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Preface

The roots of the Power ISA (Instruction Set Architec-
ture) extend back 30 years, to IBM Research. The
POWER (Performance Optimization With Enhanced
RISC) Architecture was introduced with the RISC Sys-
tem/6000 product family in early 1990. In 1991, Apple,
IBM, and Motorola began the collaboration to evolve to
the PowerPC Architecture, expanding the architec-
ture’s applicability. In 1997, Motorola and IBM began
another collaboration, focused on optimizing PowerPC
for embedded systems, which produced Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining
Book E content with the more general purpose Pow-
erPC Version 2.02. The resulting architecture included
environment-specific privileged architecture optimiza-
tions (two Book llIs) and optional application-specific
facilities (categories) as extensions to a pervasive base
architecture.

In support of the OpenPOWER Foundation’s standard-
ization of server architecture, Power ISA Version 3.0
streamlined this integration by choosing a single Book
Il and a set of widely used categories to become part
of the base architecture for all forward-looking Power
implementations. All other optional architecture cate-
gories were eliminated to ensure increased application
portability between Power processors. Legacy embed-
ded applications that require the eliminated material will
continue to use V. 2.07B.

Power ISA Version 3.0C took the first step in re-intro-
ducing optionality into the architecture as the Power
ISA moves to an “open” model governed by the Open-
POWER Foundation. Material later in the preface iden-
tifies compliancy subsets of the architecture and the
optional features which they comprise.

The Power ISA Version 3.1 consists of three books and
a set of appendices.

Book |, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer.

Book Il, Power ISA Virtual Environment Architecture,
defines the storage model and other instructions and
facilities that enable the application programmer to cre-
ate multithreaded programs and programs that interact
with certain physical realities of the computing environ-
ment.

Book Ill, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books |, I,
and Ill.

Change bars have been included in the body of this
document to indicate changes from the Power ISA Ver-
sion 3.0C.
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Summary of Changes in Power ISA Version 3.1

This document is Version 3.1 of the Power ISA. It is
intended to supersede and replace version 3.0C. Any
product descriptions that reference a version of the
architecture are understood to reference the latest ver-
sion. This version was created by making miscella-
neous corrections and by applying the following
requests for change (RFCs) to Power ISA Version
3.0C. Change bars in this summary of changes indi-
cate changes relative to v3.0C.

Byte-Reverse Instructions:
Added new GPR-based byte-reverse instructions.

Vector Integer Multiply/Divide/Modulo Instructions:
Added SIMD-equivalent forms of FXU multiply, divide,
and modulo instructions to increase synergy with FXU
instruction set for auto-vectorization.

Instruction Prefix Support:
Added a 32-bit instruction prefix to support PC-relative

addressing, up to 34-bit immediate operands, addi-
tional operand fields, and additional opcode space.

BHRB Filtering:
Added new BHRB Filtering fields and defined associ-

ated terminology.

VSX 32-byte Storage Access Operations:
Added new 32-byte VSR load and store instructions.

Multiple DEAW:
Added a second Data Address Watchpoint. [H]DAR is

set to the first byte of overlap. 512B boundary is
removed. Match detection is on DW granularity inde-
pendent of operand size. SIAR/SDAR are not altered
by the Trace interrupt when TE=0b00.

128-bit Binary Integer Operations:
Added new 128-bit integer instructions for comparison,

divide, modulo, rotate, shift, DFP and QFP format con-
version operations. Also added 128-bit integer multiply
assist operations.

SIMD Permute-Class Operations:

New permute-class instructions for element extraction
and insertion operations, 32-bit immediate splat opera-
tions, doublewide bit shift left/right operations, element
mask-based blend operations, and an arbitrary-wide
permute assist operation.

Reduced-Precision: Outer Product Operations:

Added new outer-product instructions to accelerate
matrix multiplication, supporting 4-bit, 8-bit, and 16-bit
integer and 16-bit, 32-bit, and 64-bit floating-point data-
types.

