110

I ..XX pstfd v3.1 157 Prefixed Store Floating-Point Double MLS:D-form

000001 100// .//..
110100

I ..XX pstfs v3.1 155 Prefixed Store Floating-Point Single MLS:D-form

000001 100// .//..
101100

I ..XX psth v3.1 60 Prefixed Store Halfword MLS:D-form

000001 000// .//..
111100

I ..XX pstq v3.1 66 Prefixed Store Quadword 8LS:D-form

000001 100// .//..
100100

I ..XX pstw v3.1 61 Prefixed Store Word MLS:D-form

000001 000// .//..
101110

I ..XX pstxsd v3.1 638 Prefixed Store VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101111

I ..XX pstxssp v3.1 642 Prefixed Store VSX Scalar Single-Precision 8LS:D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 8 of 30)
Power ISA™ Appendices1456

Version 3.1
000001 000// .//..
11011.

I ..XX pstxv v3.1 644 Prefixed Store VSX Vector 8LS:D-form

000001 000// .//..
111110

I ..XX pstxvp v3.1 654 Prefixed Store VSX Vector Paired 8LS:D-form

010011 ///// ///// ///// 00000 10010/ III ..XX rfid PPC P 1152 Return from Interrupt Doubleword XL-form
010011 ///// ///// ///// 00010 10010/ III ..XX rfscv v3.0 P 1151 Return From System Call Vectored XL-form
0111101000. I ..XX rldcl[.] PPC SR 111 Rotate Left Doubleword then Clear Left MDS-form
0111101001. I ..XX rldcr[.] PPC SR 112 Rotate Left Doubleword then Clear Right MDS-form
011110010.. I ..XX rldic[.] PPC SR 111 Rotate Left Doubleword Immediate then Clear MD-form

011110000.. I ..XX rldicl[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Left
MD-form

011110001.. I ..XX rldicr[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Right
MD-form

011110011.. I ..XX rldimi[.] PPC SR 112 Rotate Left Doubleword Immediate then Mask Insert
MD-form

011111 00000 11011. I ..XX sld[.] PPC SR 115 Shift Left Doubleword X-form
011111 ///.. 01111 10111/ III ..XX spom v3.1 ?? ?? Splat Octword Metadata
011111 11000 11010. I ..XX srad[.] PPC SR 115 Shift Right Algebraic Doubleword X-form
011111 11001 1101.. I ..XX sradi[.] PPC SR 115 Shift Right Algebraic Doubleword Immediate XS-form
011111 10000 11011. I ..XX srd[.] PPC SR 115 Shift Right Doubleword X-form
11111000 I ..XX std PPC 62 Store Doubleword DS-form
011111 10100 10100/ I ..XX stdbrx v2.06 69 Store Doubleword Byte-Reverse Indexed X-form
011111 00110 101101 II ..XX stdcx. PPC 1082 Store Doubleword Conditional Indexed X-form
11111001 I ..XX stdu PPC 62 Store Doubleword with Update DS-form
011111 00101 10101/ I ..XX stdux PPC 63 Store Doubleword with Update Indexed X-form
011111 00100 10101/ I ..XX stdx PPC 62 Store Doubleword Indexed X-form
011111 00100 00111/ I ..XX stvebx v2.03 272 Store Vector Element Byte Indexed X-form
011111 00101 00111/ I ..XX stvehx v2.03 273 Store Vector Element Halfword Indexed X-form
011111 00110 00111/ I ..XX stvewx v2.03 274 Store Vector Element Word Indexed X-form
011111 00111 00111/ I ..XX stvx v2.03 275 Store Vector Indexed X-form
011111 01111 00111/ I ..XX stvxl v2.03 275 Store Vector Indexed Last X-form
011111 00100 101101 II ..XX stwcx. PPC 1081 Store Word Conditional Indexed X-form
11110110 I ..XX stxsd v3.0 638 Store VSX Scalar Doubleword DS-form
011111 10110 01100. I ..XX stxsdx v2.06 639 Store VSX Scalar Doubleword Indexed X-form
011111 11100 01101. I ..XX stxsibx v3.0 640 Store VSX Scalar as Integer Byte Indexed X-form
011111 11101 01101. I ..XX stxsihx v3.0 640 Store VSX Scalar as Integer Halfword Indexed X-form
011111 00100 01100. I ..XX stxsiwx v2.07 641 Store VSX Scalar as Integer Word Indexed X-form
11110111 I ..XX stxssp v3.0 642 Store VSX Scalar Single DS-form
011111 10100 01100. I ..XX stxsspx v2.07 643 Store VSX Scalar Single-Precision Indexed X-form
111101101 I ..XX stxv v3.0 644 Store VSX Vector DQ-form
011111 11111 01100. I ..XX stxvb16x v3.0 645 Store VSX Vector Byte*16 Indexed X-form
011111 11110 01100. I ..XX stxvd2x v2.06 646 Store VSX Vector Doubleword*2 Indexed X-form
011111 11101 01100. I ..XX stxvh8x v3.0 647 Store VSX Vector Halfword*8 Indexed X-form
011111 01100 01101. I ..XX stxvl v3.0 648 Store VSX Vector with Length X-form
011111 01101 01101. I ..XX stxvll v3.0 650 Store VSX Vector with Length Left-justified X-form
0001100001 I ..XX stxvp v3.1 654 Store VSX Vector Paired DQ-form
011111 01110 01101/ I ..XX stxvpx v3.1 655 Store VSX Vector Paired Indexed X-form
011111 00100 01101. I ..XX stxvrbx v3.1 651 Store VSX Vector Rightmost Byte Indexed X-form

011111 00111 01101. I ..XX stxvrdx v3.1 651 Store VSX Vector Rightmost Doubleword Indexed
X-form

011111 00101 01101. I ..XX stxvrhx v3.1 652 Store VSX Vector Rightmost Halfword Indexed X-form
011111 00110 01101. I ..XX stxvrwx v3.1 652 Store VSX Vector Rightmost Word Indexed X-form
011111 11100 01100. I ..XX stxvw4x v2.06 653 Store VSX Vector Word*4 Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 9 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1457

Version 3.1
011111 01100 01100. I ..XX stxvx v3.0 656 Store VSX Vector Indexed X-form
011111 10000 01000. I ..XX subfco[.] P1 SR 78 Subtract From Carrying & record OV XO-form
011111 10100 01000. I ..XX subfeo[.] P1 SR 78 Subtract From Extended & record OV XO-form

011111 ///// 10111 01000. I ..XX subfmeo[.] P1 SR 79 Subtract From Minus One Extended & record OV
XO-form

011111 10001 01000. I ..XX subfo[.] PPC SR 77 Subtract From & record OV XO-form
011111 ///// 10110 01000. I ..XX subfzeo[.] P1 SR 78 Subtract From Zero Extended & record OV XO-form
011111 ///.. ///// ///// 10010 10110/ II ..XX sync P1 1086 Synchronize X-form
011111 00010 00100/ I ..XX td PPC 98 Trap Doubleword X-form
000010 I ..XX tdi PPC 98 Trap Doubleword Immediate D-form
000100 10000 000011 I ..XX vabsdub v3.0 378 Vector Absolute Difference Unsigned Byte VX-form
000100 10001 000011 I ..XX vabsduh v3.0 378 Vector Absolute Difference Unsigned Halfword VX-form
000100 10010 000011 I ..XX vabsduw v3.0 379 Vector Absolute Difference Unsigned Word VX-form
000100 00101 000000 I ..XX vaddcuq v2.07 330 Vector Add & write Carry Unsigned Quadword VX-form
000100 00110 000000 I ..XX vaddcuw v2.03 323 Vector Add & write Carry Unsigned Word VX-form

000100 111101 I ..XX vaddecuq v2.07 330 Vector Add Extended & write Carry Unsigned Quadword
VA-form

000100 111100 I ..XX vaddeuqm v2.07 329 Vector Add Extended Unsigned Quadword Modulo
VA-form

000100 00000 001010 I ..XX vaddfp v2.03 422 Vector Add Floating-Point VX-form
000100 01100 000000 I ..XX vaddsbs v2.03 323 Vector Add Signed Byte Saturate VX-form
000100 01101 000000 I ..XX vaddshs v2.03 324 Vector Add Signed Halfword Saturate VX-form
000100 01110 000000 I ..XX vaddsws v2.03 324 Vector Add Signed Word Saturate VX-form
000100 00000 000000 I ..XX vaddubm v2.03 325 Vector Add Unsigned Byte Modulo VX-form
000100 01000 000000 I ..XX vaddubs v2.03 327 Vector Add Unsigned Byte Saturate VX-form
000100 00011 000000 I ..XX vaddudm v2.07 326 Vector Add Unsigned Doubleword Modulo VX-form
000100 00001 000000 I ..XX vadduhm v2.03 325 Vector Add Unsigned Halfword Modulo VX-form
000100 01001 000000 I ..XX vadduhs v2.03 327 Vector Add Unsigned Halfword Saturate VX-form
000100 00100 000000 I ..XX vadduqm v2.07 329 Vector Add Unsigned Quadword Modulo VX-form
000100 00010 000000 I ..XX vadduwm v2.03 326 Vector Add Unsigned Word Modulo VX-form
000100 01010 000000 I ..XX vadduws v2.03 328 Vector Add Unsigned Word Saturate VX-form
000100 10000 000100 I ..XX vand v2.03 402 Vector Logical AND VX-form
000100 10001 000100 I ..XX vandc v2.03 402 Vector Logical AND with Complement VX-form
000100 10100 000010 I ..XX vavgsb v2.03 375 Vector Average Signed Byte VX-form
000100 10101 000010 I ..XX vavgsh v2.03 376 Vector Average Signed Halfword VX-form
000100 10110 000010 I ..XX vavgsw v2.03 377 Vector Average Signed Word VX-form
000100 10000 000010 I ..XX vavgub v2.03 375 Vector Average Unsigned Byte VX-form
000100 10001 000010 I ..XX vavguh v2.03 376 Vector Average Unsigned Halfword VX-form
000100 10010 000010 I ..XX vavguw v2.03 377 Vector Average Unsigned Word VX-form
000100 10111 001100 I ..XX vbpermd v3.0 461 Vector Bit Permute Doubleword VX-form
000100 10101 001100 I ..XX vbpermq v2.07 462 Vector Bit Permute Quadword VX-form

000100 01101 001010 I ..XX vcfsx v2.03 425 Vector Convert with round to nearest From Signed Word
to floating-point format VX-form

000100 10101 001101 I ..XX vcfuged v3.1 456 Vector Centrifuge Doubleword VX-form

000100 01100 001010 I ..XX vcfux v2.03 425 Vector Convert with round to nearest From Unsigned
Word to floating-point format VX-form

000100 10100 001000 I ..XX vcipher v2.07 435 Vector AES Cipher VX-form
000100 10100 001001 I ..XX vcipherlast v2.07 435 Vector AES Cipher Last VX-form
000100 00110 001101 I ..XX vclrlb v3.1 476 Vector Clear Leftmost Bytes VX-form
000100 00111 001101 I ..XX vclrrb v3.1 476 Vector Clear Rightmost Bytes VX-form
000100 ///// 11100 000010 I ..XX vclzb v2.07 447 Vector Count Leading Zeros Byte VX-form
000100 ///// 11111 000010 I ..XX vclzd v2.07 449 Vector Count Leading Zeros Doubleword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 10 of 30)
Power ISA™ Appendices1458

Version 3.1
000100 11110 000100 I ..XX vclzdm v3.1 449 Vector Count Leading Zeros Doubleword under bit Mask
VX-form

000100 ///// 11101 000010 I ..XX vclzh v2.07 447 Vector Count Leading Zeros Halfword VX-form

000100 00000 11000 000010 I ..XX vclzlsbb v3.0 453 Vector Count Leading Zero Least-Significant Bits Byte
VX-form

000100 ///// 11110 000010 I ..XX vclzw v2.07 448 Vector Count Leading Zeros Word VX-form
0001001111 000110 I ..XX vcmpbfp[.] v2.03 429 Vector Compare Bounds Floating-Point VC-form
0001000011 000110 I ..XX vcmpeqfp[.] v2.03 430 Vector Compare Equal Floating-Point VC-form
0001000000 000110 I ..XX vcmpequb[.] v2.03 388 Vector Compare Equal Unsigned Byte VC-form
0001000011 000111 I ..XX vcmpequd[.] v2.07 391 Vector Compare Equal Unsigned Doubleword VC-form
0001000001 000110 I ..XX vcmpequh[.] v2.03 389 Vector Compare Equal Unsigned Halfword VC-form
0001000111 000111 I ..XX vcmpequq[.] v3.1 392 Vector Compare Equal Quadword VC-form
0001000010 000110 I ..XX vcmpequw[.] v2.03 388 Vector Compare Equal Unsigned Word VC-form

0001000111 000110 I ..XX vcmpgefp[.] v2.03 430 Vector Compare Greater Than or Equal Floating-Point
VC-form

0001001011 000110 I ..XX vcmpgtfp[.] v2.03 431 Vector Compare Greater Than Floating-Point VC-form
0001001100 000110 I ..XX vcmpgtsb[.] v2.03 393 Vector Compare Greater Than Signed Byte VC-form

0001001111 000111 I ..XX vcmpgtsd[.] v2.07 396 Vector Compare Greater Than Signed Doubleword
VC-form

0001001101 000110 I ..XX vcmpgtsh[.] v2.03 394 Vector Compare Greater Than Signed Halfword
VC-form

0001001110 000111 I ..XX vcmpgtsq[.] v3.1 397 Vector Compare Greater Than Signed Quadword
VC-form

0001001110 000110 I ..XX vcmpgtsw[.] v2.03 395 Vector Compare Greater Than Signed Word VC-form
0001001000 000110 I ..XX vcmpgtub[.] v2.03 393 Vector Compare Greater Than Unsigned Byte VC-form

0001001011 000111 I ..XX vcmpgtud[.] v2.07 396 Vector Compare Greater Than Unsigned Doubleword
VC-form

0001001001 000110 I ..XX vcmpgtuh[.] v2.03 394 Vector Compare Greater Than Unsigned Halfword
VC-form

0001001010 000111 I ..XX vcmpgtuq[.] v3.1 397 Vector Compare Greater Than Unsigned Quadword
VC-form

0001001010 000110 I ..XX vcmpgtuw[.] v2.03 395 Vector Compare Greater Than Unsigned Word VC-form
0001000000 000111 I ..XX vcmpneb[.] v3.0 398 Vector Compare Not Equal Byte VC-form
0001000001 000111 I ..XX vcmpneh[.] v3.0 399 Vector Compare Not Equal Halfword VC-form
0001000010 000111 I ..XX vcmpnew[.] v3.0 400 Vector Compare Not Equal Word VC-form
0001000100 000111 I ..XX vcmpnezb[.] v3.0 398 Vector Compare Not Equal or Zero Byte VC-form
0001000101 000111 I ..XX vcmpnezh[.] v3.0 399 Vector Compare Not Equal or Zero Halfword VC-form
0001000110 000111 I ..XX vcmpnezw[.] v3.0 400 Vector Compare Not Equal or Zero Word VC-form
000100 ...// 00101 000001 I ..XX vcmpsq v3.1 401 Vector Compare Signed Quadword VX-form
000100 ...// 00100 000001 I ..XX vcmpuq v3.1 401 Vector Compare Unsigned Quadword VX-form
000100 1100. 11001 000010 I ..XX vcntmbb v3.1 469 Vector Count Mask Bits Byte VX-form
000100 1101. 11001 000010 I ..XX vcntmbd v3.1 470 Vector Count Mask Bits Doubleword VX-form
000100 1110. 11001 000010 I ..XX vcntmbh v3.1 469 Vector Count Mask Bits Halfword VX-form
000100 1111. 11001 000010 I ..XX vcntmbw v3.1 470 Vector Count Mask Bits Word VX-form

000100 01111 001010 I ..XX vctsxs v2.03 426 Vector Convert with round to zero from floating-point To
Signed Word format Saturate VX-form

000100 01110 001010 I ..XX vctuxs v2.03 426 Vector Convert with round to zero from floating-point To
Unsigned Word format Saturate VX-form

000100 11100 11000 000010 I ..XX vctzb v3.0 450 Vector Count Trailing Zeros Byte VX-form
000100 11111 11000 000010 I ..XX vctzd v3.0 452 Vector Count Trailing Zeros Doubleword VX-form

000100 11111 000100 I ..XX vctzdm v3.1 452 Vector Count Trailing Zeros Doubleword under bit Mask
VX-form

000100 11101 11000 000010 I ..XX vctzh v3.0 450 Vector Count Trailing Zeros Halfword VX-form

000100 00001 11000 000010 I ..XX vctzlsbb v3.0 453 Vector Count Trailing Zero Least-Significant Bits Byte
VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 11 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1459

Version 3.1
000100 11110 11000 000010 I ..XX vctzw v3.0 451 Vector Count Trailing Zeros Word VX-form
000100 01111 001011 I ..XX vdivesd v3.1 361 Vector Divide Extended Signed Doubleword VX-form
000100 01100 001011 I ..XX vdivesq v3.1 363 Vector Divide Extended Signed Quadword VX-form
000100 01110 001011 I ..XX vdivesw v3.1 359 Vector Divide Extended Signed Word VX-form
000100 01011 001011 I ..XX vdiveud v3.1 361 Vector Divide Extended Unsigned Doubleword VX-form
000100 01000 001011 I ..XX vdiveuq v3.1 363 Vector Divide Extended Unsigned Quadword VX-form
000100 01010 001011 I ..XX vdiveuw v3.1 359 Vector Divide Extended Unsigned Word VX-form
000100 00111 001011 I ..XX vdivsd v3.1 360 Vector Divide Signed Doubleword VX-form
000100 00100 001011 I ..XX vdivsq v3.1 362 Vector Divide Signed Quadword VX-form
000100 00110 001011 I ..XX vdivsw v3.1 358 Vector Divide Signed Word VX-form
000100 00011 001011 I ..XX vdivud v3.1 360 Vector Divide Unsigned Doubleword VX-form
000100 00000 001011 I ..XX vdivuq v3.1 362 Vector Divide Unsigned Quadword VX-form
000100 00010 001011 I ..XX vdivuw v3.1 358 Vector Divide Unsigned Word VX-form
000100 11010 000100 I ..XX veqv v2.07 403 Vector Logical Equivalence VX-form
000100 00000 11001 000010 I ..XX vexpandbm v3.1 466 Vector Expand Byte Mask VX-form
000100 00011 11001 000010 I ..XX vexpanddm v3.1 467 Vector Expand Doubleword Mask VX-form
000100 00001 11001 000010 I ..XX vexpandhm v3.1 466 Vector Expand Halfword Mask VX-form
000100 00100 11001 000010 I ..XX vexpandqm v3.1 468 Vector Expand Quadword Mask VX-form
000100 00010 11001 000010 I ..XX vexpandwm v3.1 467 Vector Expand Word Mask VX-form

000100 ///// 00110 001010 I ..XX vexptefp v2.03 432 Vector 2 Raised to the Exponent Estimate Floating-Point
VX-form

000100 011110 I ..XX vextddvlx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Left-Index VA-form

000100 011111 I ..XX vextddvrx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Right-Index VA-form

000100 011000 I ..XX vextdubvlx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Left-Index VA-form

000100 011001 I ..XX vextdubvrx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Right-Index VA-form

000100 011010 I ..XX vextduhvlx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Left-Index VA-form

000100 011011 I ..XX vextduhvrx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Right-Index VA-form

000100 011100 I ..XX vextduwvlx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Left-Index VA-form

000100 011101 I ..XX vextduwvrx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Right-Index VA-form

000100 01000 11001 000010 I ..XX vextractbm v3.1 471 Vector Extract Byte Mask VX-form

000100 /.... 01011 001101 I ..XX vextractd v3.0 305 Vector Extract Doubleword to VSR using
immediate-specified index VX-form

000100 01011 11001 000010 I ..XX vextractdm v3.1 472 Vector Extract Doubleword Mask VX-form
000100 01001 11001 000010 I ..XX vextracthm v3.1 471 Vector Extract Halfword Mask VX-form
000100 01100 11001 000010 I ..XX vextractqm v3.1 473 Vector Extract Quadword Mask VX-form

000100 /.... 01000 001101 I ..XX vextractub v3.0 304 Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

000100 /.... 01001 001101 I ..XX vextractuh v3.0 304 Vector Extract Unsigned Halfword to VSR using
immediate-specified index VX-form

000100 /.... 01010 001101 I ..XX vextractuw v3.0 305 Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

000100 01010 11001 000010 I ..XX vextractwm v3.1 472 Vector Extract Word Mask VX-form
000100 11000 11000 000010 I ..XX vextsb2d v3.0 373 Vector Extend Sign Byte To Doubleword VX-form
000100 10000 11000 000010 I ..XX vextsb2w v3.0 372 Vector Extend Sign Byte To Word VX-form
000100 11011 11000 000010 I ..XX vextsd2q v3.1 374 Vector Extend Sign Doubleword to Quadword VX-form
000100 11001 11000 000010 I ..XX vextsh2d v3.0 373 Vector Extend Sign Halfword To Doubleword VX-form
000100 10001 11000 000010 I ..XX vextsh2w v3.0 372 Vector Extend Sign Halfword To Word VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 12 of 30)
Power ISA™ Appendices1460

Version 3.1
000100 11010 11000 000010 I ..XX vextsw2d v3.0 372 Vector Extend Sign Word To Doubleword VX-form

000100 11000 001101 I ..XX vextublx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

000100 11100 001101 I ..XX vextubrx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

000100 11001 001101 I ..XX vextuhlx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Left-Index VX-form

000100 11101 001101 I ..XX vextuhrx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Right-Index VX-form

000100 11010 001101 I ..XX vextuwlx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

000100 11110 001101 I ..XX vextuwrx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

000100 ///// 10100 001100 I ..XX vgbbd v2.07 445 Vector Gather Bits by Bytes by Doubleword VX-form
000100 //... 10011 001100 I ..XX vgnb v3.1 446 Vector Gather every Nth Bit VX-form

000100 01000 001111 I ..XX vinsblx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Left-Index VX-form

000100 01100 001111 I ..XX vinsbrx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Right-Index VX-form

000100 00000 001111 I ..XX vinsbvlx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Left-Index VX-form

000100 00100 001111 I ..XX vinsbvrx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Right-Index VX-form

000100 /.... 00111 001111 I ..XX vinsd v3.1 319 Vector Insert Doubleword from GPR using
immediate-specified index VX-form

000100 01011 001111 I ..XX vinsdlx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

000100 01111 001111 I ..XX vinsdrx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

000100 /.... 01100 001101 I ..XX vinsertb v3.0 313 Vector Insert Byte from VSR using immediate-specified
index VX-form

000100 /.... 01111 001101 I ..XX vinsertd v3.0 314 Vector Insert Doubleword from VSR using
immediate-specified index VX-form

000100 /.... 01101 001101 I ..XX vinserth v3.0 313 Vector Insert Halfword from VSR using
immediate-specified index VX-form

000100 /.... 01110 001101 I ..XX vinsertw v3.0 314 Vector Insert Word from VSR using immediate-specified
index VX-form

000100 01001 001111 I ..XX vinshlx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Left-Index VX-form

000100 01101 001111 I ..XX vinshrx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Right-Index VX-form

000100 00001 001111 I ..XX vinshvlx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Left-Index VX-form

000100 00101 001111 I ..XX vinshvrx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Right-Index VX-form

000100 /.... 00011 001111 I ..XX vinsw v3.1 319 Vector Insert Word from GPR using immediate-specified
index VX-form

000100 01010 001111 I ..XX vinswlx v3.1 317 Vector Insert Word from GPR using GPR-specified
Left-Index VX-form

000100 01110 001111 I ..XX vinswrx v3.1 317 Vector Insert Word from GPR using GPR-specified
Right-Index VX-form

000100 00010 001111 I ..XX vinswvlx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 00110 001111 I ..XX vinswvrx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 ///// 00111 001010 I ..XX vlogefp v2.03 433 Vector Log Base 2 Estimate Floating-Point VX-form
000100 101110 I ..XX vmaddfp v2.03 423 Vector Multiply-Add Floating-Point VA-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 13 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1461

Version 3.1
000100 10000 001010 I ..XX vmaxfp v2.03 424 Vector Maximum Floating-Point VX-form
000100 00100 000010 I ..XX vmaxsb v2.03 380 Vector Maximum Signed Byte VX-form
000100 00111 000010 I ..XX vmaxsd v2.07 383 Vector Maximum Signed Doubleword VX-form
000100 00101 000010 I ..XX vmaxsh v2.03 381 Vector Maximum Signed Halfword VX-form
000100 00110 000010 I ..XX vmaxsw v2.03 382 Vector Maximum Signed Word VX-form
000100 00000 000010 I ..XX vmaxub v2.03 380 Vector Maximum Unsigned Byte VX-form
000100 00011 000010 I ..XX vmaxud v2.07 383 Vector Maximum Unsigned Doubleword VX-form
000100 00001 000010 I ..XX vmaxuh v2.03 381 Vector Maximum Unsigned Halfword VX-form
000100 00010 000010 I ..XX vmaxuw v2.03 382 Vector Maximum Unsigned Word VX-form

000100 100000 I ..XX vmhaddshs v2.03 351 Vector Multiply-High-Add Signed Halfword Saturate
VA-form

000100 100001 I ..XX vmhraddshs v2.03 351 Vector Multiply-High-Round-Add Signed Halfword
Saturate VA-form

000100 10001 001010 I ..XX vminfp v2.03 424 Vector Minimum Floating-Point VX-form
000100 01100 000010 I ..XX vminsb v2.03 384 Vector Minimum Signed Byte VX-form
000100 01111 000010 I ..XX vminsd v2.07 387 Vector Minimum Signed Doubleword VX-form
000100 01101 000010 I ..XX vminsh v2.03 385 Vector Minimum Signed Halfword VX-form
000100 01110 000010 I ..XX vminsw v2.03 386 Vector Minimum Signed Word VX-form
000100 01000 000010 I ..XX vminub v2.03 384 Vector Minimum Unsigned Byte VX-form
000100 01011 000010 I ..XX vminud v2.07 387 Vector Minimum Unsigned Doubleword VX-form
000100 01001 000010 I ..XX vminuh v2.03 385 Vector Minimum Unsigned Halfword VX-form
000100 01010 000010 I ..XX vminuw v2.03 386 Vector Minimum Unsigned Word VX-form

000100 100010 I ..XX vmladduhm v2.03 352 Vector Multiply-Low-Add Unsigned Halfword Modulo
VA-form

000100 11111 001011 I ..XX vmodsd v3.1 365 Vector Modulo Signed Doubleword VX-form
000100 11100 001011 I ..XX vmodsq v3.1 366 Vector Modulo Signed Quadword VX-form
000100 11110 001011 I ..XX vmodsw v3.1 364 Vector Modulo Signed Word VX-form
000100 11011 001011 I ..XX vmodud v3.1 365 Vector Modulo Unsigned Doubleword VX-form
000100 11000 001011 I ..XX vmoduq v3.1 366 Vector Modulo Unsigned Quadword VX-form
000100 11010 001011 I ..XX vmoduw v3.1 364 Vector Modulo Unsigned Word VX-form
000100 11110 001100 I ..XX vmrgew v2.07 292 Vector Merge Even Word VX-form
000100 00000 001100 I ..XX vmrghb v2.03 289 Vector Merge High Byte VX-form
000100 00001 001100 I ..XX vmrghh v2.03 290 Vector Merge High Halfword VX-form
000100 00010 001100 I ..XX vmrghw v2.03 291 Vector Merge High Word VX-form
000100 00100 001100 I ..XX vmrglb v2.03 289 Vector Merge Low Byte VX-form
000100 00101 001100 I ..XX vmrglh v2.03 290 Vector Merge Low Halfword VX-form
000100 00110 001100 I ..XX vmrglw v2.03 291 Vector Merge Low Word VX-form
000100 11010 001100 I ..XX vmrgow v2.07 292 Vector Merge Odd Word VX-form

000100 010111 I ..XX vmsumcud v3.1 357 Vector Multiply-Sum & write Carry-out Unsigned
Doubleword VA-form

000100 100101 I ..XX vmsummbm v2.03 353 Vector Multiply-Sum Mixed Byte Modulo VA-form
000100 101000 I ..XX vmsumshm v2.03 353 Vector Multiply-Sum Signed Halfword Modulo VA-form
000100 101001 I ..XX vmsumshs v2.03 354 Vector Multiply-Sum Signed Halfword Saturate VA-form
000100 100100 I ..XX vmsumubm v2.03 352 Vector Multiply-Sum Unsigned Byte Modulo VA-form

000100 100011 I ..XX vmsumudm v3.0B 356 Vector Multiply-Sum Unsigned Doubleword Modulo
VA-form

000100 100110 I ..XX vmsumuhm v2.03 354 Vector Multiply-Sum Unsigned Halfword Modulo
VA-form

000100 100111 I ..XX vmsumuhs v2.03 355 Vector Multiply-Sum Unsigned Halfword Saturate
VA-form

000100 ///// 00000 000001 I ..XX vmul10cuq v3.0 487 Vector Multiply-by-10 & write Carry-out Unsigned
Quadword VX-form

000100 00001 000001 I ..XX vmul10ecuq v3.0 488 Vector Multiply-by-10 Extended & write Carry-out
Unsigned Quadword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 14 of 30)
Power ISA™ Appendices1462

Version 3.1
000100 01001 000001 I ..XX vmul10euq v3.0 488 Vector Multiply-by-10 Extended Unsigned Quadword
VX-form

000100 ///// 01000 000001 I ..XX vmul10uq v3.0 487 Vector Multiply-by-10 Unsigned Quadword VX-form
000100 01100 001000 I ..XX vmulesb v2.03 339 Vector Multiply Even Signed Byte VX-form
000100 01111 001000 I ..XX vmulesd v3.1 346 Vector Multiply Even Signed Doubleword VX-form
000100 01101 001000 I ..XX vmulesh v2.03 341 Vector Multiply Even Signed Halfword VX-form
000100 01110 001000 I ..XX vmulesw v2.07 343 Vector Multiply Even Signed Word VX-form
000100 01000 001000 I ..XX vmuleub v2.03 340 Vector Multiply Even Unsigned Byte VX-form
000100 01011 001000 I ..XX vmuleud v3.1 345 Vector Multiply Even Unsigned Doubleword VX-form
000100 01001 001000 I ..XX vmuleuh v2.03 342 Vector Multiply Even Unsigned Halfword VX-form
000100 01010 001000 I ..XX vmuleuw v2.07 344 Vector Multiply Even Unsigned Word VX-form
000100 01111 001001 I ..XX vmulhsd v3.1 349 Vector Multiply High Signed Doubleword VX-form
000100 01110 001001 I ..XX vmulhsw v3.1 347 Vector Multiply High Signed Word VX-form
000100 01011 001001 I ..XX vmulhud v3.1 349 Vector Multiply High Unsigned Doubleword VX-form
000100 01010 001001 I ..XX vmulhuw v3.1 348 Vector Multiply High Unsigned Word VX-form
000100 00111 001001 I ..XX vmulld v3.1 350 Vector Multiply Low Doubleword VX-form
000100 00100 001000 I ..XX vmulosb v2.03 339 Vector Multiply Odd Signed Byte VX-form
000100 00111 001000 I ..XX vmulosd v3.1 346 Vector Multiply Odd Signed Doubleword VX-form
000100 00101 001000 I ..XX vmulosh v2.03 341 Vector Multiply Odd Signed Halfword VX-form
000100 00110 001000 I ..XX vmulosw v2.07 343 Vector Multiply Odd Signed Word VX-form
000100 00000 001000 I ..XX vmuloub v2.03 340 Vector Multiply Odd Unsigned Byte VX-form
000100 00011 001000 I ..XX vmuloud v3.1 345 Vector Multiply Odd Unsigned Doubleword VX-form
000100 00001 001000 I ..XX vmulouh v2.03 342 Vector Multiply Odd Unsigned Halfword VX-form
000100 00010 001000 I ..XX vmulouw v2.07 344 Vector Multiply Odd Unsigned Word VX-form
000100 00010 001001 I ..XX vmuluwm v2.07 347 Vector Multiply Unsigned Word Modulo VX-form
000100 10110 000100 I ..XX vnand v2.07 403 Vector Logical NAND VX-form
000100 10101 001000 I ..XX vncipher v2.07 436 Vector AES Inverse Cipher VX-form
000100 10101 001001 I ..XX vncipherlast v2.07 436 Vector AES Inverse Cipher Last VX-form
000100 00111 11000 000010 I ..XX vnegd v3.0 371 Vector Negate Doubleword VX-form
000100 00110 11000 000010 I ..XX vnegw v3.0 371 Vector Negate Word VX-form

000100 101111 I ..XX vnmsubfp v2.03 423 Vector Negative Multiply-Subtract Floating-Point
VA-form

000100 10100 000100 I ..XX vnor v2.03 403 Vector Logical NOR VX-form
000100 10010 000100 I ..XX vor v2.03 403 Vector Logical OR VX-form
000100 10101 000100 I ..XX vorc v2.07 403 Vector Logical OR with Complement VX-form
000100 10111 001101 I ..XX vpdepd v3.1 454 Vector Parallel Bits Deposit Doubleword VX-form
000100 101011 I ..XX vperm v2.03 296 Vector Permute VA-form
000100 111011 I ..XX vpermr v3.0 296 Vector Permute Right-indexed VA-form
000100 101101 I ..XX vpermxor v2.07 444 Vector Permute & Exclusive-OR VA-form
000100 10110 001101 I ..XX vpextd v3.1 455 Vector Parallel Bits Extract Doubleword VX-form
000100 01100 001110 I ..XX vpkpx v2.03 278 Vector Pack Pixel VX-form

000100 10111 001110 I ..XX vpksdss v2.07 281 Vector Pack Signed Doubleword Signed Saturate
VX-form

000100 10101 001110 I ..XX vpksdus v2.07 281 Vector Pack Signed Doubleword Unsigned Saturate
VX-form

000100 00110 001110 I ..XX vpkshss v2.03 279 Vector Pack Signed Halfword Signed Saturate VX-form

000100 00100 001110 I ..XX vpkshus v2.03 279 Vector Pack Signed Halfword Unsigned Saturate
VX-form

000100 00111 001110 I ..XX vpkswss v2.03 280 Vector Pack Signed Word Signed Saturate VX-form
000100 00101 001110 I ..XX vpkswus v2.03 280 Vector Pack Signed Word Unsigned Saturate VX-form

000100 10001 001110 I ..XX vpkudum v2.07 284 Vector Pack Unsigned Doubleword Unsigned Modulo
VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 15 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1463

Version 3.1
000100 10011 001110 I ..XX vpkudus v2.07 284 Vector Pack Unsigned Doubleword Unsigned Saturate
VX-form

000100 00000 001110 I ..XX vpkuhum v2.03 282 Vector Pack Unsigned Halfword Unsigned Modulo
VX-form

000100 00010 001110 I ..XX vpkuhus v2.03 282 Vector Pack Unsigned Halfword Unsigned Saturate
VX-form

000100 00001 001110 I ..XX vpkuwum v2.03 283 Vector Pack Unsigned Word Unsigned Modulo VX-form

000100 00011 001110 I ..XX vpkuwus v2.03 283 Vector Pack Unsigned Word Unsigned Saturate
VX-form

000100 10000 001000 I ..XX vpmsumb v2.07 440 Vector Polynomial Multiply-Sum Byte VX-form
000100 10011 001000 I ..XX vpmsumd v2.07 443 Vector Polynomial Multiply-Sum Doubleword VX-form
000100 10001 001000 I ..XX vpmsumh v2.07 441 Vector Polynomial Multiply-Sum Halfword VX-form
000100 10010 001000 I ..XX vpmsumw v2.07 442 Vector Polynomial Multiply-Sum Word VX-form
000100 ///// 11100 000011 I ..XX vpopcntb v2.07 457 Vector Population Count Byte VX-form
000100 ///// 11111 000011 I ..XX vpopcntd v2.07 458 Vector Population Count Doubleword VX-form
000100 ///// 11101 000011 I ..XX vpopcnth v2.07 457 Vector Population Count Halfword VX-form
000100 ///// 11110 000011 I ..XX vpopcntw v2.07 458 Vector Population Count Word VX-form
000100 01001 11000 000010 I ..XX vprtybd v3.0 459 Vector Parity Byte Doubleword VX-form
000100 01010 11000 000010 I ..XX vprtybq v3.0 460 Vector Parity Byte Quadword VX-form
000100 01000 11000 000010 I ..XX vprtybw v3.0 459 Vector Parity Byte Word VX-form
000100 ///// 00100 001010 I ..XX vrefp v2.03 434 Vector Reciprocal Estimate Floating-Point VX-form

000100 ///// 01011 001010 I ..XX vrfim v2.03 427 Vector Round to Floating-Point Integer toward -Infinity
VX-form

000100 ///// 01000 001010 I ..XX vrfin v2.03 427 Vector Round to Floating-Point Integer Nearest VX-form

000100 ///// 01010 001010 I ..XX vrfip v2.03 428 Vector Round to Floating-Point Integer toward +Infinity
VX-form

000100 ///// 01001 001010 I ..XX vrfiz v2.03 428 Vector Round to Floating-Point Integer toward Zero
VX-form

000100 00000 000100 I ..XX vrlb v2.03 404 Vector Rotate Left Byte VX-form
000100 00011 000100 I ..XX vrld v2.07 405 Vector Rotate Left Doubleword VX-form

000100 00011 000101 I ..XX vrldmi v3.0 411 Vector Rotate Left Doubleword then Mask Insert
VX-form

000100 00111 000101 I ..XX vrldnm v3.0 408 Vector Rotate Left Doubleword then AND with Mask
VX-form

000100 00001 000100 I ..XX vrlh v2.03 404 Vector Rotate Left Halfword VX-form
000100 00000 000101 I ..XX vrlq v3.1 405 Vector Rotate Left Quadword VX-form
000100 00001 000101 I ..XX vrlqmi v3.1 412 Vector Rotate Left Quadword then Mask Insert VX-form

000100 00101 000101 I ..XX vrlqnm v3.1 409 Vector Rotate Left Quadword then AND with Mask
VX-form

000100 00010 000100 I ..XX vrlw v2.03 404 Vector Rotate Left Word VX-form
000100 00010 000101 I ..XX vrlwmi v3.0 410 Vector Rotate Left Word then Mask Insert VX-form
000100 00110 000101 I ..XX vrlwnm v3.0 407 Vector Rotate Left Word then AND with Mask VX-form

000100 ///// 00101 001010 I ..XX vrsqrtefp v2.03 434 Vector Reciprocal Square Root Estimate Floating-Point
VX-form

000100 ///// 10111 001000 I ..XX vsbox v2.07 437 Vector AES SubBytes VX-form
000100 101010 I ..XX vsel v2.03 297 Vector Select VA-form
000100 11011 000010 I ..XX vshasigmad v2.07 438 Vector SHA-512 Sigma Doubleword VX-form
000100 11010 000010 I ..XX vshasigmaw v2.07 439 Vector SHA-256 Sigma Word VX-form
000100 00111 000100 I ..XX vsl v2.03 300 Vector Shift Left VX-form
000100 00100 000100 I ..XX vslb v2.03 413 Vector Shift Left Byte VX-form
000100 10111 000100 I ..XX vsld v2.07 414 Vector Shift Left Doubleword VX-form
000100 00... 010110 I ..XX vsldbi v3.1 298 Vector Shift Left Double by Bit Immediate VN-form
000100 /.... 101100 I ..XX vsldoi v2.03 298 Vector Shift Left Double by Octet Immediate VA-form
000100 00101 000100 I ..XX vslh v2.03 413 Vector Shift Left Halfword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 16 of 30)
Power ISA™ Appendices1464

Version 3.1
000100 10000 001100 I ..XX vslo v2.03 301 Vector Shift Left by Octet VX-form
000100 00100 000101 I ..XX vslq v3.1 415 Vector Shift Left Quadword VX-form
000100 11101 000100 I ..XX vslv v3.0 302 Vector Shift Left Variable VX-form
000100 00110 000100 I ..XX vslw v2.03 414 Vector Shift Left Word VX-form
000100 /.... 01000 001100 I ..XX vspltb v2.03 293 Vector Splat Byte VX-form
000100 //... 01001 001100 I ..XX vsplth v2.03 293 Vector Splat Halfword VX-form
000100 ///// 01100 001100 I ..XX vspltisb v2.03 295 Vector Splat Immediate Signed Byte VX-form
000100 ///// 01101 001100 I ..XX vspltish v2.03 295 Vector Splat Immediate Signed Halfword VX-form
000100 ///// 01110 001100 I ..XX vspltisw v2.03 295 Vector Splat Immediate Signed Word VX-form
000100 ///.. 01010 001100 I ..XX vspltw v2.03 294 Vector Splat Word VX-form
000100 01011 000100 I ..XX vsr v2.03 300 Vector Shift Right VX-form
000100 01100 000100 I ..XX vsrab v2.03 419 Vector Shift Right Algebraic Byte VX-form
000100 01111 000100 I ..XX vsrad v2.07 420 Vector Shift Right Algebraic Doubleword VX-form
000100 01101 000100 I ..XX vsrah v2.03 419 Vector Shift Right Algebraic Halfword VX-form
000100 01100 000101 I ..XX vsraq v3.1 421 Vector Shift Right Algebraic Quadword VX-form
000100 01110 000100 I ..XX vsraw v2.03 420 Vector Shift Right Algebraic Word VX-form
000100 01000 000100 I ..XX vsrb v2.03 416 Vector Shift Right Byte VX-form
000100 11011 000100 I ..XX vsrd v2.07 417 Vector Shift Right Doubleword VX-form
000100 01... 010110 I ..XX vsrdbi v3.1 299 Vector Shift Right Double by Bit Immediate VN-form
000100 01001 000100 I ..XX vsrh v2.03 416 Vector Shift Right Halfword VX-form
000100 10001 001100 I ..XX vsro v2.03 301 Vector Shift Right by Octet VX-form
000100 01000 000101 I ..XX vsrq v3.1 418 Vector Shift Right Quadword VX-form
000100 11100 000100 I ..XX vsrv v3.0 302 Vector Shift Right Variable VX-form
000100 01010 000100 I ..XX vsrw v2.03 417 Vector Shift Right Word VX-form
000100 000000000 001101 I ..XX vstribl[.] v3.1 474 Vector String Isolate Byte Left-justified VX-form
000100 000010000 001101 I ..XX vstribr[.] v3.1 475 Vector String Isolate Byte Right-justified VX-form
000100 000100000 001101 I ..XX vstrihl[.] v3.1 475 Vector String Isolate Halfword Left-justified VX-form
000100 000110000 001101 I ..XX vstrihr[.] v3.1 474 Vector String Isolate Halfword Right-justified VX-form

000100 10101 000000 I ..XX vsubcuq v2.07 338 Vector Subtract & write Carry-out Unsigned Quadword
VX-form

000100 10110 000000 I ..XX vsubcuw v2.03 331 Vector Subtract & Write Carry-out Unsigned Word
VX-form

000100 111111 I ..XX vsubecuq v2.07 338 Vector Subtract Extended & write Carry-out Unsigned
Quadword VA-form

000100 111110 I ..XX vsubeuqm v2.07 337 Vector Subtract Extended Unsigned Quadword Modulo
VA-form