Bit-Manipulation Operations:
Added new bit-manipulation instructions.

Set Boolean Extension:

Added four new instructions that convert a condition
code bit (any CR bit) into a Boolean (0/1), the negation
of a Boolean (1/0), a field mask (all Os/all 1s), and the
negation of a field mask (all 1s/all 0s) that is placed into
a GPR.

String Operations:
Added new string isolate instructions to support

null-terminated and explicit-length strings.

Test LSB by Byte Operation:
Added new instruction to set any CR field to reflect

predicate compare summary status, not just CR field 6
which Rc=1 is limited to.

VSX Load/Store Rightmost Element Operations:
Added new load and store instructions that transfer the

rightmost vector element between VSR and storage.

Prefixed addi Instruction and Prefixed Load/Store
Instructions and Addressing:

Using new instruction prefix, added support for
extended immediate displacements and PC-relative
addressing for a specific set of GPR and VSR load and
store operations.

VSX Scalar Minimum/Maximum/Compare Quad-Preci-
sion Operations:

Add new quad-precision minimum, maximum, and
predicate comparison instructions.

CMODX Extension for Prefix:

The quasi patch class of unsynchronized updates to
instruction storage is made architecture. Language is
changed and rules are added to account for the addi-
tion of prefixed instructions to the architecture.

Reduced-Precision - bfloat16 Outer Product & Format
Conversion Operations:

Added new instructions to accelerate matrix multiplica-
tion and format conversions for the bfloat16 datatype.

Processor Control Register Extensions:
The PCR is updated to accommodate new prob-
lem-state instructions added in v3.1.

Reduced-Precision: Missing Integer-based Outer Prod-
uct Operations:

Added additional new instructions to accelerate matrix
multiplication for 8-bit and 16-bit integer datatypes.

VSX Mask Manipulation Operations:
Added new vector instructions to manipulate vector
masks.

VSX PCV Generate Operations:

Added new permute control vector generate instruc-
tions to support efficient emulation of load expand and
store compress operations.
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New Performance Monitor SPRs:

Added three new performance monitor SPRs. SIER2
and SIER3 are added to provide additional information
about the sampled instruction. MMCR3 is added for fur-
ther sampling related configuration control.

Translation Management Extensions:

Added an L bit for slbiag, where L=1 indicates an inval-
idation by LPID. tlbiel with SET=0 and 1S=1, 2, or 3
invalidate all congruence classes and tlbiel with SET
1=0 is a noop except when RIC=1, which becomes an
invalid form. Made ISL apply in hypervisor state.

Copy/Paste Extensions:
Added memory move functionality.

Persistent Storage / Store Sync:
Added pushes and synchronization for persistent stor-
age and variants of sync optimized for store ordering.

Pause / Wait-reserve:
Added two new variants of the wait instruction;
removed platform notify, TIDR, and CIR.

Performance Monitor Facility Sampling Security:
Changes the definition of MMCROpy,cc=0b00 case to
allow for a new secure mode of access with regards to
sampling registers which is available conditional on
new MMCRppccexT bit. Introduces a new freeze mode
for ultravisor privilege state differentiating it from hyper-
visor privilege state freeze mode. Restricts BHRB to
only record in problem state. Also MMCROppaq. bit 52
of MMCRO is removed.

Hypervisor Interrupt Location Control:
Added HAIL for the hypervisor to specify its interrupt
behavior independent from guest state.

Changes and Clarifications to Data Cache Mangement
Instructions:

Specifies the that the number of software data prefetch
streams guaranteed to be available to a thread varies
by degree of multithreading in the processor. Clarifies
when a new software data prefetch stream will over-
write an existing one. Redefines when a thread’s soft-
ware data prefetch streams are cleared.

BHRB Disable Control:
Adds an additional control on BHRB recording via
MMCRA bit 26 namely MMCRAgHRBRD-

Preface
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OpenlISA Compliancy Subset Methodology and Requirements

The PowerlSA comprises the base architecture (that
which is never optional - not part of any optional or dep-
recated feature), four groups of optional features, and a
group of deprecated features. (See the next two
pages.) Authorized implementations of the Power ISA
must support one of the four Compliancy Subsets
defined below. Support of a subset means that a
design includes the base architecture and all features
that are not optional for that subset. A supporting
design may also include any features that are optional
for the supported subset (including deprecated fea-
tures), subject to stated pre-requisites, and Custom
Extensions created using the architecture sandbox
defined below. “Inclusion” of the base architecture, of
an optional feature, or of a custom extension can be
accomplished using a combination of hardware and
firmware, provided that the firmware is implemented
using other elements of the base architecture and of
the included features, and elements of the architecture

sandbox; invoked using the second and third pages of
real storage (see the second bullet of Section 6.7.5 of
Book Il1); and subject to the prohibitions against the use
of firmware given in Section 7.4.4 of Book Ill. Each
optional or deprecated feature must be implemented in
its entirety. Attempted execution of an instruction asso-
ciated with a feature that is not included must cause a
Hypervisor Emulation Assistance Interrupt (HEAI). The
result of an attempted access to an SPR associated
with a feature that is not included using mtspr or mfspr
must be that described for “an SPR number that is
undefined for the implementation” in the respective
instruction description. See Section 5.4.4 of Book Ill.
For Scalar Fixed-Point + Floating-Point and Scalar
Fixed-Point Compliancy Subset implementations that
do not include the logical partitioning feature, an lllegal
Instruction type Program Interrupt as described in the
penultimate Programming Note in Section 7.5.9 of
Book Il may be substituted for the HEAI.

OpenPOWER Compliancy Subsets

1. AIX Compliancy Subset (ACS)

The following features are optional for this compliancy subset. The rest of PowerlSA v3.1 must be included.

Always Optional Features listed below

Deprecated Features listed below

2. Linux Compliancy Subset (LCS)

The following features are optional for this compliancy subset. The rest of PowerlSA v3.1 must be included.

Linux Optional Features listed below
Always Optional Features listed below

Deprecated Features listed below

3. Scalar Fixed-Point + Floating-Point Compliancy Subset (SFFS)

The following features are optional for this compliancy subset. The rest of PowerlSA v3.1 must be included.

Scalar Float Optional Features listed below,
Linux Optional Features listed below
Always Optional Features listed below

Deprecated Features listed below

4. Scalar Fixed-Point Compliancy Subset (SFS)

The following features are optional for this compliancy subset. The rest of PowerlSA v3.1 must be included.

Scalar Fixed Optional Features listed below
Scalar Float Optional Features listed below
Linux Optional Features listed below
Always Optional Features listed below

Deprecated Features listed below
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OpenPOWER Optional and Deprecated Features

Always Optional Features

The following features are optional for all compliancy subsets.

Feature Reference

Copy/Paste for accelerator invocation | See Section 4.4 of Book .
and memory copy (CPA)

Secure Memory Facility (SMF)1 See Chapter 3 of Book lll.

Hardware and software data stream |See Section 4.2 and Section 4.3.2 of Book II.
prefetching (STM)
(DSCR state not optional)

M=0 (M) See Section 1.6.3 of Book II.

(non-coherent memory)

W=1 (W) See Section 1.6.1 of Book II.

(write through-required memory)

Power management (PM)2 See Section 4.2.2, Section 4.3.2, and the description of the PECE field(s) of the
LPCR in Section 2.2 of Book III.

MMA3 See Section 7.2.1.3 and Section 7.6.1.12 of Book I.

Notes:

1. LPAR s a pre-requisite for SMF.

2. If Power management is implemented by an ACS- or LCS-compliant design, it must be implemented as the architecture
describes. If Power management is implemented by an SFFS- or SFS-compliant design, it need not be implemented as
the architecture describes, and may include different interfaces created from the architecture sandbox.