000100 00001 001010 I ..XX vsubfp v2.03 422 Vector Subtract Floating-Point VX-form
000100 11100 000000 I ..XX vsubsbs v2.03 331 Vector Subtract Signed Byte Saturate VX-form
000100 11101 000000 I ..XX vsubshs v2.03 332 Vector Subtract Signed Halfword Saturate VX-form
000100 11110 000000 I ..XX vsubsws v2.03 332 Vector Subtract Signed Word Saturate VX-form
000100 10000 000000 I ..XX vsububm v2.03 333 Vector Subtract Unsigned Byte Modulo VX-form
000100 11000 000000 I ..XX vsububs v2.03 335 Vector Subtract Unsigned Byte Saturate VX-form
000100 10011 000000 I ..XX vsubudm v2.07 334 Vector Subtract Unsigned Doubleword Modulo VX-form
000100 10001 000000 I ..XX vsubuhm v2.03 333 Vector Subtract Unsigned Halfword Modulo VX-form
000100 11001 000000 I ..XX vsubuhs v2.03 335 Vector Subtract Unsigned Halfword Saturate VX-form
000100 10100 000000 I ..XX vsubuqm v2.07 337 Vector Subtract Unsigned Quadword Modulo VX-form
000100 10010 000000 I ..XX vsubuwm v2.03 334 Vector Subtract Unsigned Word Modulo VX-form
000100 11010 000000 I ..XX vsubuws v2.03 336 Vector Subtract Unsigned Word Saturate VX-form
000100 11010 001000 I ..XX vsum2sws v2.03 368 Vector Sum across Half Signed Word Saturate VX-form

000100 11100 001000 I ..XX vsum4sbs v2.03 369 Vector Sum across Quarter Signed Byte Saturate
VX-form

000100 11001 001000 I ..XX vsum4shs v2.03 369 Vector Sum across Quarter Signed Halfword Saturate
VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 17 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1465

Version 3.1
000100 11000 001000 I ..XX vsum4ubs v2.03 370 Vector Sum across Quarter Unsigned Byte Saturate
VX-form

000100 11110 001000 I ..XX vsumsws v2.03 367 Vector Sum across Signed Word Saturate VX-form
000100 ///// 01101 001110 I ..XX vupkhpx v2.03 288 Vector Unpack High Pixel VX-form
000100 ///// 01000 001110 I ..XX vupkhsb v2.03 285 Vector Unpack High Signed Byte VX-form
000100 ///// 01001 001110 I ..XX vupkhsh v2.03 286 Vector Unpack High Signed Halfword VX-form
000100 ///// 11001 001110 I ..XX vupkhsw v2.07 287 Vector Unpack High Signed Word VX-form
000100 ///// 01111 001110 I ..XX vupklpx v2.03 288 Vector Unpack Low Pixel VX-form
000100 ///// 01010 001110 I ..XX vupklsb v2.03 285 Vector Unpack Low Signed Byte VX-form
000100 ///// 01011 001110 I ..XX vupklsh v2.03 286 Vector Unpack Low Signed Halfword VX-form
000100 ///// 11011 001110 I ..XX vupklsw v2.07 287 Vector Unpack Low Signed Word VX-form
000100 10011 000100 I ..XX vxor v2.03 403 Vector Logical XOR VX-form
111100 ///// 10101 1001.. I ..XX xsabsdp v2.06 658 VSX Scalar Absolute Double-Precision XX2-form
111100 00100 000... I ..XX xsadddp v2.06 659 VSX Scalar Add Double-Precision XX3-form
111100 00000 000... I ..XX xsaddsp v2.07 664 VSX Scalar Add Single-Precision XX3-form
111100 00000 011... I ..XX xscmpeqdp v3.0 670 VSX Scalar Compare Equal Double-Precision XX3-form
111111 00010 00100/ I ..XX xscmpeqqp v3.1 671 VSX Scalar Compare Equal Quad-Precision X-form

111100 ...// 00111 011../ I ..XX xscmpexpdp v3.0 668 VSX Scalar Compare Exponents Double-Precision
XX3-form

111100 00010 011... I ..XX xscmpgedp v3.0 672 VSX Scalar Compare Greater Than or Equal
Double-Precision XX3-form

111111 00110 00100/ I ..XX xscmpgeqp v3.1 673 VSX Scalar Compare Greater Than or Equal
Quad-Precision X-form

111100 00001 011... I ..XX xscmpgtdp v3.0 674 VSX Scalar Compare Greater Than Double-Precision
XX3-form

111111 00111 00100/ I ..XX xscmpgtqp v3.1 675 VSX Scalar Compare Greater Than Quad-Precision
X-form

111100 ...// 00101 011../ I ..XX xscmpodp v2.06 676 VSX Scalar Compare Ordered Double-Precision
XX3-form

111100 ...// 00100 011../ I ..XX xscmpudp v2.06 679 VSX Scalar Compare Unordered Double-Precision
XX3-form

111100 10110 000... I ..XX xscpsgndp v2.06 682 VSX Scalar Copy Sign Double-Precision XX3-form

111100 10001 10101 1011.. I ..XX xscvdphp v3.0 683 VSX Scalar Convert with round Double-Precision to
Half-Precision format XX2-form

111100 ///// 10000 1001.. I ..XX xscvdpsp v2.06 685 VSX Scalar Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 10000 1011.. I ..XX xscvdpspn v2.07 686 VSX Scalar Convert Scalar Single-Precision to Vector
Single-Precision format Non-signalling XX2-form

111100 ///// 10101 1000.. I ..XX xscvdpsxds v2.06 687
VSX Scalar Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 00101 1000.. I ..XX xscvdpsxws v2.06 689 VSX Scalar Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 10100 1000.. I ..XX xscvdpuxds v2.06 691
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 00100 1000.. I ..XX xscvdpuxws v2.06 693
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 10000 10101 1011.. I ..XX xscvhpdp v3.0 695 VSX Scalar Convert Half-Precision to Double-Precision
format XX2-form

111111 01000 11010 00100/ I ..XX xscvqpsqz v3.1 699 VSX Scalar Convert with round to zero Quad-Precision
to Signed Quadword X-form

111111 00000 11010 00100/ I ..XX xscvqpuqz v3.1 705 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Quadword X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 18 of 30)
Power ISA™ Appendices1466

Version 3.1
111100 ///// 10100 1001.. I ..XX xscvspdp v2.06 709 VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form

111100 ///// 10100 1011.. I ..XX xscvspdpn v2.07 710 VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling XX2-form

111111 01011 11010 00100/ I ..XX xscvsqqp v3.1 711 VSX Scalar Convert with round Signed Quadword to
Quad-Precision X-form

111100 ///// 10111 1000.. I ..XX xscvsxddp v2.06 712 VSX Scalar Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 10011 1000.. I ..XX xscvsxdsp v2.07 713 VSX Scalar Convert with round Signed Doubleword to
Single-Precision format XX2-form

111111 00011 11010 00100/ I ..XX xscvuqqp v3.1 715 VSX Scalar Convert with round Unsigned Quadword to
Quad-Precision X-form

111100 ///// 10110 1000.. I ..XX xscvuxddp v2.06 715 VSX Scalar Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 10010 1000.. I ..XX xscvuxdsp v2.07 716 VSX Scalar Convert with round Unsigned Doubleword
to Single-Precision XX2-form

111100 00111 000... I ..XX xsdivdp v2.06 717 VSX Scalar Divide Double-Precision XX3-form
111100 00011 000... I ..XX xsdivsp v2.07 721 VSX Scalar Divide Single-Precision XX3-form
111100 11100 10110. I ..XX xsiexpdp v3.0 723 VSX Scalar Insert Exponent Double-Precision X-form

111100 00100 001... I ..XX xsmaddadp v2.06 725 VSX Scalar Multiply-Add Type-A Double-Precision
XX3-form

111100 00000 001... I ..XX xsmaddasp v2.07 728 VSX Scalar Multiply-Add Type-A Single-Precision
XX3-form

111100 00101 001... I ..XX xsmaddmdp v2.06 725 VSX Scalar Multiply-Add Type-M Double-Precision
XX3-form

111100 00001 001... I ..XX xsmaddmsp v2.07 728 VSX Scalar Multiply-Add Type-M Single-Precision
XX3-form

111100 10000 000... I ..XX xsmaxcdp v3.0 736 VSX Scalar Maximum Type-C Double-Precision
XX3-form

111111 10101 00100/ I ..XX xsmaxcqp v3.1 738 VSX Scalar Maximum Type-C Quad-Precision X-form
111100 10100 000... I ..XX xsmaxdp v2.06 734 VSX Scalar Maximum Double-Precision XX3-form

111100 10010 000... I ..XX xsmaxjdp v3.0 739 VSX Scalar Maximum Type-J Double-Precision
XX3-form

111100 10001 000... I ..XX xsmincdp v3.0 743 VSX Scalar Minimum Type-C Double-Precision
XX3-form

111111 10111 00100/ I ..XX xsmincqp v3.1 745 VSX Scalar Minimum Type-C Quad-Precision X-form
111100 10101 000... I ..XX xsmindp v2.06 741 VSX Scalar Minimum Double-Precision XX3-form

111100 10011 000... I ..XX xsminjdp v3.0 746 VSX Scalar Minimum Type-J Double-Precision
XX3-form

111100 00110 001... I ..XX xsmsubadp v2.06 748 VSX Scalar Multiply-Subtract Type-A Double-Precision
XX3-form

111100 00010 001... I ..XX xsmsubasp v2.07 751 VSX Scalar Multiply-Subtract Type-A Single-Precision
XX3-form

111100 00111 001... I ..XX xsmsubmdp v2.06 748 VSX Scalar Multiply-Subtract Type-M Double-Precision
XX3-form

111100 00011 001... I ..XX xsmsubmsp v2.07 751 VSX Scalar Multiply-Subtract Type-M Single-Precision
XX3-form

111100 00110 000... I ..XX xsmuldp v2.06 757 VSX Scalar Multiply Double-Precision XX3-form
111100 00010 000... I ..XX xsmulsp v2.07 761 VSX Scalar Multiply Single-Precision XX3-form

111100 ///// 10110 1001.. I ..XX xsnabsdp v2.06 763 VSX Scalar Negative Absolute Double-Precision
XX2-form

111100 ///// 10111 1001.. I ..XX xsnegdp v2.06 764 VSX Scalar Negate Double-Precision XX2-form

111100 10100 001... I ..XX xsnmaddadp v2.06 765 VSX Scalar Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 10000 001... I ..XX xsnmaddasp v2.07 770 VSX Scalar Negative Multiply-Add Type-A
Single-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 19 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1467

Version 3.1
111100 10101 001... I ..XX xsnmaddmdp v2.06 765 VSX Scalar Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 10001 001... I ..XX xsnmaddmsp v2.07 770 VSX Scalar Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 10110 001... I ..XX xsnmsubadp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 10010 001... I ..XX xsnmsubasp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 10111 001... I ..XX xsnmsubmdp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 10011 001... I ..XX xsnmsubmsp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 ///// 00100 1001.. I ..XX xsrdpi v2.06 785 VSX Scalar Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 00110 1011.. I ..XX xsrdpic v2.06 786 VSX Scalar Round to Double-Precision Integer exact
using Current rounding mode XX2-form

111100 ///// 00111 1001.. I ..XX xsrdpim v2.06 787 VSX Scalar Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 00110 1001.. I ..XX xsrdpip v2.06 788 VSX Scalar Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 00101 1001.. I ..XX xsrdpiz v2.06 789 VSX Scalar Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 00101 1010.. I ..XX xsredp v2.06 790 VSX Scalar Reciprocal Estimate Double-Precision
XX2-form

111100 ///// 00001 1010.. I ..XX xsresp v2.07 791 VSX Scalar Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 10001 1001.. I ..XX xsrsp v2.07 797 VSX Scalar Round to Single-Precision XX2-form

111100 ///// 00100 1010.. I ..XX xsrsqrtedp v2.06 798 VSX Scalar Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 00000 1010.. I ..XX xsrsqrtesp v2.07 799 VSX Scalar Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 00100 1011.. I ..XX xssqrtdp v2.06 801 VSX Scalar Square Root Double-Precision XX2-form
111100 ///// 00000 1011.. I ..XX xssqrtsp v2.07 805 VSX Scalar Square Root Single-Precision XX2-form
111100 00101 000... I ..XX xssubdp v2.06 807 VSX Scalar Subtract Double-Precision XX3-form
111100 00001 000... I ..XX xssubsp v2.07 811 VSX Scalar Subtract Single-Precision XX3-form

111100 ...// 00111 101../ I ..XX xstdivdp v2.06 813 VSX Scalar Test for software Divide Double-Precision
XX3-form

111100 ...// ///// 00110 1010./ I ..XX xstsqrtdp v2.06 814 VSX Scalar Test for software Square Root
Double-Precision XX2-form

111100 10110 1010./ I ..XX xststdcdp v3.0 815 VSX Scalar Test Data Class Double-Precision XX2-form
111100 10010 1010./ I ..XX xststdcsp v3.0 817 VSX Scalar Test Data Class Single-Precision XX2-form

111100 00000 10101 1011./ I ..XX xsxexpdp v3.0 818 VSX Scalar Extract Exponent Double-Precision
XX2-form

111100 00001 10101 1011./ I ..XX xsxsigdp v3.0 819 VSX Scalar Extract Significand Double-Precision
XX2-form

111100 ///// 11101 1001.. I ..XX xvabsdp v2.06 820 VSX Vector Absolute Value Double-Precision XX2-form
111100 ///// 11001 1001.. I ..XX xvabssp v2.06 820 VSX Vector Absolute Value Single-Precision XX2-form
111100 01100 000... I ..XX xvadddp v2.06 821 VSX Vector Add Double-Precision XX3-form
111100 01000 000... I ..XX xvaddsp v2.06 825 VSX Vector Add Single-Precision XX3-form

1111001100 011... I ..XX xvcmpeqdp[.] v2.06 832 VSX Vector Compare Equal To Double-Precision
XX3-form

1111001000 011... I ..XX xvcmpeqsp[.] v2.06 833 VSX Vector Compare Equal To Single-Precision
XX3-form

1111001110 011... I ..XX xvcmpgedp[.] v2.06 834 VSX Vector Compare Greater Than or Equal To
Double-Precision XX3-form

1111001010 011... I ..XX xvcmpgesp[.] v2.06 835 VSX Vector Compare Greater Than or Equal To
Single-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 20 of 30)
Power ISA™ Appendices1468

Version 3.1
1111001101 011... I ..XX xvcmpgtdp[.] v2.06 836 VSX Vector Compare Greater Than Double-Precision
XX3-form

1111001001 011... I ..XX xvcmpgtsp[.] v2.06 837 VSX Vector Compare Greater Than Single-Precision
XX3-form

111100 11110 000... I ..XX xvcpsgndp v2.06 838 VSX Vector Copy Sign Double-Precision XX3-form
111100 11010 000... I ..XX xvcpsgnsp v2.06 838 VSX Vector Copy Sign Single-Precision XX3-form

111100 10000 11101 1011.. I ..XX xvcvbf16sp v3.1 839 VSX Vector Convert bfloat16 to Single-Precision format
XX2-form

111100 ///// 11000 1001.. I ..XX xvcvdpsp v2.06 840 VSX Vector Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 11101 1000.. I ..XX xvcvdpsxds v2.06 841
VSX Vector Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 01101 1000.. I ..XX xvcvdpsxws v2.06 843 VSX Vector Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 11100 1000.. I ..XX xvcvdpuxds v2.06 845
VSX Vector Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 01100 1000.. I ..XX xvcvdpuxws v2.06 847
VSX Vector Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 11000 11101 1011.. I ..XX xvcvhpsp v3.0 849 VSX Vector Convert Half-Precision to Single-Precision
format XX2-form

111100 10001 11101 1011.. I ..XX xvcvspbf16 v3.1 850 VSX Vector Convert with round Single-Precision to
bfloat16 format XX2-form

111100 ///// 11100 1001.. I ..XX xvcvspdp v2.06 851 VSX Vector Convert Single-Precision to
Double-Precision format XX2-form

111100 11001 11101 1011.. I ..XX xvcvsphp v3.0 852 VSX Vector Convert with round Single-Precision to
Half-Precision format XX2-form

111100 ///// 11001 1000.. I ..XX xvcvspsxds v2.06 853 VSX Vector Convert with round to zero Single-Precision
to Signed Doubleword format XX2-form

111100 ///// 01001 1000.. I ..XX xvcvspsxws v2.06 855 VSX Vector Convert with round to zero Single-Precision
to Signed Word format XX2-form

111100 ///// 11000 1000.. I ..XX xvcvspuxds v2.06 857 VSX Vector Convert with round to zero Single-Precision
to Unsigned Doubleword format XX2-form

111100 ///// 01000 1000.. I ..XX xvcvspuxws v2.06 859 VSX Vector Convert with round to zero Single-Precision
to Unsigned Word format XX2-form

111100 ///// 11111 1000.. I ..XX xvcvsxddp v2.06 861 VSX Vector Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 11011 1000.. I ..XX xvcvsxdsp v2.06 862 VSX Vector Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 01111 1000.. I ..XX xvcvsxwdp v2.06 863 VSX Vector Convert Signed Word to Double-Precision
format XX2-form

111100 ///// 01011 1000.. I ..XX xvcvsxwsp v2.06 863 VSX Vector Convert with round Signed Word to
Single-Precision format XX2-form

111100 ///// 11110 1000.. I ..XX xvcvuxddp v2.06 864 VSX Vector Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 11010 1000.. I ..XX xvcvuxdsp v2.06 865 VSX Vector Convert with round Unsigned Doubleword
to Single-Precision format XX2-form

111100 ///// 01110 1000.. I ..XX xvcvuxwdp v2.06 866 VSX Vector Convert Unsigned Word to
Double-Precision format XX2-form

111100 ///// 01010 1000.. I ..XX xvcvuxwsp v2.06 866 VSX Vector Convert with round Unsigned Word to
Single-Precision format XX2-form

111100 01111 000... I ..XX xvdivdp v2.06 867 VSX Vector Divide Double-Precision XX3-form
111100 01011 000... I ..XX xvdivsp v2.06 869 VSX Vector Divide Single-Precision XX3-form
111100 11111 000... I ..XX xviexpdp v3.0 896 VSX Vector Insert Exponent Double-Precision XX3-form
111100 11011 000... I ..XX xviexpsp v3.0 896 VSX Vector Insert Exponent Single-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 21 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1469

Version 3.1
111100 01100 001... I ..XX xvmaddadp v2.06 897 VSX Vector Multiply-Add Type-A Double-Precision
XX3-form

111100 01000 001... I ..XX xvmaddasp v2.06 900 VSX Vector Multiply-Add Type-A Single-Precision
XX3-form

111100 01101 001... I ..XX xvmaddmdp v2.06 897 VSX Vector Multiply-Add Type-M Double-Precision
XX3-form

111100 01001 001... I ..XX xvmaddmsp v2.06 900 VSX Vector Multiply-Add Type-M Single-Precision
XX3-form

111100 11100 000... I ..XX xvmaxdp v2.06 903 VSX Vector Maximum Double-Precision XX3-form
111100 11000 000... I ..XX xvmaxsp v2.06 905 VSX Vector Maximum Single-Precision XX3-form
111100 11101 000... I ..XX xvmindp v2.06 907 VSX Vector Minimum Double-Precision XX3-form
111100 11001 000... I ..XX xvminsp v2.06 909 VSX Vector Minimum Single-Precision XX3-form

111100 01110 001... I ..XX xvmsubadp v2.06 911 VSX Vector Multiply-Subtract Type-A Double-Precision
XX3-form

111100 01010 001... I ..XX xvmsubasp v2.06 914 VSX Vector Multiply-Subtract Type-A Single-Precision
XX3-form

111100 01111 001... I ..XX xvmsubmdp v2.06 911 VSX Vector Multiply-Subtract Type-M Double-Precision
XX3-form

111100 01011 001... I ..XX xvmsubmsp v2.06 914 VSX Vector Multiply-Subtract Type-M Single-Precision
XX3-form

111100 01110 000... I ..XX xvmuldp v2.06 917 VSX Vector Multiply Double-Precision XX3-form
111100 01010 000... I ..XX xvmulsp v2.06 919 VSX Vector Multiply Single-Precision XX3-form

111100 ///// 11110 1001.. I ..XX xvnabsdp v2.06 921 VSX Vector Negative Absolute Double-Precision
XX2-form

111100 ///// 11010 1001.. I ..XX xvnabssp v2.06 921 VSX Vector Negative Absolute Single-Precision
XX2-form

111100 ///// 11111 1001.. I ..XX xvnegdp v2.06 922 VSX Vector Negate Double-Precision XX2-form
111100 ///// 11011 1001.. I ..XX xvnegsp v2.06 922 VSX Vector Negate Single-Precision XX2-form

111100 11100 001... I ..XX xvnmaddadp v2.06 923 VSX Vector Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 11000 001... I ..XX xvnmaddasp v2.06 927 VSX Vector Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 11101 001... I ..XX xvnmaddmdp v2.06 923 VSX Vector Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 11001 001... I ..XX xvnmaddmsp v2.06 927 VSX Vector Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 11110 001... I ..XX xvnmsubadp v2.06 930 VSX Vector Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 11010 001... I ..XX xvnmsubasp v2.06 933 VSX Vector Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 11111 001... I ..XX xvnmsubmdp v2.06 930 VSX Vector Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 11011 001... I ..XX xvnmsubmsp v2.06 933 VSX Vector Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 ///// 01100 1001.. I ..XX xvrdpi v2.06 936 VSX Vector Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01110 1011.. I ..XX xvrdpic v2.06 937 VSX Vector Round to Double-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01111 1001.. I ..XX xvrdpim v2.06 938 VSX Vector Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01110 1001.. I ..XX xvrdpip v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01101 1001.. I ..XX xvrdpiz v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 01101 1010.. I ..XX xvredp v2.06 940 VSX Vector Reciprocal Estimate Double-Precision
XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 22 of 30)
Power ISA™ Appendices1470

Version 3.1
111100 ///// 01001 1010.. I ..XX xvresp v2.06 941 VSX Vector Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 01000 1001.. I ..XX xvrspi v2.06 942 VSX Vector Round to Single-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01010 1011.. I ..XX xvrspic v2.06 943 VSX Vector Round to Single-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01011 1001.. I ..XX xvrspim v2.06 944 VSX Vector Round to Single-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01010 1001.. I ..XX xvrspip v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01001 1001.. I ..XX xvrspiz v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward Zero XX2-form

111100 ///// 01100 1010.. I ..XX xvrsqrtedp v2.06 946 VSX Vector Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 01000 1010.. I ..XX xvrsqrtesp v2.06 947 VSX Vector Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 01100 1011.. I ..XX xvsqrtdp v2.06 948 VSX Vector Square Root Double-Precision XX2-form
111100 ///// 01000 1011.. I ..XX xvsqrtsp v2.06 949 VSX Vector Square Root Single-Precision XX2-form
111100 01101 000... I ..XX xvsubdp v2.06 950 VSX Vector Subtract Double-Precision XX3-form
111100 01001 000... I ..XX xvsubsp v2.06 952 VSX Vector Subtract Single-Precision XX3-form

111100 ...// 01111 101../ I ..XX xvtdivdp v2.06 954 VSX Vector Test for software Divide Double-Precision
XX3-form

111100 ...// 01011 101../ I ..XX xvtdivsp v2.06 955 VSX Vector Test for software Divide Single-Precision
XX3-form

111100 ...// 00010 11101 1011./ I ..XX xvtlsbb v3.1 959 VSX Vector Test Least-Significant Bit by Byte XX2-form

111100 ...// ///// 01110 1010./ I ..XX xvtsqrtdp v2.06 956 VSX Vector Test for software Square Root
Double-Precision XX2-form

111100 ...// ///// 01010 1010./ I ..XX xvtsqrtsp v2.06 956 VSX Vector Test for software Square Root
Single-Precision XX2-form

111100 1111. 101... I ..XX xvtstdcdp v3.0 957 VSX Vector Test Data Class Double-Precision XX2-form
111100 1101. 101... I ..XX xvtstdcsp v3.0 958 VSX Vector Test Data Class Single-Precision XX2-form

111100 00000 11101 1011.. I ..XX xvxexpdp v3.0 960 VSX Vector Extract Exponent Double-Precision
XX2-form

111100 01000 11101 1011.. I ..XX xvxexpsp v3.0 960 VSX Vector Extract Exponent Single-Precision
XX2-form

111100 00001 11101 1011.. I ..XX xvxsigdp v3.0 961 VSX Vector Extract Significand Double-Precision
XX2-form

111100 01001 11101 1011.. I ..XX xvxsigsp v3.0 961 VSX Vector Extract Significand Single-Precision
XX2-form

000001 01000 0//// ///// ///// //////
100001 00.... I ..XX xxblendvb v3.1 962 VSX Vector Blend Variable Byte 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 11.... I ..XX xxblendvd v3.1 963 VSX Vector Blend Variable Doubleword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 01.... I ..XX xxblendvh v3.1 962 VSX Vector Blend Variable Halfword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 10....

I ..XX xxblendvw v3.1 963 VSX Vector Blend Variable Word 8RR:XX4-form

111100 10111 11101 1011.. I ..XX xxbrd v3.0 964 VSX Vector Byte-Reverse Doubleword XX2-form
111100 00111 11101 1011.. I ..XX xxbrh v3.0 965 VSX Vector Byte-Reverse Halfword XX2-form
111100 11111 11101 1011.. I ..XX xxbrq v3.0 966 VSX Vector Byte-Reverse Quadword XX2-form
111100 01111 11101 1011.. I ..XX xxbrw v3.0 967 VSX Vector Byte-Reverse Word XX2-form
000001 01000 0//// ///// ///..
100010 01....

I ..XX xxeval v3.1 967 VSX Vector Evaluate 8RR-XX4-form

111100 /.... 01010 0101.. I ..XX xxextractuw v3.0 969 VSX Vector Extract Unsigned Word XX2-form
111100 11100 10100. I ..XX xxgenpcvbm v3.1 970 VSX Vector Generate PCV from Byte Mask X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 23 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1471

Version 3.1
111100 11101 10101. I ..XX xxgenpcvdm v3.1 976 VSX Vector Generate PCV from Doubleword Mask
X-form

111100 11100 10101. I ..XX xxgenpcvhm v3.1 972 VSX Vector Generate PCV from Halfword Mask X-form
111100 11101 10100. I ..XX xxgenpcvwm v3.1 974 VSX Vector Generate PCV from Word Mask X-form
111100 /.... 01011 0101.. I ..XX xxinsertw v3.0 969 VSX Vector Insert Word XX2-form
111100 10000 010... I ..XX xxland v2.06 978 VSX Vector Logical AND XX3-form
111100 10001 010... I ..XX xxlandc v2.06 978 VSX Vector Logical AND with Complement XX3-form
111100 10111 010... I ..XX xxleqv v2.07 979 VSX Vector Logical Equivalence XX3-form
111100 10110 010... I ..XX xxlnand v2.07 979 VSX Vector Logical NAND XX3-form
111100 10100 010... I ..XX xxlnor v2.06 980 VSX Vector Logical NOR XX3-form
111100 10010 010... I ..XX xxlor v2.06 981 VSX Vector Logical OR XX3-form
111100 10101 010... I ..XX xxlorc v2.07 980 VSX Vector Logical OR with Complement XX3-form
111100 10011 010... I ..XX xxlxor v2.06 981 VSX Vector Logical XOR XX3-form
111100 00010 010... I ..XX xxmrghw v2.06 982 VSX Vector Merge High Word XX3-form
111100 00110 010... I ..XX xxmrglw v2.06 982 VSX Vector Merge Low Word XX3-form
111100 00011 010... I ..XX xxperm v3.0 985 VSX Vector Permute XX3-form
111100 0..01 010... I ..XX xxpermdi v2.06 986 VSX Vector Permute Doubleword Immediate XX3-form
111100 00111 010... I ..XX xxpermr v3.0 985 VSX Vector Permute Right-indexed XX3-form
000001 01000 0//// ///// ///// ///...
100010 00....

I ..XX xxpermx v3.1 987 VSX Vector Permute Extended 8RR:XX4-form

111100 11.... I ..XX xxsel v2.06 988 VSX Vector Select XX4-form

111100 0..00 010... I ..XX xxsldwi v2.06 990 VSX Vector Shift Left Double by Word Immediate
XX3-form

000001 01000 0////
100000 000..

I ..XX xxsplti32dx v3.1 992 VSX Vector Splat Immediate32 Doubleword Indexed
8RR:D-form

111100 00... 01011 01000. I ..XX xxspltib v3.0 991 VSX Vector Splat Immediate Byte X-form
000001 01000 0////
100000 0010.

I ..XX xxspltidp v3.1 991 VSX Vector Splat Immediate Double-Precision
8RR:D-form

000001 01000 0////
100000 0011.

I ..XX xxspltiw v3.1 992 VSX Vector Splat Immediate Word 8RR:D-form

111100 ///.. 01010 0100.. I ..XX xxspltw v2.06 993 VSX Vector Splat Word XX2-form
011111 ////. 11000 00110/ II ...X copy v3.0 1068 Copy X-form
011111 ///// ///// ///// 11010 00110/ II ...X cpabort v3.0 1069 Copy-Paste Abort X-form
011111 ///.. ///// 10111 10011/ I ...X darn v3.0 86 Deliver A Random Number X-form
011111 ///.. 00010 10110/ II ...X dcbf PPC 1064 Data Cache Block Flush X-form
011111 ///// 00001 10110/ II ...X dcbst PPC 1063 Data Cache Block Store X-form
011111 01000 10110/ II ...X dcbt PPC 1061 Data Cache Block Touch X-form
011111 00111 10110/ II ...X dcbtst PPC 1062 Data Cache Block Touch for Store X-form
011111 ///// 11111 10110/ II ...X dcbz P1 1063 Data Cache Block set to Zero X-form
011111 ///// ///// ///// 11010 10110/ II ...X eieio PPC 1088 Enforce In-order Execution of I/O X-form
010011 ///// ///// ///// 01000 10010/ III ...X hrfid v2.02 HV 1152 Return From Interrupt Doubleword Hypervisor XL-form
011111 ///// 11110 10110/ II ...X icbi PPC 1052 Instruction Cache Block Invalidate X-form
011111 /.... 00000 10110/ II ...X icbt v2.07 1052 Instruction Cache Block Touch X-form
011111 01111/ I ...X isel v2.03 98 Integer Select A-form
010011 ///// ///// ///// 00100 10110/ II ...X isync P1 1076 Instruction Synchronize XL-form
011111 00001 10100. II ...X lbarx v2.06 1077 Load Byte And Reserve Indexed X-form
011111 11010 10101/ III ...X lbzcix v2.05 HV 1164 Load Byte & Zero Caching Inhibited Indexed X-form
011111 11011 10101/ III ...X ldcix v2.05 HV 1164 Load Doubleword Caching Inhibited Indexed X-form
11100100 I ...X lfdp v2.05 159 Load Floating-Point Double Pair DS-form
011111 11000 10111/ I ...X lfdpx v2.05 159 Load Floating-Point Double Pair Indexed X-form
011111 00011 10100. II ...X lharx v2.06 1078 Load Halfword And Reserve Indexed Xform
011111 11000 10110/ I ...X lhbrx P1 67 Load Halfword Byte-Reverse Indexed X-form
011111 11001 10101/ III ...X lhzcix v2.05 HV 1164 Load Halfword & Zero Caching Inhibited Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 24 of 30)
Power ISA™ Appendices1472

Version 3.1
101110 I ...X lmw P1 70 Load Multiple Word D-form
011111 10010 10101/ I ...X lswi P1 72 Load String Word Immediate X-form
011111 10000 10101/ I ...X lswx P1 72 Load String Word Indexed X-form
011111 11000 10101/ III ...X lwzcix v2.05 HV 1164 Load Word & Zero Caching Inhibited Indexed X-form
011111 ///// ///// 00111 01110/ III ...X msgclr v2.07 HV 1329 Message Clear X-form
011111 ///// ///// 00101 01110/ III ...X msgclrp v2.07 P 1331 Message Clear Privileged X-form
011111 ///// ///// 00110 01110/ III ...X msgsnd v2.07 HV 1328 Message Send X-form
011111 ///// ///// 00100 01110/ III ...X msgsndp v2.07 P 1330 Message Send Privileged X-form
011111 ///// ///// ///// 11011 10110/ III ...X msgsync v3.0 HV 1331 Message Synchronize X-form
011111 ////. ///// 00101 10010/ III ...X mtmsrd PPC P 1175 Move To MSR Doubleword X-form
011111 ///// 11110 100111 III ...X slbfee. v2.05 P SR 1229 SLB Find Entry ESID X-form
011111 //... ///// ///// 01111 10010/ III ...X slbia PPC P 1224 SLB Invalidate All X-form
011111 ///// 11010 10010/ III ...X slbiag v3.0B P 1226 SLB Invalidate All Global X-form
011111 ///// ///// 01101 10010/ III ...X slbie PPC P 1221 SLB Invalidate Entry X-form
011111 ///// 01110 10010/ III ...X slbieg v3.0 P 1222 SLB Invalidate Entry Global X-form
011111 ///// 11100 10011/ III ...X slbmfee v2.00 P 1229 SLB Move From Entry ESID X-form
011111 ///// 11010 10011/ III ...X slbmfev v2.00 P 1228 SLB Move From Entry VSID X-form
011111 ///// 01100 10010/ III ...X slbmte v2.00 P 1227 SLB Move To Entry X-form
011111 ///// ///// ///// 01010 10010/ III ...X slbsync v3.0 P 1230 SLB Synchronize X-form
011111 11110 10101/ III ...X stbcix v2.05 HV 1165 Store Byte Caching Inhibited Indexed X-form
011111 10101 101101 II ...X stbcx. v2.06 1079 Store Byte Conditional Indexed X-form
011111 11111 10101/ III ...X stdcix v2.05 HV 1165 Store Doubleword Caching Inhibited Indexed X-form
011111 11101 10101/ III ...X sthcix v2.05 HV 1165 Store Halfword Caching Inhibited Indexed X-form
011111 10110 101101 II ...X sthcx. v2.06 1080 Store Halfword Conditional Indexed X-form
101111 I ...X stmw P1 70 Store Multiple Word D-form
010011 ///// ///// ///// 01011 10010/ III ...X stop v3.0 P 1155 Stop XL-form
11111010 I ...X stq v2.03 66 Store Quadword DS-form
011111 00101 101101 I ...X stqcx. v2.07 Store Quadword Conditional Indexed X-form
011111 10110 10101/ I ...X stswi P1 73 Store String Word Immediate X-form
011111 10100 10101/ I ...X stswx P1 73 Store String Word Indexed X-form
011111 11100 10101/ III ...X stwcix v2.05 HV 1165 Store Word Caching Inhibited Indexed X-form
011111 /.... 01001 10010/ III ...X tlbie P1 HV 64 1231 TLB Invalidate Entry X-form
011111 /.... 01000 10010/ III ...X tlbiel v2.03 P 64 1236 TLB Invalidate Entry Local X-form
011111 ///// ///// ///// 10001 10110/ III ...X tlbsync PPC HV/P 1240 TLB Synchronize X-form
011111 ///.. ///// ///// 00000 11110/ II ...X wait v3.0 1090 Wait X-form
011111 10011 00110/ II ...X AMO ldat v3.0 1073 Load Doubleword ATomic X-form
011111 10010 00110/ II ...X AMO lwat v3.0 1073 Load Word ATomic X-form
011111 10111 00110/ II ...X AMO stdat v3.0 1075 Store Doubleword ATomic X-form
011111 10110 00110/ II ...X AMO stwat v3.0 1075 Store Word ATomic X-form
111111 00000 11001 00100/ I ...X BFP128 xsabsqp v3.0 658 VSX Scalar Absolute Quad-Precision X-form

111111 00000 00100. I ...X BFP128 xsaddqp[o] v3.0 666 VSX Scalar Add Quad-Precision [using round to Odd]
X-form

111111 ...// 00101 00100/ I ...X BFP128 xscmpexpqp v3.0 669 VSX Scalar Compare Exponents Quad-Precision X-form
111111 ...// 00100 00100/ I ...X BFP128 xscmpoqp v3.0 678 VSX Scalar Compare Ordered Quad-Precision X-form
111111 ...// 10100 00100/ I ...X BFP128 xscmpuqp v3.0 681 VSX Scalar Compare Unordered Quad-Precision X-form
111111 00011 00100/ I ...X BFP128 xscpsgnqp v3.0 682 VSX Scalar Copy Sign Quad-Precision X-form

111111 10110 11010 00100/ I ...X BFP128 xscvdpqp v3.0 684 VSX Scalar Convert Double-Precision to
Quad-Precision format X-form

111111 10100 11010 00100. I ...X BFP128 xscvqpdp[o] v3.0 696 VSX Scalar Convert with round Quad-Precision to
Double-Precision format [using round to Odd] X-form

111111 11001 11010 00100/ I ...X BFP128 xscvqpsdz v3.0 697 VSX Scalar Convert with round to zero Quad-Precision
to Signed Doubleword format X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 25 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1473

Version 3.1
111111 01001 11010 00100/ I ...X BFP128 xscvqpswz v3.0 701 VSX Scalar Convert with round to zero Quad-Precision
to Signed Word format X-form

111111 10001 11010 00100/ I ...X BFP128 xscvqpudz v3.0 703 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Doubleword format X-form

111111 00001 11010 00100/ I ...X BFP128 xscvqpuwz v3.0 707 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Word format X-form

111111 01010 11010 00100/ I ...X BFP128 xscvsdqp v3.0 714 VSX Scalar Convert Signed Doubleword to
Quad-Precision format X-form

111111 00010 11010 00100/ I ...X BFP128 xscvudqp v3.0 714 VSX Scalar Convert Unsigned Doubleword to
Quad-Precision format X-form

111111 10001 00100. I ...X BFP128 xsdivqp[o] v3.0 719 VSX Scalar Divide Quad-Precision [using round to Odd]
X-form

111111 11011 00100/ I ...X BFP128 xsiexpqp v3.0 724 VSX Scalar Insert Exponent Quad-Precision X-form

111111 01100 00100. I ...X BFP128 xsmaddqp[o] v3.0 731 VSX Scalar Multiply-Add Quad-Precision [using round to
Odd] X-form

111111 01101 00100. I ...X BFP128 xsmsubqp[o] v3.0 754 VSX Scalar Multiply-Subtract Quad-Precision [using
round to Odd] X-form

111111 00001 00100. I ...X BFP128 xsmulqp[o] v3.0 759 VSX Scalar Multiply Quad-Precision [using round to
Odd] X-form

111111 01000 11001 00100/ I ...X BFP128 xsnabsqp v3.0 763 VSX Scalar Negative Absolute Quad-Precision X-form
111111 10000 11001 00100/ I ...X BFP128 xsnegqp v3.0 764 VSX Scalar Negate Quad-Precision X-form

111111 01110 00100. I ...X BFP128 xsnmaddqp[o] v3.0 773 VSX Scalar Negative Multiply-Add Quad-Precision
[using round to Odd] X-form

111111 01111 00100. I ...X BFP128 xsnmsubqp[o] v3.0 782 VSX Scalar Negative Multiply-Subtract Quad-Precision
[using round to Odd] X-form

111111 ////.000 00101. I ...X BFP128 xsrqpi[x] v3.0 793 VSX Scalar Round to Quad-Precision Integer [with
Inexact] Z23-form

111111 ////.001 00101/ I ...X BFP128 xsrqpxp v3.0 795 VSX Scalar Round Quad-Precision to Double-Extended
Precision Z23-form

111111 11011 11001 00100. I ...X BFP128 xssqrtqp[o] v3.0 803 VSX Scalar Square Root Quad-Precision [using round
to Odd] X-form

111111 10000 00100. I ...X BFP128 xssubqp[o] v3.0 809 VSX Scalar Subtract Quad-Precision [using round to
Odd] X-form

111111 10110 00100/ I ...X BFP128 xststdcqp v3.0 816 VSX Scalar Test Data Class Quad-Precision X-form
111111 00010 11001 00100/ I ...X BFP128 xsxexpqp v3.0 818 VSX Scalar Extract Exponent Quad-Precision X-form
111111 10010 11001 00100/ I ...X BFP128 xsxsigqp v3.0 819 VSX Scalar Extract Significand Quad-Precision X-form
011111 ///// ///// ///// 01101 01110/ I ...X BHRB clrbhrb v2.07 Clear BHRB X-form
011111 01001 01110/ I ...X BHRB mfbhrbe v2.07 Move From BHRB XFX-form
111011 00000 00010. I ...X DFP dadd[.] v2.05 206 DFP Add X-form
111111 00000 00010. I ...X DFP daddq[.] v2.05 206 DFP Add Quad X-form
111011 ///// 11001 00010. I ...X DFP dcffix[.] v2.06 231 DFP Convert From Fixed X-form
111111 ///// 11001 00010. I ...X DFP dcffixq[.] v2.05 231 DFP Convert From Fixed Quad X-form
111111 00000 11111 00010/ I ...X DFP dcffixqq v3.1 232 DFP Convert From Fixed Quadword Quad X-form
111011 ...// 00100 00010/ I ...X DFP dcmpo v2.05 212 DFP Compare Ordered X-form
111111 ...// 00100 00010/ I ...X DFP dcmpoq v2.05 212 DFP Compare Ordered Quad X-form
111011 ...// 10100 00010/ I ...X DFP dcmpu v2.05 211 DFP Compare Unordered X-form
111111 ...// 10100 00010/ I ...X DFP dcmpuq v2.05 211 DFP Compare Unordered Quad X-form
111011 ///// 01000 00010. I ...X DFP dctdp[.] v2.05 229 DFP Convert To DFP Long X-form
111011 ///// 01001 00010. I ...X DFP dctfix[.] v2.05 233 DFP Convert To Fixed X-form
111111 ///// 01001 00010. I ...X DFP dctfixq[.] v2.05 233 DFP Convert To Fixed Quad X-form
111111 00001 11111 00010/ I ...X DFP dctfixqq v3.1 233 DFP Convert To Fixed Quadword Quad X-form
111111 ///// 01000 00010. I ...X DFP dctqpq[.] v2.05 229 DFP Convert To DFP Extended X-form
111011/// 01010 00010. I ...X DFP ddedpd[.] v2.05 235 DFP Decode DPD To BCD X-form
111111/// 01010 00010. I ...X DFP ddedpdq[.] v2.05 235 DFP Decode DPD To BCD Quad X-form
111011 10001 00010. I ...X DFP ddiv[.] v2.05 209 DFP Divide X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 26 of 30)
Power ISA™ Appendices1474

Version 3.1
111111 10001 00010. I ...X DFP ddivq[.] v2.05 209 DFP Divide Quad X-form
111011//// 11010 00010. I ...X DFP denbcd[.] v2.05 235 DFP Encode BCD To DPD X-form
111111//// 11010 00010. I ...X DFP denbcdq[.] v2.05 235 DFP Encode BCD To DPD Quad X-form
111011 11011 00010. I ...X DFP diex[.] v2.05 236 DFP Insert Biased Exponent X-form
111111 11011 00010. I ...X DFP diexq[.] v2.05 236 DFP Insert Biased Exponent Quad X-form
111011 00001 00010. I ...X DFP dmul[.] v2.05 208 DFP Multiply X-form
111111 00001 00010. I ...X DFP dmulq[.] v2.05 208 DFP Multiply Quad X-form
111011000 00011. I ...X DFP dqua[.] v2.05 219 DFP Quantize Z23-form
111011010 00011. I ...X DFP dquai[.] v2.05 217 DFP Quantize Immediate Z23-form
111111010 00011. I ...X DFP dquaiq[.] v2.05 217 DFP Quantize Immediate Quad Z23-form
111111000 00011. I ...X DFP dquaq[.] v2.05 219 DFP Quantize Quad Z23-form
111111 ///// 11000 00010. I ...X DFP drdpq[.] v2.05 230 DFP Round To DFP Long X-form
111011 ////.111 00011. I ...X DFP drintn[.] v2.05 226 DFP Round To FP Integer Without Inexact Z23-form

111111 ////.111 00011. I ...X DFP drintnq[.] v2.05 226 DFP Round To FP Integer Without Inexact Quad
Z23-form