3. SIMD is a requirement for MMA.
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Linux Optional Features

The following features are optional for the Linux Compliancy Subset, the Scalar Fixed-Point + Floating-Point
Compliancy Subset, and the Scalar Fixed-Point Compliancy Subset.

Feature Reference

AIL/HAIL programmability (AIL) See the description of the AIL and HAIL fields of the LPCR in Section 2.2 of Book
(AIL=3 and HAIL=1 required) 1.

Atomic Memory Operations (AMO) See Section 4.5 of Book I

Big Endian (BE) See Section 1.10 of Book | and its first two subsections. Also see the description
(LE is required for LCS. Linux supporting | of the ILE field of the LPCR in Section 2.2 of Book Ill and the description of the
LCS is 64b LE Linux.) LE bit of the MSR in Section 4.2.1 of Book III.

Branch History Rolling Buffer (BHRB) See Chapter 7 of Book II.

Decimal floating-point (DFP)l See Chapter 5 of Book I.

Event-Based Branching (EBB) See Chapter 6 of Book II.

EVIRT programmability (EVIRT)2 See the description of the EVIRT field of the LPCR in Section 2.2 of Book .
(EVIRT=1 required)

SLB / HPT translation (HPT) See Section 6.7.7 through Section 6.7.9 of Book Ill. Also see the description of
(includes VPM, ISL, KBV) the VPM, ISL, and KBV fields of the LPCR in Section 2.2 of Book .

Load/Store Multiple instructions (LM) See Section 3.3.6 of Book I.

Load/Store String instructions (LS) See Section 3.3.7 of Book I.

Processor Compatibility Register (PCR)2 See Section 2.5 of Book Il

Quad-precision floating-point (QFP)3 See Chapter 7 of Book I.

Broadcast TLB shootdown (TLBIE) See Section 6.9.3.3 of Book IlI.

(tibiel not optional)

Control Register (CTRL) See Section 5.3.4 of Book III.

SMT (SMT)4 See Chapter 3 of Book Il. Also see Section 5.3.5 through Section 5.3.7, Section
(includes PURR/SPURR, PSPB, RPR,|8.6, Section 8.7, and Chapter 11 of Book III.

PPR, processor control) (PPR and hyper-

visor/ultravior messaging not optional)

Notes:

1. FPis a pre-requisite for DFP.

2. LPAR s a pre-requisite for EVIRT and PCR.

3. SIMD is a pre-requisite for QFP.

4. If SMT is implemented by an LCS-compliant design, it must be implemented as the architecture describes. If SMT is

not implemented by an LCS-compliant design, the design must not except on PPR accesses and must implement
msgsnd[u], msgclr[u], and msgsync. If SMT is implemented by an SFFS- or SFS-compliant design, it need not be
implemented as the architecture describes, and may include different interfaces created from the architecture sandbox.
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Scalar Float Optional Features

The following features are optional for the Scalar Fixed-Point + Floating-Point Compliancy Subset and the Scalar

Fixed-Point Compliancy Subset.

Feature

Reference

SIMD (SIMD)*
(VMX and VSX)

See Chapter 6 and Chapter 7 of Book I.

SF=1 (64-hit)2

See Section 1.5 and Section 1.10.3 of Book | and the description of the SF field
of the MSR in Section 4.2.1 of Book IIl.

Little Endian (LE)

(BE is required for SFFS and SFS. Linux
supporting SFFS and SFS is 32b BE
Linux.)

See Section 1.10 of Book | and its first two subsections. Also see the description
of the ILE field of the LPCR in Section 2.2 of Book Il and the description of the
LE bit of the MSR in Section 4.2.1 of Book IlI.

Logical partitioning (LPAR)3*

See Chapter 2 of Book lIl.

Fixed-point instructions that modify OV to
indicate whether overflow occurred (OV)
(addex and instructions with OE=1 such as
addo, subfo, etc.)