111011 ////.011 00011. I ...X DFP drintx[.] v2.05 224 DFP Round To FP Integer With Inexact Z23-form
111111 ////.011 00011. I ...X DFP drintxq[.] v2.05 224 DFP Round To FP Integer With Inexact Quad Z23-form
111011001 00011. I ...X DFP drrnd[.] v2.05 221 DFP Reround Z23-form
111111001 00011. I ...X DFP drrndq[.] v2.05 221 DFP Reround Quad Z23-form
111011 ///// 11000 00010. I ...X DFP drsp[.] v2.05 230 DFP Round To DFP Short X-form
1110110010 00010. I ...X DFP dscli[.] v2.05 238 DFP Shift Significand Left Immediate Z22-form
1111110010 00010. I ...X DFP dscliq[.] v2.05 238 DFP Shift Significand Left Immediate Quad Z22-form
1110110011 00010. I ...X DFP dscri[.] v2.05 238 DFP Shift Significand Right Immediate Z22-form
1111110011 00010. I ...X DFP dscriq[.] v2.05 238 DFP Shift Significand Right Immediate Quad Z22-form
111011 10000 00010. I ...X DFP dsub[.] v2.05 206 DFP Subtract X-form
111111 10000 00010. I ...X DFP dsubq[.] v2.05 206 DFP Subtract Quad X-form
111011 ...//0110 00010/ I ...X DFP dtstdc v2.05 213 DFP Test Data Class Z22-form
111111 ...//0110 00010/ I ...X DFP dtstdcq v2.05 213 DFP Test Data Class Quad Z22-form
111011 ...//0111 00010/ I ...X DFP dtstdg v2.05 213 DFP Test Data Group Z22-form
111111 ...//0111 00010/ I ...X DFP dtstdgq v2.05 213 DFP Test Data Group Quad Z22-form
111011 ...// 00101 00010/ I ...X DFP dtstex v2.05 214 DFP Test Exponent X-form
111111 ...// 00101 00010/ I ...X DFP dtstexq v2.05 214 DFP Test Exponent Quad X-form
111011 ...// 10101 00010/ I ...X DFP dtstsf v2.05 215 DFP Test Significance X-form
111011 ...// 10101 00011/ I ...X DFP dtstsfi v3.0 216 DFP Test Significance Immediate X-form
111111 ...// 10101 00011/ I ...X DFP dtstsfiq v3.0 216 DFP Test Significance Immediate Quad X-form
111111 ...// 10101 00010/ I ...X DFP dtstsfq v2.05 215 DFP Test Significance Quad X-form
111011 ///// 01011 00010. I ...X DFP dxex[.] v2.05 236 DFP Extract Biased Exponent X-form
111111 ///// 01011 00010. I ...X DFP dxexq[.] v2.05 236 DFP Extract Biased Exponent Quad X-form
010011 ///// ///// ////. 00100 10010/ I ...X EBB rfebb v2.07 Return from Event Based Branch XL-form
011111 ///// ///// 00011 01110/ III ..?X msgclru v3.0C UV 1328 Ultravisor Message Clear X-form
011111 ///// ///// 00010 01110/ III ..?X msgsndu v3.0C UV 1327 Ultravisor Message SendX-form
010011 ///// ///// ///// 01001 10010/ III ..?X urfid v3.0C UV 1153 Ultravisor Return From Interrupt Doubleword XL-form
000001 11100 1//// ../// ///..
111011 ...// 00110 011../

I MMA MMA pmxvbf16ger2 v3.1 827 Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11110 010../

I MMA MMA pmxvbf16ger2nn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01110 010../

I MMA MMA pmxvbf16ger2np v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10110 010../ I MMA MMA pmxvbf16ger2pn v3.1 827

Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) Positive multiply, Negative accumulate
MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 27 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1475

Version 3.1
000001 11100 1//// ../// ///..
111011 ...// 00110 010../ I MMA MMA pmxvbf16ger2pp v3.1 827

Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) Positive multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 011../

I MMA MMA pmxvf16ger2 v3.1 871 Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11010 010../

I MMA MMA pmxvf16ger2nn v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01010 010../

I MMA MMA pmxvf16ger2np v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10010 010../

I MMA MMA pmxvf16ger2pn v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 010../

I MMA MMA pmxvf16ger2pp v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 011../

I MMA MMA pmxvf32ger v3.1 875 Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11011 010../

I MMA MMA pmxvf32gernn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01011 010../

I MMA MMA pmxvf32gernp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10011 010../

I MMA MMA pmxvf32gerpn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 010../

I MMA MMA pmxvf32gerpp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 011../

I MMA MMA pmxvf64ger v3.1 879 Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11111 010../

I MMA MMA pmxvf64gernn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01111 010../

I MMA MMA pmxvf64gernp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10111 010../

I MMA MMA pmxvf64gerpn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 010../ I MMA MMA pmxvf64gerpp v3.1 879

Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01001 011../

I MMA MMA pmxvi16ger2 v3.1 891 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01101 011../

I MMA MMA pmxvi16ger2pp v3.1 891
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 011../

I MMA MMA pmxvi16ger2s v3.1 893 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) with Saturation MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 010../

I MMA MMA pmxvi16ger2spp v3.1 893
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) with Saturation Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 011../ I MMA MMA pmxvi4ger8 v3.1 883 Prefixed Masked VSX Vector 4-bit Signed Integer GER

(rank-8 update) MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 010../

I MMA MMA pmxvi4ger8pp v3.1 883
Prefixed Masked VSX Vector 4-bit Signed Integer GER

(rank-8 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 28 of 30)
Power ISA™ Appendices1476

Version 3.1
000001 11100 1///// ///..
111011 ...// 00000 011../

I MMA MMA pmxvi8ger4 v3.1 886 Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 00000 010../ I MMA MMA pmxvi8ger4pp v3.1 886

Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 01100 011../

I MMA MMA pmxvi8ger4spp v3.1 889
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) with Saturate Positive
multiply, Positive accumulate MMIRR:XX3-form

111011 ...// 00110 011../ I MMA MMA xvbf16ger2 v3.1 827 VSX Vector bfloat16 GER (Rank-2 Update) XX3-form

111011 ...// 11110 010../ I MMA MMA xvbf16ger2nn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
XX3-form

111011 ...// 01110 010../ I MMA MMA xvbf16ger2np v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
XX3-form

111011 ...// 10110 010../ I MMA MMA xvbf16ger2pn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
XX3-form

111011 ...// 00110 010../ I MMA MMA xvbf16ger2pp v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
XX3-form

111011 ...// 00010 011../ I MMA MMA xvf16ger2 v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
XX3-form

111011 ...// 11010 010../ I MMA MMA xvf16ger2nn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01010 010../ I MMA MMA xvf16ger2np v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10010 010../ I MMA MMA xvf16ger2pn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00010 010../ I MMA MMA xvf16ger2pp v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00011 011../ I MMA MMA xvf32ger v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11011 010../ I MMA MMA xvf32gernn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01011 010../ I MMA MMA xvf32gernp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10011 010../ I MMA MMA xvf32gerpn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00011 010../ I MMA MMA xvf32gerpp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00111 011../ I MMA MMA xvf64ger v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11111 010../ I MMA MMA xvf64gernn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01111 010../ I MMA MMA xvf64gernp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10111 010../ I MMA MMA xvf64gerpn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00111 010../ I MMA MMA xvf64gerpp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 01001 011../ I MMA MMA xvi16ger2 v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
XX3-form

111011 ...// 01101 011../ I MMA MMA xvi16ger2pp v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00101 011../ I MMA MMA xvi16ger2s v3.1 893 VSX Vector 16-bit Signed Integer GER (rank-2 update)
with Saturation XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 29 of 30)
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1477

Version 3.1
111011 ...// 00101 010../ I MMA MMA xvi16ger2spp v3.1 893
VSX Vector 16-bit Signed Integer GER (rank-2 update)

with Saturation Positive multiply, Positive
accumulate XX3-form

111011 ...// 00100 011../ I MMA MMA xvi4ger8 v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
XX3-form

111011 ...// 00100 010../ I MMA MMA xvi4ger8pp v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00000 011../ I MMA MMA xvi8ger4 v3.1 886 VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4
update) XX3-form

111011 ...// 00000 010../ I MMA MMA xvi8ger4pp v3.1 886
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) Positive multiply, Positive accumulate
XX3-form

111011 ...// 01100 011../ I MMA MMA xvi8ger4spp v3.1 889
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) with Saturate Positive multiply, Positive
accumulate XX3-form

011111 ...// 00000 ///// 00101 10001/ I MMA MMA xxmfacc v3.1 983 VSX Move From Accumulator X-form
011111 ...// 00001 ///// 00101 10001/ I MMA MMA xxmtacc v3.1 984 VSX Move To Accumulator X-form
011111 ...// 00011 ///// 00101 10001/ I MMA MMA xxsetaccz v3.1 989 VSX Set Accumulator to Zero X-form

1. Instruction
/ Instruction bit that corresponds to a reserved field, must have a value of 0, otherwise invalid form.
- Instruction bit that corresponds to an operand bit, may have a value of either 0 or 1.
0 Instruction bit that corresponds to an opcode bit having a value 0.
1 Instruction bit that corresponds to an opcode bit having a value 1.

2. OpenPOWER Compliancy Subsets
X... Instruction included in the Scalar Fixed-Point Compliancy subset
.X.. Instruction included in the Scalar Fixed-Point + Floating-Point Compliancy subset.
..X. Instruction included in the Linux Compliancy subset.
...X Instruction included in the AIX Compliancy subset.

3. Linux Optional Category
AMO Instruction part of Atomic Memory Operations category.
BFP128 Instruction part of Quad-Precision Floating-Point category.
BHRB Instruction part of Branch History Rolling Buffer category.
DFP Instruction part of Decimal Floating-Point category.
EBB Instruction part of Event-Based Branch category.
MMA Instruction part of Matrix-Multiplication Assist category.

4. Always Optional Category
MMA Instruction part of Matrix-Multiplication Assist category.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 93. Power ISA AS Instruction Set Sorted by Compliancy Subset (Sheet 30 of 30)
Power ISA™ Appendices1478

Version 3.1
5. Version

P1 Instruction introduced in POWER Architecture.
P2 Instruction introduced in POWER2 Architecture.
PPC Instruction introduced in PowerPC Architecture prior to v2.00.
v2.00 Instruction introduced in PowerPC Architecture Version 2.00.
v2.01 Instruction introduced in PowerPC Architecture Version 2.01.
v2.02 Instruction introduced in PowerPC Architecture Version 2.02.
v2.03 Instruction introduced in Power ISA Version 2.03.
v2.04 Instruction introduced in Power ISA Version 2.04.
v2.05 Instruction introduced in Power ISA Version 2.05.
v2.06 Instruction introduced in Power ISA Version 2.06.
v2.07 Instruction introduced in Power ISA Version 2.07.
v3.0 Instruction introduced in Power ISA Version 3.0.
v3.0B Instruction introduced in Power ISA Version 3.0B.
v3.0C Instruction introduced in Power ISA Version 3.0C.
v3.1 Instruction introduced in Power ISA Version 3.1.

6. Privilege

P Denotes an instruction that is treated as privileged.
O Denotes an instruction that is treated as privileged or nonprivileged (or hypervisor-privileged for mtspr), depending on the

SPR or PMR number.
PI Denotes an instruction that is illegal in privileged state.
HV Denotes an instruction that can be executed only in hypervisor state.
UV Denotes an instruction that can be executed only in ultravisor state.

7. Mode Dependency.
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are independent of wheth-
er the processor is in 32-bit or 64-bit mode.

CT If the instruction tests the Count Register, it tests the low-order 32 bits in 32-bit mode and all 64 bits in 64-bit mode.
SR The setting of status registers (such as XER and CR0) is mode-dependent.
SF=1 The instruction can be executed only in 64-bit mode.
Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Complian- 1479

Version 3.1
Power ISA™ Appendices1480

Version 3.1
Appendix H. Power ISA Instruction Set Sorted by
Mnemonic

This appendix lists all the instructions in the Power ISA, sorted by mnemonic.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name
011111 01000 01010. I XXXX add[.] P1 SR 77 Add XO-form
011111 00000 01010. I XXXX addc[.] P1 SR 78 Add Carrying XO-form
011111 10000 01010. I ..XX addco[.] P1 SR 78 Add Carrying & record OV XO-form
011111 00100 01010. I XXXX adde[.] P1 SR 78 Add Extended XO-form
011111 10100 01010. I ..XX addeo[.] P1 SR 78 Add Extended & record OV XO-form
011111101 01010/ I XXXX addex v3.0B 80 Add Extended using alternate carry bit Z23-form
011111 /0010 01010/ I XXXX addg6s v2.06 118 Add and Generate Sixes XO-form
001110 I XXXX addi P1 76 Add Immediate D-form
001100 I XXXX addic P1 SR 77 Add Immediate Carrying D-formy
001101 I XXXX addic. P1 SR 77 Add Immediate Carrying and Record D-form
001111 I XXXX addis P1 76 Add Immediate Shifted D-form
011111 ///// 00111 01010. I XXXX addme[.] P1 SR 79 Add to Minus One Extended XO-form
011111 ///// 10111 01010. I ..XX addmeo[.] P1 SR 79 Add to Minus One Extended & record OV XO-form
011111 11000 01010. I ..XX addo[.] P1 SR 77 Add & record OV XO-form
010011 00010. I XXXX addpcis v3.0 76 Add PC Immediate Shifted DX-form
011111 ///// 00110 01010. I XXXX addze[.] P1 SR 79 Add to Zero Extended XO-form
011111 ///// 10110 01010. I ..XX addzeo[.] P1 SR 79 Add to Zero Extended & record OV XO-form
011111 00000 11100. I XXXX and[.] P1 SR 100 AND X-form
011111 00001 11100. I XXXX andc[.] P1 SR 101 AND with Complement X-form
011100 I XXXX andi. P1 SR 99 AND Immediate D-form
011101 I XXXX andis. P1 SR 99 AND Immediate Shifted D-form
010010 I XXXX b[l][a] P1 41 Branch I-form
010000 I XXXX bc[l][a] P1 CT 41 Branch Conditional B-form
010011 ///.. 10000 10000. I XXXX bcctr[l] P1 CT 42 Branch Conditional to Count Register XL-form
000100 1.000 000001 I ..XX bcdadd. v2.07 478 Decimal Add Modulo VX-form
000100 00111 1.110 000001 I ..XX bcdcfn. v3.0 480 Decimal Convert From National VX-form
000100 00010 1.110 000001 I ..XX bcdcfsq. v3.0 485 Decimal Convert From Signed Quadword VX-form
000100 00110 1.110 000001 I ..XX bcdcfz. v3.0 481 Decimal Convert From Zoned VX-form
000100 01101 000001 I ..XX bcdcpsgn. v3.0 489 Decimal Copy Sign VX-form
000100 00101 1/110 000001 I ..XX bcdctn. v3.0 483 Decimal Convert To National VX-form
000100 00000 1/110 000001 I ..XX bcdctsq. v3.0 486 Decimal Convert To Signed Quadword VX-form
000100 00100 1.110 000001 I ..XX bcdctz. v3.0 484 Decimal Convert To Zoned VX-form
000100 1.011 000001 I ..XX bcds. v3.0 491 Decimal Shift VX-form
000100 11111 1.110 000001 I ..XX bcdsetsgn. v3.0 490 Decimal Set Sign VX-form
000100 1.111 000001 I ..XX bcdsr. v3.0 493 Decimal Shift and Round VX-form
000100 1.001 000001 I ..XX bcdsub. v2.07 478 Decimal Subtract Modulo VX-form

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 1 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1481

Version 3.1
000100 1.100 000001 I ..XX bcdtrunc. v3.0 494 Decimal Truncate VX-form
000100 1/010 000001 I ..XX bcdus. v3.0 492 Decimal Unsigned Shift VX-form
000100 1/101 000001 I ..XX bcdutrunc. v3.0 495 Decimal Unsigned Truncate VX-form
010011 ///.. 00000 10000. I XXXX bclr[l] P1 CT 42 Branch Conditional to Link Register XL-form

010011 ///.. 10001 10000. I XXXX bctar[l] v2.07 43 Branch Conditional to Branch Target Address Register
XL-form

011111 00111 11100/ I ..XX bpermd v2.06 105 Bit Permute Doubleword X-form
011111 ///// 00101 11011/ I ..XX brd v3.1 119 Byte-Reverse Doubleword X-form
011111 ///// 00110 11011/ I XXXX brh v3.1 119 Byte-Reverse Halfword X-form
011111 ///// 00100 11011/ I XXXX brw v3.1 119 Byte-Reverse Word X-form
011111 ///// 01001 11010/ I XXXX cbcdtd v2.06 117 Convert Binary Coded Decimal To Declets X-form
011111 ///// 01000 11010/ I XXXX cdtbcd v2.06 117 Convert Declets To Binary Coded Decimal X-form
011111 00110 11100/ I ..XX cfuged v3.1 106 Centrifuge Doubleword X-form
011111 ///// ///// ///// 01101 01110/ I ...X BHRB clrbhrb v2.07 Clear BHRB X-form
011111 .../. 00000 00000/ I XXXX cmp P1 93 Compare X-form
011111 01111 11100/ I XXXX cmpb v2.05 102 Compare Bytes X-form
011111 ...// 00111 00000/ I XXXX cmpeqb v3.0 95 Compare Equal Byte X-form
001011 .../. I XXXX cmpi P1 93 Compare Immediate D-form
011111 .../. 00001 00000/ I XXXX cmpl P1 93 Compare Logical X-form
001010 .../. I XXXX cmpli P1 93 Compare Logical Immediate D-form
011111 .../. 00110 00000/ I XXXX cmprb v3.0 94 Compare Ranged Byte X-form
011111 ///// 00001 11010. I ..XX cntlzd[.] PPC SR 104 Count Leading Zeros Doubleword X-form

011111 00001 11011/ I ..XX cntlzdm v3.1 105 Count Leading Zeros Doubleword under bit Mask
X-form

011111 ///// 00000 11010. I XXXX cntlzw[.] P1 SR 102 Count Leading Zeros Word X-form
011111 ///// 10001 11010. I ..XX cnttzd[.] v3.0 104 Count Trailing Zeros Doubleword X-form
011111 10001 11011/ I ..XX cnttzdm v3.1 105 Count Trailing Zeros Doubleword under bit Mask X-form
011111 ///// 10000 11010. I XXXX cnttzw[.] v3.0 102 Count Trailing Zeros Word X-form
011111 ////. 11000 00110/ II ...X copy v3.0 1068 Copy X-form
011111 ///// ///// ///// 11010 00110/ II ...X cpabort v3.0 1069 Copy-Paste Abort X-form
010011 01000 00001/ I XXXX crand P1 44 Condition Register AND XL-form
010011 00100 00001/ I XXXX crandc P1 45 Condition Register AND with Complement XL-form
010011 01001 00001/ I XXXX creqv P1 45 Condition Register Equivalent XL-form
010011 00111 00001/ I XXXX crnand P1 44 Condition Register NAND XL-form
010011 00001 00001/ I XXXX crnor P1 45 Condition Register NOR XL-form
010011 01110 00001/ I XXXX cror P1 44 Condition Register OR XL-form
010011 01101 00001/ I XXXX crorc P1 45 Condition Register OR with Complement XL-form
010011 00110 00001/ I XXXX crxor P1 44 Condition Register XOR XL-form
111011 00000 00010. I ...X DFP dadd[.] v2.05 206 DFP Add X-form
111111 00000 00010. I ...X DFP daddq[.] v2.05 206 DFP Add Quad X-form
011111 ///.. ///// 10111 10011/ I ...X darn v3.0 86 Deliver A Random Number X-form
011111 ///.. 00010 10110/ II ...X dcbf PPC 1064 Data Cache Block Flush X-form
011111 ///// 00001 10110/ II ...X dcbst PPC 1063 Data Cache Block Store X-form
011111 01000 10110/ II ...X dcbt PPC 1061 Data Cache Block Touch X-form
011111 00111 10110/ II ...X dcbtst PPC 1062 Data Cache Block Touch for Store X-form
011111 ///// 11111 10110/ II ...X dcbz P1 1063 Data Cache Block set to Zero X-form
111011 ///// 11001 00010. I ...X DFP dcffix[.] v2.06 231 DFP Convert From Fixed X-form
111111 ///// 11001 00010. I ...X DFP dcffixq[.] v2.05 231 DFP Convert From Fixed Quad X-form
111111 00000 11111 00010/ I ...X DFP dcffixqq v3.1 232 DFP Convert From Fixed Quadword Quad X-form
111011 ...// 00100 00010/ I ...X DFP dcmpo v2.05 212 DFP Compare Ordered X-form
111111 ...// 00100 00010/ I ...X DFP dcmpoq v2.05 212 DFP Compare Ordered Quad X-form
111011 ...// 10100 00010/ I ...X DFP dcmpu v2.05 211 DFP Compare Unordered X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 2 of 30)
Power ISA™ Appendices1482

Version 3.1
111111 ...// 10100 00010/ I ...X DFP dcmpuq v2.05 211 DFP Compare Unordered Quad X-form
111011 ///// 01000 00010. I ...X DFP dctdp[.] v2.05 229 DFP Convert To DFP Long X-form
111011 ///// 01001 00010. I ...X DFP dctfix[.] v2.05 233 DFP Convert To Fixed X-form
111111 ///// 01001 00010. I ...X DFP dctfixq[.] v2.05 233 DFP Convert To Fixed Quad X-form
111111 00001 11111 00010/ I ...X DFP dctfixqq v3.1 233 DFP Convert To Fixed Quadword Quad X-form
111111 ///// 01000 00010. I ...X DFP dctqpq[.] v2.05 229 DFP Convert To DFP Extended X-form
111011/// 01010 00010. I ...X DFP ddedpd[.] v2.05 235 DFP Decode DPD To BCD X-form
111111/// 01010 00010. I ...X DFP ddedpdq[.] v2.05 235 DFP Decode DPD To BCD Quad X-form
111011 10001 00010. I ...X DFP ddiv[.] v2.05 209 DFP Divide X-form
111111 10001 00010. I ...X DFP ddivq[.] v2.05 209 DFP Divide Quad X-form
111011//// 11010 00010. I ...X DFP denbcd[.] v2.05 235 DFP Encode BCD To DPD X-form
111111//// 11010 00010. I ...X DFP denbcdq[.] v2.05 235 DFP Encode BCD To DPD Quad X-form
111011 11011 00010. I ...X DFP diex[.] v2.05 236 DFP Insert Biased Exponent X-form
111111 11011 00010. I ...X DFP diexq[.] v2.05 236 DFP Insert Biased Exponent Quad X-form
011111 01111 01001. I ..XX divd[.] PPC SR 89 Divide Doubleword XO-form
011111 01101 01001. I ..XX divde[.] v2.06 SR 90 Divide Doubleword Extended XO-form
011111 11101 01001. I ..XX divdeo[.] v2.06 SR 90 Divide Doubleword Extended & record OV XO-form
011111 01100 01001. I ..XX divdeu[.] v2.06 SR 90 Divide Doubleword Extended Unsigned XO-form

011111 11100 01001. I ..XX divdeuo[.] v2.06 SR 90 Divide Doubleword Extended Unsigned & record OV
XO-form

011111 11111 01001. I ..XX divdo[.] PPC SR 89 Divide Doubleword & record OV XO-form
011111 01110 01001. I ..XX divdu[.] PPC SR 89 Divide Doubleword Unsigned XO-form
011111 11110 01001. I ..XX divduo[.] PPC SR 89 Divide Doubleword Unsigned & record OV XO-form
011111 01111 01011. I XXXX divw[.] PPC SR 82 Divide Word XO-form
011111 01101 01011. I XXXX divwe[.] v2.06 SR 83 Divide Word Extended XO-form
011111 11101 01011. I ..XX divweo[.] v2.06 SR 83 Divide Word Extended & record OV XO-form
011111 01100 01011. I XXXX divweu[.] v2.06 SR 83 Divide Word Extended Unsigned XO-form
011111 11100 01011. I ..XX divweuo[.] v2.06 SR 83 Divide Word Extended Unsigned & record OV XO-form
011111 11111 01011. I ..XX divwo[.] PPC SR 82 Divide Word & record OV XO-form
011111 01110 01011. I XXXX divwu[.] PPC SR 82 Divide Word Unsigned XO-form
011111 11110 01011. I ..XX divwuo[.] PPC SR 82 Divide Word Unsigned & record OV XO-form
111011 00001 00010. I ...X DFP dmul[.] v2.05 208 DFP Multiply X-form
111111 00001 00010. I ...X DFP dmulq[.] v2.05 208 DFP Multiply Quad X-form
111011000 00011. I ...X DFP dqua[.] v2.05 219 DFP Quantize Z23-form
111011010 00011. I ...X DFP dquai[.] v2.05 217 DFP Quantize Immediate Z23-form
111111010 00011. I ...X DFP dquaiq[.] v2.05 217 DFP Quantize Immediate Quad Z23-form
111111000 00011. I ...X DFP dquaq[.] v2.05 219 DFP Quantize Quad Z23-form
111111 ///// 11000 00010. I ...X DFP drdpq[.] v2.05 230 DFP Round To DFP Long X-form
111011 ////.111 00011. I ...X DFP drintn[.] v2.05 226 DFP Round To FP Integer Without Inexact Z23-form

111111 ////.111 00011. I ...X DFP drintnq[.] v2.05 226 DFP Round To FP Integer Without Inexact Quad
Z23-form

111011 ////.011 00011. I ...X DFP drintx[.] v2.05 224 DFP Round To FP Integer With Inexact Z23-form
111111 ////.011 00011. I ...X DFP drintxq[.] v2.05 224 DFP Round To FP Integer With Inexact Quad Z23-form
111011001 00011. I ...X DFP drrnd[.] v2.05 221 DFP Reround Z23-form
111111001 00011. I ...X DFP drrndq[.] v2.05 221 DFP Reround Quad Z23-form
111011 ///// 11000 00010. I ...X DFP drsp[.] v2.05 230 DFP Round To DFP Short X-form
1110110010 00010. I ...X DFP dscli[.] v2.05 238 DFP Shift Significand Left Immediate Z22-form
1111110010 00010. I ...X DFP dscliq[.] v2.05 238 DFP Shift Significand Left Immediate Quad Z22-form
1110110011 00010. I ...X DFP dscri[.] v2.05 238 DFP Shift Significand Right Immediate Z22-form
1111110011 00010. I ...X DFP dscriq[.] v2.05 238 DFP Shift Significand Right Immediate Quad Z22-form
111011 10000 00010. I ...X DFP dsub[.] v2.05 206 DFP Subtract X-form
111111 10000 00010. I ...X DFP dsubq[.] v2.05 206 DFP Subtract Quad X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 3 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1483

Version 3.1
111011 ...//0110 00010/ I ...X DFP dtstdc v2.05 213 DFP Test Data Class Z22-form
111111 ...//0110 00010/ I ...X DFP dtstdcq v2.05 213 DFP Test Data Class Quad Z22-form
111011 ...//0111 00010/ I ...X DFP dtstdg v2.05 213 DFP Test Data Group Z22-form
111111 ...//0111 00010/ I ...X DFP dtstdgq v2.05 213 DFP Test Data Group Quad Z22-form
111011 ...// 00101 00010/ I ...X DFP dtstex v2.05 214 DFP Test Exponent X-form
111111 ...// 00101 00010/ I ...X DFP dtstexq v2.05 214 DFP Test Exponent Quad X-form
111011 ...// 10101 00010/ I ...X DFP dtstsf v2.05 215 DFP Test Significance X-form
111011 ...// 10101 00011/ I ...X DFP dtstsfi v3.0 216 DFP Test Significance Immediate X-form
111111 ...// 10101 00011/ I ...X DFP dtstsfiq v3.0 216 DFP Test Significance Immediate Quad X-form
111111 ...// 10101 00010/ I ...X DFP dtstsfq v2.05 215 DFP Test Significance Quad X-form
111011 ///// 01011 00010. I ...X DFP dxex[.] v2.05 236 DFP Extract Biased Exponent X-form
111111 ///// 01011 00010. I ...X DFP dxexq[.] v2.05 236 DFP Extract Biased Exponent Quad X-form
011111 ///// ///// ///// 11010 10110/ II ...X eieio PPC 1088 Enforce In-order Execution of I/O X-form
011111 01000 11100. I XXXX eqv[.] P1 SR 101 Equivalent X-form
011111 ///// 11101 11010. I XXXX extsb[.] PPC SR 102 Extend Sign Byte X-form
011111 ///// 11100 11010. I XXXX extsh[.] P1 SR 102 Extend Sign Halfword X-form
011111 ///// 11110 11010. I ..XX extsw[.] PPC SR 104 Extend Sign Word X-form
011111 11011 1101.. I ..XX extswsli[.] v3.0 116 Extend Sign Word and Shift Left Immediate XS-form
111111 ///// 01000 01000. I .XXX fabs[.] P1 161 Floating Absolute Value X-form
111111 ///// 10101. I .XXX fadd[.] P1 163 Floating Add A-form
111011 ///// 10101. I .XXX fadds[.] PPC 163 Floating Add Single A-form

111111 ///// 11010 01110. I .XXX fcfid[.] PPC 174 Floating Convert with round Signed Doubleword to
Double-Precision format X-form

111011 ///// 11010 01110. I .XXX fcfids[.] v2.06 175 Floating Convert with round Signed Doubleword to
Single-Precision format X-form

111111 ///// 11110 01110. I .XXX fcfidu[.] v2.06 175 Floating Convert with round Unsigned Doubleword to
Double-Precision format X-form

111011 ///// 11110 01110. I .XXX fcfidus[.] v2.06 176 Floating Convert with round Unsigned Doubleword to
Single-Precision format X-form

111111 ...// 00001 00000/ I .XXX fcmpo P1 179 Floating Compare Ordered X-form
111111 ...// 00000 00000/ I .XXX fcmpu P1 179 Floating Compare Unordered X-form
111111 00000 01000. I .XXX fcpsgn[.] v2.05 161 Floating Copy Sign X-form

111111 ///// 11001 01110. I .XXX fctid[.] PPC 170 Floating Convert with round Double-Precision To Signed
Doubleword format X-form

111111 ///// 11101 01110. I .XXX fctidu[.] v2.06 171 Floating Convert with round Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11101 01111. I .XXX fctiduz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Doubleword format X-form

111111 ///// 11001 01111. I .XXX fctidz[.] PPC 171 Floating Convert with truncate Double-Precision To
Signed Doubleword format X-form

111111 ///// 00000 01110. I .XXX fctiw[.] P2 172 Floating Convert with round Double-Precision To Signed
Word format X-form

111111 ///// 00100 01110. I .XXX fctiwu[.] v2.06 173 Floating Convert with round Double-Precision To
Unsigned Word format X-form

111111 ///// 00100 01111. I .XXX fctiwuz[.] v2.06 172 Floating Convert with truncate Double-Precision To
Unsigned Word format X-form

111111 ///// 00000 01111. I .XXX fctiwz[.] P2 173 Floating Convert with truncate Double-Precision To
Signed Word fomat X-form

111111 ///// 10010. I .XXX fdiv[.] P1 164 Floating Divide A-form
111011 ///// 10010. I .XXX fdivs[.] PPC 164 Floating Divide Single A-form
111111 11101. I .XXX fmadd[.] P1 168 Floating Multiply-Add A-form
111011 11101. I .XXX fmadds[.] PPC 168 Floating Multiply-Add Single A-form
111111 ///// 00010 01000. I .XXX fmr[.] P1 161 Floating Move Register X-form
111111 11110 00110/ I .XXX fmrgew v2.07 162 Floating Merge Even Word X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 4 of 30)
Power ISA™ Appendices1484

Version 3.1
111111 11010 00110/ I .XXX fmrgow v2.07 162 Floating Merge Odd Word X-form
111111 11100. I .XXX fmsub[.] P1 168 Floating Multiply-Subtract A-form
111011 11100. I .XXX fmsubs[.] PPC 168 Floating Multiply-Subtract Single A-form
111111 ///// 11001. I .XXX fmul[.] P1 164 Floating Multiply A-form
111011 ///// 11001. I .XXX fmuls[.] PPC 164 Floating Multiply Single A-form
111111 ///// 00100 01000. I .XXX fnabs[.] P1 161 Floating Negative Absolute Value X-form
111111 ///// 00001 01000. I .XXX fneg[.] P1 161 Floating Negate X-form
111111 11111. I .XXX fnmadd[.] P1 169 Floating Negative Multiply-Add A-form
111011 11111. I .XXX fnmadds[.] PPC 169 Floating Negative Multiply-Add Single A-form
111111 11110. I .XXX fnmsub[.] P1 169 Floating Negative Multiply-Subtract A-form
111011 11110. I .XXX fnmsubs[.] PPC 169 Floating Negative Multiply-Subtract Single A-form
111111 ///// ///// 11000. I .XXX fre[.] v2.02 165 Floating Reciprocal Estimate A-form
111011 ///// ///// 11000. I .XXX fres[.] PPC 165 Floating Reciprocal Estimate Single A-form
111111 ///// 01111 01000. I .XXX frim[.] v2.02 178 Floating Round to Integer Minus X-form
111111 ///// 01100 01000. I .XXX frin[.] v2.02 178 Floating Round to Integer Nearest X-form
111111 ///// 01110 01000. I .XXX frip[.] v2.02 178 Floating Round to Integer Plus X-form
111111 ///// 01101 01000. I .XXX friz[.] v2.02 178 Floating Round to Integer Toward Zero X-form
111111 ///// 00000 01100. I .XXX frsp[.] P1 170 Floating Round to Single-Precision X-form
111111 ///// ///// 11010. I .XXX frsqrte[.] PPC 166 Floating Reciprocal Square Root Estimate A-form
111011 ///// ///// 11010. I .XXX frsqrtes[.] v2.02 166 Floating Reciprocal Square Root Estimate Single A-form
111111 10111. I .XXX fsel[.] PPC 180 Floating Select A-form
111111 ///// ///// 10110. I .XXX fsqrt[.] P2 165 Floating Square Root A-form
111011 ///// ///// 10110. I .XXX fsqrts[.] PPC 165 Floating Square Root Single A-form
111111 ///// 10100. I .XXX fsub[.] P1 163 Floating Subtract A-form
111011 ///// 10100. I .XXX fsubs[.] PPC 163 Floating Subtract Single A-form
111111 ...// 00100 00000/ I .XXX ftdiv v2.06 166 Floating Test for software Divide X-form
111111 ...// ///// 00101 00000/ I .XXX ftsqrt v2.06 167 Floating Test for software Square Root X-form
010011 ///// ///// ///// 01000 10010/ III ...X hrfid v2.02 HV 1152 Return From Interrupt Doubleword Hypervisor XL-form
011111 ///// 11110 10110/ II ...X icbi PPC 1052 Instruction Cache Block Invalidate X-form
011111 /.... 00000 10110/ II ...X icbt v2.07 1052 Instruction Cache Block Touch X-form
011111 01111/ I ...X isel v2.03 98 Integer Select A-form
010011 ///// ///// ///// 00100 10110/ II ...X isync P1 1076 Instruction Synchronize XL-form
011111 00001 10100. II ...X lbarx v2.06 1077 Load Byte And Reserve Indexed X-form
100010 I XXXX lbz P1 52 Load Byte and Zero D-form
011111 11010 10101/ III ...X lbzcix v2.05 HV 1164 Load Byte & Zero Caching Inhibited Indexed X-form
100011 I XXXX lbzu P1 52 Load Byte and Zero with Update D-form
011111 00011 10111/ I XXXX lbzux P1 52 Load Byte and Zero with Update Indexed X-form
011111 00010 10111/ I XXXX lbzx P1 52 Load Byte and Zero Indexed X-form
11101000 I ..XX ld PPC 57 Load Doubleword DS-form
011111 00010 10100/ II ..XX ldarx PPC 1082 Load Doubleword And Reserve Indexed X-form
011111 10011 00110/ II ...X AMO ldat v3.0 1073 Load Doubleword ATomic X-form
011111 10000 10100/ I ..XX ldbrx v2.06 69 Load Doubleword Byte-Reverse Indexed X-form
011111 11011 10101/ III ...X ldcix v2.05 HV 1164 Load Doubleword Caching Inhibited Indexed X-form
11101001 I ..XX ldu PPC 57 Load Doubleword with Update DS-form
011111 00001 10101/ I ..XX ldux PPC 57 Load Doubleword with Update Indexed X-form
011111 00000 10101/ I ..XX ldx PPC 57 Load Doubleword Indexed X-form
110010 I .XXX lfd P1 152 Load Floating-Point Double D-form
11100100 I ...X lfdp v2.05 159 Load Floating-Point Double Pair DS-form
011111 11000 10111/ I ...X lfdpx v2.05 159 Load Floating-Point Double Pair Indexed X-form
110011 I .XXX lfdu P1 152 Load Floating-Point Double with Update D-form
011111 10011 10111/ I .XXX lfdux P1 152 Load Floating-Point Double with Update Indexed X-form
011111 10010 10111/ I .XXX lfdx P1 152 Load Floating-Point Double Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 5 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1485

Version 3.1
011111 11010 10111/ I .XXX lfiwax v2.05 153 Load Floating-Point as Integer Word Algebraic Indexed
X-form

011111 11011 10111/ I .XXX lfiwzx v2.06 153 Load Floating-Point as Integer Word & Zero Indexed
X-form

110000 I .XXX lfs P1 150 Load Floating-Point Single D-form
110001 I .XXX lfsu P1 150 Load Floating-Point Single with Update D-form
011111 10001 10111/ I .XXX lfsux P1 151 Load Floating-Point Single with Update Indexed X-form
011111 10000 10111/ I .XXX lfsx P1 150 Load Floating-Point Single Indexed X-form
101010 I XXXX lha P1 54 Load Halfword Algebraic D-form
011111 00011 10100. II ...X lharx v2.06 1078 Load Halfword And Reserve Indexed Xform
101011 I XXXX lhau P1 54 Load Halfword Algebraic with Update D-form
011111 01011 10111/ I XXXX lhaux P1 54 Load Halfword Algebraic with Update Indexed X-form
011111 01010 10111/ I XXXX lhax P1 54 Load Halfword Algebraic Indexed X-form
011111 11000 10110/ I ...X lhbrx P1 67 Load Halfword Byte-Reverse Indexed X-form
101000 I XXXX lhz P1 53 Load Halfword and Zero D-form
011111 11001 10101/ III ...X lhzcix v2.05 HV 1164 Load Halfword & Zero Caching Inhibited Indexed X-form
101001 I XXXX lhzu P1 53 Load Halfword and Zero with Update D-form
011111 01001 10111/ I XXXX lhzux P1 53 Load Halfword and Zero with Update Indexed X-form
011111 01000 10111/ I XXXX lhzx P1 53 Load Halfword and Zero Indexed X-form
101110 I ...X lmw P1 70 Load Multiple Word D-form
111000 I ..XX lq v2.03 65 Load Quadword DQ-form
011111 01000 10100. I ..XX lqarx v2.07 Load Quadword And Reserve Indexed X-form
011111 ///// 11111 10111/ III ..XX lqm v3.1 ?? ?? Load Quadword Metadata
011111 10010 10101/ I ...X lswi P1 72 Load String Word Immediate X-form
011111 10000 10101/ I ...X lswx P1 72 Load String Word Indexed X-form
011111 00000 00111/ I ..XX lvebx v2.03 268 Load Vector Element Byte Indexed X-form
011111 00001 00111/ I ..XX lvehx v2.03 269 Load Vector Element Halfword Indexed X-form
011111 00010 00111/ I ..XX lvewx v2.03 270 Load Vector Element Word Indexed X-form
011111 00000 00110/ I ..XX lvsl v2.03 277 Load Vector for Shift Left Indexed X-form
011111 00001 00110/ I ..XX lvsr v2.03 277 Load Vector for Shift Right Indexed X-form
011111 00011 00111/ I ..XX lvx v2.03 271 Load Vector Indexed X-form
011111 01011 00111/ I ..XX lvxl v2.03 271 Load Vector Indexed Last X-form
11101010 I ..XX lwa PPC 56 Load Word Algebraic DS-form
011111 00000 10100/ II ..XX lwarx PPC 1078 Load Word & Reserve Indexed X-form
011111 10010 00110/ II ...X AMO lwat v3.0 1073 Load Word ATomic X-form
011111 01011 10101/ I ..XX lwaux PPC 56 Load Word Algebraic with Update Indexed X-form
011111 01010 10101/ I ..XX lwax PPC 56 Load Word Algebraic Indexed X-form
011111 10000 10110/ I XXXX lwbrx P1 68 Load Word Byte-Reverse Indexed X-form
100000 I XXXX lwz P1 55 Load Word and Zero D-form
011111 11000 10101/ III ...X lwzcix v2.05 HV 1164 Load Word & Zero Caching Inhibited Indexed X-form
100001 I XXXX lwzu P1 55 Load Word and Zero with Update D-form
011111 00001 10111/ I XXXX lwzux P1 55 Load Word and Zero with Update Indexed X-form
011111 00000 10111/ I XXXX lwzx P1 55 Load Word and Zero Indexed X-form
11100110 I ..XX lxsd v3.0 610 Load VSX Scalar Doubleword DS-form
011111 10010 01100. I ..XX lxsdx v2.06 611 Load VSX Scalar Doubleword Indexed X-form
011111 11000 01101. I ..XX lxsibzx v3.0 612 Load VSX Scalar as Integer Byte & Zero Indexed X-form

011111 11001 01101. I ..XX lxsihzx v3.0 612 Load VSX Scalar as Integer Halfword & Zero Indexed
X-form

011111 00010 01100. I ..XX lxsiwax v2.07 613 Load VSX Scalar as Integer Word Algebraic Indexed
X-form

011111 00000 01100. I ..XX lxsiwzx v2.07 614 Load VSX Scalar as Integer Word & Zero Indexed
X-form

11100111 I ..XX lxssp v3.0 615 Load VSX Scalar Single-Precision DS-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 6 of 30)
Power ISA™ Appendices1486

Version 3.1
011111 10000 01100. I ..XX lxsspx v2.07 616 Load VSX Scalar Single-Precision Indexed X-form
111101001 I ..XX lxv v3.0 617 Load VSX Vector DQ-form
011111 11011 01100. I ..XX lxvb16x v3.0 618 Load VSX Vector Byte*16 Indexed X-form
011111 11010 01100. I ..XX lxvd2x v2.06 619 Load VSX Vector Doubleword*2 Indexed X-form
011111 01010 01100. I ..XX lxvdsx v2.06 633 Load VSX Vector Doubleword & Splat Indexed X-form
011111 11001 01100. I ..XX lxvh8x v3.0 634 Load VSX Vector Halfword*8 Indexed X-form
111100 11111 01011 01000. I ..XX lxvkq v3.1 620 Load VSX Vector Special Value Quadword X-form
011111 01000 01101. I ..XX lxvl v3.0 621 Load VSX Vector with Length X-form
011111 01001 01101. I ..XX lxvll v3.0 623 Load VSX Vector with Length Left-justified X-form
0001100000 I ..XX lxvp v3.1 625 Load VSX Vector Paired DQ-form
011111 01010 01101/ I ..XX lxvpx v3.1 626 Load VSX Vector Paired Indexed X-form
011111 00000 01101. I ..XX lxvrbx v3.1 627 Load VSX Vector Rightmost Byte Indexed X-form

011111 00011 01101. I ..XX lxvrdx v3.1 628 Load VSX Vector Rightmost Doubleword Indexed
X-form

011111 00001 01101. I ..XX lxvrhx v3.1 629 Load VSX Vector Rightmost Halfword Indexed X-form
011111 00010 01101. I ..XX lxvrwx v3.1 630 Load VSX Vector Rightmost Word Indexed X-form
011111 11000 01100. I ..XX lxvw4x v2.06 635 Load VSX Vector Word*4 Indexed X-form
011111 01011 01100. I ..XX lxvwsx v3.0 636 Load VSX Vector Word & Splat Indexed X-form
011111 0100/ 01100. I ..XX lxvx v3.0 631 Load VSX Vector Indexed X-form
000100 110000 I ..XX maddhd v3.0 88 Multiply-Add High Doubleword VA-form
000100 110001 I ..XX maddhdu v3.0 88 Multiply-Add High Doubleword Unsigned VA-form
000100 110011 I ..XX maddld v3.0 88 Multiply-Add Low Doubleword VA-form
010011 ...// ...// ///// 00000 00000/ I XXXX mcrf P1 46 Move Condition Register Field XL-form
111111 ...// ...// ///// 00010 00000/ I .XXX mcrfs P1 184 Move to Condition Register from FPSCR X-form
011111 ...// ///// ///// 10010 00000/ I XXXX mcrxrx v3.0 127 Move to CR from XER Extended X-form
011111 01001 01110/ I ...X BHRB mfbhrbe v2.07 Move From BHRB XFX-form
011111 0//// ///// 00000 10011/ I XXXX mfcr P1 128 Move From Condition Register XFX-form
111111 00000 ///// 10010 00111. I .XXX mffs[.] P1 182 Move From FPSCR X-form
111111 10100 10010 00111/ I .XXX mffscdrn v3.0B 182 Move From FPSCR Control & Set DRN X-form

111111 10101 //... 10010 00111/ I .XXX mffscdrni v3.0B 183 Move From FPSCR Control & Set DRN Immediate
X-form

111111 00001 ///// 10010 00111/ I .XXX mffsce v3.0B 182 Move From FPSCR & Clear Enables X-form
111111 10110 10010 00111/ I .XXX mffscrn v3.0B 183 Move From FPSCR Control & Set RN X-form
111111 10111 ///.. 10010 00111/ I .XXX mffscrni v3.0B 183 Move From FPSCR Control & Set RN Immediate X-form
111111 11000 ///// 10010 00111/ I .XXX mffsl v3.0B 183 Move From FPSCR Lightweight X-form
011111 ///// ///// 00010 10011/ III XXXX mfmsr P1 P 1176 Move From MSR X-form
011111 1..../ 00000 10011/ I XXXX mfocrf v2.01 128 Move From One Condition Register Field XFX-form

011111 01010 10011/
I
III

XXXX mfspr P1 O 126
1173 Move From Special Purpose Register XFX-form

011111 01011 10011/ II XXXX mftb PPC 1094 Move From Time Base XFX-form
000100 ///// ///// 11000 000100 I ..XX mfvscr v2.03 496 Move From Vector Status and Control Register VX-form
011111 ///// 00001 10011. I ..XX mfvsrd v2.07 120 Move From VSR Doubleword X-form
011111 ///// 01001 10011. I ..XX mfvsrld v3.0 120 Move From VSR Lower Doubleword X-form
011111 ///// 00011 10011. I ..XX mfvsrwz v2.07 121 Move From VSR Word and Zero X-form
011111 11000 01001/ I ..XX modsd v3.0 91 Modulo Signed Doubleword X-form
011111 11000 01011/ I XXXX modsw v3.0 85 Modulo Signed Word X-form
011111 01000 01001/ I ..XX modud v3.0 91 Modulo Unsigned Doubleword X-form
011111 01000 01011/ I XXXX moduw v3.0 85 Modulo Unsigned Word X-form
011111 ///// ///// 00111 01110/ III ...X msgclr v2.07 HV 1329 Message Clear X-form
011111 ///// ///// 00101 01110/ III ...X msgclrp v2.07 P 1331 Message Clear Privileged X-form
011111 ///// ///// 00011 01110/ III ..?X msgclru v3.0C UV 1328 Ultravisor Message Clear X-form
011111 ///// ///// 00110 01110/ III ...X msgsnd v2.07 HV 1328 Message Send X-form
011111 ///// ///// 00100 01110/ III ...X msgsndp v2.07 P 1330 Message Send Privileged X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 7 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1487

Version 3.1
011111 ///// ///// 00010 01110/ III ..?X msgsndu v3.0C UV 1327 Ultravisor Message SendX-form
011111 ///// ///// ///// 11011 10110/ III ...X msgsync v3.0 HV 1331 Message Synchronize X-form
011111 0..../ 00100 10000/ I XXXX mtcrf P1 127 Move To Condition Register Fields XFX-form
111111 ///// ///// 00010 00110. I .XXX mtfsb0[.] P1 185 Move To FPSCR Bit 0 X-form
111111 ///// ///// 00001 00110. I .XXX mtfsb1[.] P1 185 Move To FPSCR Bit 1 X-form
111111 10110 00111. I .XXX mtfsf[.] P1 184 Move To FPSCR Fields XFL-form
111111 ...// ////./ 00100 00110. I .XXX mtfsfi[.] P1 184 Move To FPSCR Field Immediate X-form
011111 ////. ///// 00100 10010/ III XXXX mtmsr P1 P 1174 Move To MSR X-form
011111 ////. ///// 00101 10010/ III ...X mtmsrd PPC P 1175 Move To MSR Doubleword X-form
011111 1..../ 00100 10000/ I XXXX mtocrf v2.01 127 Move To One Condition Register Field XFX-form

011111 01110 10011/ I
III

XXXX mtspr P1 O 124
1171 Move To Special Purpose Register XFX-form

000100 ///// ///// 11001 000100 I ..XX mtvscr v2.03 496 Move To Vector Status and Control Register VX-form
000100 10000 11001 000010 I ..XX mtvsrbm v3.1 463 Move to VSR Byte Mask VX-form
000100 01010. I ..XX mtvsrbmi v3.1 465 Move To VSR Byte Mask Immediate DX-form
011111 ///// 00101 10011. I ..XX mtvsrd v2.07 121 Move To VSR Doubleword X-form
011111 01101 10011. I ..XX mtvsrdd v3.0 123 Move To VSR Double Doubleword X-form
000100 10011 11001 000010 I ..XX mtvsrdm v3.1 464 Move to VSR Doubleword Mask VX-form
000100 10001 11001 000010 I ..XX mtvsrhm v3.1 463 Move to VSR Halfword Mask VX-form
000100 10100 11001 000010 I ..XX mtvsrqm v3.1 465 Move to VSR Quadword Mask VX-form
011111 ///// 00110 10011. I ..XX mtvsrwa v2.07 122 Move To VSR Word Algebraic X-form
000100 10010 11001 000010 I ..XX mtvsrwm v3.1 464 Move to VSR Word Mask VX-form
011111 ///// 01100 10011. I ..XX mtvsrws v3.0 123 Move To VSR Word & Splat X-form
011111 ///// 00111 10011. I ..XX mtvsrwz v2.07 122 Move To VSR Word and Zero X-form
011111 /0010 01001. I ..XX mulhd[.] PPC SR 87 Multiply High Doubleword XO-form
011111 /0000 01001. I ..XX mulhdu[.] PPC SR 87 Multiply High Doubleword Unsigned XO-form
011111 /0010 01011. I XXXX mulhw[.] PPC SR 81 Multiply High Word XO-form
011111 /0000 01011. I XXXX mulhwu[.] PPC SR 81 Multiply High Word Unsigned XO-form
011111 00111 01001. I ..XX mulld[.] PPC SR 87 Multiply Low Doubleword XO-form
011111 10111 01001. I ..XX mulldo[.] PPC SR 87 Multiply Low Doubleword & record OV XO-form
000111 I XXXX mulli P1 81 Multiply Low Immediate D-form
011111 00111 01011. I XXXX mullw[.] P1 SR 81 Multiply Low Word XO-form
011111 10111 01011. I ..XX mullwo[.] P1 SR 81 Multiply Low Word & record OV XO-form
011111 01110 11100. I XXXX nand[.] P1 SR 100 NAND X-form
011111 ///// 00011 01000. I XXXX neg[.] P1 SR 80 Negate XO-form
011111 ///// 10011 01000. I ..XX nego[.] P1 SR 80 Negate & record OV XO-form
011111 00011 11100. I XXXX nor[.] P1 SR 101 NOR X-form
011111 01101 11100. I XXXX or[.] P1 SR 101 OR X-form
011111 01100 11100. I XXXX orc[.] P1 SR 101 OR with Complement X-form
011000 I XXXX ori P1 99 OR Immediate D-form
011001 I XXXX oris P1 100 OR Immediate Shifted D-form
000001 100// .//..
001110

I ..XX paddi v3.1 76 Prefixed Add Immediate MLS:D-form

011111 ////. 11100 00110. II ..XX paste[.] v3.0 1068 Paste X-form
011111 00100 11100/ I ..XX pdepd v3.1 106 Parallel Bits Deposit Doubleword X-form
011111 00101 11100/ I ..XX pextd v3.1 106 Parallel Bits Extract Doubleword X-form
000001 100// .//..
100010 I ..XX plbz v3.1 52 Prefixed Load Byte and Zero MLS:D-form

000001 000// .//..
111001 I ..XX pld v3.1 57 Prefixed Load Doubleword 8LS:D-form

000001 100// .//..
110010 I ..XX plfd v3.1 152 Prefixed Load Floating-Point Double MLS:D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 8 of 30)
Power ISA™ Appendices1488

Version 3.1
000001 100// .//..
110000

I ..XX plfs v3.1 150 Prefixed Load Floating-Point Single MLS:D-form

000001 100// .//..
101010

I ..XX plha v3.1 54 Prefixed Load Halfword Algebraic MLS:D-form

000001 100// .//..
101000

I ..XX plhz v3.1 53 Prefixed Load Halfword and Zero MLS:D-form

000001 000// .//..
111000

I ..XX plq v3.1 65 Prefixed Load Quadword 8LS:D-form

000001 000// .//..
101001

I ..XX plwa v3.1 56 Prefixed Load Word Algebraic 8LS:D-form

000001 100// .//..
100000

I ..XX plwz v3.1 55 Prefixed Load Word and Zero MLS:D-form

000001 000// .//..
101010

I ..XX plxsd v3.1 610 Prefixed Load VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101011

I ..XX plxssp v3.1 615 Prefixed Load VSX Scalar Single-Precision 8LS:D-form

000001 000// .//..
11001.

I ..XX plxv v3.1 617 Prefixed Load VSX Vector 8LS:D-form

000001 000// .//..
111010

I ..XX plxvp v3.1 625 Prefixed Load VSX Vector Paired 8LS:D-form

000001 11100 1//// ../// ///..
111011 ...// 00110 011../

I MMA MMA pmxvbf16ger2 v3.1 827 Prefixed Masked VSX Vector bfloat16 GER (Rank-2
Update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11110 010../

I MMA MMA pmxvbf16ger2nn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01110 010../

I MMA MMA pmxvbf16ger2np v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10110 010../

I MMA MMA pmxvbf16ger2pn v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00110 010../

I MMA MMA pmxvbf16ger2pp v3.1 827
Prefixed Masked VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 011../

I MMA MMA pmxvf16ger2 v3.1 871 Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 11010 010../

I MMA MMA pmxvf16ger2nn v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01010 010../

I MMA MMA pmxvf16ger2np v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 10010 010../ I MMA MMA pmxvf16ger2pn v3.1 871

Prefixed Masked VSX Vector 16-bit Floating-Point GER
(rank-2 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00010 010../

I MMA MMA pmxvf16ger2pp v3.1 871
Prefixed Masked VSX Vector 16-bit Floating-Point GER

(rank-2 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00011 011../

I MMA MMA pmxvf32ger v3.1 875 Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11011 010../

I MMA MMA pmxvf32gernn v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01011 010../

I MMA MMA pmxvf32gernp v3.1 875
Prefixed Masked VSX Vector 32-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10011 010../ I MMA MMA pmxvf32gerpn v3.1 875

Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 9 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1489

Version 3.1
000001 11100 1//// ///// ///..
111011 ...// 00011 010../ I MMA MMA pmxvf32gerpp v3.1 875

Prefixed Masked VSX Vector 32-bit Floating-Point GER
(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 011../

I MMA MMA pmxvf64ger v3.1 879 Prefixed Masked VSX Vector 64-bit Floating-Point GER
(rank-1 update) MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 11111 010../

I MMA MMA pmxvf64gernn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 01111 010../

I MMA MMA pmxvf64gernp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Negative multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 10111 010../

I MMA MMA pmxvf64gerpn v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Negative accumulate MMIRR:XX3-form

000001 11100 1//// ///// ///..
111011 ...// 00111 010../

I MMA MMA pmxvf64gerpp v3.1 879
Prefixed Masked VSX Vector 64-bit Floating-Point GER

(rank-1 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01001 011../

I MMA MMA pmxvi16ger2 v3.1 891 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 01101 011../

I MMA MMA pmxvi16ger2pp v3.1 891
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 011../

I MMA MMA pmxvi16ger2s v3.1 893 Prefixed Masked VSX Vector 16-bit Signed Integer GER
(rank-2 update) with Saturation MMIRR:XX3-form

000001 11100 1//// ../// ///..
111011 ...// 00101 010../

I MMA MMA pmxvi16ger2spp v3.1 893
Prefixed Masked VSX Vector 16-bit Signed Integer GER

(rank-2 update) with Saturation Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 011../

I MMA MMA pmxvi4ger8 v3.1 883 Prefixed Masked VSX Vector 4-bit Signed Integer GER
(rank-8 update) MMIRR:XX3-form

000001 11100 1////
111011 ...// 00100 010../

I MMA MMA pmxvi4ger8pp v3.1 883
Prefixed Masked VSX Vector 4-bit Signed Integer GER

(rank-8 update) Positive multiply, Positive
accumulate MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 00000 011../

I MMA MMA pmxvi8ger4 v3.1 886 Prefixed Masked VSX Vector 8-bit Signed/Unsigned
Integer GER (rank-4 update) MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 00000 010../

I MMA MMA pmxvi8ger4pp v3.1 886
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) Positive multiply,
Positive accumulate MMIRR:XX3-form

000001 11100 1///// ///..
111011 ...// 01100 011../

I MMA MMA pmxvi8ger4spp v3.1 889
Prefixed Masked VSX Vector 8-bit Signed/Unsigned

Integer GER (rank-4 update) with Saturate Positive
multiply, Positive accumulate MMIRR:XX3-form

000001 11000 000// ///// ///// //////
?????? ????? ????? ????? ????? ??????

I ..XX pnop v3.1 130 Prefixed Nop MRR:*-form

011111 ///// 00011 11010/ I XXXX popcntb v2.02 103 Population Count Bytes X-form
011111 ///// 01111 11010/ I ..XX popcntd v2.06 104 Population Count Doubleword X-form
011111 ///// 01011 11010/ I XXXX popcntw v2.06 103 Population Count Words X-form
011111 ///// 00101 11010/ I ..XX prtyd v2.05 104 Parity Doubleword X-form
011111 ///// 00100 11010/ I XXXX prtyw v2.05 103 Parity Word X-form
000001 100// .//..
100110

I ..XX pstb v3.1 59 Prefixed Store Byte MLS:D-form

000001 000// .//..
111101

I ..XX pstd v3.1 62 Prefixed Store Doubleword 8LS:D-form

000001 100// .//..
110110

I ..XX pstfd v3.1 157 Prefixed Store Floating-Point Double MLS:D-form

000001 100// .//..
110100

I ..XX pstfs v3.1 155 Prefixed Store Floating-Point Single MLS:D-form

000001 100// .//..
101100

I ..XX psth v3.1 60 Prefixed Store Halfword MLS:D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 10 of 30)
Power ISA™ Appendices1490

Version 3.1
000001 000// .//..
111100

I ..XX pstq v3.1 66 Prefixed Store Quadword 8LS:D-form

000001 100// .//..
100100

I ..XX pstw v3.1 61 Prefixed Store Word MLS:D-form

000001 000// .//..
101110

I ..XX pstxsd v3.1 638 Prefixed Store VSX Scalar Doubleword 8LS:D-form

000001 000// .//..
101111

I ..XX pstxssp v3.1 642 Prefixed Store VSX Scalar Single-Precision 8LS:D-form

000001 000// .//..
11011.

I ..XX pstxv v3.1 644 Prefixed Store VSX Vector 8LS:D-form

000001 000// .//..
111110

I ..XX pstxvp v3.1 654 Prefixed Store VSX Vector Paired 8LS:D-form

010011 ///// ///// ////. 00100 10010/ I ...X EBB rfebb v2.07 Return from Event Based Branch XL-form
010011 ///// ///// ///// 00000 10010/ III ..XX rfid PPC P 1152 Return from Interrupt Doubleword XL-form
010011 ///// ///// ///// 00010 10010/ III ..XX rfscv v3.0 P 1151 Return From System Call Vectored XL-form
0111101000. I ..XX rldcl[.] PPC SR 111 Rotate Left Doubleword then Clear Left MDS-form
0111101001. I ..XX rldcr[.] PPC SR 112 Rotate Left Doubleword then Clear Right MDS-form
011110010.. I ..XX rldic[.] PPC SR 111 Rotate Left Doubleword Immediate then Clear MD-form

011110000.. I ..XX rldicl[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Left
MD-form

011110001.. I ..XX rldicr[.] PPC SR 110 Rotate Left Doubleword Immediate then Clear Right
MD-form

011110011.. I ..XX rldimi[.] PPC SR 112 Rotate Left Doubleword Immediate then Mask Insert
MD-form

010100 I XXXX rlwimi[.] P1 SR 108 Rotate Left Word Immediate then Mask Insert M-form

010101 I XXXX rlwinm[.] P1 SR 107 Rotate Left Word Immediate then AND with Mask
M-form

010111 I XXXX rlwnm[.] P1 SR 108 Rotate Left Word then AND with Mask M-form
010001 ///// ///// ////.///1/ I XXXX sc PPC 47 System Call SC-form
010001 ///// ///// ////.///01 I XXXX scv v3.0 47 System Call Vectored SC-form
011111// ///// 00100 00000/ I XXXX setb v3.0 129 Set Boolean X-form
011111 ///// 01100 00000/ I XXXX setbc v3.1 129 Set Boolean Condition X-form
011111 ///// 01101 00000/ I XXXX setbcr v3.1 129 Set Boolean Condition Reverse X-form
011111 ///// 01110 00000/ I XXXX setnbc v3.1 129 Set Negative Boolean Condition X-form
011111 ///// 01111 00000/ I XXXX setnbcr v3.1 129 Set Negative Boolean Condition Reverse X-form
011111 ///// 11110 100111 III ...X slbfee. v2.05 P SR 1229 SLB Find Entry ESID X-form
011111 //... ///// ///// 01111 10010/ III ...X slbia PPC P 1224 SLB Invalidate All X-form
011111 ///// 11010 10010/ III ...X slbiag v3.0B P 1226 SLB Invalidate All Global X-form
011111 ///// ///// 01101 10010/ III ...X slbie PPC P 1221 SLB Invalidate Entry X-form
011111 ///// 01110 10010/ III ...X slbieg v3.0 P 1222 SLB Invalidate Entry Global X-form
011111 ///// 11100 10011/ III ...X slbmfee v2.00 P 1229 SLB Move From Entry ESID X-form
011111 ///// 11010 10011/ III ...X slbmfev v2.00 P 1228 SLB Move From Entry VSID X-form
011111 ///// 01100 10010/ III ...X slbmte v2.00 P 1227 SLB Move To Entry X-form
011111 ///// ///// ///// 01010 10010/ III ...X slbsync v3.0 P 1230 SLB Synchronize X-form
011111 00000 11011. I ..XX sld[.] PPC SR 115 Shift Left Doubleword X-form
011111 00000 11000. I XXXX slw[.] P1 SR 113 Shift Left Word X-form
011111 ///.. 01111 10111/ III ..XX spom v3.1 ?? ?? Splat Octword Metadata
011111 11000 11010. I ..XX srad[.] PPC SR 115 Shift Right Algebraic Doubleword X-form
011111 11001 1101.. I ..XX sradi[.] PPC SR 115 Shift Right Algebraic Doubleword Immediate XS-form
011111 11000 11000. I XXXX sraw[.] P1 SR 114 Shift Right Algebraic Word X-form
011111 11001 11000. I XXXX srawi[.] P1 SR 114 Shift Right Algebraic Word Immediate X-form
011111 10000 11011. I ..XX srd[.] PPC SR 115 Shift Right Doubleword X-form
011111 10000 11000. I XXXX srw[.] P1 SR 113 Shift Right Word X-form
100110 I XXXX stb P1 59 Store Byte D-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 11 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1491

Version 3.1
011111 11110 10101/ III ...X stbcix v2.05 HV 1165 Store Byte Caching Inhibited Indexed X-form
011111 10101 101101 II ...X stbcx. v2.06 1079 Store Byte Conditional Indexed X-form
100111 I XXXX stbu P1 59 Store Byte with Update D-form
011111 00111 10111/ I XXXX stbux P1 59 Store Byte with Update Indexed X-form
011111 00110 10111/ I XXXX stbx P1 59 Store Byte Indexed X-form
11111000 I ..XX std PPC 62 Store Doubleword DS-form
011111 10111 00110/ II ...X AMO stdat v3.0 1075 Store Doubleword ATomic X-form
011111 10100 10100/ I ..XX stdbrx v2.06 69 Store Doubleword Byte-Reverse Indexed X-form
011111 11111 10101/ III ...X stdcix v2.05 HV 1165 Store Doubleword Caching Inhibited Indexed X-form
011111 00110 101101 II ..XX stdcx. PPC 1082 Store Doubleword Conditional Indexed X-form
11111001 I ..XX stdu PPC 62 Store Doubleword with Update DS-form
011111 00101 10101/ I ..XX stdux PPC 63 Store Doubleword with Update Indexed X-form
011111 00100 10101/ I ..XX stdx PPC 62 Store Doubleword Indexed X-form
110110 I .XXX stfd P1 157 Store Floating-Point Double D-form
11110100 I .XXX stfdp v2.05 160 Store Floating-Point Double Pair DS-form
011111 11100 10111/ I .XXX stfdpx v2.05 160 Store Floating-Point Double Pair Indexed X-form
110111 I .XXX stfdu P1 157 Store Floating-Point Double with Update D-form
011111 10111 10111/ I .XXX stfdux P1 158 Store Floating-Point Double with Update Indexed X-form
011111 10110 10111/ I .XXX stfdx P1 157 Store Floating-Point Double Indexed X-form
011111 11110 10111/ I .XXX stfiwx PPC 158 Store Floating-Point as Integer Word Indexed X-form
110100 I .XXX stfs P1 155 Store Floating-Point Single D-form
110101 I .XXX stfsu P1 155 Store Floating-Point Single with Update D-form
011111 10101 10111/ I .XXX stfsux P1 156 Store Floating-Point Single with Update Indexed X-form
011111 10100 10111/ I .XXX stfsx P1 155 Store Floating-Point Single Indexed X-form
101100 I XXXX sth P1 60 Store Halfword D-form
011111 11100 10110/ I XXXX sthbrx P1 67 Store Halfword Byte-Reverse Indexed X-form
011111 11101 10101/ III ...X sthcix v2.05 HV 1165 Store Halfword Caching Inhibited Indexed X-form
011111 10110 101101 II ...X sthcx. v2.06 1080 Store Halfword Conditional Indexed X-form
101101 I XXXX sthu P1 60 Store Halfword with Update D-form
011111 01101 10111/ I XXXX sthux P1 60 Store Halfword with Update Indexed X-form
011111 01100 10111/ I XXXX sthx P1 60 Store Halfword Indexed X-form
101111 I ...X stmw P1 70 Store Multiple Word D-form
010011 ///// ///// ///// 01011 10010/ III ...X stop v3.0 P 1155 Stop XL-form
11111010 I ...X stq v2.03 66 Store Quadword DS-form
011111 00101 101101 I ...X stqcx. v2.07 Store Quadword Conditional Indexed X-form
011111 10110 10101/ I ...X stswi P1 73 Store String Word Immediate X-form
011111 10100 10101/ I ...X stswx P1 73 Store String Word Indexed X-form
011111 00100 00111/ I ..XX stvebx v2.03 272 Store Vector Element Byte Indexed X-form
011111 00101 00111/ I ..XX stvehx v2.03 273 Store Vector Element Halfword Indexed X-form
011111 00110 00111/ I ..XX stvewx v2.03 274 Store Vector Element Word Indexed X-form
011111 00111 00111/ I ..XX stvx v2.03 275 Store Vector Indexed X-form
011111 01111 00111/ I ..XX stvxl v2.03 275 Store Vector Indexed Last X-form
100100 I XXXX stw P1 61 Store Word D-form
011111 10110 00110/ II ...X AMO stwat v3.0 1075 Store Word ATomic X-form
011111 10100 10110/ I XXXX stwbrx P1 68 Store Word Byte-Reverse Indexed X-form
011111 11100 10101/ III ...X stwcix v2.05 HV 1165 Store Word Caching Inhibited Indexed X-form
011111 00100 101101 II ..XX stwcx. PPC 1081 Store Word Conditional Indexed X-form
100101 I XXXX stwu P1 61 Store Word with Update D-form
011111 00101 10111/ I XXXX stwux P1 61 Store Word with Update Indexed X-form
011111 00100 10111/ I XXXX stwx P1 61 Store Word Indexed X-form
11110110 I ..XX stxsd v3.0 638 Store VSX Scalar Doubleword DS-form
011111 10110 01100. I ..XX stxsdx v2.06 639 Store VSX Scalar Doubleword Indexed X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 12 of 30)
Power ISA™ Appendices1492

Version 3.1
011111 11100 01101. I ..XX stxsibx v3.0 640 Store VSX Scalar as Integer Byte Indexed X-form
011111 11101 01101. I ..XX stxsihx v3.0 640 Store VSX Scalar as Integer Halfword Indexed X-form
011111 00100 01100. I ..XX stxsiwx v2.07 641 Store VSX Scalar as Integer Word Indexed X-form
11110111 I ..XX stxssp v3.0 642 Store VSX Scalar Single DS-form
011111 10100 01100. I ..XX stxsspx v2.07 643 Store VSX Scalar Single-Precision Indexed X-form
111101101 I ..XX stxv v3.0 644 Store VSX Vector DQ-form
011111 11111 01100. I ..XX stxvb16x v3.0 645 Store VSX Vector Byte*16 Indexed X-form
011111 11110 01100. I ..XX stxvd2x v2.06 646 Store VSX Vector Doubleword*2 Indexed X-form
011111 11101 01100. I ..XX stxvh8x v3.0 647 Store VSX Vector Halfword*8 Indexed X-form
011111 01100 01101. I ..XX stxvl v3.0 648 Store VSX Vector with Length X-form
011111 01101 01101. I ..XX stxvll v3.0 650 Store VSX Vector with Length Left-justified X-form
0001100001 I ..XX stxvp v3.1 654 Store VSX Vector Paired DQ-form
011111 01110 01101/ I ..XX stxvpx v3.1 655 Store VSX Vector Paired Indexed X-form
011111 00100 01101. I ..XX stxvrbx v3.1 651 Store VSX Vector Rightmost Byte Indexed X-form

011111 00111 01101. I ..XX stxvrdx v3.1 651 Store VSX Vector Rightmost Doubleword Indexed
X-form

011111 00101 01101. I ..XX stxvrhx v3.1 652 Store VSX Vector Rightmost Halfword Indexed X-form
011111 00110 01101. I ..XX stxvrwx v3.1 652 Store VSX Vector Rightmost Word Indexed X-form
011111 11100 01100. I ..XX stxvw4x v2.06 653 Store VSX Vector Word*4 Indexed X-form
011111 01100 01100. I ..XX stxvx v3.0 656 Store VSX Vector Indexed X-form
011111 00001 01000. I XXXX subf[.] PPC SR 77 Subtract From XO-form
011111 00000 01000. I XXXX subfc[.] P1 SR 78 Subtract From Carrying XO-form
011111 10000 01000. I ..XX subfco[.] P1 SR 78 Subtract From Carrying & record OV XO-form
011111 00100 01000. I XXXX subfe[.] P1 SR 78 Subtract From Extended XO-form
011111 10100 01000. I ..XX subfeo[.] P1 SR 78 Subtract From Extended & record OV XO-form
001000 I XXXX subfic P1 SR 77 Subtract From Immediate Carrying D-form
011111 ///// 00111 01000. I XXXX subfme[.] P1 SR 79 Subtract From Minus One Extended XO-form

011111 ///// 10111 01000. I ..XX subfmeo[.] P1 SR 79 Subtract From Minus One Extended & record OV
XO-form

011111 10001 01000. I ..XX subfo[.] PPC SR 77 Subtract From & record OV XO-form
011111 ///// 00110 01000. I XXXX subfze[.] P1 SR 78 Subtract From Zero Extended XO-form
011111 ///// 10110 01000. I ..XX subfzeo[.] P1 SR 78 Subtract From Zero Extended & record OV XO-form
011111 ///.. ///// ///// 10010 10110/ II ..XX sync P1 1086 Synchronize X-form
011111 00010 00100/ I ..XX td PPC 98 Trap Doubleword X-form
000010 I ..XX tdi PPC 98 Trap Doubleword Immediate D-form
011111 /.... 01001 10010/ III ...X tlbie P1 HV 64 1231 TLB Invalidate Entry X-form
011111 /.... 01000 10010/ III ...X tlbiel v2.03 P 64 1236 TLB Invalidate Entry Local X-form
011111 ///// ///// ///// 10001 10110/ III ...X tlbsync PPC HV/P 1240 TLB Synchronize X-form
011111 00000 00100/ I XXXX tw P1 97 Trap Word X-form
000011 I XXXX twi P1 97 Trap Word Immediate D-form
010011 ///// ///// ///// 01001 10010/ III ..?X urfid v3.0C UV 1153 Ultravisor Return From Interrupt Doubleword XL-form
000100 10000 000011 I ..XX vabsdub v3.0 378 Vector Absolute Difference Unsigned Byte VX-form
000100 10001 000011 I ..XX vabsduh v3.0 378 Vector Absolute Difference Unsigned Halfword VX-form
000100 10010 000011 I ..XX vabsduw v3.0 379 Vector Absolute Difference Unsigned Word VX-form
000100 00101 000000 I ..XX vaddcuq v2.07 330 Vector Add & write Carry Unsigned Quadword VX-form
000100 00110 000000 I ..XX vaddcuw v2.03 323 Vector Add & write Carry Unsigned Word VX-form

000100 111101 I ..XX vaddecuq v2.07 330 Vector Add Extended & write Carry Unsigned Quadword
VA-form

000100 111100 I ..XX vaddeuqm v2.07 329 Vector Add Extended Unsigned Quadword Modulo
VA-form

000100 00000 001010 I ..XX vaddfp v2.03 422 Vector Add Floating-Point VX-form
000100 01100 000000 I ..XX vaddsbs v2.03 323 Vector Add Signed Byte Saturate VX-form
000100 01101 000000 I ..XX vaddshs v2.03 324 Vector Add Signed Halfword Saturate VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 13 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1493

Version 3.1
000100 01110 000000 I ..XX vaddsws v2.03 324 Vector Add Signed Word Saturate VX-form
000100 00000 000000 I ..XX vaddubm v2.03 325 Vector Add Unsigned Byte Modulo VX-form
000100 01000 000000 I ..XX vaddubs v2.03 327 Vector Add Unsigned Byte Saturate VX-form
000100 00011 000000 I ..XX vaddudm v2.07 326 Vector Add Unsigned Doubleword Modulo VX-form
000100 00001 000000 I ..XX vadduhm v2.03 325 Vector Add Unsigned Halfword Modulo VX-form
000100 01001 000000 I ..XX vadduhs v2.03 327 Vector Add Unsigned Halfword Saturate VX-form
000100 00100 000000 I ..XX vadduqm v2.07 329 Vector Add Unsigned Quadword Modulo VX-form
000100 00010 000000 I ..XX vadduwm v2.03 326 Vector Add Unsigned Word Modulo VX-form
000100 01010 000000 I ..XX vadduws v2.03 328 Vector Add Unsigned Word Saturate VX-form
000100 10000 000100 I ..XX vand v2.03 402 Vector Logical AND VX-form
000100 10001 000100 I ..XX vandc v2.03 402 Vector Logical AND with Complement VX-form
000100 10100 000010 I ..XX vavgsb v2.03 375 Vector Average Signed Byte VX-form
000100 10101 000010 I ..XX vavgsh v2.03 376 Vector Average Signed Halfword VX-form
000100 10110 000010 I ..XX vavgsw v2.03 377 Vector Average Signed Word VX-form
000100 10000 000010 I ..XX vavgub v2.03 375 Vector Average Unsigned Byte VX-form
000100 10001 000010 I ..XX vavguh v2.03 376 Vector Average Unsigned Halfword VX-form
000100 10010 000010 I ..XX vavguw v2.03 377 Vector Average Unsigned Word VX-form
000100 10111 001100 I ..XX vbpermd v3.0 461 Vector Bit Permute Doubleword VX-form
000100 10101 001100 I ..XX vbpermq v2.07 462 Vector Bit Permute Quadword VX-form

000100 01101 001010 I ..XX vcfsx v2.03 425 Vector Convert with round to nearest From Signed Word
to floating-point format VX-form

000100 10101 001101 I ..XX vcfuged v3.1 456 Vector Centrifuge Doubleword VX-form

000100 01100 001010 I ..XX vcfux v2.03 425 Vector Convert with round to nearest From Unsigned
Word to floating-point format VX-form

000100 10100 001000 I ..XX vcipher v2.07 435 Vector AES Cipher VX-form
000100 10100 001001 I ..XX vcipherlast v2.07 435 Vector AES Cipher Last VX-form
000100 00110 001101 I ..XX vclrlb v3.1 476 Vector Clear Leftmost Bytes VX-form
000100 00111 001101 I ..XX vclrrb v3.1 476 Vector Clear Rightmost Bytes VX-form
000100 ///// 11100 000010 I ..XX vclzb v2.07 447 Vector Count Leading Zeros Byte VX-form
000100 ///// 11111 000010 I ..XX vclzd v2.07 449 Vector Count Leading Zeros Doubleword VX-form

000100 11110 000100 I ..XX vclzdm v3.1 449 Vector Count Leading Zeros Doubleword under bit Mask
VX-form

000100 ///// 11101 000010 I ..XX vclzh v2.07 447 Vector Count Leading Zeros Halfword VX-form

000100 00000 11000 000010 I ..XX vclzlsbb v3.0 453 Vector Count Leading Zero Least-Significant Bits Byte
VX-form

000100 ///// 11110 000010 I ..XX vclzw v2.07 448 Vector Count Leading Zeros Word VX-form
0001001111 000110 I ..XX vcmpbfp[.] v2.03 429 Vector Compare Bounds Floating-Point VC-form
0001000011 000110 I ..XX vcmpeqfp[.] v2.03 430 Vector Compare Equal Floating-Point VC-form
0001000000 000110 I ..XX vcmpequb[.] v2.03 388 Vector Compare Equal Unsigned Byte VC-form
0001000011 000111 I ..XX vcmpequd[.] v2.07 391 Vector Compare Equal Unsigned Doubleword VC-form
0001000001 000110 I ..XX vcmpequh[.] v2.03 389 Vector Compare Equal Unsigned Halfword VC-form
0001000111 000111 I ..XX vcmpequq[.] v3.1 392 Vector Compare Equal Quadword VC-form
0001000010 000110 I ..XX vcmpequw[.] v2.03 388 Vector Compare Equal Unsigned Word VC-form

0001000111 000110 I ..XX vcmpgefp[.] v2.03 430 Vector Compare Greater Than or Equal Floating-Point
VC-form

0001001011 000110 I ..XX vcmpgtfp[.] v2.03 431 Vector Compare Greater Than Floating-Point VC-form
0001001100 000110 I ..XX vcmpgtsb[.] v2.03 393 Vector Compare Greater Than Signed Byte VC-form

0001001111 000111 I ..XX vcmpgtsd[.] v2.07 396 Vector Compare Greater Than Signed Doubleword
VC-form

0001001101 000110 I ..XX vcmpgtsh[.] v2.03 394 Vector Compare Greater Than Signed Halfword
VC-form

0001001110 000111 I ..XX vcmpgtsq[.] v3.1 397 Vector Compare Greater Than Signed Quadword
VC-form

0001001110 000110 I ..XX vcmpgtsw[.] v2.03 395 Vector Compare Greater Than Signed Word VC-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 14 of 30)
Power ISA™ Appendices1494

Version 3.1
0001001000 000110 I ..XX vcmpgtub[.] v2.03 393 Vector Compare Greater Than Unsigned Byte VC-form

0001001011 000111 I ..XX vcmpgtud[.] v2.07 396 Vector Compare Greater Than Unsigned Doubleword
VC-form

0001001001 000110 I ..XX vcmpgtuh[.] v2.03 394 Vector Compare Greater Than Unsigned Halfword
VC-form

0001001010 000111 I ..XX vcmpgtuq[.] v3.1 397 Vector Compare Greater Than Unsigned Quadword
VC-form

0001001010 000110 I ..XX vcmpgtuw[.] v2.03 395 Vector Compare Greater Than Unsigned Word VC-form
0001000000 000111 I ..XX vcmpneb[.] v3.0 398 Vector Compare Not Equal Byte VC-form
0001000001 000111 I ..XX vcmpneh[.] v3.0 399 Vector Compare Not Equal Halfword VC-form
0001000010 000111 I ..XX vcmpnew[.] v3.0 400 Vector Compare Not Equal Word VC-form
0001000100 000111 I ..XX vcmpnezb[.] v3.0 398 Vector Compare Not Equal or Zero Byte VC-form
0001000101 000111 I ..XX vcmpnezh[.] v3.0 399 Vector Compare Not Equal or Zero Halfword VC-form
0001000110 000111 I ..XX vcmpnezw[.] v3.0 400 Vector Compare Not Equal or Zero Word VC-form
000100 ...// 00101 000001 I ..XX vcmpsq v3.1 401 Vector Compare Signed Quadword VX-form
000100 ...// 00100 000001 I ..XX vcmpuq v3.1 401 Vector Compare Unsigned Quadword VX-form
000100 1100. 11001 000010 I ..XX vcntmbb v3.1 469 Vector Count Mask Bits Byte VX-form
000100 1101. 11001 000010 I ..XX vcntmbd v3.1 470 Vector Count Mask Bits Doubleword VX-form
000100 1110. 11001 000010 I ..XX vcntmbh v3.1 469 Vector Count Mask Bits Halfword VX-form
000100 1111. 11001 000010 I ..XX vcntmbw v3.1 470 Vector Count Mask Bits Word VX-form

000100 01111 001010 I ..XX vctsxs v2.03 426 Vector Convert with round to zero from floating-point To
Signed Word format Saturate VX-form

000100 01110 001010 I ..XX vctuxs v2.03 426 Vector Convert with round to zero from floating-point To
Unsigned Word format Saturate VX-form

000100 11100 11000 000010 I ..XX vctzb v3.0 450 Vector Count Trailing Zeros Byte VX-form
000100 11111 11000 000010 I ..XX vctzd v3.0 452 Vector Count Trailing Zeros Doubleword VX-form

000100 11111 000100 I ..XX vctzdm v3.1 452 Vector Count Trailing Zeros Doubleword under bit Mask
VX-form

000100 11101 11000 000010 I ..XX vctzh v3.0 450 Vector Count Trailing Zeros Halfword VX-form

000100 00001 11000 000010 I ..XX vctzlsbb v3.0 453 Vector Count Trailing Zero Least-Significant Bits Byte
VX-form

000100 11110 11000 000010 I ..XX vctzw v3.0 451 Vector Count Trailing Zeros Word VX-form
000100 01111 001011 I ..XX vdivesd v3.1 361 Vector Divide Extended Signed Doubleword VX-form
000100 01100 001011 I ..XX vdivesq v3.1 363 Vector Divide Extended Signed Quadword VX-form
000100 01110 001011 I ..XX vdivesw v3.1 359 Vector Divide Extended Signed Word VX-form
000100 01011 001011 I ..XX vdiveud v3.1 361 Vector Divide Extended Unsigned Doubleword VX-form
000100 01000 001011 I ..XX vdiveuq v3.1 363 Vector Divide Extended Unsigned Quadword VX-form
000100 01010 001011 I ..XX vdiveuw v3.1 359 Vector Divide Extended Unsigned Word VX-form
000100 00111 001011 I ..XX vdivsd v3.1 360 Vector Divide Signed Doubleword VX-form
000100 00100 001011 I ..XX vdivsq v3.1 362 Vector Divide Signed Quadword VX-form
000100 00110 001011 I ..XX vdivsw v3.1 358 Vector Divide Signed Word VX-form
000100 00011 001011 I ..XX vdivud v3.1 360 Vector Divide Unsigned Doubleword VX-form
000100 00000 001011 I ..XX vdivuq v3.1 362 Vector Divide Unsigned Quadword VX-form
000100 00010 001011 I ..XX vdivuw v3.1 358 Vector Divide Unsigned Word VX-form
000100 11010 000100 I ..XX veqv v2.07 403 Vector Logical Equivalence VX-form
000100 00000 11001 000010 I ..XX vexpandbm v3.1 466 Vector Expand Byte Mask VX-form
000100 00011 11001 000010 I ..XX vexpanddm v3.1 467 Vector Expand Doubleword Mask VX-form
000100 00001 11001 000010 I ..XX vexpandhm v3.1 466 Vector Expand Halfword Mask VX-form
000100 00100 11001 000010 I ..XX vexpandqm v3.1 468 Vector Expand Quadword Mask VX-form
000100 00010 11001 000010 I ..XX vexpandwm v3.1 467 Vector Expand Word Mask VX-form

000100 ///// 00110 001010 I ..XX vexptefp v2.03 432 Vector 2 Raised to the Exponent Estimate Floating-Point
VX-form

000100 011110 I ..XX vextddvlx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Left-Index VA-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 15 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1495

Version 3.1
000100 011111 I ..XX vextddvrx v3.1 312 Vector Extract Double Doubleword to VSR using
GPR-specified Right-Index VA-form

000100 011000 I ..XX vextdubvlx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Left-Index VA-form

000100 011001 I ..XX vextdubvrx v3.1 309 Vector Extract Double Unsigned Byte to VSR using
GPR-specified Right-Index VA-form

000100 011010 I ..XX vextduhvlx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Left-Index VA-form

000100 011011 I ..XX vextduhvrx v3.1 310 Vector Extract Double Unsigned Halfword to VSR using
GPR-specified Right-Index VA-form

000100 011100 I ..XX vextduwvlx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Left-Index VA-form

000100 011101 I ..XX vextduwvrx v3.1 311 Vector Extract Double Unsigned Word to VSR using
GPR-specified Right-Index VA-form

000100 01000 11001 000010 I ..XX vextractbm v3.1 471 Vector Extract Byte Mask VX-form

000100 /.... 01011 001101 I ..XX vextractd v3.0 305 Vector Extract Doubleword to VSR using
immediate-specified index VX-form

000100 01011 11001 000010 I ..XX vextractdm v3.1 472 Vector Extract Doubleword Mask VX-form
000100 01001 11001 000010 I ..XX vextracthm v3.1 471 Vector Extract Halfword Mask VX-form
000100 01100 11001 000010 I ..XX vextractqm v3.1 473 Vector Extract Quadword Mask VX-form

000100 /.... 01000 001101 I ..XX vextractub v3.0 304 Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

000100 /.... 01001 001101 I ..XX vextractuh v3.0 304 Vector Extract Unsigned Halfword to VSR using
immediate-specified index VX-form

000100 /.... 01010 001101 I ..XX vextractuw v3.0 305 Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

000100 01010 11001 000010 I ..XX vextractwm v3.1 472 Vector Extract Word Mask VX-form
000100 11000 11000 000010 I ..XX vextsb2d v3.0 373 Vector Extend Sign Byte To Doubleword VX-form
000100 10000 11000 000010 I ..XX vextsb2w v3.0 372 Vector Extend Sign Byte To Word VX-form
000100 11011 11000 000010 I ..XX vextsd2q v3.1 374 Vector Extend Sign Doubleword to Quadword VX-form
000100 11001 11000 000010 I ..XX vextsh2d v3.0 373 Vector Extend Sign Halfword To Doubleword VX-form
000100 10001 11000 000010 I ..XX vextsh2w v3.0 372 Vector Extend Sign Halfword To Word VX-form
000100 11010 11000 000010 I ..XX vextsw2d v3.0 372 Vector Extend Sign Word To Doubleword VX-form

000100 11000 001101 I ..XX vextublx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

000100 11100 001101 I ..XX vextubrx v3.0 306 Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

000100 11001 001101 I ..XX vextuhlx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Left-Index VX-form

000100 11101 001101 I ..XX vextuhrx v3.0 307 Vector Extract Unsigned Halfword to GPR using
GPR-specified Right-Index VX-form

000100 11010 001101 I ..XX vextuwlx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

000100 11110 001101 I ..XX vextuwrx v3.0 308 Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

000100 ///// 10100 001100 I ..XX vgbbd v2.07 445 Vector Gather Bits by Bytes by Doubleword VX-form
000100 //... 10011 001100 I ..XX vgnb v3.1 446 Vector Gather every Nth Bit VX-form

000100 01000 001111 I ..XX vinsblx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Left-Index VX-form

000100 01100 001111 I ..XX vinsbrx v3.1 315 Vector Insert Byte from GPR using GPR-specified
Right-Index VX-form

000100 00000 001111 I ..XX vinsbvlx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Left-Index VX-form

000100 00100 001111 I ..XX vinsbvrx v3.1 320 Vector Insert Byte from VSR using GPR-specified
Right-Index VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 16 of 30)
Power ISA™ Appendices1496

Version 3.1
000100 /.... 00111 001111 I ..XX vinsd v3.1 319 Vector Insert Doubleword from GPR using
immediate-specified index VX-form

000100 01011 001111 I ..XX vinsdlx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

000100 01111 001111 I ..XX vinsdrx v3.1 318 Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

000100 /.... 01100 001101 I ..XX vinsertb v3.0 313 Vector Insert Byte from VSR using immediate-specified
index VX-form

000100 /.... 01111 001101 I ..XX vinsertd v3.0 314 Vector Insert Doubleword from VSR using
immediate-specified index VX-form

000100 /.... 01101 001101 I ..XX vinserth v3.0 313 Vector Insert Halfword from VSR using
immediate-specified index VX-form

000100 /.... 01110 001101 I ..XX vinsertw v3.0 314 Vector Insert Word from VSR using immediate-specified
index VX-form

000100 01001 001111 I ..XX vinshlx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Left-Index VX-form

000100 01101 001111 I ..XX vinshrx v3.1 316 Vector Insert Halfword from GPR using GPR-specified
Right-Index VX-form

000100 00001 001111 I ..XX vinshvlx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Left-Index VX-form

000100 00101 001111 I ..XX vinshvrx v3.1 321 Vector Insert Halfword from VSR using GPR-specified
Right-Index VX-form

000100 /.... 00011 001111 I ..XX vinsw v3.1 319 Vector Insert Word from GPR using immediate-specified
index VX-form

000100 01010 001111 I ..XX vinswlx v3.1 317 Vector Insert Word from GPR using GPR-specified
Left-Index VX-form

000100 01110 001111 I ..XX vinswrx v3.1 317 Vector Insert Word from GPR using GPR-specified
Right-Index VX-form

000100 00010 001111 I ..XX vinswvlx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 00110 001111 I ..XX vinswvrx v3.1 322 Vector Insert Word from VSR using GPR-specified
Left-Index VX-form

000100 ///// 00111 001010 I ..XX vlogefp v2.03 433 Vector Log Base 2 Estimate Floating-Point VX-form
000100 101110 I ..XX vmaddfp v2.03 423 Vector Multiply-Add Floating-Point VA-form
000100 10000 001010 I ..XX vmaxfp v2.03 424 Vector Maximum Floating-Point VX-form
000100 00100 000010 I ..XX vmaxsb v2.03 380 Vector Maximum Signed Byte VX-form
000100 00111 000010 I ..XX vmaxsd v2.07 383 Vector Maximum Signed Doubleword VX-form
000100 00101 000010 I ..XX vmaxsh v2.03 381 Vector Maximum Signed Halfword VX-form
000100 00110 000010 I ..XX vmaxsw v2.03 382 Vector Maximum Signed Word VX-form
000100 00000 000010 I ..XX vmaxub v2.03 380 Vector Maximum Unsigned Byte VX-form
000100 00011 000010 I ..XX vmaxud v2.07 383 Vector Maximum Unsigned Doubleword VX-form
000100 00001 000010 I ..XX vmaxuh v2.03 381 Vector Maximum Unsigned Halfword VX-form
000100 00010 000010 I ..XX vmaxuw v2.03 382 Vector Maximum Unsigned Word VX-form

000100 100000 I ..XX vmhaddshs v2.03 351 Vector Multiply-High-Add Signed Halfword Saturate
VA-form

000100 100001 I ..XX vmhraddshs v2.03 351 Vector Multiply-High-Round-Add Signed Halfword
Saturate VA-form

000100 10001 001010 I ..XX vminfp v2.03 424 Vector Minimum Floating-Point VX-form
000100 01100 000010 I ..XX vminsb v2.03 384 Vector Minimum Signed Byte VX-form
000100 01111 000010 I ..XX vminsd v2.07 387 Vector Minimum Signed Doubleword VX-form
000100 01101 000010 I ..XX vminsh v2.03 385 Vector Minimum Signed Halfword VX-form
000100 01110 000010 I ..XX vminsw v2.03 386 Vector Minimum Signed Word VX-form
000100 01000 000010 I ..XX vminub v2.03 384 Vector Minimum Unsigned Byte VX-form
000100 01011 000010 I ..XX vminud v2.07 387 Vector Minimum Unsigned Doubleword VX-form
000100 01001 000010 I ..XX vminuh v2.03 385 Vector Minimum Unsigned Halfword VX-form
000100 01010 000010 I ..XX vminuw v2.03 386 Vector Minimum Unsigned Word VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 17 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1497

Version 3.1
000100 100010 I ..XX vmladduhm v2.03 352 Vector Multiply-Low-Add Unsigned Halfword Modulo
VA-form

000100 11111 001011 I ..XX vmodsd v3.1 365 Vector Modulo Signed Doubleword VX-form
000100 11100 001011 I ..XX vmodsq v3.1 366 Vector Modulo Signed Quadword VX-form
000100 11110 001011 I ..XX vmodsw v3.1 364 Vector Modulo Signed Word VX-form
000100 11011 001011 I ..XX vmodud v3.1 365 Vector Modulo Unsigned Doubleword VX-form
000100 11000 001011 I ..XX vmoduq v3.1 366 Vector Modulo Unsigned Quadword VX-form
000100 11010 001011 I ..XX vmoduw v3.1 364 Vector Modulo Unsigned Word VX-form
000100 11110 001100 I ..XX vmrgew v2.07 292 Vector Merge Even Word VX-form
000100 00000 001100 I ..XX vmrghb v2.03 289 Vector Merge High Byte VX-form
000100 00001 001100 I ..XX vmrghh v2.03 290 Vector Merge High Halfword VX-form
000100 00010 001100 I ..XX vmrghw v2.03 291 Vector Merge High Word VX-form
000100 00100 001100 I ..XX vmrglb v2.03 289 Vector Merge Low Byte VX-form
000100 00101 001100 I ..XX vmrglh v2.03 290 Vector Merge Low Halfword VX-form
000100 00110 001100 I ..XX vmrglw v2.03 291 Vector Merge Low Word VX-form
000100 11010 001100 I ..XX vmrgow v2.07 292 Vector Merge Odd Word VX-form

000100 010111 I ..XX vmsumcud v3.1 357 Vector Multiply-Sum & write Carry-out Unsigned
Doubleword VA-form

000100 100101 I ..XX vmsummbm v2.03 353 Vector Multiply-Sum Mixed Byte Modulo VA-form
000100 101000 I ..XX vmsumshm v2.03 353 Vector Multiply-Sum Signed Halfword Modulo VA-form
000100 101001 I ..XX vmsumshs v2.03 354 Vector Multiply-Sum Signed Halfword Saturate VA-form
000100 100100 I ..XX vmsumubm v2.03 352 Vector Multiply-Sum Unsigned Byte Modulo VA-form

000100 100011 I ..XX vmsumudm v3.0B 356 Vector Multiply-Sum Unsigned Doubleword Modulo
VA-form

000100 100110 I ..XX vmsumuhm v2.03 354 Vector Multiply-Sum Unsigned Halfword Modulo
VA-form

000100 100111 I ..XX vmsumuhs v2.03 355 Vector Multiply-Sum Unsigned Halfword Saturate
VA-form

000100 ///// 00000 000001 I ..XX vmul10cuq v3.0 487 Vector Multiply-by-10 & write Carry-out Unsigned
Quadword VX-form

000100 00001 000001 I ..XX vmul10ecuq v3.0 488 Vector Multiply-by-10 Extended & write Carry-out
Unsigned Quadword VX-form

000100 01001 000001 I ..XX vmul10euq v3.0 488 Vector Multiply-by-10 Extended Unsigned Quadword
VX-form

000100 ///// 01000 000001 I ..XX vmul10uq v3.0 487 Vector Multiply-by-10 Unsigned Quadword VX-form
000100 01100 001000 I ..XX vmulesb v2.03 339 Vector Multiply Even Signed Byte VX-form
000100 01111 001000 I ..XX vmulesd v3.1 346 Vector Multiply Even Signed Doubleword VX-form
000100 01101 001000 I ..XX vmulesh v2.03 341 Vector Multiply Even Signed Halfword VX-form
000100 01110 001000 I ..XX vmulesw v2.07 343 Vector Multiply Even Signed Word VX-form
000100 01000 001000 I ..XX vmuleub v2.03 340 Vector Multiply Even Unsigned Byte VX-form
000100 01011 001000 I ..XX vmuleud v3.1 345 Vector Multiply Even Unsigned Doubleword VX-form
000100 01001 001000 I ..XX vmuleuh v2.03 342 Vector Multiply Even Unsigned Halfword VX-form
000100 01010 001000 I ..XX vmuleuw v2.07 344 Vector Multiply Even Unsigned Word VX-form
000100 01111 001001 I ..XX vmulhsd v3.1 349 Vector Multiply High Signed Doubleword VX-form
000100 01110 001001 I ..XX vmulhsw v3.1 347 Vector Multiply High Signed Word VX-form
000100 01011 001001 I ..XX vmulhud v3.1 349 Vector Multiply High Unsigned Doubleword VX-form
000100 01010 001001 I ..XX vmulhuw v3.1 348 Vector Multiply High Unsigned Word VX-form
000100 00111 001001 I ..XX vmulld v3.1 350 Vector Multiply Low Doubleword VX-form
000100 00100 001000 I ..XX vmulosb v2.03 339 Vector Multiply Odd Signed Byte VX-form
000100 00111 001000 I ..XX vmulosd v3.1 346 Vector Multiply Odd Signed Doubleword VX-form
000100 00101 001000 I ..XX vmulosh v2.03 341 Vector Multiply Odd Signed Halfword VX-form
000100 00110 001000 I ..XX vmulosw v2.07 343 Vector Multiply Odd Signed Word VX-form
000100 00000 001000 I ..XX vmuloub v2.03 340 Vector Multiply Odd Unsigned Byte VX-form
000100 00011 001000 I ..XX vmuloud v3.1 345 Vector Multiply Odd Unsigned Doubleword VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 18 of 30)
Power ISA™ Appendices1498

Version 3.1
000100 00001 001000 I ..XX vmulouh v2.03 342 Vector Multiply Odd Unsigned Halfword VX-form
000100 00010 001000 I ..XX vmulouw v2.07 344 Vector Multiply Odd Unsigned Word VX-form
000100 00010 001001 I ..XX vmuluwm v2.07 347 Vector Multiply Unsigned Word Modulo VX-form
000100 10110 000100 I ..XX vnand v2.07 403 Vector Logical NAND VX-form
000100 10101 001000 I ..XX vncipher v2.07 436 Vector AES Inverse Cipher VX-form
000100 10101 001001 I ..XX vncipherlast v2.07 436 Vector AES Inverse Cipher Last VX-form
000100 00111 11000 000010 I ..XX vnegd v3.0 371 Vector Negate Doubleword VX-form
000100 00110 11000 000010 I ..XX vnegw v3.0 371 Vector Negate Word VX-form

000100 101111 I ..XX vnmsubfp v2.03 423 Vector Negative Multiply-Subtract Floating-Point
VA-form

000100 10100 000100 I ..XX vnor v2.03 403 Vector Logical NOR VX-form
000100 10010 000100 I ..XX vor v2.03 403 Vector Logical OR VX-form
000100 10101 000100 I ..XX vorc v2.07 403 Vector Logical OR with Complement VX-form
000100 10111 001101 I ..XX vpdepd v3.1 454 Vector Parallel Bits Deposit Doubleword VX-form
000100 101011 I ..XX vperm v2.03 296 Vector Permute VA-form
000100 111011 I ..XX vpermr v3.0 296 Vector Permute Right-indexed VA-form
000100 101101 I ..XX vpermxor v2.07 444 Vector Permute & Exclusive-OR VA-form
000100 10110 001101 I ..XX vpextd v3.1 455 Vector Parallel Bits Extract Doubleword VX-form
000100 01100 001110 I ..XX vpkpx v2.03 278 Vector Pack Pixel VX-form

000100 10111 001110 I ..XX vpksdss v2.07 281 Vector Pack Signed Doubleword Signed Saturate
VX-form

000100 10101 001110 I ..XX vpksdus v2.07 281 Vector Pack Signed Doubleword Unsigned Saturate
VX-form

000100 00110 001110 I ..XX vpkshss v2.03 279 Vector Pack Signed Halfword Signed Saturate VX-form

000100 00100 001110 I ..XX vpkshus v2.03 279 Vector Pack Signed Halfword Unsigned Saturate
VX-form

000100 00111 001110 I ..XX vpkswss v2.03 280 Vector Pack Signed Word Signed Saturate VX-form
000100 00101 001110 I ..XX vpkswus v2.03 280 Vector Pack Signed Word Unsigned Saturate VX-form

000100 10001 001110 I ..XX vpkudum v2.07 284 Vector Pack Unsigned Doubleword Unsigned Modulo
VX-form

000100 10011 001110 I ..XX vpkudus v2.07 284 Vector Pack Unsigned Doubleword Unsigned Saturate
VX-form

000100 00000 001110 I ..XX vpkuhum v2.03 282 Vector Pack Unsigned Halfword Unsigned Modulo
VX-form

000100 00010 001110 I ..XX vpkuhus v2.03 282 Vector Pack Unsigned Halfword Unsigned Saturate
VX-form

000100 00001 001110 I ..XX vpkuwum v2.03 283 Vector Pack Unsigned Word Unsigned Modulo VX-form

000100 00011 001110 I ..XX vpkuwus v2.03 283 Vector Pack Unsigned Word Unsigned Saturate
VX-form

000100 10000 001000 I ..XX vpmsumb v2.07 440 Vector Polynomial Multiply-Sum Byte VX-form
000100 10011 001000 I ..XX vpmsumd v2.07 443 Vector Polynomial Multiply-Sum Doubleword VX-form
000100 10001 001000 I ..XX vpmsumh v2.07 441 Vector Polynomial Multiply-Sum Halfword VX-form
000100 10010 001000 I ..XX vpmsumw v2.07 442 Vector Polynomial Multiply-Sum Word VX-form
000100 ///// 11100 000011 I ..XX vpopcntb v2.07 457 Vector Population Count Byte VX-form
000100 ///// 11111 000011 I ..XX vpopcntd v2.07 458 Vector Population Count Doubleword VX-form
000100 ///// 11101 000011 I ..XX vpopcnth v2.07 457 Vector Population Count Halfword VX-form
000100 ///// 11110 000011 I ..XX vpopcntw v2.07 458 Vector Population Count Word VX-form
000100 01001 11000 000010 I ..XX vprtybd v3.0 459 Vector Parity Byte Doubleword VX-form
000100 01010 11000 000010 I ..XX vprtybq v3.0 460 Vector Parity Byte Quadword VX-form
000100 01000 11000 000010 I ..XX vprtybw v3.0 459 Vector Parity Byte Word VX-form
000100 ///// 00100 001010 I ..XX vrefp v2.03 434 Vector Reciprocal Estimate Floating-Point VX-form

000100 ///// 01011 001010 I ..XX vrfim v2.03 427 Vector Round to Floating-Point Integer toward -Infinity
VX-form

000100 ///// 01000 001010 I ..XX vrfin v2.03 427 Vector Round to Floating-Point Integer Nearest VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 19 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1499

Version 3.1
000100 ///// 01010 001010 I ..XX vrfip v2.03 428 Vector Round to Floating-Point Integer toward +Infinity
VX-form

000100 ///// 01001 001010 I ..XX vrfiz v2.03 428 Vector Round to Floating-Point Integer toward Zero
VX-form

000100 00000 000100 I ..XX vrlb v2.03 404 Vector Rotate Left Byte VX-form
000100 00011 000100 I ..XX vrld v2.07 405 Vector Rotate Left Doubleword VX-form

000100 00011 000101 I ..XX vrldmi v3.0 411 Vector Rotate Left Doubleword then Mask Insert
VX-form

000100 00111 000101 I ..XX vrldnm v3.0 408 Vector Rotate Left Doubleword then AND with Mask
VX-form

000100 00001 000100 I ..XX vrlh v2.03 404 Vector Rotate Left Halfword VX-form
000100 00000 000101 I ..XX vrlq v3.1 405 Vector Rotate Left Quadword VX-form
000100 00001 000101 I ..XX vrlqmi v3.1 412 Vector Rotate Left Quadword then Mask Insert VX-form

000100 00101 000101 I ..XX vrlqnm v3.1 409 Vector Rotate Left Quadword then AND with Mask
VX-form

000100 00010 000100 I ..XX vrlw v2.03 404 Vector Rotate Left Word VX-form
000100 00010 000101 I ..XX vrlwmi v3.0 410 Vector Rotate Left Word then Mask Insert VX-form
000100 00110 000101 I ..XX vrlwnm v3.0 407 Vector Rotate Left Word then AND with Mask VX-form

000100 ///// 00101 001010 I ..XX vrsqrtefp v2.03 434 Vector Reciprocal Square Root Estimate Floating-Point
VX-form

000100 ///// 10111 001000 I ..XX vsbox v2.07 437 Vector AES SubBytes VX-form
000100 101010 I ..XX vsel v2.03 297 Vector Select VA-form
000100 11011 000010 I ..XX vshasigmad v2.07 438 Vector SHA-512 Sigma Doubleword VX-form
000100 11010 000010 I ..XX vshasigmaw v2.07 439 Vector SHA-256 Sigma Word VX-form
000100 00111 000100 I ..XX vsl v2.03 300 Vector Shift Left VX-form
000100 00100 000100 I ..XX vslb v2.03 413 Vector Shift Left Byte VX-form
000100 10111 000100 I ..XX vsld v2.07 414 Vector Shift Left Doubleword VX-form
000100 00... 010110 I ..XX vsldbi v3.1 298 Vector Shift Left Double by Bit Immediate VN-form
000100 /.... 101100 I ..XX vsldoi v2.03 298 Vector Shift Left Double by Octet Immediate VA-form
000100 00101 000100 I ..XX vslh v2.03 413 Vector Shift Left Halfword VX-form
000100 10000 001100 I ..XX vslo v2.03 301 Vector Shift Left by Octet VX-form
000100 00100 000101 I ..XX vslq v3.1 415 Vector Shift Left Quadword VX-form
000100 11101 000100 I ..XX vslv v3.0 302 Vector Shift Left Variable VX-form
000100 00110 000100 I ..XX vslw v2.03 414 Vector Shift Left Word VX-form
000100 /.... 01000 001100 I ..XX vspltb v2.03 293 Vector Splat Byte VX-form
000100 //... 01001 001100 I ..XX vsplth v2.03 293 Vector Splat Halfword VX-form
000100 ///// 01100 001100 I ..XX vspltisb v2.03 295 Vector Splat Immediate Signed Byte VX-form
000100 ///// 01101 001100 I ..XX vspltish v2.03 295 Vector Splat Immediate Signed Halfword VX-form
000100 ///// 01110 001100 I ..XX vspltisw v2.03 295 Vector Splat Immediate Signed Word VX-form
000100 ///.. 01010 001100 I ..XX vspltw v2.03 294 Vector Splat Word VX-form
000100 01011 000100 I ..XX vsr v2.03 300 Vector Shift Right VX-form
000100 01100 000100 I ..XX vsrab v2.03 419 Vector Shift Right Algebraic Byte VX-form
000100 01111 000100 I ..XX vsrad v2.07 420 Vector Shift Right Algebraic Doubleword VX-form
000100 01101 000100 I ..XX vsrah v2.03 419 Vector Shift Right Algebraic Halfword VX-form
000100 01100 000101 I ..XX vsraq v3.1 421 Vector Shift Right Algebraic Quadword VX-form
000100 01110 000100 I ..XX vsraw v2.03 420 Vector Shift Right Algebraic Word VX-form
000100 01000 000100 I ..XX vsrb v2.03 416 Vector Shift Right Byte VX-form
000100 11011 000100 I ..XX vsrd v2.07 417 Vector Shift Right Doubleword VX-form
000100 01... 010110 I ..XX vsrdbi v3.1 299 Vector Shift Right Double by Bit Immediate VN-form
000100 01001 000100 I ..XX vsrh v2.03 416 Vector Shift Right Halfword VX-form
000100 10001 001100 I ..XX vsro v2.03 301 Vector Shift Right by Octet VX-form
000100 01000 000101 I ..XX vsrq v3.1 418 Vector Shift Right Quadword VX-form
000100 11100 000100 I ..XX vsrv v3.0 302 Vector Shift Right Variable VX-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 20 of 30)
Power ISA™ Appendices1500

Version 3.1
000100 01010 000100 I ..XX vsrw v2.03 417 Vector Shift Right Word VX-form
000100 000000000 001101 I ..XX vstribl[.] v3.1 474 Vector String Isolate Byte Left-justified VX-form
000100 000010000 001101 I ..XX vstribr[.] v3.1 475 Vector String Isolate Byte Right-justified VX-form
000100 000100000 001101 I ..XX vstrihl[.] v3.1 475 Vector String Isolate Halfword Left-justified VX-form
000100 000110000 001101 I ..XX vstrihr[.] v3.1 474 Vector String Isolate Halfword Right-justified VX-form

000100 10101 000000 I ..XX vsubcuq v2.07 338 Vector Subtract & write Carry-out Unsigned Quadword
VX-form

000100 10110 000000 I ..XX vsubcuw v2.03 331 Vector Subtract & Write Carry-out Unsigned Word
VX-form

000100 111111 I ..XX vsubecuq v2.07 338 Vector Subtract Extended & write Carry-out Unsigned
Quadword VA-form

000100 111110 I ..XX vsubeuqm v2.07 337 Vector Subtract Extended Unsigned Quadword Modulo
VA-form

000100 00001 001010 I ..XX vsubfp v2.03 422 Vector Subtract Floating-Point VX-form
000100 11100 000000 I ..XX vsubsbs v2.03 331 Vector Subtract Signed Byte Saturate VX-form
000100 11101 000000 I ..XX vsubshs v2.03 332 Vector Subtract Signed Halfword Saturate VX-form
000100 11110 000000 I ..XX vsubsws v2.03 332 Vector Subtract Signed Word Saturate VX-form
000100 10000 000000 I ..XX vsububm v2.03 333 Vector Subtract Unsigned Byte Modulo VX-form
000100 11000 000000 I ..XX vsububs v2.03 335 Vector Subtract Unsigned Byte Saturate VX-form
000100 10011 000000 I ..XX vsubudm v2.07 334 Vector Subtract Unsigned Doubleword Modulo VX-form
000100 10001 000000 I ..XX vsubuhm v2.03 333 Vector Subtract Unsigned Halfword Modulo VX-form
000100 11001 000000 I ..XX vsubuhs v2.03 335 Vector Subtract Unsigned Halfword Saturate VX-form
000100 10100 000000 I ..XX vsubuqm v2.07 337 Vector Subtract Unsigned Quadword Modulo VX-form
000100 10010 000000 I ..XX vsubuwm v2.03 334 Vector Subtract Unsigned Word Modulo VX-form
000100 11010 000000 I ..XX vsubuws v2.03 336 Vector Subtract Unsigned Word Saturate VX-form
000100 11010 001000 I ..XX vsum2sws v2.03 368 Vector Sum across Half Signed Word Saturate VX-form

000100 11100 001000 I ..XX vsum4sbs v2.03 369 Vector Sum across Quarter Signed Byte Saturate
VX-form

000100 11001 001000 I ..XX vsum4shs v2.03 369 Vector Sum across Quarter Signed Halfword Saturate
VX-form

000100 11000 001000 I ..XX vsum4ubs v2.03 370 Vector Sum across Quarter Unsigned Byte Saturate
VX-form

000100 11110 001000 I ..XX vsumsws v2.03 367 Vector Sum across Signed Word Saturate VX-form
000100 ///// 01101 001110 I ..XX vupkhpx v2.03 288 Vector Unpack High Pixel VX-form
000100 ///// 01000 001110 I ..XX vupkhsb v2.03 285 Vector Unpack High Signed Byte VX-form
000100 ///// 01001 001110 I ..XX vupkhsh v2.03 286 Vector Unpack High Signed Halfword VX-form
000100 ///// 11001 001110 I ..XX vupkhsw v2.07 287 Vector Unpack High Signed Word VX-form
000100 ///// 01111 001110 I ..XX vupklpx v2.03 288 Vector Unpack Low Pixel VX-form
000100 ///// 01010 001110 I ..XX vupklsb v2.03 285 Vector Unpack Low Signed Byte VX-form
000100 ///// 01011 001110 I ..XX vupklsh v2.03 286 Vector Unpack Low Signed Halfword VX-form
000100 ///// 11011 001110 I ..XX vupklsw v2.07 287 Vector Unpack Low Signed Word VX-form
000100 10011 000100 I ..XX vxor v2.03 403 Vector Logical XOR VX-form
011111 ///.. ///// ///// 00000 11110/ II ...X wait v3.0 1090 Wait X-form
011111 01001 11100. I XXXX xor[.] P1 SR 100 XOR X-form
011010 I XXXX xori P1 100 XOR Immediate D-form
011011 I XXXX xoris P1 100 XOR Immediate Shifted D-form
111100 ///// 10101 1001.. I ..XX xsabsdp v2.06 658 VSX Scalar Absolute Double-Precision XX2-form
111111 00000 11001 00100/ I ...X BFP128 xsabsqp v3.0 658 VSX Scalar Absolute Quad-Precision X-form
111100 00100 000... I ..XX xsadddp v2.06 659 VSX Scalar Add Double-Precision XX3-form

111111 00000 00100. I ...X BFP128 xsaddqp[o] v3.0 666 VSX Scalar Add Quad-Precision [using round to Odd]
X-form

111100 00000 000... I ..XX xsaddsp v2.07 664 VSX Scalar Add Single-Precision XX3-form
111100 00000 011... I ..XX xscmpeqdp v3.0 670 VSX Scalar Compare Equal Double-Precision XX3-form
111111 00010 00100/ I ..XX xscmpeqqp v3.1 671 VSX Scalar Compare Equal Quad-Precision X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 21 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1501

Version 3.1
111100 ...// 00111 011../ I ..XX xscmpexpdp v3.0 668 VSX Scalar Compare Exponents Double-Precision
XX3-form

111111 ...// 00101 00100/ I ...X BFP128 xscmpexpqp v3.0 669 VSX Scalar Compare Exponents Quad-Precision X-form

111100 00010 011... I ..XX xscmpgedp v3.0 672 VSX Scalar Compare Greater Than or Equal
Double-Precision XX3-form

111111 00110 00100/ I ..XX xscmpgeqp v3.1 673 VSX Scalar Compare Greater Than or Equal
Quad-Precision X-form

111100 00001 011... I ..XX xscmpgtdp v3.0 674 VSX Scalar Compare Greater Than Double-Precision
XX3-form

111111 00111 00100/ I ..XX xscmpgtqp v3.1 675 VSX Scalar Compare Greater Than Quad-Precision
X-form

111100 ...// 00101 011../ I ..XX xscmpodp v2.06 676 VSX Scalar Compare Ordered Double-Precision
XX3-form

111111 ...// 00100 00100/ I ...X BFP128 xscmpoqp v3.0 678 VSX Scalar Compare Ordered Quad-Precision X-form

111100 ...// 00100 011../ I ..XX xscmpudp v2.06 679 VSX Scalar Compare Unordered Double-Precision
XX3-form

111111 ...// 10100 00100/ I ...X BFP128 xscmpuqp v3.0 681 VSX Scalar Compare Unordered Quad-Precision X-form
111100 10110 000... I ..XX xscpsgndp v2.06 682 VSX Scalar Copy Sign Double-Precision XX3-form
111111 00011 00100/ I ...X BFP128 xscpsgnqp v3.0 682 VSX Scalar Copy Sign Quad-Precision X-form

111100 10001 10101 1011.. I ..XX xscvdphp v3.0 683 VSX Scalar Convert with round Double-Precision to
Half-Precision format XX2-form

111111 10110 11010 00100/ I ...X BFP128 xscvdpqp v3.0 684 VSX Scalar Convert Double-Precision to
Quad-Precision format X-form

111100 ///// 10000 1001.. I ..XX xscvdpsp v2.06 685 VSX Scalar Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 10000 1011.. I ..XX xscvdpspn v2.07 686 VSX Scalar Convert Scalar Single-Precision to Vector
Single-Precision format Non-signalling XX2-form

111100 ///// 10101 1000.. I ..XX xscvdpsxds v2.06 687
VSX Scalar Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 00101 1000.. I ..XX xscvdpsxws v2.06 689 VSX Scalar Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 10100 1000.. I ..XX xscvdpuxds v2.06 691
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

111100 ///// 00100 1000.. I ..XX xscvdpuxws v2.06 693
VSX Scalar Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 10000 10101 1011.. I ..XX xscvhpdp v3.0 695 VSX Scalar Convert Half-Precision to Double-Precision
format XX2-form

111111 10100 11010 00100. I ...X BFP128 xscvqpdp[o] v3.0 696 VSX Scalar Convert with round Quad-Precision to
Double-Precision format [using round to Odd] X-form

111111 11001 11010 00100/ I ...X BFP128 xscvqpsdz v3.0 697 VSX Scalar Convert with round to zero Quad-Precision
to Signed Doubleword format X-form

111111 01000 11010 00100/ I ..XX xscvqpsqz v3.1 699 VSX Scalar Convert with round to zero Quad-Precision
to Signed Quadword X-form

111111 01001 11010 00100/ I ...X BFP128 xscvqpswz v3.0 701 VSX Scalar Convert with round to zero Quad-Precision
to Signed Word format X-form

111111 10001 11010 00100/ I ...X BFP128 xscvqpudz v3.0 703 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Doubleword format X-form

111111 00000 11010 00100/ I ..XX xscvqpuqz v3.1 705 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Quadword X-form

111111 00001 11010 00100/ I ...X BFP128 xscvqpuwz v3.0 707 VSX Scalar Convert with round to zero Quad-Precision
to Unsigned Word format X-form

111111 01010 11010 00100/ I ...X BFP128 xscvsdqp v3.0 714 VSX Scalar Convert Signed Doubleword to
Quad-Precision format X-form

111100 ///// 10100 1001.. I ..XX xscvspdp v2.06 709 VSX Scalar Convert Single-Precision to
Double-Precision format XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 22 of 30)
Power ISA™ Appendices1502

Version 3.1
111100 ///// 10100 1011.. I ..XX xscvspdpn v2.07 710 VSX Scalar Convert Single-Precision to
Double-Precision format Non-signalling XX2-form

111111 01011 11010 00100/ I ..XX xscvsqqp v3.1 711 VSX Scalar Convert with round Signed Quadword to
Quad-Precision X-form

111100 ///// 10111 1000.. I ..XX xscvsxddp v2.06 712 VSX Scalar Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 10011 1000.. I ..XX xscvsxdsp v2.07 713 VSX Scalar Convert with round Signed Doubleword to
Single-Precision format XX2-form

111111 00010 11010 00100/ I ...X BFP128 xscvudqp v3.0 714 VSX Scalar Convert Unsigned Doubleword to
Quad-Precision format X-form

111111 00011 11010 00100/ I ..XX xscvuqqp v3.1 715 VSX Scalar Convert with round Unsigned Quadword to
Quad-Precision X-form

111100 ///// 10110 1000.. I ..XX xscvuxddp v2.06 715 VSX Scalar Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 10010 1000.. I ..XX xscvuxdsp v2.07 716 VSX Scalar Convert with round Unsigned Doubleword
to Single-Precision XX2-form

111100 00111 000... I ..XX xsdivdp v2.06 717 VSX Scalar Divide Double-Precision XX3-form

111111 10001 00100. I ...X BFP128 xsdivqp[o] v3.0 719 VSX Scalar Divide Quad-Precision [using round to Odd]
X-form

111100 00011 000... I ..XX xsdivsp v2.07 721 VSX Scalar Divide Single-Precision XX3-form
111100 11100 10110. I ..XX xsiexpdp v3.0 723 VSX Scalar Insert Exponent Double-Precision X-form
111111 11011 00100/ I ...X BFP128 xsiexpqp v3.0 724 VSX Scalar Insert Exponent Quad-Precision X-form

111100 00100 001... I ..XX xsmaddadp v2.06 725 VSX Scalar Multiply-Add Type-A Double-Precision
XX3-form

111100 00000 001... I ..XX xsmaddasp v2.07 728 VSX Scalar Multiply-Add Type-A Single-Precision
XX3-form

111100 00101 001... I ..XX xsmaddmdp v2.06 725 VSX Scalar Multiply-Add Type-M Double-Precision
XX3-form

111100 00001 001... I ..XX xsmaddmsp v2.07 728 VSX Scalar Multiply-Add Type-M Single-Precision
XX3-form

111111 01100 00100. I ...X BFP128 xsmaddqp[o] v3.0 731 VSX Scalar Multiply-Add Quad-Precision [using round to
Odd] X-form

111100 10000 000... I ..XX xsmaxcdp v3.0 736 VSX Scalar Maximum Type-C Double-Precision
XX3-form

111111 10101 00100/ I ..XX xsmaxcqp v3.1 738 VSX Scalar Maximum Type-C Quad-Precision X-form
111100 10100 000... I ..XX xsmaxdp v2.06 734 VSX Scalar Maximum Double-Precision XX3-form

111100 10010 000... I ..XX xsmaxjdp v3.0 739 VSX Scalar Maximum Type-J Double-Precision
XX3-form

111100 10001 000... I ..XX xsmincdp v3.0 743 VSX Scalar Minimum Type-C Double-Precision
XX3-form

111111 10111 00100/ I ..XX xsmincqp v3.1 745 VSX Scalar Minimum Type-C Quad-Precision X-form
111100 10101 000... I ..XX xsmindp v2.06 741 VSX Scalar Minimum Double-Precision XX3-form

111100 10011 000... I ..XX xsminjdp v3.0 746 VSX Scalar Minimum Type-J Double-Precision
XX3-form

111100 00110 001... I ..XX xsmsubadp v2.06 748 VSX Scalar Multiply-Subtract Type-A Double-Precision
XX3-form

111100 00010 001... I ..XX xsmsubasp v2.07 751 VSX Scalar Multiply-Subtract Type-A Single-Precision
XX3-form

111100 00111 001... I ..XX xsmsubmdp v2.06 748 VSX Scalar Multiply-Subtract Type-M Double-Precision
XX3-form

111100 00011 001... I ..XX xsmsubmsp v2.07 751 VSX Scalar Multiply-Subtract Type-M Single-Precision
XX3-form

111111 01101 00100. I ...X BFP128 xsmsubqp[o] v3.0 754 VSX Scalar Multiply-Subtract Quad-Precision [using
round to Odd] X-form

111100 00110 000... I ..XX xsmuldp v2.06 757 VSX Scalar Multiply Double-Precision XX3-form

111111 00001 00100. I ...X BFP128 xsmulqp[o] v3.0 759 VSX Scalar Multiply Quad-Precision [using round to
Odd] X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 23 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1503

Version 3.1
111100 00010 000... I ..XX xsmulsp v2.07 761 VSX Scalar Multiply Single-Precision XX3-form

111100 ///// 10110 1001.. I ..XX xsnabsdp v2.06 763 VSX Scalar Negative Absolute Double-Precision
XX2-form

111111 01000 11001 00100/ I ...X BFP128 xsnabsqp v3.0 763 VSX Scalar Negative Absolute Quad-Precision X-form
111100 ///// 10111 1001.. I ..XX xsnegdp v2.06 764 VSX Scalar Negate Double-Precision XX2-form
111111 10000 11001 00100/ I ...X BFP128 xsnegqp v3.0 764 VSX Scalar Negate Quad-Precision X-form

111100 10100 001... I ..XX xsnmaddadp v2.06 765 VSX Scalar Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 10000 001... I ..XX xsnmaddasp v2.07 770 VSX Scalar Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 10101 001... I ..XX xsnmaddmdp v2.06 765 VSX Scalar Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 10001 001... I ..XX xsnmaddmsp v2.07 770 VSX Scalar Negative Multiply-Add Type-M
Single-Precision XX3-form

111111 01110 00100. I ...X BFP128 xsnmaddqp[o] v3.0 773 VSX Scalar Negative Multiply-Add Quad-Precision
[using round to Odd] X-form

111100 10110 001... I ..XX xsnmsubadp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 10010 001... I ..XX xsnmsubasp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 10111 001... I ..XX xsnmsubmdp v2.06 776 VSX Scalar Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 10011 001... I ..XX xsnmsubmsp v2.07 779 VSX Scalar Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111111 01111 00100. I ...X BFP128 xsnmsubqp[o] v3.0 782 VSX Scalar Negative Multiply-Subtract Quad-Precision
[using round to Odd] X-form

111100 ///// 00100 1001.. I ..XX xsrdpi v2.06 785 VSX Scalar Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 00110 1011.. I ..XX xsrdpic v2.06 786 VSX Scalar Round to Double-Precision Integer exact
using Current rounding mode XX2-form

111100 ///// 00111 1001.. I ..XX xsrdpim v2.06 787 VSX Scalar Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 00110 1001.. I ..XX xsrdpip v2.06 788 VSX Scalar Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 00101 1001.. I ..XX xsrdpiz v2.06 789 VSX Scalar Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 00101 1010.. I ..XX xsredp v2.06 790 VSX Scalar Reciprocal Estimate Double-Precision
XX2-form

111100 ///// 00001 1010.. I ..XX xsresp v2.07 791 VSX Scalar Reciprocal Estimate Single-Precision
XX2-form

111111 ////.000 00101. I ...X BFP128 xsrqpi[x] v3.0 793 VSX Scalar Round to Quad-Precision Integer [with
Inexact] Z23-form

111111 ////.001 00101/ I ...X BFP128 xsrqpxp v3.0 795 VSX Scalar Round Quad-Precision to Double-Extended
Precision Z23-form

111100 ///// 10001 1001.. I ..XX xsrsp v2.07 797 VSX Scalar Round to Single-Precision XX2-form

111100 ///// 00100 1010.. I ..XX xsrsqrtedp v2.06 798 VSX Scalar Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 00000 1010.. I ..XX xsrsqrtesp v2.07 799 VSX Scalar Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 00100 1011.. I ..XX xssqrtdp v2.06 801 VSX Scalar Square Root Double-Precision XX2-form

111111 11011 11001 00100. I ...X BFP128 xssqrtqp[o] v3.0 803 VSX Scalar Square Root Quad-Precision [using round
to Odd] X-form

111100 ///// 00000 1011.. I ..XX xssqrtsp v2.07 805 VSX Scalar Square Root Single-Precision XX2-form
111100 00101 000... I ..XX xssubdp v2.06 807 VSX Scalar Subtract Double-Precision XX3-form

111111 10000 00100. I ...X BFP128 xssubqp[o] v3.0 809 VSX Scalar Subtract Quad-Precision [using round to
Odd] X-form

111100 00001 000... I ..XX xssubsp v2.07 811 VSX Scalar Subtract Single-Precision XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 24 of 30)
Power ISA™ Appendices1504

Version 3.1
111100 ...// 00111 101../ I ..XX xstdivdp v2.06 813 VSX Scalar Test for software Divide Double-Precision
XX3-form

111100 ...// ///// 00110 1010./ I ..XX xstsqrtdp v2.06 814 VSX Scalar Test for software Square Root
Double-Precision XX2-form

111100 10110 1010./ I ..XX xststdcdp v3.0 815 VSX Scalar Test Data Class Double-Precision XX2-form
111111 10110 00100/ I ...X BFP128 xststdcqp v3.0 816 VSX Scalar Test Data Class Quad-Precision X-form
111100 10010 1010./ I ..XX xststdcsp v3.0 817 VSX Scalar Test Data Class Single-Precision XX2-form

111100 00000 10101 1011./ I ..XX xsxexpdp v3.0 818 VSX Scalar Extract Exponent Double-Precision
XX2-form

111111 00010 11001 00100/ I ...X BFP128 xsxexpqp v3.0 818 VSX Scalar Extract Exponent Quad-Precision X-form

111100 00001 10101 1011./ I ..XX xsxsigdp v3.0 819 VSX Scalar Extract Significand Double-Precision
XX2-form

111111 10010 11001 00100/ I ...X BFP128 xsxsigqp v3.0 819 VSX Scalar Extract Significand Quad-Precision X-form
111100 ///// 11101 1001.. I ..XX xvabsdp v2.06 820 VSX Vector Absolute Value Double-Precision XX2-form
111100 ///// 11001 1001.. I ..XX xvabssp v2.06 820 VSX Vector Absolute Value Single-Precision XX2-form
111100 01100 000... I ..XX xvadddp v2.06 821 VSX Vector Add Double-Precision XX3-form
111100 01000 000... I ..XX xvaddsp v2.06 825 VSX Vector Add Single-Precision XX3-form
111011 ...// 00110 011../ I MMA MMA xvbf16ger2 v3.1 827 VSX Vector bfloat16 GER (Rank-2 Update) XX3-form

111011 ...// 11110 010../ I MMA MMA xvbf16ger2nn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Negative accumulate
XX3-form

111011 ...// 01110 010../ I MMA MMA xvbf16ger2np v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Negative multiply, Positive accumulate
XX3-form

111011 ...// 10110 010../ I MMA MMA xvbf16ger2pn v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Negative accumulate
XX3-form

111011 ...// 00110 010../ I MMA MMA xvbf16ger2pp v3.1 827
VSX Vector bfloat16 GER (Rank-2

Update) Positive multiply, Positive accumulate
XX3-form

1111001100 011... I ..XX xvcmpeqdp[.] v2.06 832 VSX Vector Compare Equal To Double-Precision
XX3-form

1111001000 011... I ..XX xvcmpeqsp[.] v2.06 833 VSX Vector Compare Equal To Single-Precision
XX3-form

1111001110 011... I ..XX xvcmpgedp[.] v2.06 834 VSX Vector Compare Greater Than or Equal To
Double-Precision XX3-form

1111001010 011... I ..XX xvcmpgesp[.] v2.06 835 VSX Vector Compare Greater Than or Equal To
Single-Precision XX3-form

1111001101 011... I ..XX xvcmpgtdp[.] v2.06 836 VSX Vector Compare Greater Than Double-Precision
XX3-form

1111001001 011... I ..XX xvcmpgtsp[.] v2.06 837 VSX Vector Compare Greater Than Single-Precision
XX3-form

111100 11110 000... I ..XX xvcpsgndp v2.06 838 VSX Vector Copy Sign Double-Precision XX3-form
111100 11010 000... I ..XX xvcpsgnsp v2.06 838 VSX Vector Copy Sign Single-Precision XX3-form

111100 10000 11101 1011.. I ..XX xvcvbf16sp v3.1 839 VSX Vector Convert bfloat16 to Single-Precision format
XX2-form

111100 ///// 11000 1001.. I ..XX xvcvdpsp v2.06 840 VSX Vector Convert with round Double-Precision to
Single-Precision format XX2-form

111100 ///// 11101 1000.. I ..XX xvcvdpsxds v2.06 841
VSX Vector Convert with round to zero

Double-Precision to Signed Doubleword format
XX2-form

111100 ///// 01101 1000.. I ..XX xvcvdpsxws v2.06 843 VSX Vector Convert with round to zero
Double-Precision to Signed Word format XX2-form

111100 ///// 11100 1000.. I ..XX xvcvdpuxds v2.06 845
VSX Vector Convert with round to zero

Double-Precision to Unsigned Doubleword format
XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 25 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1505

Version 3.1
111100 ///// 01100 1000.. I ..XX xvcvdpuxws v2.06 847
VSX Vector Convert with round to zero

Double-Precision to Unsigned Word format
XX2-form

111100 11000 11101 1011.. I ..XX xvcvhpsp v3.0 849 VSX Vector Convert Half-Precision to Single-Precision
format XX2-form

111100 10001 11101 1011.. I ..XX xvcvspbf16 v3.1 850 VSX Vector Convert with round Single-Precision to
bfloat16 format XX2-form

111100 ///// 11100 1001.. I ..XX xvcvspdp v2.06 851 VSX Vector Convert Single-Precision to
Double-Precision format XX2-form

111100 11001 11101 1011.. I ..XX xvcvsphp v3.0 852 VSX Vector Convert with round Single-Precision to
Half-Precision format XX2-form

111100 ///// 11001 1000.. I ..XX xvcvspsxds v2.06 853 VSX Vector Convert with round to zero Single-Precision
to Signed Doubleword format XX2-form

111100 ///// 01001 1000.. I ..XX xvcvspsxws v2.06 855 VSX Vector Convert with round to zero Single-Precision
to Signed Word format XX2-form

111100 ///// 11000 1000.. I ..XX xvcvspuxds v2.06 857 VSX Vector Convert with round to zero Single-Precision
to Unsigned Doubleword format XX2-form

111100 ///// 01000 1000.. I ..XX xvcvspuxws v2.06 859 VSX Vector Convert with round to zero Single-Precision
to Unsigned Word format XX2-form

111100 ///// 11111 1000.. I ..XX xvcvsxddp v2.06 861 VSX Vector Convert with round Signed Doubleword to
Double-Precision format XX2-form

111100 ///// 11011 1000.. I ..XX xvcvsxdsp v2.06 862 VSX Vector Convert with round Signed Doubleword to
Single-Precision format XX2-form

111100 ///// 01111 1000.. I ..XX xvcvsxwdp v2.06 863 VSX Vector Convert Signed Word to Double-Precision
format XX2-form

111100 ///// 01011 1000.. I ..XX xvcvsxwsp v2.06 863 VSX Vector Convert with round Signed Word to
Single-Precision format XX2-form

111100 ///// 11110 1000.. I ..XX xvcvuxddp v2.06 864 VSX Vector Convert with round Unsigned Doubleword
to Double-Precision format XX2-form

111100 ///// 11010 1000.. I ..XX xvcvuxdsp v2.06 865 VSX Vector Convert with round Unsigned Doubleword
to Single-Precision format XX2-form

111100 ///// 01110 1000.. I ..XX xvcvuxwdp v2.06 866 VSX Vector Convert Unsigned Word to
Double-Precision format XX2-form

111100 ///// 01010 1000.. I ..XX xvcvuxwsp v2.06 866 VSX Vector Convert with round Unsigned Word to
Single-Precision format XX2-form

111100 01111 000... I ..XX xvdivdp v2.06 867 VSX Vector Divide Double-Precision XX3-form
111100 01011 000... I ..XX xvdivsp v2.06 869 VSX Vector Divide Single-Precision XX3-form

111011 ...// 00010 011../ I MMA MMA xvf16ger2 v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
XX3-form

111011 ...// 11010 010../ I MMA MMA xvf16ger2nn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01010 010../ I MMA MMA xvf16ger2np v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10010 010../ I MMA MMA xvf16ger2pn v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00010 010../ I MMA MMA xvf16ger2pp v3.1 871 VSX Vector 16-bit Floating-Point GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00011 011../ I MMA MMA xvf32ger v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11011 010../ I MMA MMA xvf32gernn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01011 010../ I MMA MMA xvf32gernp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10011 010../ I MMA MMA xvf32gerpn v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00011 010../ I MMA MMA xvf32gerpp v3.1 875 VSX Vector 32-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 26 of 30)
Power ISA™ Appendices1506

Version 3.1
111011 ...// 00111 011../ I MMA MMA xvf64ger v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
XX3-form

111011 ...// 11111 010../ I MMA MMA xvf64gernn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Negative accumulate XX3-form

111011 ...// 01111 010../ I MMA MMA xvf64gernp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Negative multiply, Positive accumulate XX3-form

111011 ...// 10111 010../ I MMA MMA xvf64gerpn v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Negative accumulate XX3-form

111011 ...// 00111 010../ I MMA MMA xvf64gerpp v3.1 879 VSX Vector 64-bit Floating-Point GER (rank-1 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 01001 011../ I MMA MMA xvi16ger2 v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
XX3-form

111011 ...// 01101 011../ I MMA MMA xvi16ger2pp v3.1 891 VSX Vector 16-bit Signed Integer GER (rank-2 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00101 011../ I MMA MMA xvi16ger2s v3.1 893 VSX Vector 16-bit Signed Integer GER (rank-2 update)
with Saturation XX3-form

111011 ...// 00101 010../ I MMA MMA xvi16ger2spp v3.1 893
VSX Vector 16-bit Signed Integer GER (rank-2 update)

with Saturation Positive multiply, Positive
accumulate XX3-form

111011 ...// 00100 011../ I MMA MMA xvi4ger8 v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
XX3-form

111011 ...// 00100 010../ I MMA MMA xvi4ger8pp v3.1 883 VSX Vector 4-bit Signed Integer GER (rank-8 update)
Positive multiply, Positive accumulate XX3-form

111011 ...// 00000 011../ I MMA MMA xvi8ger4 v3.1 886 VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4
update) XX3-form

111011 ...// 00000 010../ I MMA MMA xvi8ger4pp v3.1 886
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) Positive multiply, Positive accumulate
XX3-form

111011 ...// 01100 011../ I MMA MMA xvi8ger4spp v3.1 889
VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4

update) with Saturate Positive multiply, Positive
accumulate XX3-form

111100 11111 000... I ..XX xviexpdp v3.0 896 VSX Vector Insert Exponent Double-Precision XX3-form
111100 11011 000... I ..XX xviexpsp v3.0 896 VSX Vector Insert Exponent Single-Precision XX3-form

111100 01100 001... I ..XX xvmaddadp v2.06 897 VSX Vector Multiply-Add Type-A Double-Precision
XX3-form

111100 01000 001... I ..XX xvmaddasp v2.06 900 VSX Vector Multiply-Add Type-A Single-Precision
XX3-form

111100 01101 001... I ..XX xvmaddmdp v2.06 897 VSX Vector Multiply-Add Type-M Double-Precision
XX3-form

111100 01001 001... I ..XX xvmaddmsp v2.06 900 VSX Vector Multiply-Add Type-M Single-Precision
XX3-form

111100 11100 000... I ..XX xvmaxdp v2.06 903 VSX Vector Maximum Double-Precision XX3-form
111100 11000 000... I ..XX xvmaxsp v2.06 905 VSX Vector Maximum Single-Precision XX3-form
111100 11101 000... I ..XX xvmindp v2.06 907 VSX Vector Minimum Double-Precision XX3-form
111100 11001 000... I ..XX xvminsp v2.06 909 VSX Vector Minimum Single-Precision XX3-form

111100 01110 001... I ..XX xvmsubadp v2.06 911 VSX Vector Multiply-Subtract Type-A Double-Precision
XX3-form

111100 01010 001... I ..XX xvmsubasp v2.06 914 VSX Vector Multiply-Subtract Type-A Single-Precision
XX3-form

111100 01111 001... I ..XX xvmsubmdp v2.06 911 VSX Vector Multiply-Subtract Type-M Double-Precision
XX3-form

111100 01011 001... I ..XX xvmsubmsp v2.06 914 VSX Vector Multiply-Subtract Type-M Single-Precision
XX3-form

111100 01110 000... I ..XX xvmuldp v2.06 917 VSX Vector Multiply Double-Precision XX3-form
111100 01010 000... I ..XX xvmulsp v2.06 919 VSX Vector Multiply Single-Precision XX3-form

111100 ///// 11110 1001.. I ..XX xvnabsdp v2.06 921 VSX Vector Negative Absolute Double-Precision
XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 27 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1507

Version 3.1
111100 ///// 11010 1001.. I ..XX xvnabssp v2.06 921 VSX Vector Negative Absolute Single-Precision
XX2-form

111100 ///// 11111 1001.. I ..XX xvnegdp v2.06 922 VSX Vector Negate Double-Precision XX2-form
111100 ///// 11011 1001.. I ..XX xvnegsp v2.06 922 VSX Vector Negate Single-Precision XX2-form

111100 11100 001... I ..XX xvnmaddadp v2.06 923 VSX Vector Negative Multiply-Add Type-A
Double-Precision XX3-form

111100 11000 001... I ..XX xvnmaddasp v2.06 927 VSX Vector Negative Multiply-Add Type-A
Single-Precision XX3-form

111100 11101 001... I ..XX xvnmaddmdp v2.06 923 VSX Vector Negative Multiply-Add Type-M
Double-Precision XX3-form

111100 11001 001... I ..XX xvnmaddmsp v2.06 927 VSX Vector Negative Multiply-Add Type-M
Single-Precision XX3-form

111100 11110 001... I ..XX xvnmsubadp v2.06 930 VSX Vector Negative Multiply-Subtract Type-A
Double-Precision XX3-form

111100 11010 001... I ..XX xvnmsubasp v2.06 933 VSX Vector Negative Multiply-Subtract Type-A
Single-Precision XX3-form

111100 11111 001... I ..XX xvnmsubmdp v2.06 930 VSX Vector Negative Multiply-Subtract Type-M
Double-Precision XX3-form

111100 11011 001... I ..XX xvnmsubmsp v2.06 933 VSX Vector Negative Multiply-Subtract Type-M
Single-Precision XX3-form

111100 ///// 01100 1001.. I ..XX xvrdpi v2.06 936 VSX Vector Round to Double-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01110 1011.. I ..XX xvrdpic v2.06 937 VSX Vector Round to Double-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01111 1001.. I ..XX xvrdpim v2.06 938 VSX Vector Round to Double-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01110 1001.. I ..XX xvrdpip v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01101 1001.. I ..XX xvrdpiz v2.06 939 VSX Vector Round to Double-Precision Integer using
round toward Zero XX2-form

111100 ///// 01101 1010.. I ..XX xvredp v2.06 940 VSX Vector Reciprocal Estimate Double-Precision
XX2-form

111100 ///// 01001 1010.. I ..XX xvresp v2.06 941 VSX Vector Reciprocal Estimate Single-Precision
XX2-form

111100 ///// 01000 1001.. I ..XX xvrspi v2.06 942 VSX Vector Round to Single-Precision Integer using
round to Nearest Away XX2-form

111100 ///// 01010 1011.. I ..XX xvrspic v2.06 943 VSX Vector Round to Single-Precision Integer Exact
using Current rounding mode XX2-form

111100 ///// 01011 1001.. I ..XX xvrspim v2.06 944 VSX Vector Round to Single-Precision Integer using
round toward -Infinity XX2-form

111100 ///// 01010 1001.. I ..XX xvrspip v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward +Infinity XX2-form

111100 ///// 01001 1001.. I ..XX xvrspiz v2.06 945 VSX Vector Round to Single-Precision Integer using
round toward Zero XX2-form

111100 ///// 01100 1010.. I ..XX xvrsqrtedp v2.06 946 VSX Vector Reciprocal Square Root Estimate
Double-Precision XX2-form

111100 ///// 01000 1010.. I ..XX xvrsqrtesp v2.06 947 VSX Vector Reciprocal Square Root Estimate
Single-Precision XX2-form

111100 ///// 01100 1011.. I ..XX xvsqrtdp v2.06 948 VSX Vector Square Root Double-Precision XX2-form
111100 ///// 01000 1011.. I ..XX xvsqrtsp v2.06 949 VSX Vector Square Root Single-Precision XX2-form
111100 01101 000... I ..XX xvsubdp v2.06 950 VSX Vector Subtract Double-Precision XX3-form
111100 01001 000... I ..XX xvsubsp v2.06 952 VSX Vector Subtract Single-Precision XX3-form

111100 ...// 01111 101../ I ..XX xvtdivdp v2.06 954 VSX Vector Test for software Divide Double-Precision
XX3-form

111100 ...// 01011 101../ I ..XX xvtdivsp v2.06 955 VSX Vector Test for software Divide Single-Precision
XX3-form

111100 ...// 00010 11101 1011./ I ..XX xvtlsbb v3.1 959 VSX Vector Test Least-Significant Bit by Byte XX2-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 28 of 30)
Power ISA™ Appendices1508

Version 3.1
111100 ...// ///// 01110 1010./ I ..XX xvtsqrtdp v2.06 956 VSX Vector Test for software Square Root
Double-Precision XX2-form

111100 ...// ///// 01010 1010./ I ..XX xvtsqrtsp v2.06 956 VSX Vector Test for software Square Root
Single-Precision XX2-form

111100 1111. 101... I ..XX xvtstdcdp v3.0 957 VSX Vector Test Data Class Double-Precision XX2-form
111100 1101. 101... I ..XX xvtstdcsp v3.0 958 VSX Vector Test Data Class Single-Precision XX2-form

111100 00000 11101 1011.. I ..XX xvxexpdp v3.0 960 VSX Vector Extract Exponent Double-Precision
XX2-form

111100 01000 11101 1011.. I ..XX xvxexpsp v3.0 960 VSX Vector Extract Exponent Single-Precision
XX2-form

111100 00001 11101 1011.. I ..XX xvxsigdp v3.0 961 VSX Vector Extract Significand Double-Precision
XX2-form

111100 01001 11101 1011.. I ..XX xvxsigsp v3.0 961 VSX Vector Extract Significand Single-Precision
XX2-form

000001 01000 0//// ///// ///// //////
100001 00....

I ..XX xxblendvb v3.1 962 VSX Vector Blend Variable Byte 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 11....

I ..XX xxblendvd v3.1 963 VSX Vector Blend Variable Doubleword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 01....

I ..XX xxblendvh v3.1 962 VSX Vector Blend Variable Halfword 8RR:XX4-form

000001 01000 0//// ///// ///// //////
100001 10....

I ..XX xxblendvw v3.1 963 VSX Vector Blend Variable Word 8RR:XX4-form

111100 10111 11101 1011.. I ..XX xxbrd v3.0 964 VSX Vector Byte-Reverse Doubleword XX2-form
111100 00111 11101 1011.. I ..XX xxbrh v3.0 965 VSX Vector Byte-Reverse Halfword XX2-form
111100 11111 11101 1011.. I ..XX xxbrq v3.0 966 VSX Vector Byte-Reverse Quadword XX2-form
111100 01111 11101 1011.. I ..XX xxbrw v3.0 967 VSX Vector Byte-Reverse Word XX2-form
000001 01000 0//// ///// ///..
100010 01....

I ..XX xxeval v3.1 967 VSX Vector Evaluate 8RR-XX4-form

111100 /.... 01010 0101.. I ..XX xxextractuw v3.0 969 VSX Vector Extract Unsigned Word XX2-form
111100 11100 10100. I ..XX xxgenpcvbm v3.1 970 VSX Vector Generate PCV from Byte Mask X-form

111100 11101 10101. I ..XX xxgenpcvdm v3.1 976 VSX Vector Generate PCV from Doubleword Mask
X-form

111100 11100 10101. I ..XX xxgenpcvhm v3.1 972 VSX Vector Generate PCV from Halfword Mask X-form
111100 11101 10100. I ..XX xxgenpcvwm v3.1 974 VSX Vector Generate PCV from Word Mask X-form
111100 /.... 01011 0101.. I ..XX xxinsertw v3.0 969 VSX Vector Insert Word XX2-form
111100 10000 010... I ..XX xxland v2.06 978 VSX Vector Logical AND XX3-form
111100 10001 010... I ..XX xxlandc v2.06 978 VSX Vector Logical AND with Complement XX3-form
111100 10111 010... I ..XX xxleqv v2.07 979 VSX Vector Logical Equivalence XX3-form
111100 10110 010... I ..XX xxlnand v2.07 979 VSX Vector Logical NAND XX3-form
111100 10100 010... I ..XX xxlnor v2.06 980 VSX Vector Logical NOR XX3-form
111100 10010 010... I ..XX xxlor v2.06 981 VSX Vector Logical OR XX3-form
111100 10101 010... I ..XX xxlorc v2.07 980 VSX Vector Logical OR with Complement XX3-form
111100 10011 010... I ..XX xxlxor v2.06 981 VSX Vector Logical XOR XX3-form
011111 ...// 00000 ///// 00101 10001/ I MMA MMA xxmfacc v3.1 983 VSX Move From Accumulator X-form
111100 00010 010... I ..XX xxmrghw v2.06 982 VSX Vector Merge High Word XX3-form
111100 00110 010... I ..XX xxmrglw v2.06 982 VSX Vector Merge Low Word XX3-form
011111 ...// 00001 ///// 00101 10001/ I MMA MMA xxmtacc v3.1 984 VSX Move To Accumulator X-form
111100 00011 010... I ..XX xxperm v3.0 985 VSX Vector Permute XX3-form
111100 0..01 010... I ..XX xxpermdi v2.06 986 VSX Vector Permute Doubleword Immediate XX3-form
111100 00111 010... I ..XX xxpermr v3.0 985 VSX Vector Permute Right-indexed XX3-form
000001 01000 0//// ///// ///// ///...
100010 00....

I ..XX xxpermx v3.1 987 VSX Vector Permute Extended 8RR:XX4-form

111100 11.... I ..XX xxsel v2.06 988 VSX Vector Select XX4-form
011111 ...// 00011 ///// 00101 10001/ I MMA MMA xxsetaccz v3.1 989 VSX Set Accumulator to Zero X-form

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 29 of 30)
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1509

Version 3.1
111100 0..00 010... I ..XX xxsldwi v2.06 990 VSX Vector Shift Left Double by Word Immediate
XX3-form

000001 01000 0////
100000 000..

I ..XX xxsplti32dx v3.1 992 VSX Vector Splat Immediate32 Doubleword Indexed
8RR:D-form

111100 00... 01011 01000. I ..XX xxspltib v3.0 991 VSX Vector Splat Immediate Byte X-form
000001 01000 0////
100000 0010. I ..XX xxspltidp v3.1 991 VSX Vector Splat Immediate Double-Precision

8RR:D-form
000001 01000 0////
100000 0011. I ..XX xxspltiw v3.1 992 VSX Vector Splat Immediate Word 8RR:D-form

111100 ///.. 01010 0100.. I ..XX xxspltw v2.06 993 VSX Vector Splat Word XX2-form

1. Instruction

/ Instruction bit that corresponds to a reserved field, must have a value of 0, otherwise invalid form.
- Instruction bit that corresponds to an operand bit, may have a value of either 0 or 1.
0 Instruction bit that corresponds to an opcode bit having a value 0.
1 Instruction bit that corresponds to an opcode bit having a value 1.

2. OpenPOWER Compliancy Subsets
X... Instruction included in the Scalar Fixed-Point Compliancy subset
.X.. Instruction included in the Scalar Fixed-Point + Floating-Point Compliancy subset.
..X. Instruction included in the Linux Compliancy subset.
...X Instruction included in the AIX Compliancy subset.

3. Linux Optional Category
AMO Instruction part of Atomic Memory Operations category.
BFP128 Instruction part of Quad-Precision Floating-Point category.
BHRB Instruction part of Branch History Rolling Buffer category.
DFP Instruction part of Decimal Floating-Point category.
EBB Instruction part of Event-Based Branch category.
MMA Instruction part of Matrix-Multiplication Assist category.

4. Always Optional Category
MMA Instruction part of Matrix-Multiplication Assist category.

5. Version

P1 Instruction introduced in POWER Architecture.
P2 Instruction introduced in POWER2 Architecture.
PPC Instruction introduced in PowerPC Architecture prior to v2.00.
v2.00 Instruction introduced in PowerPC Architecture Version 2.00.
v2.01 Instruction introduced in PowerPC Architecture Version 2.01.
v2.02 Instruction introduced in PowerPC Architecture Version 2.02.
v2.03 Instruction introduced in Power ISA Version 2.03.
v2.04 Instruction introduced in Power ISA Version 2.04.
v2.05 Instruction introduced in Power ISA Version 2.05.
v2.06 Instruction introduced in Power ISA Version 2.06.
v2.07 Instruction introduced in Power ISA Version 2.07.
v3.0 Instruction introduced in Power ISA Version 3.0.
v3.0B Instruction introduced in Power ISA Version 3.0B.
v3.0C Instruction introduced in Power ISA Version 3.0C.
v3.1 Instruction introduced in Power ISA Version 3.1.

6. Privilege

P Denotes an instruction that is treated as privileged.
O Denotes an instruction that is treated as privileged or nonprivileged (or hypervisor-privileged for mtspr), depending on the

SPR or PMR number.
PI Denotes an instruction that is illegal in privileged state.
HV Denotes an instruction that can be executed only in hypervisor state.
UV Denotes an instruction that can be executed only in ultravisor state.

Instruction1 B
oo

k

C
om

pl
ia

nc
y

Su
bs

et
s2

Li
nu

x
O

pt
io

na
l C

at
eg

or
y3

A
lw

ay
s

O
pt

io
na

l C
at

eg
or

y4

M
ne

m
on

ic

Ve
rs

io
n5

Pr
iv

ile
ge

6

M
od

e
D

ep
7

Pa
ge

Name

Figure 94. Power ISA AS Instruction Set Sorted by Mnemonic (Sheet 30 of 30)
Power ISA™ Appendices1510

Version 3.1
7. Mode Dependency.
Except as described below and in Section 1.10.3, “Effective Address Calculation”, in Book I, all instructions are independent of wheth-
er the processor is in 32-bit or 64-bit mode.

CT If the instruction tests the Count Register, it tests the low-order 32 bits in 32-bit mode and all 64 bits in 64-bit mode.
SR The setting of status registers (such as XER and CR0) is mode-dependent.
SF=1 The instruction can be executed only in 64-bit mode.
Appendix H. Power ISA Instruction Set Sorted by Mnemonic 1511

Version 3.1
Power ISA™ Appendices1512

Version 3.1
 1513

Version 3.1
Last Page - End of Document
Power ISA™ 1514

	Power ISA™ Version 3.1
	Preface
	Summary of Changes in Power ISA Version 3.1
	OpenISA Compliancy Subset Methodology and Requirements

	Table of Contents
	Book I: Power ISA User Instruction Set Architecture
	Chapter 1. Introduction
	1.1 Overview
	1.2 Instruction Mnemonics and Operands
	1.3 Document Conventions
	1.3.1 Definitions
	1.3.2 Notation
	1.3.3 Reserved Fields, Reserved Values, and Reserved SPRs
	1.3.4 Description of Instruction Operation
	1.3.5 Phased-Out Facilities

	1.4 Processor Overview
	1.5 Computation modes
	1.6 Instruction Formats
	1.6.1 Word Instruction Formats
	1.6.1.1 A-FORM
	1.6.1.2 B-FORM
	1.6.1.3 D-FORM
	1.6.1.4 DQ-FORM
	1.6.1.5 DS-FORM
	1.6.1.6 DX-FORM
	1.6.1.7 I-FORM
	1.6.1.8 M-FORM
	1.6.1.9 MD-FORM
	1.6.1.10 MDS-FORM
	1.6.1.11 SC-FORM
	1.6.1.12 VA-FORM
	1.6.1.13 VC-FORM
	1.6.1.14 VX-FORM
	1.6.1.15 X-FORM
	1.6.1.16 XFL-FORM
	1.6.1.17 XFX-FORM
	1.6.1.18 XL-FORM
	1.6.1.19 XO-FORM
	1.6.1.20 XS-FORM
	1.6.1.21 XX2-FORM
	1.6.1.22 XX3-FORM
	1.6.1.23 XX4-FORM
	1.6.1.24 Z22-FORM
	1.6.1.25 Z23-FORM

	1.6.2 Word Instruction Fields
	1.6.3 Instruction Prefix Formats
	1.6.3.1 Type 00 Prefix – Eight-Byte Load/Store Instructions
	1.6.3.2 Type 01 Prefix – Eight-Byte Register-to-Register Instructions
	1.6.3.3 Type 10 - Modified Load/Store Instructions
	1.6.3.4 Type 11 - Modified Register-to-Register Instructions

	1.6.4 Instruction Prefix Fields

	1.7 Classes of Instructions
	1.7.1 Defined Instruction Class
	1.7.2 Illegal Instruction Class
	1.7.3 Reserved Instruction Class

	1.8 Forms of Defined Instructions
	1.8.1 Preferred Instruction Forms
	1.8.2 Invalid Instruction Forms
	1.8.3 Reserved-no-op Instructions

	1.9 Exceptions
	1.10 Storage Addressing
	1.10.1 Storage Operands
	1.10.2 Instruction Fetches
	1.10.3 Effective Address Calculation

	Chapter 2. Branch Facility
	2.1 Branch Facility Overview
	2.2 Instruction Execution Order
	2.3 Branch Facility Registers
	2.3.1 Condition Register
	2.3.2 Link Register
	2.3.3 Count Register
	2.3.4 Target Address Register

	2.4 Branch Instructions
	Branch I-form
	Branch Conditional B-form
	Branch Conditional to Link Register XL-form
	Branch Conditional to Count Register XL-form
	Branch Conditional to Branch Target Address Register XL-form

	2.5 Condition Register Instructions
	2.5.1 Condition Register Logical Instructions
	Condition Register AND XL-form
	Condition Register OR XL-form
	Condition Register NAND XL-form
	Condition Register XOR XL-form
	Condition Register NOR XL-form
	Condition Register AND with Complement XL-form
	Condition Register Equivalent XL-form
	Condition Register OR with Complement XL-form

	2.5.2 Condition Register Field Instruction
	Move Condition Register Field XL-form

	2.6 System Call Instructions
	System Call SC-form
	System Call Vectored SC-form

	Chapter 3. Fixed-Point Facility
	3.1 Fixed-Point Facility Overview
	3.2 Fixed-Point Facility Registers
	3.2.1 General Purpose Registers
	3.2.2 Fixed-Point Exception Register
	3.2.3 VR Save Register

	3.3 Fixed-Point Facility Instructions
	3.3.1 Fixed-Point Storage Access Instructions
	3.3.1.1 Storage Access Exceptions

	3.3.2 Fixed-Point Load Instructions
	Load Byte and Zero D-form
	Prefixed Load Byte and Zero MLS:D-form
	Load Byte and Zero Indexed X-form
	Load Byte and Zero with Update D-form
	Load Byte and Zero with Update Indexed X-form
	Load Halfword and Zero D-form
	Prefixed Load Halfword and Zero MLS:D-form
	Load Halfword and Zero Indexed X-form
	Load Halfword and Zero with Update D-form
	Load Halfword and Zero with Update Indexed X-form
	Load Halfword Algebraic D-form
	Prefixed Load Halfword Algebraic MLS:D-form
	Load Halfword Algebraic Indexed X-form
	Load Halfword Algebraic with Update D-form
	Load Halfword Algebraic with Update Indexed X-form
	Load Word and Zero D-form
	Prefixed Load Word and Zero MLS:D-form
	Load Word and Zero Indexed X-form
	Load Word and Zero with Update D-form
	Load Word and Zero with Update Indexed X-form
	3.3.2.1 64-bit Fixed-Point Load Instructions
	Load Word Algebraic DS-form
	Prefixed Load Word Algebraic 8LS:D-form
	Load Word Algebraic Indexed X-form
	Load Word Algebraic with Update Indexed X-form
	Load Doubleword DS-form
	Prefixed Load Doubleword 8LS:D-form
	Load Doubleword Indexed X-form
	Load Doubleword with Update DS-form
	Load Doubleword with Update Indexed X-form

	3.3.3 Fixed-Point Store Instructions
	Store Byte D-form
	Prefixed Store Byte MLS:D-form
	Store Byte Indexed X-form
	Store Byte with Update D-form
	Store Byte with Update Indexed X-form
	Store Halfword D-form
	Prefixed Store Halfword MLS:D-form
	Store Halfword Indexed X-form
	Store Halfword with Update D-form
	Store Halfword with Update Indexed X-form
	Store Word D-form
	Prefixed Store Word MLS:D-form
	Store Word Indexed X-form
	Store Word with Update D-form
	Store Word with Update Indexed X-form
	3.3.3.1 64-bit Fixed-Point Store Instructions
	Store Doubleword DS-form
	Prefixed Store Doubleword 8LS:D-form
	Store Doubleword Indexed X-form
	Store Doubleword with Update DS-form
	Store Doubleword with Update Indexed X-form

	3.3.4 Fixed Point Load and Store Quadword Instructions
	Load Quadword DQ-form
	Prefixed Load Quadword 8LS:D-form
	Store Quadword DS-form
	Prefixed Store Quadword 8LS:D-form

	3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions
	Load Halfword Byte-Reverse Indexed X-form
	Store Halfword Byte-Reverse Indexed X-form
	Load Word Byte-Reverse Indexed X-form
	Store Word Byte-Reverse Indexed X-form
	3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions
	Load Doubleword Byte-Reverse Indexed X-form
	Store Doubleword Byte-Reverse Indexed X-form

	3.3.6 Fixed-Point Load and Store Multiple Instructions
	Load Multiple Word D-form
	Store Multiple Word D-form

	3.3.7 Fixed-Point Move Assist Instructions [Phased Out]
	Load String Word Immediate X-form
	Load String Word Indexed X-form
	Store String Word Immediate X-form
	Store String Word Indexed X-form

	3.3.8 Other Fixed-Point Instructions
	3.3.9 Fixed-Point Arithmetic Instructions
	Add Immediate D-form
	Prefixed Add Immediate MLS:D-form
	Add Immediate Shifted D-form
	Add PC Immediate Shifted DX-form
	Add XO-form
	Add Immediate Carrying D-form
	Add Immediate Carrying and Record D-form
	Subtract From XO-form
	Subtract From Immediate Carrying D-form
	Add Carrying XO-form
	Subtract From Carrying XO-form
	Add Extended XO-form
	Subtract From Extended XO-form
	Add to Minus One Extended XO-form
	Add to Zero Extended XO-form
	Subtract From Minus One Extended XO-form
	Subtract From Zero Extended XO-form
	Add Extended using alternate carry bit Z23-form
	Negate XO-form
	Multiply Low Immediate D-form
	Multiply Low Word XO-form
	Multiply High Word XO-form
	Multiply High Word Unsigned XO-form
	Divide Word XO-form
	Divide Word Unsigned XO-form
	Divide Word Extended XO-form
	Divide Word Extended Unsigned XO-form
	Modulo Signed Word X-form
	Modulo Unsigned Word X-form
	Deliver A Random Number X-form
	3.3.9.1 64-bit Fixed-Point Arithmetic Instructions
	Multiply Low Doubleword XO-form
	Multiply High Doubleword XO-form
	Multiply High Doubleword Unsigned XO-form
	Multiply-Add High Doubleword VA-form
	Multiply-Add High Doubleword Unsigned VA-form
	Multiply-Add Low Doubleword VA-form
	Divide Doubleword XO-form
	Divide Doubleword Unsigned XO-form
	Divide Doubleword Extended XO-form
	Divide Doubleword Extended Unsigned XO-form
	Modulo Signed Doubleword X-form
	Modulo Unsigned Doubleword X-form

	3.3.10 Fixed-Point Compare Instructions
	Compare Immediate D-form
	Compare X-form
	Compare Logical Immediate D-form
	Compare Logical X-form
	3.3.10.1 Character-Type Compare Instructions
	Compare Ranged Byte X-form
	Compare Equal Byte X-form

	3.3.11 Fixed-Point Trap Instructions
	Trap Word Immediate D-form
	Trap Word X-form
	3.3.11.1 64-bit Fixed-Point Trap Instructions
	Trap Doubleword Immediate D-form
	Trap Doubleword X-form

	3.3.12 Fixed-Point Select
	Integer Select A-form

	3.3.13 Fixed-Point Logical Instructions
	AND Immediate D-form
	AND Immediate Shifted D-form
	OR Immediate D-form
	OR Immediate Shifted D-form
	XOR Immediate D-form
	XOR Immediate Shifted D-form
	AND X-form
	XOR X-form
	NAND X-form
	OR X-form
	OR with Complement X-form
	NOR X-form
	Equivalent X-form
	AND with Complement X-form
	Extend Sign Byte X-form
	Extend Sign Halfword X-form
	Compare Bytes X-form
	Count Leading Zeros Word X-form
	Count Trailing Zeros Word X-form
	Population Count Bytes X-form
	Population Count Words X-form
	Parity Word X-form
	3.3.13.1 64-bit Fixed-Point Logical Instructions
	Extend Sign Word X-form
	Population Count Doubleword X-form
	Parity Doubleword X-form
	Count Leading Zeros Doubleword X-form
	Count Trailing Zeros Doubleword X-form
	Count Leading Zeros Doubleword under bit Mask X-form
	Count Trailing Zeros Doubleword under bit Mask X-form
	Bit Permute Doubleword X-form
	Centrifuge Doubleword X-form
	Parallel Bits Extract Doubleword X-form
	Parallel Bits Deposit Doubleword X-form

	3.3.14 Fixed-Point Rotate and Shift Instructions
	3.3.14.1 Fixed-Point Rotate Instructions
	Rotate Left Word Immediate then AND with Mask M-form
	Rotate Left Word then AND with Mask M-form
	Rotate Left Word Immediate then Mask Insert M-form
	3.3.14.1.1 64-bit Fixed-Point Rotate Instructions
	Rotate Left Doubleword Immediate then Clear Left MD-form
	Rotate Left Doubleword Immediate then Clear Right MD-form
	Rotate Left Doubleword Immediate then Clear MD-form
	Rotate Left Doubleword then Clear Left MDS-form
	Rotate Left Doubleword then Clear Right MDS-form
	Rotate Left Doubleword Immediate then Mask Insert MD-form

	3.3.14.2 Fixed-Point Shift Instructions
	Shift Left Word X-form
	Shift Right Word X-form
	Shift Right Algebraic Word Immediate X-form
	Shift Right Algebraic Word X-form
	3.3.14.2.1 64-bit Fixed-Point Shift Instructions
	Shift Left Doubleword X-form
	Shift Right Algebraic Doubleword Immediate XS-form
	Shift Right Doubleword X-form
	Shift Right Algebraic Doubleword X-form
	Extend Sign Word and Shift Left Immediate XS-form

	3.3.15 Binary Coded Decimal (BCD) Assist Instructions
	Convert Declets To Binary Coded Decimal X-form
	Convert Binary Coded Decimal To Declets X-form
	Add and Generate Sixes XO-form

	3.3.16 Byte-Reverse Instructions
	Byte-Reverse Halfword X-form
	Byte-Reverse Word X-form
	Byte-Reverse Doubleword X-form

	3.3.17 Move To/From Vector-Scalar Register Instructions
	Move From VSR Doubleword X-form
	Move From VSR Lower Doubleword X-form
	Move From VSR Word and Zero X-form
	Move To VSR Doubleword X-form
	Move To VSR Word Algebraic X-form
	Move To VSR Word and Zero X-form
	Move To VSR Double Doubleword X-form
	Move To VSR Word & Splat X-form

	3.3.18 Move To/From System Register Instructions
	Move To Special Purpose Register XFX-form
	Move From Special Purpose Register XFX-form
	Move to CR from XER Extended X-form
	Move To One Condition Register Field XFX-form
	Move To Condition Register Fields XFX-form
	Move From One Condition Register Field XFX-form
	Move From Condition Register XFX-form
	Set Boolean X-form
	Set Boolean Condition X-form
	Set Boolean Condition Reverse X-form
	Set Negative Boolean Condition X-form
	Set Negative Boolean Condition Reverse X-form

	3.3.19 Prefixed No-Operation Instruction
	Prefixed Nop MRR:*-form

	Chapter 4. Floating-Point Facility
	4.1 Floating-Point Facility Overview
	4.2 Floating-Point Facility Registers
	4.2.1 Floating-Point Registers
	4.2.2 Floating-Point Status and Control Register

	4.3 Floating-Point Data
	4.3.1 Data Format
	4.3.2 Value Representation
	4.3.3 Sign of Result
	4.3.4 Normalization and Denormalization
	4.3.5 Data Handling and Precision
	4.3.5.1 Single-Precision Operands
	4.3.5.2 Integer-Valued Operands

	4.3.6 Rounding

	4.4 Floating-Point Exceptions
	4.4.1 Invalid Operation Exception
	4.4.1.1 Definition
	4.4.1.2 Action

	4.4.2 Zero Divide Exception
	4.4.2.1 Definition
	4.4.2.2 Action

	4.4.3 Overflow Exception
	4.4.3.1 Definition
	4.4.3.2 Action

	4.4.4 Underflow Exception
	4.4.4.1 Definition
	4.4.4.2 Action

	4.4.5 Inexact Exception
	4.4.5.1 Definition
	4.4.5.2 Action

	4.5 Floating-Point Execution Models
	4.5.1 Execution Model for IEEE Operations
	4.5.2 Execution Model for Multiply-Add Type Instructions

	4.6 Floating-Point Facility Instructions
	4.6.1 Floating-Point Storage Access Instructions
	4.6.1.1 Storage Access Exceptions

	4.6.2 Floating-Point Load Instructions
	Load Floating-Point Single D-form
	Prefixed Load Floating-Point Single MLS:D-form
	Load Floating-Point Single Indexed X-form
	Load Floating-Point Single with Update D-form
	Load Floating-Point Single with Update Indexed X-form
	Load Floating-Point Double D-form
	Prefixed Load Floating-Point Double MLS:D-form
	Load Floating-Point Double Indexed X-form
	Load Floating-Point Double with Update D-form
	Load Floating-Point Double with Update Indexed X-form
	Load Floating-Point as Integer Word Algebraic Indexed X-form
	Load Floating-Point as Integer Word & Zero Indexed X-form

	4.6.3 Floating-Point Store Instructions
	Store Floating-Point Single D-form
	Prefixed Store Floating-Point Single MLS:D-form
	Store Floating-Point Single Indexed X-form
	Store Floating-Point Single with Update D-form
	Store Floating-Point Single with Update Indexed X-form
	Store Floating-Point Double D-form
	Prefixed Store Floating-Point Double MLS:D-form
	Store Floating-Point Double Indexed X-form
	Store Floating-Point Double with Update D-form
	Store Floating-Point Double with Update Indexed X-form
	Store Floating-Point as Integer Word Indexed X-form

	4.6.4 Floating-Point Load and Store Double Pair Instructions [Phased-Out]
	Load Floating-Point Double Pair DS-form
	Load Floating-Point Double Pair Indexed X-form
	Store Floating-Point Double Pair DS-form
	Store Floating-Point Double Pair Indexed X-form

	4.6.5 Floating-Point Move Instructions
	Floating Move Register X-form
	Floating Negate X-form
	Floating Absolute Value X-form
	Floating Negative Absolute Value X-form
	Floating Copy Sign X-form
	Floating Merge Even Word X-form
	Floating Merge Odd Word X-form

	4.6.6 Floating-Point Arithmetic Instructions
	4.6.6.1 Floating-Point Elementary Arithmetic Instructions
	Floating Add A-form
	Floating Add Single A-form
	Floating Subtract A-form
	Floating Subtract Single A-form
	Floating Multiply A-form
	Floating Multiply Single A-form
	Floating Divide A-form
	Floating Divide Single A-form
	Floating Square Root A-form
	Floating Square Root Single A-form
	Floating Reciprocal Estimate A-form
	Floating Reciprocal Estimate Single A-form
	Floating Reciprocal Square Root Estimate A-form
	Floating Reciprocal Square Root Estimate Single A-form
	Floating Test for software Divide X-form
	Floating Test for software Square Root X-form

	4.6.6.2 Floating-Point Multiply-Add Instructions
	Floating Multiply-Add A-form
	Floating Multiply-Add Single A-form
	Floating Multiply-Subtract A-form
	Floating Multiply-Subtract Single A-form
	Floating Negative Multiply-Add A-form
	Floating Negative Multiply-Add Single A-form
	Floating Negative Multiply-Subtract A-form
	Floating Negative Multiply-Subtract Single A-form

	4.6.7 Floating-Point Rounding and Conversion Instructions
	4.6.7.1 Floating-Point Rounding Instruction
	Floating Round to Single-Precision X-form

	4.6.7.2 Floating-Point Convert To/From Integer Instructions
	Floating Convert with round Double-Precision To Signed Doubleword format X-form
	Floating Convert with truncate Double-Precision To Signed Doubleword format X-form
	Floating Convert with round Double-Precision To Unsigned Doubleword format X-form
	Floating Convert with truncate Double-Precision To Unsigned Doubleword format X-form
	Floating Convert with round Double-Precision To Signed Word format X-form
	Floating Convert with truncate Double-Precision To Signed Word fomat X-form
	Floating Convert with round Double-Precision To Unsigned Word format X-form
	Floating Convert with truncate Double-Precision To Unsigned Word format X-form
	Floating Convert with round Signed Doubleword to Double-Precision format X-form
	Floating Convert with round Unsigned Doubleword to Double-Precision format X-form
	Floating Convert with round Signed Doubleword to Single-Precision format X-form
	Floating Convert with round Unsigned Doubleword to Single-Precision format X-form

	4.6.7.3 Floating Round to Integer Instructions
	Floating Round to Integer Nearest X-form
	Floating Round to Integer Toward Zero X-form
	Floating Round to Integer Plus X-form
	Floating Round to Integer Minus X-form

	4.6.8 Floating-Point Compare Instructions
	Floating Compare Unordered X-form
	Floating Compare Ordered X-form

	4.6.9 Floating-Point Select Instruction
	Floating Select A-form

	4.6.10 Floating-Point Status and Control Register Instructions
	Move From FPSCR X-form
	Move From FPSCR & Clear Enables X-form
	Move From FPSCR Control & Set DRN X-form
	Move From FPSCR Control & Set DRN Immediate X-form
	Move From FPSCR Control & Set RN X-form
	Move From FPSCR Control & Set RN Immediate X-form
	Move From FPSCR Lightweight X-form
	Move to Condition Register from FPSCR X-form
	Move To FPSCR Field Immediate X-form
	Move To FPSCR Fields XFL-form
	Move To FPSCR Bit 0 X-form
	Move To FPSCR Bit 1 X-form

	Chapter 5. Decimal Floating-Point
	5.1 Decimal Floating-Point (DFP) Facility Overview
	5.2 DFP Register Handling
	5.2.1 DFP Usage of Floating-Point Registers

	5.3 DFP Support for Non-DFP Data Types
	5.4 DFP Number Representation
	5.4.1 DFP Data Format
	5.4.1.1 Fields Within the Data Format
	5.4.1.2 Summary of DFP Data Formats
	5.4.1.3 Preferred DPD Encoding

	5.4.2 Classes of DFP Data

	5.5 DFP Execution Model
	5.5.1 Rounding
	5.5.2 Rounding Mode Specification
	5.5.3 Formation of Final Result
	5.5.3.1 Use of Ideal Exponent

	5.5.4 Arithmetic Operations
	5.5.4.1 Sign of Arithmetic Result

	5.5.5 Compare Operations
	5.5.6 Test Operations
	5.5.7 Quantum Adjustment Operations
	5.5.8 Conversion Operations
	5.5.8.1 Data-Format Conversion
	5.5.8.2 Data-Type Conversion

	5.5.9 Format Operations
	5.5.10 DFP Exceptions
	5.5.10.1 Invalid Operation Exception
	5.5.10.2 Zero Divide Exception
	5.5.10.3 Overflow Exception
	5.5.10.4 Underflow Exception
	5.5.10.5 Inexact Exception

	5.5.11 Summary of Normal Rounding And Range Actions

	5.6 DFP Instruction Descriptions
	5.6.1 DFP Arithmetic Instructions
	DFP Add X-form
	DFP Add Quad X-form
	DFP Subtract X-form
	DFP Subtract Quad X-form
	DFP Multiply X-form
	DFP Multiply Quad X-form
	DFP Divide X-form
	DFP Divide Quad X-form

	5.6.2 DFP Compare Instructions
	DFP Compare Unordered X-form
	DFP Compare Unordered Quad X-form
	DFP Compare Ordered X-form
	DFP Compare Ordered Quad X-form

	5.6.3 DFP Test Instructions
	DFP Test Data Class Z22-form
	DFP Test Data Class Quad Z22-form
	DFP Test Data Group Z22-form
	DFP Test Data Group Quad Z22-form
	DFP Test Exponent X-form
	DFP Test Exponent Quad X-form
	DFP Test Significance X-form
	DFP Test Significance Quad X-form
	DFP Test Significance Immediate X-form
	DFP Test Significance Immediate Quad X-form

	5.6.4 DFP Quantum Adjustment Instructions
	DFP Quantize Immediate Z23-form
	DFP Quantize Immediate Quad Z23-form
	DFP Quantize Z23-form
	DFP Quantize Quad Z23-form
	DFP Reround Z23-form
	DFP Reround Quad Z23-form
	DFP Round To FP Integer With Inexact Z23-form
	DFP Round To FP Integer With Inexact Quad Z23-form
	DFP Round To FP Integer Without Inexact Z23-form
	DFP Round To FP Integer Without Inexact Quad Z23-form

	5.6.5 DFP Conversion Instructions
	5.6.5.1 DFP Data-Format Conversion Instructions
	DFP Convert To DFP Long X-form
	DFP Convert To DFP Extended X-form
	DFP Round To DFP Short X-form
	DFP Round To DFP Long X-form

	5.6.5.2 DFP Data-Type Conversion Instructions
	DFP Convert From Fixed X-form
	DFP Convert From Fixed Quad X-form
	DFP Convert From Fixed Quadword Quad X-form
	DFP Convert To Fixed X-form
	DFP Convert To Fixed Quad X-form
	DFP Convert To Fixed Quadword Quad X-form

	5.6.6 DFP Format Instructions
	DFP Decode DPD To BCD X-form
	DFP Decode DPD To BCD Quad X-form
	DFP Encode BCD To DPD X-form
	DFP Encode BCD To DPD Quad X-form
	DFP Extract Biased Exponent X-form
	DFP Extract Biased Exponent Quad X-form
	DFP Insert Biased Exponent X-form
	DFP Insert Biased Exponent Quad X-form
	DFP Shift Significand Left Immediate Z22-form
	DFP Shift Significand Left Immediate Quad Z22-form
	DFP Shift Significand Right Immediate Z22-form
	DFP Shift Significand Right Immediate Quad Z22-form

	5.6.7 DFP Instruction Summary

	Chapter 6. Vector Facility
	6.1 Vector Facility Overview
	6.2 Chapter Conventions
	6.2.1 Description of Instruction Operation

	6.3 Vector Facility Registers
	6.3.1 Vector-Scalar Registers
	6.3.2 Vector Status and Control Register
	6.3.3 VR Save Register

	6.4 Vector Storage Access Operations
	6.4.1 Accessing Unaligned Storage Operands

	6.5 Vector Integer Operations
	6.5.1 Integer Saturation

	6.6 Vector Floating-Point Operations
	6.6.1 Floating-Point Overview
	6.6.2 Floating-Point Exceptions
	6.6.2.1 NaN Operand Exception
	6.6.2.2 Invalid Operation Exception
	6.6.2.3 Zero Divide Exception
	6.6.2.4 Log of Zero Exception
	6.6.2.5 Overflow Exception
	6.6.2.6 Underflow Exception

	6.7 Vector Storage Access Instructions
	6.7.1 Storage Access Exceptions
	6.7.2 Vector Load Instructions
	Load Vector Element Byte Indexed X-form
	Load Vector Element Halfword Indexed X-form
	Load Vector Element Word Indexed X-form
	Load Vector Indexed X-form
	Load Vector Indexed Last X-form

	6.7.3 Vector Store Instructions
	Store Vector Element Byte Indexed X-form
	Store Vector Element Halfword Indexed X-form
	Store Vector Element Word Indexed X-form
	Store Vector Indexed X-form
	Store Vector Indexed Last X-form

	6.7.4 Vector Alignment Support Instructions
	Load Vector for Shift Left Indexed X-form
	Load Vector for Shift Right Indexed X-form

	6.8 Vector Permute and Formatting Instructions
	6.8.1 Vector Pack Instructions
	Vector Pack Pixel VX-form
	Vector Pack Signed Halfword Signed Saturate VX-form
	Vector Pack Signed Halfword Unsigned Saturate VX-form
	Vector Pack Signed Word Signed Saturate VX-form
	Vector Pack Signed Word Unsigned Saturate VX-form
	Vector Pack Signed Doubleword Signed Saturate VX-form
	Vector Pack Signed Doubleword Unsigned Saturate VX-form
	Vector Pack Unsigned Halfword Unsigned Modulo VX-form
	Vector Pack Unsigned Halfword Unsigned Saturate VX-form
	Vector Pack Unsigned Word Unsigned Modulo VX-form
	Vector Pack Unsigned Word Unsigned Saturate VX-form
	Vector Pack Unsigned Doubleword Unsigned Modulo VX-form
	Vector Pack Unsigned Doubleword Unsigned Saturate VX-form

	6.8.2 Vector Unpack Instructions
	Vector Unpack High Signed Byte VX-form
	Vector Unpack Low Signed Byte VX-form
	Vector Unpack High Signed Halfword VX-form
	Vector Unpack Low Signed Halfword VX-form
	Vector Unpack High Signed Word VX-form
	Vector Unpack Low Signed Word VX-form
	Vector Unpack High Pixel VX-form
	Vector Unpack Low Pixel VX-form

	6.8.3 Vector Merge Instructions
	Vector Merge High Byte VX-form
	Vector Merge Low Byte VX-form
	Vector Merge High Halfword VX-form
	Vector Merge Low Halfword VX-form
	Vector Merge High Word VX-form
	Vector Merge Low Word VX-form
	Vector Merge Even Word VX-form
	Vector Merge Odd Word VX-form

	6.8.4 Vector Splat Instructions
	Vector Splat Byte VX-form
	Vector Splat Halfword VX-form
	Vector Splat Word VX-form
	Vector Splat Immediate Signed Byte VX-form
	Vector Splat Immediate Signed Halfword VX-form
	Vector Splat Immediate Signed Word VX-form

	6.8.5 Vector Permute Instruction
	Vector Permute VA-form
	Vector Permute Right-indexed VA-form

	6.8.6 Vector Select Instruction
	Vector Select VA-form

	6.8.7 Vector Shift Instructions
	Vector Shift Left Double by Bit Immediate VN-form
	Vector Shift Left Double by Octet Immediate VA-form
	Vector Shift Right Double by Bit Immediate VN-form
	Vector Shift Left VX-form
	Vector Shift Right VX-form
	Vector Shift Left by Octet VX-form
	Vector Shift Right by Octet VX-form
	Vector Shift Left Variable VX-form
	Vector Shift Right Variable VX-form

	6.8.8 Vector Extract Element Instructions
	6.8.8.1 Vector Extract Element to VSR using Immediate-specified Index Instructions
	Vector Extract Unsigned Byte to VSR using immediate-specified index VX-form
	Vector Extract Unsigned Halfword to VSR using immediate-specified index VX-form
	Vector Extract Unsigned Word to VSR using immediate-specified index VX-form
	Vector Extract Doubleword to VSR using immediate-specified index VX-form

	6.8.8.2 Vector Extract Element to GPR using GPR-specified Index Instructions
	Vector Extract Unsigned Byte to GPR using GPR-specified Left-Index VX-form
	Vector Extract Unsigned Byte to GPR using GPR-specified Right-Index VX-form
	Vector Extract Unsigned Halfword to GPR using GPR-specified Left-Index VX-form
	Vector Extract Unsigned Halfword to GPR using GPR-specified Right-Index VX-form
	Vector Extract Unsigned Word to GPR using GPR-specified Left-Index VX-form
	Vector Extract Unsigned Word to GPR using GPR-specified Right-Index VX-form

	6.8.8.3 Vector Extract Double Element to VSR Using GPR-specified Index Instructions
	Vector Extract Double Unsigned Byte to VSR using GPR-specified Left-Index VA-form
	Vector Extract Double Unsigned Byte to VSR using GPR-specified Right-Index VA-form
	Vector Extract Double Unsigned Halfword to VSR using GPR-specified Left-Index VA-form
	Vector Extract Double Unsigned Halfword to VSR using GPR-specified Right-Index VA-form
	Vector Extract Double Unsigned Word to VSR using GPR-specified Left-Index VA-form
	Vector Extract Double Unsigned Word to VSR using GPR-specified Right-Index VA-form
	Vector Extract Double Doubleword to VSR using GPR-specified Left-Index VA-form
	Vector Extract Double Doubleword to VSR using GPR-specified Right-Index VA-form

	6.8.9 Vector Insert Element Instructions
	6.8.9.1 Vector Insert Element from VSR Using Immediate-specified Index Instructions
	Vector Insert Byte from VSR using immediate-specified index VX-form
	Vector Insert Halfword from VSR using immediate-specified index VX-form
	Vector Insert Word from VSR using immediate-specified index VX-form
	Vector Insert Doubleword from VSR using immediate-specified index VX-form

	6.8.9.2 Vector Insert Element from GPR Using GPR-specified Index Instructions
	Vector Insert Byte from GPR using GPR-specified Left-Index VX-form
	Vector Insert Byte from GPR using GPR-specified Right-Index VX-form
	Vector Insert Halfword from GPR using GPR-specified Left-Index VX-form
	Vector Insert Halfword from GPR using GPR-specified Right-Index VX-form
	Vector Insert Word from GPR using GPR-specified Left-Index VX-form
	Vector Insert Word from GPR using GPR-specified Right-Index VX-form
	Vector Insert Doubleword from GPR using GPR-specified Left-Index VX-form
	Vector Insert Doubleword from GPR using GPR-specified Right-Index VX-form

	6.8.9.3 Vector Insert Element from GPR Using Immediate-specified Index Instructions
	Vector Insert Word from GPR using immediate-specified index VX-form
	Vector Insert Doubleword from GPR using immediate-specified index VX-form

	6.8.9.4 Vector Insert Element from VSR Using GPR-specified Index Instructions
	Vector Insert Byte from VSR using GPR-specified Left-Index VX-form
	Vector Insert Byte from VSR using GPR-specified Right-Index VX-form
	Vector Insert Halfword from VSR using GPR-specified Left-Index VX-form
	Vector Insert Halfword from VSR using GPR-specified Right-Index VX-form
	Vector Insert Word from VSR using GPR-specified Left-Index VX-form
	Vector Insert Word from VSR using GPR-specified Right-Index VX-form

	6.9 Vector Integer Instructions
	6.9.1 Vector Integer Arithmetic Instructions
	6.9.1.1 Vector Integer Add Instructions
	Vector Add & Write Carry-out Unsigned Word VX-form
	Vector Add Signed Byte Saturate VX-form
	Vector Add Signed Halfword Saturate VX-form
	Vector Add Signed Word Saturate VX-form
	Vector Add Unsigned Byte Modulo VX-form
	Vector Add Unsigned Halfword Modulo VX-form
	Vector Add Unsigned Word Modulo VX-form
	Vector Add Unsigned Doubleword Modulo VX-form
	Vector Add Unsigned Byte Saturate VX-form
	Vector Add Unsigned Halfword Saturate VX-form
	Vector Add Unsigned Word Saturate VX-form
	Vector Add Unsigned Quadword Modulo VX-form
	Vector Add Extended Unsigned Quadword Modulo VA-form
	Vector Add & write Carry-out Unsigned Quadword VX-form
	Vector Add Extended & write Carry-out Unsigned Quadword VA-form

	6.9.1.2 Vector Integer Subtract Instructions
	Vector Subtract & Write Carry-Out Unsigned Word VX-form
	Vector Subtract Signed Byte Saturate VX-form
	Vector Subtract Signed Halfword Saturate VX-form
	Vector Subtract Signed Word Saturate VX-form
	Vector Subtract Unsigned Byte Modulo VX-form
	Vector Subtract Unsigned Halfword Modulo VX-form
	Vector Subtract Unsigned Word Modulo VX-form
	Vector Subtract Unsigned Doubleword Modulo VX-form
	Vector Subtract Unsigned Byte Saturate VX-form
	Vector Subtract Unsigned Halfword Saturate VX-form
	Vector Subtract Unsigned Word Saturate VX-form
	Vector Subtract Unsigned Quadword Modulo VX-form
	Vector Subtract Extended Unsigned Quadword Modulo VA-form
	Vector Subtract & write Carry-out Unsigned Quadword VX-form
	Vector Subtract Extended & write Carry-out Unsigned Quadword VA-form

	6.9.1.3 Vector Integer Multiply Instructions
	Vector Multiply Even Signed Byte VX-form
	Vector Multiply Odd Signed Byte VX-form
	Vector Multiply Even Unsigned Byte VX-form
	Vector Multiply Odd Unsigned Byte VX-form
	Vector Multiply Even Signed Halfword VX-form
	Vector Multiply Odd Signed Halfword VX-form
	Vector Multiply Even Unsigned Halfword VX-form
	Vector Multiply Odd Unsigned Halfword VX-form
	Vector Multiply Even Signed Word VX-form
	Vector Multiply Odd Signed Word VX-form
	Vector Multiply Even Unsigned Word VX-form
	Vector Multiply Odd Unsigned Word VX-form
	Vector Multiply Even Unsigned Doubleword VX-form
	Vector Multiply Odd Unsigned Doubleword VX-form
	Vector Multiply Even Signed Doubleword VX-form
	Vector Multiply Odd Signed Doubleword VX-form
	Vector Multiply Unsigned Word Modulo VX-form
	Vector Multiply High Signed Word VX-form
	Vector Multiply High Unsigned Word VX-form
	Vector Multiply High Signed Doubleword VX-form
	Vector Multiply High Unsigned Doubleword VX-form
	Vector Multiply Low Doubleword VX-form

	6.9.1.4 Vector Integer Multiply-Add/Sum Instructions
	Vector Multiply-High-Add Signed Halfword Saturate VA-form
	Vector Multiply-High-Round-Add Signed Halfword Saturate VA-form
	Vector Multiply-Low-Add Unsigned Halfword Modulo VA-form
	Vector Multiply-Sum Unsigned Byte Modulo VA-form
	Vector Multiply-Sum Mixed Byte Modulo VA-form
	Vector Multiply-Sum Signed Halfword Modulo VA-form
	Vector Multiply-Sum Signed Halfword Saturate VA-form
	Vector Multiply-Sum Unsigned Halfword Modulo VA-form
	Vector Multiply-Sum Unsigned Halfword Saturate VA-form
	Vector Multiply-Sum Unsigned Doubleword Modulo VA-form
	Vector Multiply-Sum & write Carry-out Unsigned Doubleword VA-form

	6.9.1.5 Vector Integer Divide Instructions
	Vector Divide Signed Word VX-form
	Vector Divide Unsigned Word VX-form
	Vector Divide Extended Signed Word VX-form
	Vector Divide Extended Unsigned Word VX-form
	Vector Divide Signed Doubleword VX-form
	Vector Divide Unsigned Doubleword VX-form
	Vector Divide Extended Signed Doubleword VX-form
	Vector Divide Extended Unsigned Doubleword VX-form
	Vector Divide Signed Quadword VX-form
	Vector Divide Unsigned Quadword VX-form
	Vector Divide Extended Signed Quadword VX-form
	Vector Divide Extended Unsigned Quadword VX-form

	6.9.1.6 Vector Integer Modulo Instructions
	Vector Modulo Signed Word VX-form
	Vector Modulo Unsigned Word VX-form
	Vector Modulo Signed Doubleword VX-form
	Vector Modulo Unsigned Doubleword VX-form
	Vector Modulo Signed Quadword VX-form
	Vector Modulo Unsigned Quadword VX-form

	6.9.1.7 Vector Integer Sum-Across Instructions
	Vector Sum across Signed Word Saturate VX-form
	Vector Sum across Half Signed Word Saturate VX-form
	Vector Sum across Quarter Signed Byte Saturate VX-form
	Vector Sum across Quarter Signed Halfword Saturate VX-form
	Vector Sum across Quarter Unsigned Byte Saturate VX-form

	6.9.1.8 Vector Integer Negate Instructions
	Vector Negate Word VX-form
	Vector Negate Doubleword VX-form

	6.9.1.9 Vector Extend Sign Instructions
	Vector Extend Sign Byte To Word VX-form
	Vector Extend Sign Halfword To Word VX-form
	Vector Extend Sign Byte To Doubleword VX-form
	Vector Extend Sign Halfword To Doubleword VX-form
	Vector Extend Sign Word To Doubleword VX-form
	Vector Extend Sign Doubleword to Quadword VX-form

	6.9.1.10 Vector Integer Average Instructions
	Vector Average Signed Byte VX-form
	Vector Average Unsigned Byte VX-form
	Vector Average Signed Halfword VX-form
	Vector Average Unsigned Halfword VX-form
	Vector Average Signed Word VX-form
	Vector Average Unsigned Word VX-form

	6.9.1.11 Vector Integer Absolute Difference Instructions
	Vector Absolute Difference Unsigned Byte VX-form
	Vector Absolute Difference Unsigned Halfword VX-form
	Vector Absolute Difference Unsigned Word VX-form

	6.9.2 Vector Integer Maximum/Minimum Instructions
	6.9.2.1 Vector Integer Maximum Instructions
	Vector Maximum Signed Byte VX-form
	Vector Maximum Unsigned Byte VX-form
	Vector Maximum Signed Halfword VX-form
	Vector Maximum Unsigned Halfword VX-form
	Vector Maximum Signed Word VX-form
	Vector Maximum Unsigned Word VX-form
	Vector Maximum Signed Doubleword VX-form
	Vector Maximum Unsigned Doubleword VX-form

	6.9.2.2 Vector Integer Minimum Instructions
	Vector Minimum Signed Byte VX-form
	Vector Minimum Unsigned Byte VX-form
	Vector Minimum Signed Halfword VX-form
	Vector Minimum Unsigned Halfword VX-form
	Vector Minimum Signed Word VX-form
	Vector Minimum Unsigned Word VX-form
	Vector Minimum Signed Doubleword VX-form
	Vector Minimum Unsigned Doubleword VX-form

	6.9.3 Vector Integer Compare Instructions
	Vector Compare Equal Unsigned Byte VC-form
	Vector Compare Equal Unsigned Halfword VC-form
	Vector Compare Equal Unsigned Word VC-form
	Vector Compare Equal Unsigned Doubleword VC-form
	Vector Compare Equal Quadword VC-form
	Vector Compare Greater Than Signed Byte VC-form
	Vector Compare Greater Than Unsigned Byte VC-form
	Vector Compare Greater Than Signed Halfword VC-form
	Vector Compare Greater Than Unsigned Halfword VC-form
	Vector Compare Greater Than Signed Word VC-form
	Vector Compare Greater Than Unsigned Word VC-form
	Vector Compare Greater Than Signed Doubleword VC-form
	Vector Compare Greater Than Unsigned Doubleword VC-form
	Vector Compare Greater Than Signed Quadword VC-form
	Vector Compare Greater Than Unsigned Quadword VC-form
	Vector Compare Not Equal Byte VC-form
	Vector Compare Not Equal or Zero Byte VC-form
	Vector Compare Not Equal Halfword VC-form
	Vector Compare Not Equal or Zero Halfword VC-form
	Vector Compare Not Equal Word VC-form
	Vector Compare Not Equal or Zero Word VC-form
	Vector Compare Signed Quadword VX-form
	Vector Compare Unsigned Quadword VX-form

	6.9.4 Vector Logical Instructions
	Vector Logical AND VX-form
	Vector Logical AND with Complement VX-form
	Vector Logical Equivalence VX-form
	Vector Logical NAND VX-form
	Vector Logical OR VX-form
	Vector Logical OR with Complement VX-form
	Vector Logical NOR VX-form
	Vector Logical XOR VX-form

	6.9.5 Vector Integer Rotate Instructions
	6.9.5.1 Vector Integer Rotate Left Instructions
	Vector Rotate Left Byte VX-form
	Vector Rotate Left Halfword VX-form
	Vector Rotate Left Word VX-form
	Vector Rotate Left Doubleword VX-form
	Vector Rotate Left Quadword VX-form

	6.9.5.2 Vector Integer Rotate Left then AND with Mask Instructions
	Vector Rotate Left Word then AND with Mask VX-form
	Vector Rotate Left Doubleword then AND with Mask VX-form
	Vector Rotate Left Quadword then AND with Mask VX-form

	6.9.5.3 Vector Integer Rotate Left then Mask Insert Instructions
	Vector Rotate Left Word then Mask Insert VX-form
	Vector Rotate Left Doubleword then Mask Insert VX-form
	Vector Rotate Left Quadword then Mask Insert VX-form

	6.9.6 Vector Integer Shift Instructions
	6.9.6.1 Vector Integer Shift Left Instructions
	Vector Shift Left Byte VX-form
	Vector Shift Left Halfword VX-form
	Vector Shift Left Word VX-form
	Vector Shift Left Doubleword VX-form
	Vector Shift Left Quadword VX-form

	6.9.6.2 Vector Integer Shift Right Instructions
	Vector Shift Right Byte VX-form
	Vector Shift Right Halfword VX-form
	Vector Shift Right Word VX-form
	Vector Shift Right Doubleword VX-form
	Vector Shift Right Quadword VX-form

	6.9.6.3 Vector Integer Shift Right Algebraic Instructions
	Vector Shift Right Algebraic Byte VX-form
	Vector Shift Right Algebraic Halfword VX-form
	Vector Shift Right Algebraic Word VX-form
	Vector Shift Right Algebraic Doubleword VX-form
	Vector Shift Right Algebraic Quadword VX-form

	6.10 Vector Floating-Point Instruction Set
	6.10.1 Vector Floating-Point Arithmetic Instructions
	Vector Add Floating-Point VX-form
	Vector Subtract Floating-Point VX-form
	Vector Multiply-Add Floating-Point VA-form
	Vector Negative Multiply-Subtract Floating-Point VA-form

	6.10.2 Vector Floating-Point Maximum/Minimum Instructions
	Vector Maximum Floating-Point VX-form
	Vector Minimum Floating-Point VX-form

	6.10.3 Vector Floating-Point Rounding and Conversion Instructions
	6.10.3.1 Vector Floating-Point Conversion Instructions
	Vector Convert with round to zero from floating-point To Signed Word format Saturate VX-form
	Vector Convert with round to zero from floating-point To Unsigned Word format Saturate VX-form
	Vector Convert with round to nearest From Signed Word to floating-point format VX-form
	Vector Convert with round to nearest From Unsigned Word to floating-point format VX-form

	6.10.3.2 Vector Floating-Point Round to Integral Instructions
	Vector Round to Floating-Point Integer toward -Infinity VX-form
	Vector Round to Floating-Point Integer Nearest VX-form
	Vector Round to Floating-Point Integer toward +Infinity VX-form
	Vector Round to Floating-Point Integer toward Zero VX-form

	6.10.4 Vector Floating-Point Compare Instructions
	Vector Compare Bounds Floating-Point VC-form
	Vector Compare Equal Floating-Point VC-form
	Vector Compare Greater Than or Equal Floating-Point VC-form
	Vector Compare Greater Than Floating-Point VC-form

	6.10.5 Vector Floating-Point Estimate Instructions
	Vector 2 Raised to the Exponent Estimate Floating-Point VX-form
	Vector Log Base 2 Estimate Floating-Point VX-form
	Vector Reciprocal Estimate Floating-Point VX-form
	Vector Reciprocal Square Root Estimate Floating-Point VX-form

	6.11 Vector Exclusive-OR-based Instructions
	6.11.1 Vector AES Instructions
	Vector AES Cipher VX-form
	Vector AES Cipher Last VX-form
	Vector AES Inverse Cipher VX-form
	Vector AES Inverse Cipher Last VX-form
	Vector AES SubBytes VX-form

	6.11.2 Vector SHA-256 and SHA-512 Sigma Instructions
	Vector SHA-512 Sigma Doubleword VX-form
	Vector SHA-256 Sigma Word VX-form

	6.11.3 Vector Binary Polynomial Multiplication Instructions
	Vector Polynomial Multiply-Sum Byte VX-form
	Vector Polynomial Multiply-Sum Halfword VX-form
	Vector Polynomial Multiply-Sum Word VX-form
	Vector Polynomial Multiply-Sum Doubleword VX-form

	6.11.4 Vector Permute & Exclusive-OR Instruction
	Vector Permute & Exclusive-OR VA-form

	6.12 Vector Bit Manipulation Instructions
	6.12.1 Vector Gather Bits Instructions
	Vector Gather Bits by Bytes by Doubleword VX-form
	Vector Gather every Nth Bit VX-form

	6.12.2 Vector Count Leading Zeros Instructions
	Vector Count Leading Zeros Byte VX-form
	Vector Count Leading Zeros Halfword VX-form
	Vector Count Leading Zeros Word VX-form
	Vector Count Leading Zeros Doubleword VX-form
	Vector Count Leading Zeros Doubleword under bit Mask VX-form

	6.12.3 Vector Count Trailing Zeros Instructions
	Vector Count Trailing Zeros Byte VX-form
	Vector Count Trailing Zeros Halfword VX-form
	Vector Count Trailing Zeros Word VX-form
	Vector Count Trailing Zeros Doubleword VX-form
	Vector Count Trailing Zeros Doubleword under bit Mask VX-form

	6.12.4 Vector Count Leading/Trailing Zero LSB Instructions
	Vector Count Leading Zero Least-Significant Bits Byte VX-form
	Vector Count Trailing Zero Least-Significant Bits Byte VX-form

	6.12.5 Vector Bit Insert/Extract Instructions
	Vector Parallel Bits Deposit Doubleword VX-form
	Vector Parallel Bits Extract Doubleword VX-form

	6.12.6 Vector Centrifuge Instruction
	Vector Centrifuge Doubleword VX-form

	6.12.7 Vector Population Count Instructions
	Vector Population Count Byte VX-form
	Vector Population Count Halfword VX-form
	Vector Population Count Word VX-form
	Vector Population Count Doubleword VX-form

	6.12.8 Vector Parity Byte Instructions
	Vector Parity Byte Word VX-form
	Vector Parity Byte Doubleword VX-form
	Vector Parity Byte Quadword VX-form

	6.12.9 Vector Bit Permute Instructions
	Vector Bit Permute Doubleword VX-form
	Vector Bit Permute Quadword VX-form

	6.13 Vector Mask Manipulation Instructions
	6.13.1 Vector Mask Move Instructions
	Move to VSR Byte Mask VX-form
	Move to VSR Halfword Mask VX-form
	Move to VSR Word Mask VX-form
	Move to VSR Doubleword Mask VX-form
	Move to VSR Quadword Mask VX-form
	Move To VSR Byte Mask Immediate DX-form

	6.13.2 Vector Expand Mask Instructions
	Vector Expand Byte Mask VX-form
	Vector Expand Halfword Mask VX-form
	Vector Expand Word Mask VX-form
	Vector Expand Doubleword Mask VX-form
	Vector Expand Quadword Mask VX-form

	6.13.3 Vector Count Mask Bits Instructions
	Vector Count Mask Bits Byte VX-form
	Vector Count Mask Bits Halfword VX-form
	Vector Count Mask Bits Word VX-form
	Vector Count Mask Bits Doubleword VX-form

	6.13.4 Vector Extract Mask Instructions
	Vector Extract Byte Mask VX-form
	Vector Extract Halfword Mask VX-form
	Vector Extract Word Mask VX-form
	Vector Extract Doubleword Mask VX-form
	Vector Extract Quadword Mask VX-form

	6.14 Vector String Instructions
	6.14.1 Vector String Isolate Instructions
	Vector String Isolate Byte Right-justified VX-form
	Vector String Isolate Byte Left-justified VX-form
	Vector String Isolate Halfword Right-justified VX-form
	Vector String Isolate Halfword Left-justified VX-form

	6.14.2 Vector Clear Bytes Instructions
	Vector Clear Leftmost Bytes VX-form
	Vector Clear Rightmost Bytes VX-form

	6.15 Decimal Integer Instructions
	6.15.1 Decimal Integer Arithmetic Instructions
	Decimal Add Modulo VX-form
	Decimal Subtract Modulo VX-form

	6.15.2 Decimal Integer Format Conversion Instructions
	Decimal Convert From National VX-form
	Decimal Convert From Zoned VX-form
	Decimal Convert To National VX-form
	Decimal Convert To Zoned VX-form
	Decimal Convert From Signed Quadword VX-form
	Decimal Convert To Signed Quadword VX-form
	Vector Multiply-by-10 Unsigned Quadword VX-form
	Vector Multiply-by-10 & write Carry-out Unsigned Quadword VX-form
	Vector Multiply-by-10 Extended Unsigned Quadword VX-form
	Vector Multiply-by-10 Extended & write Carry-out Unsigned Quadword VX-form

	6.15.3 Decimal Integer Sign Manipulation Instructions
	Decimal Copy Sign VX-form
	Decimal Set Sign VX-form

	6.15.4 Decimal Integer Shift and Round Instructions
	Decimal Shift VX-form
	Decimal Unsigned Shift VX-form
	Decimal Shift & Round VX-form

	6.15.5 Decimal Integer Truncate Instructions
	Decimal Truncate VX-form
	Decimal Unsigned Truncate VX-form

	6.16 Vector Status and Control Register Instructions
	Move To Vector Status and Control Register VX-form
	Move From Vector Status and Control Register VX-form

	Chapter 7. Vector-Scalar Extension Facility
	7.1 Introduction
	7.1.1 Overview of the Vector-Scalar Extension
	7.1.1.1 Combining the Floating-Point Registers (FPR) defined in Chapter 4. Floating-Point Facility and the Vector Registers (VR) defined in Chapter 6. Vector Facility provides additional registers to support more aggressive compiler optimizations for...
	7.1.1.2 Compatibility with Vector Operations

	7.2 VSX Registers
	7.2.1 Vector-Scalar Registers
	7.2.1.1 Floating-Point Registers
	7.2.1.2 Vector Registers
	7.2.1.3 VSX Accumulators

	7.2.2 Floating-Point Status and Control Register

	7.3 VSX Operations
	7.3.1 VSX Floating-Point Arithmetic Overview
	7.3.2 VSX Floating-Point Data
	7.3.2.1 Data Format
	7.3.2.2 Value Representation
	7.3.2.3 Sign of Result
	7.3.2.4 Normalization and Denormalization
	7.3.2.5 Data Handling and Precision
	7.3.2.6 Rounding

	7.3.3 VSX Floating-Point Execution Models
	7.3.3.1 VSX Execution Model for IEEE Operations
	7.3.3.2 VSX Execution Model for Multiply-Add Type Instructions

	7.4 VSX Floating-Point Exceptions
	7.4.1 Floating-Point Invalid Operation Exception
	7.4.1.1 Definition
	7.4.1.2 Action for VE=1
	7.4.1.3 Action for VE=0

	7.4.2 Floating-Point Zero Divide Exception
	7.4.2.1 Definition
	7.4.2.2 Action for ZE=1
	7.4.2.3 Action for ZE=0

	7.4.3 Floating-Point Overflow Exception
	7.4.3.1 Definition
	7.4.3.2 Action for OE=1
	7.4.3.3 Action for OE=0

	7.4.4 Floating-Point Underflow Exception
	7.4.4.1 Definition
	7.4.4.2 Action for UE=1
	7.4.4.3 Action for UE=0

	7.4.5 Floating-Point Inexact Exception
	7.4.5.1 Definition
	7.4.5.2 Action for XE=1
	7.4.5.3 Action for XE=0

	7.5 VSX Storage Access Operations
	7.5.1 Accessing Aligned Storage Operands
	7.5.2 Accessing Unaligned Storage Operands
	7.5.3 Storage Access Exceptions

	7.6 VSX Instruction Set
	7.6.1 VSX Instruction Set Summary
	7.6.1.1 VSX Storage Access Instructions
	7.6.1.2 VSX Binary Floating-Point Sign Manipulation Instructions
	7.6.1.3 VSX Binary Floating-Point Arithmetic Instructions
	7.6.1.4 VSX Binary Floating-Point Compare Instructions
	7.6.1.5 VSX Binary Floating-Point Round to Shorter Precision Instructions
	7.6.1.6 VSX Binary Floating-Point Convert to Shorter Precision Instructions
	7.6.1.7 VSX Binary Floating-Point Convert to Longer Precision Instructions
	7.6.1.8 VSX Binary Floating-Point Round to Integral Instructions
	7.6.1.9 VSX Binary Floating-Point Convert To Integer Instructions
	7.6.1.10 VSX Binary Floating-Point Convert From Integer Instructions
	7.6.1.11 VSX Binary Floating-Point Math Support Instructions
	7.6.1.12 VSX Matrix-Multiply Assist (MMA) Instructions
	7.6.1.12.1 VSX Accumulator Move Instructions
	7.6.1.12.2 VSX Binary Integer Outer-Product Instructions
	7.6.1.12.3 VSX Binary Floating-Point Outer-Product Instructions

	7.6.1.13 VSX Vector Logical Instructions
	7.6.1.14 VSX Vector Permute-class Instructions
	7.6.1.15 VSX Vector Load Special Value Instruction
	7.6.1.16 VSX Vector Test Least-Significant Bit by Byte Instruction

	7.6.2 VSX Instruction Description Conventions
	7.6.2.1 VSX Instruction RTL Operators
	7.6.2.2 VSX Instruction RTL Function Calls

	7.6.3 VSX Instruction Descriptions
	Load VSX Scalar Doubleword DS-form
	Prefixed Load VSX Scalar Doubleword 8LS:D-form
	Load VSX Scalar Doubleword Indexed X-form
	Load VSX Scalar as Integer Byte & Zero Indexed X-form
	Load VSX Scalar as Integer Halfword & Zero Indexed X-form
	Load VSX Scalar as Integer Word Algebraic Indexed X-form
	Load VSX Scalar as Integer Word & Zero Indexed X-form
	Load VSX Scalar Single-Precision DS-form
	Prefixed Load VSX Scalar Single-Precision 8LS:D-form
	Load VSX Scalar Single-Precision Indexed X-form
	Load VSX Vector DQ-form
	Prefixed Load VSX Vector 8LS:D-form
	Load VSX Vector Byte*16 Indexed X-form
	Load VSX Vector Doubleword*2 Indexed X-form
	Load VSX Vector Special Value Quadword X-form
	Load VSX Vector with Length X-form
	Load VSX Vector with Length Left-justified X-form
	Load VSX Vector Paired DQ-form
	Prefixed Load VSX Vector Paired 8LS:D-form
	Load VSX Vector Paired Indexed X-form
	Load VSX Vector Rightmost Byte Indexed X-form
	Load VSX Vector Rightmost Doubleword Indexed X-form
	Load VSX Vector Rightmost Halfword Indexed X-form
	Load VSX Vector Rightmost Word Indexed X-form
	Load VSX Vector Indexed X-form
	Load VSX Vector Doubleword & Splat Indexed X-form
	Load VSX Vector Halfword*8 Indexed X-form
	Load VSX Vector Word*4 Indexed X-form
	Load VSX Vector Word & Splat Indexed X-form
	Store VSX Scalar Doubleword DS-form
	Prefixed Store VSX Scalar Doubleword 8LS:D-form
	Store VSX Scalar Doubleword Indexed X-form
	Store VSX Scalar as Integer Byte Indexed X-form
	Store VSX Scalar as Integer Halfword Indexed X-form
	Store VSX Scalar as Integer Word Indexed X-form
	Store VSX Scalar Single-Precision DS-form
	Prefixed Store VSX Scalar Single-Precision 8LS:D-form
	Store VSX Scalar Single-Precision Indexed X-form
	Store VSX Vector DQ-form
	Prefixed Store VSX Vector 8LS:D-form
	Store VSX Vector Byte*16 Indexed X-form
	Store VSX Vector Doubleword*2 Indexed X-form
	Store VSX Vector Halfword*8 Indexed X-form
	Store VSX Vector with Length X-form
	Store VSX Vector with Length Left-justified X-form
	Store VSX Vector Rightmost Byte Indexed X-form
	Store VSX Vector Rightmost Doubleword Indexed X-form
	Store VSX Vector Rightmost Halfword Indexed X-form
	Store VSX Vector Rightmost Word Indexed X-form
	Store VSX Vector Word*4 Indexed X-form
	Store VSX Vector Paired DQ-form
	Prefixed Store VSX Vector Paired 8LS:D-form
	Store VSX Vector Paired Indexed X-form
	Store VSX Vector Indexed X-form
	VSX Scalar Absolute Double-Precision XX2-form
	VSX Scalar Absolute Quad-Precision X-form
	VSX Scalar Add Double-Precision XX3-form
	VSX Scalar Add Single-Precision XX3-form
	VSX Scalar Add Quad-Precision [using round to Odd] X-form
	VSX Scalar Compare Exponents Double-Precision XX3-form
	VSX Scalar Compare Exponents Quad-Precision X-form
	VSX Scalar Compare Equal Double-Precision XX3-form
	VSX Scalar Compare Equal Quad-Precision X-form
	VSX Scalar Compare Greater Than or Equal Double-Precision XX3-form
	VSX Scalar Compare Greater Than or Equal Quad-Precision X-form
	VSX Scalar Compare Greater Than Double-Precision XX3-form
	VSX Scalar Compare Greater Than Quad-Precision X-form
	VSX Scalar Compare Ordered Double-Precision XX3-form
	VSX Scalar Compare Ordered Quad-Precision X-form
	VSX Scalar Compare Unordered Double-Precision XX3-form
	VSX Scalar Compare Unordered Quad-Precision X-form
	VSX Scalar Copy Sign Double-Precision XX3-form
	VSX Scalar Copy Sign Quad-Precision X-form
	VSX Scalar Convert with round Double-Precision to Half-Precision format XX2-form
	VSX Scalar Convert Double-Precision to Quad-Precision format X-form
	VSX Scalar Convert with round Double-Precision to Single-Precision format XX2-form
	VSX Scalar Convert Scalar Single-Precision to Vector Single-Precision format Non-signalling XX2-form
	VSX Scalar Convert with round to zero Double-Precision to Signed Doubleword format XX2-form
	VSX Scalar Convert with round to zero Double-Precision to Signed Word format XX2-form
	VSX Scalar Convert with round to zero Double-Precision to Unsigned Doubleword format XX2-form
	VSX Scalar Convert with round to zero Double-Precision to Unsigned Word format XX2-form
	VSX Scalar Convert Half-Precision to Double-Precision format XX2-form
	VSX Scalar Convert with round Quad-Precision to Double-Precision format [using round to Odd] X-form
	VSX Scalar Convert with round to zero Quad-Precision to Signed Doubleword format X-form
	VSX Scalar Convert with round to zero Quad-Precision to Signed Quadword X-form
	VSX Scalar Convert with round to zero Quad-Precision to Signed Word format X-form
	VSX Scalar Convert with round to zero Quad-Precision to Unsigned Doubleword format X-form
	VSX Scalar Convert with round to zero Quad-Precision to Unsigned Quadword X-form
	VSX Scalar Convert with round to zero Quad-Precision to Unsigned Word format X-form
	VSX Scalar Convert Single-Precision to Double-Precision format XX2-form
	VSX Scalar Convert Single-Precision to Double-Precision format Non-signalling XX2-form
	VSX Scalar Convert with round Signed Quadword to Quad-Precision X-form
	VSX Scalar Convert with round Signed Doubleword to Double-Precision format XX2-form
	VSX Scalar Convert with round Signed Doubleword to Single-Precision format XX2-form
	VSX Scalar Convert Signed Doubleword to Quad-Precision format X-form
	VSX Scalar Convert Unsigned Doubleword to Quad-Precision format X-form
	VSX Scalar Convert with round Unsigned Quadword to Quad-Precision format X-form
	VSX Scalar Convert with round Unsigned Doubleword to Double-Precision format XX2-form
	VSX Scalar Convert with round Unsigned Doubleword to Single-Precision format XX2-form
	VSX Scalar Divide Double-Precision XX3-form
	VSX Scalar Divide Quad-Precision [using round to Odd] X-form
	VSX Scalar Divide Single-Precision XX3-form
	VSX Scalar Insert Exponent Double-Precision X-form
	VSX Scalar Insert Exponent Quad-Precision X-form
	VSX Scalar Multiply-Add Type-A Double-Precision XX3-form
	VSX Scalar Multiply-Add Type-M Double-Precision XX3-form
	VSX Scalar Multiply-Add Type-A Single-Precision XX3-form
	VSX Scalar Multiply-Add Type-M Single-Precision XX3-form
	VSX Scalar Multiply-Add Quad-Precision [using round to Odd] X-form
	VSX Scalar Maximum Double-Precision XX3-form
	VSX Scalar Maximum Type-C Double-Precision XX3-form
	VSX Scalar Maximum Type-C Quad-Precision X-form
	VSX Scalar Maximum Type-J Double-Precision XX3-form
	VSX Scalar Minimum Double-Precision XX3-form
	VSX Scalar Minimum Type-C Double-Precision XX3-form
	VSX Scalar Minimum Type-C Quad-Precision X-form
	VSX Scalar Minimum Type-J Double-Precision XX3-form
	VSX Scalar Multiply-Subtract Type-A Double-Precision XX3-form
	VSX Scalar Multiply-Subtract Type-M Double-Precision XX3-form
	VSX Scalar Multiply-Subtract Type-A Single-Precision XX3-form
	VSX Scalar Multiply-Subtract Type-M Single-Precision XX3-form
	VSX Scalar Multiply-Subtract Quad-Precision [using round to Odd] X-form
	VSX Scalar Multiply Double-Precision XX3-form
	VSX Scalar Multiply Quad-Precision [using round to Odd] X-form
	VSX Scalar Multiply Single-Precision XX3-form
	VSX Scalar Negative Absolute Double-Precision XX2-form
	VSX Scalar Negative Absolute Quad-Precision X-form
	VSX Scalar Negate Double-Precision XX2-form
	VSX Scalar Negate Quad-Precision X-form
	VSX Scalar Negative Multiply-Add Type-A Double-Precision XX3-form
	VSX Scalar Negative Multiply-Add Type-M Double-Precision XX3-form
	VSX Scalar Negative Multiply-Add Type-A Single-Precision XX3-form
	VSX Scalar Negative Multiply-Add Type-M Single-Precision XX3-form
	VSX Scalar Negative Multiply-Add Quad-Precision [using round to Odd] X-form
	VSX Scalar Negative Multiply-Subtract Type-A Double-Precision XX3-form
	VSX Scalar Negative Multiply-Subtract Type-M Double-Precision XX3-form
	VSX Scalar Negative Multiply-Subtract Type-A Single-Precision XX3-form
	VSX Scalar Negative Multiply-Subtract Type-M Single-Precision XX3-form
	VSX Scalar Negative Multiply-Subtract Quad-Precision [using round to Odd] X-form
	VSX Scalar Round to Double-Precision Integer using round to Nearest Away XX2-form
	VSX Scalar Round to Double-Precision Integer exact using Current rounding mode XX2-form
	VSX Scalar Round to Double-Precision Integer using round toward -Infinity XX2-form
	VSX Scalar Round to Double-Precision Integer using round toward +Infinity XX2-form
	VSX Scalar Round to Double-Precision Integer using round toward Zero XX2-form
	VSX Scalar Reciprocal Estimate Double-Precision XX2-form
	VSX Scalar Reciprocal Estimate Single-Precision XX2-form
	VSX Scalar Round to Quad-Precision Integer [with Inexact] Z23-form
	VSX Scalar Round Quad-Precision to Double-Extended-Precision Z23-form
	VSX Scalar Round to Single-Precision XX2-form
	VSX Scalar Reciprocal Square Root Estimate Double-Precision XX2-form
	VSX Scalar Reciprocal Square Root Estimate Single-Precision XX2-form
	VSX Scalar Square Root Double-Precision XX2-form
	VSX Scalar Square Root Quad-Precision [using round to Odd] X-form
	VSX Scalar Square Root Single-Precision XX2-form
	VSX Scalar Subtract Double-Precision XX3-form
	VSX Scalar Subtract Quad-Precision [using round to Odd] X-form
	VSX Scalar Subtract Single-Precision XX3-form
	VSX Scalar Test for software Divide Double-Precision XX3-form
	VSX Scalar Test for software Square Root Double-Precision XX2-form
	VSX Scalar Test Data Class Double-Precision XX2-form
	VSX Scalar Test Data Class Quad-Precision X-form
	VSX Scalar Test Data Class Single-Precision XX2-form
	VSX Scalar Extract Exponent Double-Precision XX2-form
	VSX Scalar Extract Exponent Quad-Precision X-form
	VSX Scalar Extract Significand Double-Precision XX2-form
	VSX Scalar Extract Significand Quad-Precision X-form
	VSX Vector Absolute Double-Precision XX2-form
	VSX Vector Absolute Single-Precision XX2-form
	VSX Vector Add Double-Precision XX3-form
	VSX Vector Add Single-Precision XX3-form
	VSX Vector bfloat16 GER (rank-2 update) XX3-form
	VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Positive accumulate XX3-form
	VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Negative accumulate XX3-form
	VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Positive accumulate XX3-form
	VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Negative accumulate XX3-form
	Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Positive multiply, Negative accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector bfloat16 GER (rank-2 update) Negative multiply, Negative accumulate MMIRR:XX3-form
	VSX Vector Compare Equal To Double-Precision XX3-form
	VSX Vector Compare Equal To Single-Precision XX3-form
	VSX Vector Compare Greater Than or Equal To Double-Precision XX3-form
	VSX Vector Compare Greater Than or Equal To Single-Precision XX3-form
	VSX Vector Compare Greater Than Double-Precision XX3-form
	VSX Vector Compare Greater Than Single-Precision XX3-form
	VSX Vector Copy Sign Double-Precision XX3-form
	VSX Vector Copy Sign Single-Precision XX3-form
	VSX Vector Convert bfloat16 to Single-Precision format XX2-form
	VSX Vector Convert with round Double-Precision to Single-Precision format XX2-form
	VSX Vector Convert with round to zero Double-Precision to Signed Doubleword format XX2-form
	VSX Vector Convert with round to zero Double-Precision to Signed Word format XX2-form
	VSX Vector Convert with round to zero Double-Precision to Unsigned Doubleword format XX2-form
	VSX Vector Convert with round to zero Double-Precision to Unsigned Word format XX2-form
	VSX Vector Convert bfloat16 to Single-Precision format XX2-form
	VSX Vector Convert with round Single-Precision to bfloat16 format XX2-form
	VSX Vector Convert Single-Precision to Double-Precision format XX2-form
	VSX Vector Convert with round Single-Precision to bfloat16 format XX2-form
	VSX Vector Convert with round to zero Single-Precision to Signed Doubleword format XX2-form
	VSX Vector Convert with round to zero Single-Precision to Signed Word format XX2-form
	VSX Vector Convert with round to zero Single-Precision to Unsigned Doubleword format XX2-form
	VSX Vector Convert with round to zero Single-Precision to Unsigned Word format XX2-form
	VSX Vector Convert with round Signed Doubleword to Double-Precision format XX2-form
	VSX Vector Convert with round Signed Doubleword to Single-Precision format XX2-form
	VSX Vector Convert Signed Word to Double-Precision format XX2-form
	VSX Vector Convert with round Signed Word to Single-Precision format XX2-form
	VSX Vector Convert with round Unsigned Doubleword to Double-Precision format XX2-form
	VSX Vector Convert with round Unsigned Doubleword to Single-Precision format XX2-form
	VSX Vector Convert Unsigned Word to Double-Precision format XX2-form
	VSX Vector Convert with round Unsigned Word to Single-Precision format XX2-form
	VSX Vector Divide Double-Precision XX3-form
	VSX Vector Divide Single-Precision XX3-form
	VSX Vector 16-bit Floating-Point GER (rank-2 update) XX3-form
	VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply, Positive accumulate XX3-form
	VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply, Negative accumulate XX3-form
	VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply, Positive accumulate XX3-form
	VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply, Negative accumulate XX3-form
	Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Positive multiply, Negative accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Floating-Point GER (rank-2 update) Negative multiply, Negative accumulate MMIRR:XX3-form
	VSX Vector 32-bit Floating-Point GER (rank-1 update) XX3-form
	VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate XX3-form
	VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply, Negative accumulate XX3-form
	VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply, Positive accumulate XX3-form
	VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply, Negative accumulate XX3-form
	Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Positive multiply, Negative accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 32-bit Floating-Point GER (rank-1 update) Negative multiply, Negative accumulate MMIRR:XX3-form
	VSX Vector 64-bit Floating-Point GER (rank-1 update) XX3-form
	VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate XX3-form
	VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive multiply, Negative accumulate XX3-form
	VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative multiply, Positive accumulate XX3-form
	VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative multiply, Negative accumulate XX3-form
	Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Positive multiply, Negative accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative multiply, Positive accumulate MMIRR:XX3-form
	Prefixed Masked VSX Vector 64-bit Floating-Point GER (rank-1 update) Negative multiply, Negative accumulate MMIRR:XX3-form
	VSX Vector 4-bit Signed Integer GER (rank-8 update) XX3-form
	VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply, Positive accumulate XX3-form
	Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 4-bit Signed Integer GER (rank-8 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) XX3-form
	VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive multiply, Positive accumulate XX3-form
	Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with Saturate Positive multiply, Positive accumulate XX3-form
	Prefixed Masked VSX Vector 8-bit Signed/Unsigned Integer GER (rank-4 update) with Saturate Positive multiply, Positive accumulate MMIRR:XX3-form
	VSX Vector 16-bit Signed Integer GER (rank-2 update) XX3-form
	VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply, Positive accumulate XX3-form
	Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) Positive multiply, Positive accumulate MMIRR:XX3-form
	VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation XX3-form
	VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation Positive multiply, Positive accumulate XX3-form
	Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation MMIRR:XX3-form
	Prefixed Masked VSX Vector 16-bit Signed Integer GER (rank-2 update) with Saturation Positive multiply, Positive accumulate MMIRR:XX3-form
	VSX Vector Insert Exponent Double-Precision XX3-form
	VSX Vector Insert Exponent Single-Precision XX3-form
	VSX Vector Multiply-Add Type-A Double-Precision XX3-form
	VSX Vector Multiply-Add Type-M Double-Precision XX3-form
	VSX Vector Multiply-Add Type-A Single-Precision XX3-form
	VSX Vector Multiply-Add Type-M Single-Precision XX3-form
	VSX Vector Maximum Double-Precision XX3-form
	VSX Vector Maximum Single-Precision XX3-form
	VSX Vector Minimum Double-Precision XX3-form
	VSX Vector Minimum Single-Precision XX3-form
	VSX Vector Multiply-Subtract Type-A Double-Precision XX3-form
	VSX Vector Multiply-Subtract Type-M Double-Precision XX3-form
	VSX Vector Multiply-Subtract Type-A Single-Precision XX3-form
	VSX Vector Multiply-Subtract Type-M Single-Precision XX3-form
	VSX Vector Multiply Double-Precision XX3-form
	VSX Vector Multiply Single-Precision XX3-form
	VSX Vector Negative Absolute Double-Precision XX2-form
	VSX Vector Negative Absolute Single-Precision XX2-form
	VSX Vector Negate Double-Precision XX2-form
	VSX Vector Negate Single-Precision XX2-form
	VSX Vector Negative Multiply-Add Type-A Double-Precision XX3-form
	VSX Vector Negative Multiply-Add Type-M Double-Precision XX3-form
	VSX Vector Negative Multiply-Add Type-A Single-Precision XX3-form
	VSX Vector Negative Multiply-Add Type-M Single-Precision XX3-form
	VSX Vector Negative Multiply-Subtract Type-A Double-Precision XX3-form
	VSX Vector Negative Multiply-Subtract Type-M Double-Precision XX3-form
	VSX Vector Negative Multiply-Subtract Type-A Single-Precision XX3-form
	VSX Vector Negative Multiply-Subtract Type-M Single-Precision XX3-form
	VSX Vector Round to Double-Precision Integer using round to Nearest Away XX2-form
	VSX Vector Round to Double-Precision Integer Exact using Current rounding mode XX2-form
	VSX Vector Round to Double-Precision Integer using round toward -Infinity XX2-form
	VSX Vector Round to Double-Precision Integer using round toward +Infinity XX2-form
	VSX Vector Round to Double-Precision Integer using round toward Zero XX2-form
	VSX Vector Reciprocal Estimate Double-Precision XX2-form
	VSX Vector Reciprocal Estimate Single-Precision XX2-form
	VSX Vector Round to Single-Precision Integer using round to Nearest Away XX2-form
	VSX Vector Round to Single-Precision Integer Exact using Current rounding mode XX2-form
	VSX Vector Round to Single-Precision Integer using round toward -Infinity XX2-form
	VSX Vector Round to Single-Precision Integer using round toward +Infinity XX2-form
	VSX Vector Round to Single-Precision Integer using round toward Zero XX2-form
	VSX Vector Reciprocal Square Root Estimate Double-Precision XX2-form
	VSX Vector Reciprocal Square Root Estimate Single-Precision XX2-form
	VSX Vector Square Root Double-Precision XX2-form
	VSX Vector Square Root Single-Precision XX2-form
	VSX Vector Subtract Double-Precision XX3-form
	VSX Vector Subtract Single-Precision XX3-form
	VSX Vector Test for software Divide Double-Precision XX3-form
	VSX Vector Test for software Divide Single-Precision XX3-form
	VSX Vector Test for software Square Root Double-Precision XX2-form
	VSX Vector Test for software Square Root Single-Precision XX2-form
	VSX Vector Test Data Class Double-Precision XX2-form
	VSX Vector Test Data Class Single-Precision XX2-form
	VSX Vector Test Least-Significant Bit by Byte XX2-form
	VSX Vector Extract Exponent Double-Precision XX2-form
	VSX Vector Extract Exponent Single-Precision XX2-form
	VSX Vector Extract Significand Double-Precision XX2-form
	VSX Vector Extract Significand Single-Precision XX2-form
	VSX Vector Blend Variable Byte 8RR:XX4-form
	VSX Vector Blend Variable Halfword 8RR:XX4-form
	VSX Vector Blend Variable Word 8RR:XX4-form
	VSX Vector Blend Variable Doubleword 8RR:XX4-form
	VSX Vector Byte-Reverse Doubleword XX2-form
	VSX Vector Byte-Reverse Halfword XX2-form
	VSX Vector Byte-Reverse Quadword XX2-form
	VSX Vector Byte-Reverse Word XX2-form
	VSX Vector Evaluate 8RR:XX4-form
	VSX Vector Extract Unsigned Word XX2-form
	VSX Vector Insert Word XX2-form
	VSX Vector Generate PCV from Byte Mask X-form
	VSX Vector Generate PCV from Halfword Mask X-form
	VSX Vector Generate PCV from Word Mask X-form
	VSX Vector Generate PCV from Doubleword Mask X-form
	VSX Vector Logical AND XX3-form
	VSX Vector Logical AND with Complement XX3-form
	VSX Vector Logical Equivalence XX3-form
	VSX Vector Logical NAND XX3-form
	VSX Vector Logical OR with Complement XX3-form
	VSX Vector Logical NOR XX3-form
	VSX Vector Logical OR XX3-form
	VSX Vector Logical XOR XX3-form
	VSX Vector Merge High Word XX3-form
	VSX Vector Merge Low Word XX3-form
	VSX Move From Accumulator X-form
	VSX Move To Accumulator X-form
	VSX Vector Permute XX3-form
	VSX Vector Permute Right-indexed XX3-form
	VSX Vector Permute Doubleword Immediate XX3-form
	VSX Vector Permute Extended 8RR:XX4-form
	VSX Vector Select XX4-form
	VSX Set Accumulator to Zero X-form
	VSX Vector Shift Left Double by Word Immediate XX3-form
	VSX Vector Splat Immediate Byte X-form
	VSX Vector Splat Immediate Double-Precision 8RR:D-form
	VSX Vector Splat Immediate Word 8RR:D-form
	VSX Vector Splat Immediate32 Doubleword Indexed 8RR:D-form
	VSX Vector Splat Word XX2-form

	Appendix A. Suggested Floating-Point Models
	A.1 Floating-Point Round to Single-Precision Model
	A.2 Floating-Point Convert to Integer Model
	A.3 Floating-Point Convert from Integer Model
	A.4 Floating-Point Round to Integer Model

	Appendix B. Densely Packed Decimal
	B.1 BCD-to-DPD Translation
	B.2 DPD-to-BCD Translation
	B.3 Preferred DPD encoding
	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	2A0
	2A1
	2A2
	2A3
	2A4
	2A5
	2A6
	2A7
	2A8
	2A9
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	2B0
	2B1
	2B2
	2B3
	2B4
	2B5
	2B6
	2B7
	2B8
	2B9
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	2C0
	2C1
	2C2
	2C3
	2C4
	2C5
	2C6
	2C7
	2C8
	2C9
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	2D0
	2D1
	2D2
	2D3
	2D4
	2D5
	2D6
	2D7
	2D8
	2D9
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	2E0
	2E1
	2E2
	2E3
	2E4
	2E5
	2E6
	2E7
	2E8
	2E9
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	2F0
	2F1
	2F2
	2F3
	2F4
	2F5
	2F6
	2F7
	2F8
	2F9
	00A
	00B
	02A
	02B
	04A
	04B
	06A
	06B
	04E
	04F
	28A
	28B
	2AA
	2AB
	2CA
	2CB
	2EA
	2EB
	2CE
	2CF
	01A
	01B
	03A
	03B
	05A
	05B
	07A
	07B
	05E
	05F
	29A
	29B
	2BA
	2BB
	2DA
	2DB
	2FA
	2FB
	2DE
	2DF
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	0A0
	0A1
	0A2
	0A3
	0A4
	0A5
	0A6
	0A7
	0A8
	0A9
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	0B0
	0B1
	0B2
	0B3
	0B4
	0B5
	0B6
	0B7
	0B8
	0B9
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	0C0
	0C1
	0C2
	0C3
	0C4
	0C5
	0C6
	0C7
	0C8
	0C9
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	0D0
	0D1
	0D2
	0D3
	0D4
	0D5
	0D6
	0D7
	0D8
	0D9
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	0E0
	0E1
	0E2
	0E3
	0E4
	0E5
	0E6
	0E7
	0E8
	0E9
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	0F0
	0F1
	0F2
	0F3
	0F4
	0F5
	0F6
	0F7
	0F8
	0F9
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	08A
	08B
	0AA
	0AB
	0CA
	0CB
	0EA
	0EB
	0CE
	0CF
	30A
	30B
	32A
	32B
	34A
	34B
	36A
	36B
	34E
	34F
	09A
	09B
	0BA
	0BB
	0DA
	0DB
	0FA
	0FB
	0DE
	0DF
	31A
	31B
	33A
	33B
	35A
	35B
	37A
	37B
	35E
	35F
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	3A0
	3A1
	3A2
	3A3
	3A4
	3A5
	3A6
	3A7
	3A8
	3A9
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	3B0
	3B1
	3B2
	3B3
	3B4
	3B5
	3B6
	3B7
	3B8
	3B9
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	3C0
	3C1
	3C2
	3C3
	3C4
	3C5
	3C6
	3C7
	3C8
	3C9
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	3D0
	3D1
	3D2
	3D3
	3D4
	3D5
	3D6
	3D7
	3D8
	3D9
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	3E0
	3E1
	3E2
	3E3
	3E4
	3E5
	3E6
	3E7
	3E8
	3E9
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	3F0
	3F1
	3F2
	3F3
	3F4
	3F5
	3F6
	3F7
	3F8
	3F9
	10A
	10B
	12A
	12B
	14A
	14B
	16A
	16B
	14E
	14F
	38A
	38B
	3AA
	3AB
	3CA
	3CB
	3EA
	3EB
	3CE
	3CF
	11A
	11B
	13A
	13B
	15A
	15B
	17A
	17B
	15E
	15F
	39A
	39B
	3BA
	3BB
	3DA
	3DB
	3FA
	3FB
	3DE
	3DF
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	00C
	00D
	10C
	10D
	20C
	20D
	30C
	30D
	02E
	02F
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	01C
	01D
	11C
	11D
	21C
	21D
	31C
	31D
	03E
	03F
	1A0
	1A1
	1A2
	1A3
	1A4
	1A5
	1A6
	1A7
	1A8
	1A9
	02C
	02D
	12C
	12D
	22C
	22D
	32C
	32D
	12E
	12F
	1B0
	1B1
	1B2
	1B3
	1B4
	1B5
	1B6
	1B7
	1B8
	1B9
	03C
	03D
	13C
	13D
	23C
	23D
	33C
	33D
	13E
	13F
	1C0
	1C1
	1C2
	1C3
	1C4
	1C5
	1C6
	1C7
	1C8
	1C9
	04C
	04D
	14C
	14D
	24C
	24D
	34C
	34D
	22E
	22F
	1D0
	1D1
	1D2
	1D3
	1D4
	1D5
	1D6
	1D7
	1D8
	1D9
	05C
	05D
	15C
	15D
	25C
	25D
	35C
	35D
	23E
	23F
	1E0
	1E1
	1E2
	1E3
	1E4
	1E5
	1E6
	1E7
	1E8
	1E9
	06C
	06D
	16C
	16D
	26C
	26D
	36C
	36D
	32E
	32F
	1F0
	1F1
	1F2
	1F3
	1F4
	1F5
	1F6
	1F7
	1F8
	1F9
	07C
	07D
	17C
	17D
	27C
	27D
	37C
	37D
	33E
	33F
	18A
	18B
	1AA
	1AB
	1CA
	1CB
	1EA
	1EB
	1CE
	1CF
	00E
	00F
	10E
	10F
	20E
	20F
	30E
	30F
	06E
	06F
	19A
	19B
	1BA
	1BB
	1DA
	1DB
	1FA
	1FB
	1DE
	1DF
	01E
	01F
	11E
	11F
	21E
	21F
	31E
	31F
	07E
	07F
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	08C
	08D
	18C
	18D
	28C
	28D
	38C
	38D
	0AE
	0AF
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	09C
	09D
	19C
	19D
	29C
	29D
	39C
	39D
	0BE
	0BF
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	0AC
	0AD
	1AC
	1AD
	2AC
	2AD
	3AC
	3AD
	1AE
	1AF
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	0BC
	0BD
	1BC
	1BD
	2BC
	2BD
	3BC
	3BD
	1BE
	1BF
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	0CC
	0CD
	1CC
	1CD
	2CC
	2CD
	3CC
	3CD
	2AE
	2AF
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	0DC
	0DD
	1DC
	1DD
	2DC
	2DD
	3DC
	3DD
	2BE
	2BF
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	0EC
	0ED
	1EC
	1ED
	2EC
	2ED
	3EC
	3ED
	3AE
	3AF
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	0FC
	0FD
	1FC
	1FD
	2FC
	2FD
	3FC
	3FD
	3BE
	3BF
	20A
	20B
	22A
	22B
	24A
	24B
	26A
	26B
	24E
	24F
	08E
	08F
	18E
	18F
	28E
	28F
	38E
	38F
	0EE
	0EF
	21A
	21B
	23A
	23B
	25A
	25B
	27A
	27B
	25E
	25F
	09E
	09F
	19E
	19F
	29E
	29F
	39E
	39F
	0FE
	0FF
	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	080
	081
	800
	801
	880
	881
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	090
	091
	810
	811
	890
	891
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	082
	083
	820
	821
	808
	809
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	092
	093
	830
	831
	818
	819
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	084
	085
	840
	841
	088
	089
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	094
	095
	850
	851
	098
	099
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	086
	087
	860
	861
	888
	889
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	096
	097
	870
	871
	898
	899
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	180
	181
	900
	901
	980
	981
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	190
	191
	910
	911
	990
	991
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	182
	183
	920
	921
	908
	909
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	192
	193
	930
	931
	918
	919
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	184
	185
	940
	941
	188
	189
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	194
	195
	950
	951
	198
	199
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	186
	187
	960
	961
	988
	989
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	196
	197
	970
	971
	998
	999
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	280
	281
	802
	803
	882
	883
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	290
	291
	812
	813
	892
	893
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	282
	283
	822
	823
	828
	829
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	292
	293
	832
	833
	838
	839
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	284
	285
	842
	843
	288
	289
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	294
	295
	852
	853
	298
	299
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	286
	287
	862
	863
	(888)
	(889)
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	296
	297
	872
	873
	(898)
	(899)
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	380
	381
	902
	903
	982
	983
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	390
	391
	912
	913
	992
	993
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	382
	383
	922
	923
	928
	929
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	392
	393
	932
	933
	938
	939
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	384
	385
	942
	943
	388
	389
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	394
	395
	952
	953
	398
	399
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	386
	387
	962
	963
	(988)
	(989)
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	396
	397
	972
	973
	(998)
	(999)
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	480
	481
	804
	805
	884
	885
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	490
	491
	814
	815
	894
	895
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	482
	483
	824
	825
	848
	849
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	492
	493
	834
	835
	858
	859
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	484
	485
	844
	845
	488
	489
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	494
	495
	854
	855
	498
	499
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	486
	487
	864
	865
	(888)
	(889)
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	496
	497
	874
	875
	(898)
	(899)
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	580
	581
	904
	905
	984
	985
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	590
	591
	914
	915
	994
	995
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	582
	583
	924
	925
	948
	949
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	592
	593
	934
	935
	958
	959
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	584
	585
	944
	945
	588
	589
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	594
	595
	954
	955
	598
	599
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	586
	587
	964
	965
	(988)
	(989)
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	596
	597
	974
	975
	(998)
	(999)
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	680
	681
	806
	807
	886
	887
	610
	611
	612
	613
	614
	615
	616
	617
	618
	619
	690
	691
	816
	817
	896
	897
	620
	621
	622
	623
	624
	625
	626
	627
	628
	629
	682
	683
	826
	827
	868
	869
	630
	631
	632
	633
	634
	635
	636
	637
	638
	639
	692
	693
	836
	837
	878
	879
	640
	641
	642
	643
	644
	645
	646
	647
	648
	649
	684
	685
	846
	847
	688
	689
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	694
	695
	856
	857
	698
	699
	660
	661
	662
	663
	664
	665
	666
	667
	668
	669
	686
	687
	866
	867
	(888)
	(889)
	670
	671
	672
	673
	674
	675
	676
	677
	678
	679
	696
	697
	876
	877
	(898)
	(899)
	38_
	700
	701
	702
	703
	704
	705
	706
	707
	708
	709
	780
	781
	906
	907
	986
	987
	39_
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719
	790
	791
	916
	917
	996
	997
	3A_
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	782
	783
	926
	927
	968
	969
	3B_
	730
	731
	732
	733
	734
	735
	736
	737
	738
	739
	792
	793
	936
	937
	978
	979
	3C_
	740
	741
	742
	743
	744
	745
	746
	747
	748
	749
	784
	785
	946
	947
	788
	789
	3D_
	750
	751
	752
	753
	754
	755
	756
	757
	758
	759
	794
	795
	956
	957
	798
	799
	3E_
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	786
	787
	966
	967
	(988)
	(989)
	3F_
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	796
	797
	976
	977
	(998)
	(999)

	Appendix C. Assembler Extended Mnemonics
	C.1 Symbols
	C.2 Branch Mnemonics
	C.2.1 BO and BI Fields
	C.2.2 Simple Branch Mnemonics
	C.2.3 Branch Mnemonics Incorporating Conditions
	C.2.4 Branch Prediction

	C.3 Condition Register Logical Mnemonics
	C.4 Subtract Mnemonics
	C.4.1 Subtract Immediate
	C.4.2 Subtract

	C.5 Compare Mnemonics
	C.5.1 Doubleword Comparisons
	C.5.2 Word Comparisons

	C.6 Trap Mnemonics
	C.7 Integer Select Mnemonics
	C.8 Rotate and Shift Mnemonics
	C.8.1 Operations on Doublewords
	C.8.2 Operations on Words

	C.9 Move To/From Special Purpose Register Mnemonics
	C.10 Miscellaneous Mnemonics

	Book II: Power ISA Virtual Environment Architecture
	Chapter 1. Storage Model
	1.1 Definitions
	1.2 Introduction
	1.3 Virtual Storage
	1.4 Single-Copy Atomicity
	1.5 Cache Model
	1.6 Storage Control Attributes
	1.6.1 Write Through Required
	1.6.2 Caching Inhibited
	1.6.3 Memory Coherence Required
	1.6.4 Guarded

	1.7 Shared Storage
	1.7.1 Storage Access Ordering
	1.7.1.1 Storage Ordering of Copy/ Paste-Initiated Data Transfers
	1.7.1.2 Storage Ordering of Stores to Persistent Storage
	1.7.1.3 Storage Ordering of I/O Accesses

	1.7.2 Atomic Update
	1.7.2.1 Reservations
	1.7.2.2 Forward Progress

	1.8 Instruction Storage
	1.8.1 Concurrent Modification and Execution of Instructions

	Chapter 2. Instruction Restart
	Chapter 3. Management of Shared Resources
	3.1 Program Priority Registers
	3.2 “or” Instruction

	Chapter 4. Storage Control Instructions
	4.1 Parameters Useful to Application Programs
	4.2 Data Stream Control Register (DSCR)
	4.3 Cache Management Instructions
	4.3.1 Instruction Cache Instructions
	Instruction Cache Block Invalidate X-form
	Instruction Cache Block Touch X-form

	4.3.2 Data Cache Instructions
	Data Cache Block Touch X-form
	Data Cache Block Touch for Store X-form
	Data Cache Block set to Zero X-form
	Data Cache Block Store X-form
	Data Cache Block Flush X-form
	4.3.2.1 Obsolete Data Cache Instructions

	4.3.3 “or” Instruction

	4.4 Copy-Paste Facility
	Copy X-form
	Paste X-form
	Copy-Paste Abort X-form

	4.5 Atomic Memory Operations
	4.5.1 Load Atomic
	Load Word Atomic X-form
	Load Doubleword Atomic X-form

	4.5.2 Store Atomic
	Store Word Atomic X-form
	Store Doubleword Atomic X-form

	4.6 Synchronization Instructions
	4.6.1 Instruction Synchronize Instruction
	Instruction Synchronize XL-form

	4.6.2 Load And Reserve and Store Conditional Instructions
	Load Byte And Reserve Indexed X-form
	Load Halfword And Reserve Indexed X-form
	Load Word And Reserve Indexed X-form
	Store Byte Conditional Indexed X-form
	Store Halfword Conditional Indexed X-form
	Store Word Conditional Indexed X-form
	4.6.2.1 64-Bit Load And Reserve and Store Conditional Instructions
	Load Doubleword And Reserve Indexed X-form
	Store Doubleword Conditional Indexed X-form

	4.6.2.2 128-bit Load And Reserve and Store Conditional Instructions
	Load Quadword And Reserve Indexed X-form
	Store Quadword Conditional Indexed X-form

	4.6.3 Memory Barrier Instructions
	Synchronize X-form
	Enforce In-order Execution of I/O X-form

	4.6.4 Wait Instruction
	Wait X-form

	Chapter 5. Time Base
	5.1 Time Base Instructions
	Move From Time Base XFX-form

	Chapter 6. Event-Based Branch Facility
	6.1 Event-Based Branch Overview
	6.2 Event-Based Branch Registers
	6.2.1 Branch Event Status and Control Register
	6.2.2 Event-Based Branch Handler Register
	6.2.3 Event-Based Branch Return Register

	6.3 Event-Based Branch Instructions
	Return from Event-Based Branch XL-form

	Chapter 7. Branch History Rolling Buffer
	7.1 Branch History Rolling Buffer Entry Format
	7.2 Branch History Rolling Buffer Instructions
	Clear BHRB X-form
	Move From Branch History Rolling Buffer Entry XFX-form

	Appendix A. Assembler Extended Mnemonics
	A.1 Data Cache Block Touch [for Store] Mnemonics
	A.2 Data Cache Block Flush Mnemonics
	A.3 Or Mnemonics
	A.4 Load And Reserve Mnemonics
	A.5 Synchronize Mnemonics
	A.6 Wait Mnemonics
	A.7 Move To/From Time Base Mnemonics
	A.8 Return From Event-Based Branch Mnemonic

	Appendix B. Programming Examples for Sharing Storage
	B.1 Atomic Update Primitives
	B.2 Lock Acquisition and Release, and Related Techniques
	B.2.1 Lock Acquisition and Import Barriers
	B.2.1.1 Acquire Lock and Import Shared Storage
	B.2.1.2 Obtain Pointer and Import Shared Storage

	B.2.2 Lock Release and Export Barriers
	B.2.2.1 Export Shared Storage and Release Lock
	B.2.2.2 Export Shared Storage and Release Lock using lwsync

	B.2.3 Safe Fetch

	B.3 List Insertion
	B.4 Notes

	Book III: Power ISA Operating Environment Architecture
	Chapter 1. Introduction
	1.1 Overview
	1.2 Document Conventions
	1.2.1 Definitions and Notation
	1.2.2 Reserved Fields
	1.2.3 Deviations from the Sequential Execution Model
	1.2.4 Restricting Out-of-Order Execution

	1.3 General Systems Overview
	1.4 Exceptions
	1.5 Synchronization
	1.5.1 Context Synchronization
	1.5.2 Execution Synchronization

	Chapter 2. Logical Partitioning (LPAR) and Thread Control
	2.1 Overview
	2.2 Logical Partitioning Control Register (LPCR)
	2.3 Hypervisor Real Mode Offset Register (HRMOR)
	2.4 Logical Partition Identification Register (LPIDR)
	2.5 Processor Compatibility Register (PCR)
	2.6 Other Hypervisor Resources
	2.7 Sharing Hypervisor and Ultravisor Resources
	2.8 Sub-Processors
	2.9 Thread Identification Register (TIR)
	2.10 Hypervisor Interrupt Little-Endian (HILE) Bit

	Chapter 3. Ultravisor and Secure Memory Facility (SMF)
	3.1 Overview
	3.2 Ultravisor Real Mode Offset Register (URMOR)
	3.3 Ultravisor Interrupt Little-Endian (UILE) Bit
	3.4 Secure Memory Facility Control Register (SMFCTRL)
	3.4.1 Enabling SMF and Secure Memory Enforcement

	Chapter 4. Branch Facility
	4.1 Branch Facility Overview
	4.2 Branch Facility Registers
	4.2.1 Machine State Register
	4.2.2 Processor Stop Status and Control Register (PSSCR)

	4.3 Branch Facility Instructions
	4.3.1 System Linkage Instructions
	System Call SC-form
	System Call Vectored SC-form
	Return From System Call Vectored XL-form
	Return From Interrupt Doubleword XL-form
	Hypervisor Return From Interrupt Doubleword XL-form
	Ultravisor Return From Interrupt Doubleword XL-form

	4.3.2 Power-Saving Mode
	4.3.2.1 Power-Saving Mode Instruction
	stop XL-form

	4.3.2.2 Entering and Exiting Power-Saving Mode

	4.4 Event-Based Branch Facility and Instruction

	Chapter 5. Fixed-Point Facility
	5.1 Fixed-Point Facility Overview
	5.2 Special Purpose Registers
	5.3 Fixed-Point Facility Registers
	5.3.1 Processor Version Register
	5.3.2 Processor Identification Register
	5.3.3 Process Identification Register
	5.3.4 Control Register
	5.3.5 Program Priority Register
	5.3.6 Problem State Priority Boost Register
	5.3.7 Relative Priority Register
	5.3.8 Software-use SPRs

	5.4 Fixed-Point Facility Instructions
	5.4.1 Fixed-Point Load and Store Caching Inhibited Instructions
	Load Byte and Zero Caching Inhibited Indexed X-form
	Load Halfword and Zero Caching Inhibited Indexed X-form
	Load Word and Zero Caching Inhibited Indexed X-form
	Load Doubleword Caching Inhibited Indexed X-form
	Store Byte Caching Inhibited Indexed X-form
	Store Halfword Caching Inhibited Indexed X-form
	Store Word Caching Inhibited Indexed X-form
	Store Doubleword Caching Inhibited Indexed X-form

	5.4.2 OR Instruction
	5.4.3 OR Immediate Instruction
	5.4.4 Move To/From System Register Instructions
	Move To Special Purpose Register XFX-form
	Move From Special Purpose Register XFX-form
	Move To Machine State Register X-form
	Move To Machine State Register Doubleword X-form
	Move From Machine State Register X-form

	Chapter 6. Storage Control
	6.1 Overview
	6.2 Storage Exceptions
	6.3 Instruction Fetch
	6.3.1 Implicit Branch
	6.3.2 Address Wrapping Combined with Changing MSR Bit SF

	6.4 Data Access
	6.5 Performing Operations Out-of-Order
	6.6 Invalid Real Address
	6.7 Storage Addressing
	6.7.1 32-Bit Mode
	6.7.2 Virtualized Partition Memory (VPM) Mode
	6.7.3 Ultravisor Real, Hypervisor Real, and Virtual Real Addressing Modes
	6.7.3.1 Ultravisor/Hypervisor Offset Real Mode Address
	6.7.3.2 Storage Control Attributes for Accesses in Ultravisor and Hypervisor Real Addressing Modes
	6.7.3.2.1 Hypervisor Real Mode Storage Control

	6.7.3.3 Virtual Real Mode Addressing Mechanism
	6.7.3.4 Storage Control Attributes for Implicit Storage Accesses

	6.7.4 Definitions
	6.7.5 Address Ranges Having Defined Uses
	6.7.5.1 Effective Address Space Structure for Radix-using Partitions

	6.7.6 In-Memory Tables
	6.7.6.1 Partition Table
	6.7.6.2 Process Table

	6.7.7 Address Translation Overview
	6.7.8 Segment Translation
	6.7.8.1 Segment Lookaside Buffer (SLB)
	6.7.8.2 SLB Search
	6.7.8.3 Segment Table Description and Search
	6.7.8.3.1 Primary Hash for 256MB Segment
	6.7.8.3.2 Primary Hash for 1TB Segment
	6.7.8.3.3 Secondary Hash for 256MB Segment
	6.7.8.3.4 Secondary Hash for 1TB Segment

	6.7.9 Hashed Page Table Translation
	6.7.9.1 Hashed Page Table
	6.7.9.2 Page Table Search

	6.7.10 Radix Tree Translation
	6.7.10.1 Radix Tree Page Directory Entry
	6.7.10.2 Radix Tree Page Table Entry
	6.7.10.3 Nested Translation

	6.7.11 Translation Process
	6.7.11.1 Fully-Qualified Address
	6.7.11.2 Finding the Page Tables
	6.7.11.3 Obtaining Host Real Address, Radix on Radix
	6.7.11.4 Obtaining Host Real Address, HPT

	6.7.12 Reference and Change Recording
	6.7.13 Storage Protection
	6.7.13.1 Virtual Page Class Key Protection
	6.7.13.2 Basic Storage Protection, Address Translation Enabled
	6.7.13.3 Basic Storage Protection, Address Translation Disabled
	6.7.13.4 Radix Tree Translation Storage Protection
	6.7.13.5 Secure Memory Protection

	6.8 Storage Control Attributes
	6.8.1 Guarded Storage
	6.8.1.1 Out-of-Order Accesses to Guarded Storage

	6.8.2 Storage Control Bits
	6.8.2.1 Storage Control Bit Restrictions
	6.8.2.2 Altering the Storage Control Bits

	6.9 Storage Control Instructions
	6.9.1 Cache Management Instructions
	6.9.2 Synchronize Instruction
	6.9.3 Lookaside Buffer Management
	6.9.3.1 Thread-Specific Segment Translations
	6.9.3.2 SLB Management Instructions
	SLB Invalidate Entry X-form
	SLB Invalidate Entry Global X-form
	SLB Invalidate All X-form
	SLB Invalidate All Global X-form
	SLB Move To Entry X-form
	SLB Move From Entry VSID X-form
	SLB Move From Entry ESID X-form
	SLB Find Entry ESID X-form
	SLB Synchronize X-form

	6.9.3.3 TLB Management Instructions
	TLB Invalidate Entry X-form
	TLB Invalidate Entry Local X-form
	TLB Synchronize X-form

	6.10 Translation Table Update Synchronization Requirements
	6.10.1 Translation Table Updates
	6.10.1.1 Adding a Page Table Entry
	6.10.1.2 Modifying a Translation Table Entry

	Chapter 7. Interrupts
	7.1 Overview
	7.2 Interrupt Registers
	7.2.1 Machine Status Save/ Restore Registers
	7.2.2 Hypervisor Machine Status Save/Restore Registers
	7.2.3 Ultravisor Machine Status Save/Restore Registers
	7.2.4 Access Segment Descriptor Register
	7.2.5 Data Address Register
	7.2.6 Hypervisor Data Address Register
	7.2.7 Data Storage Interrupt Status Register
	7.2.8 Hypervisor Data Storage Interrupt Status Register
	7.2.9 Hypervisor Emulation Instruction Register
	7.2.10 Hypervisor Maintenance Exception Register
	7.2.11 Hypervisor Maintenance Exception Enable Register
	7.2.12 Facility Status and Control Register
	7.2.13 Hypervisor Facility Status and Control Register

	7.3 Interrupt Synchronization
	7.4 Interrupt Classes
	7.4.1 Precise Interrupt
	7.4.2 Imprecise Interrupt
	7.4.3 Interrupt Processing
	7.4.4 Implicit alteration of HSRR0 and HSRR1

	7.5 Interrupt Definitions
	7.5.1 System Reset Interrupt
	7.5.2 Machine Check Interrupt
	7.5.3 Data Storage Interrupt (DSI)
	7.5.4 Data Segment Interrupt
	7.5.5 Instruction Storage Interrupt (ISI)
	7.5.6 Instruction Segment Interrupt
	7.5.7 External Interrupt
	7.5.7.1 Direct External Interrupt
	7.5.7.2 Mediated External Interrupt

	7.5.8 Alignment Interrupt
	7.5.9 Program Interrupt
	7.5.10 Floating-Point Unavailable Interrupt
	7.5.11 Decrementer Interrupt
	7.5.12 Hypervisor Decrementer Interrupt
	7.5.13 Directed Privileged Doorbell Interrupt
	7.5.14 System Call Interrupt
	7.5.15 Trace Interrupt
	7.5.16 Hypervisor Data Storage Interrupt (HDSI)
	7.5.17 Hypervisor Instruction Storage Interrupt (HISI)
	7.5.18 Hypervisor Emulation Assistance Interrupt
	7.5.19 Hypervisor Maintenance Interrupt
	7.5.20 Directed Hypervisor Doorbell Interrupt
	7.5.21 Hypervisor Virtualization Interrupt
	7.5.22 Performance Monitor Interrupt
	7.5.23 Vector Unavailable Interrupt
	7.5.24 VSX Unavailable Interrupt
	7.5.25 Facility Unavailable Interrupt
	7.5.26 Hypervisor Facility Unavailable Interrupt
	7.5.27 System Call Vectored Interrupt
	7.5.28 Directed Ultravisor Doorbell Interrupt

	7.6 Partially Executed Instructions
	7.7 Exception Ordering
	7.7.1 Unordered Exceptions
	7.7.2 Ordered Exceptions

	7.8 Event-Based Branch Exception Ordering
	7.9 Interrupt Priorities
	7.10 Relationship of Event-Based Branches to Interrupts
	7.10.1 EBB Exception Priority
	7.10.2 EBB Synchronization
	7.10.3 EBB Classes

	Chapter 8. Timer Facilities
	8.1 Overview
	8.2 Time Base (TB)
	8.2.1 Writing the Time Base

	8.3 Virtual Time Base
	8.4 Decrementer
	8.4.1 Writing and Reading the Decrementer

	8.5 Hypervisor Decrementer
	8.6 Processor Utilization of Resources Register (PURR)
	8.7 Scaled Processor Utilization of Resources Register (SPURR)
	8.8 Instruction Counter

	Chapter 9. Debug Facilities
	9.1 Overview
	9.2 Come-From Address Register
	9.3 Completed Instruction Address Breakpoint
	9.4 Data Address Watchpoint

	Chapter 10. Performance Monitor Facility
	10.1 Overview
	10.2 Performance Monitor Operation
	10.3 No-op Instructions Reserved for the Performance Monitor
	10.4 Performance Monitor Facility Registers
	10.4.1 Performance Monitor SPR Numbers
	10.4.2 Performance Monitor Counters
	10.4.2.1 Event Counting and Sampling

	10.4.3 Threshold Event Counter
	10.4.4 Monitor Mode Control Register 0
	10.4.5 Monitor Mode Control Register 1
	10.4.6 Monitor Mode Control Register 2
	10.4.7 Monitor Mode Control Register A
	10.4.8 Sampled Instruction Address Register
	10.4.9 Sampled Data Address Register
	10.4.10 Sampled Instruction Event Register
	10.4.11 Other Performance Monitor Registers

	10.5 Branch History Rolling Buffer
	10.5.1 BHRB Filtering

	Chapter 11. Processor Control
	11.1 Overview
	11.2 Programming Model
	11.3 Processor Control Registers
	11.3.1 Directed Privileged Doorbell Exception State

	11.4 Processor Control Instructions
	Message Send Ultravisor X-form
	Message Clear Ultravisor X-form
	Message Send X-form
	Message Clear X-form
	Message Send Privileged X-form
	Message Clear Privileged X-form
	Message Synchronize X-form

	Chapter 12. Synchronization Requirements for Context Alterations

	Power ISA Book I-III Appendices
	Appendix A. Notes on the Removal of Transactional Memory from the Architecture
	A.1 Attempted Execution of TM Instructions
	A.2 Attempted Access of a TM SPR
	A.3 Occurrence of the Hypervisor Facility Unavailable Interrupt with HFSCRIC=0x05
	A.4 Occurrence of the TM Bad Thing Type Program Interrupt
	A.5 Failure of Performance Monitor Counters to Count
	A.6 Behavior of SPR Bits Formerly Related to TM

	Appendix B. Illegal Instructions
	Appendix C. Reserved Instructions
	Appendix D. Opcode Maps
	Appendix E. Power ISA Instruction Set Sorted by Opcode
	Appendix F. Power ISA Instruction Set Sorted by Version
	Appendix G. Power ISA Instruction Set Sorted by OpenPOWER Compliancy Subset
	Appendix H. Power ISA Instruction Set Sorted by Mnemonic

	Last Page - End of Document