See Section 3.3.9 of Book I.

Nested radix translation (ROR)5
(single-level radix translation not optional)

See Section 6.7.7 and Section 6.7.10 of Book III.

Notes:

FP is a pre-requisite for SIMD.

When 64-bit is not included, a single radix tree will be used to map both application and OS address spaces (no quad-

rant structure).
64-bit is a pre-requisite for LPAR.

When LPAR is not included, MSRy,=1 always.

LPAR is a pre-requisite for ROR.

Scalar Fixed Optional Features

The following features are optional for the Scalar Fixed-Point Compliancy Subset

Feature

Reference

Scalar binary floating-point (FP)

See Chapter 4 of Book I.

Deprecated Features

There are no deprecated features in Power ISA v3.1.
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OpenPOWER Architecture Sandbox

OpenPOWER compliancy subsets permit Custom
Extensions. Any architectural resources used for Cus-
tom Extensions must use only the resources described
below and any instructions and SPRs that the architec-
ture describes as implementation-dependent.

Development of Custom Extensions using the architec-
ture sandbox is appropriate for facilities that benefit a
small portion of the processor design space. For facili-
ties with broad applicability, developers are strongly
encouraged to submit a proposal for adoption into the
architecture. Adopted proposals will become optional
or required features of the architecture, and will be
assigned resources that are not in the architecture
sandbox to avoid fragmentation of the architecture.
Facilities described in proposals that are not adopted
into the architecture may be implemented as Custom
Extensions using the architecture sandbox.

System software and toolchain support of Custom
Extensions is not guaranteed. Developers are encour-
aged to provide a means to disable custom extensions
to present an architecture that is supported by standard
system software and toolchain.

The architecture sandbox consists of the following.

B The designated opcode sandbox is instructions
having a primary opcode of 22. Note that primary
opcode 22 is reserved by AlX. As a result, Custom
Extensions that use primary opcode 22 are not
compatible with ACS.

B The designated SPR sandbox consists of non-priv-
ileged SPRs 704-719 and privileged SPRs
720-735.

B The designated [HJFSCR sandbox consists of
[H]JFSCR bits 8-9 and their corresponding IC val-
ues.

B The designated XER bit sandbox consists of XER
bits 54:55.

B The designated FPSCR bit sandbox consists of
FPSCR bits 14-15.

B The designated VSCR bit sandbox consists of
VSCR bits 96 & 112. VSCR bit 96 is provided for
Vector Facility control & VSCR bit 112 is provided
for Vector Facility status.

B The designated interrupt vector sandbox consists
of interrupt vector 0x0000_0000_0000_OFEQ.
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Chapter 1. Introduction

1.1 Overview

This chapter describes computation modes,document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described either in Appendix C of Book | or
in the instruction description, if extended mnemonics
are provided for the instruction. Assemblers will support
extended mnemonics having a reduced number of
operands using the specified default values for any
operands omitted from the base form.

1.3 Document Conventions

1.3.1 Definitions

The following definitions are used throughout this docu-
ment.

® program
A sequence of related instructions.

B application program
A program that uses only the instructions and
resources described in Books | and II.

H processor
The hardware component that implements the
instruction set, storage model, and other facilities
defined in the Power ISA architecture, and exe-
cutes the instructions specified in a program.

octword, quadword, doubleword, word, half-
word, byte, and nibble

256 bits, 128 bits, 64 bits, 32 bits, 16 bits, 8 bits,
and 4 bits, respectively.

positive
Means greater than zero.

negative
Means less than zero.

floating-point single format (or simply single
format)

Refers to the representation of a single-precision
binary floating-point value in a register or storage.

floating-point double format (or simply double
format)

Refers to the representation of a double-precision
binary floating-point value in a register or storage.

system library program

A component of the system software that can be
called by an application program using a Branch
instruction.

system service program

A component of the system software that can be
called by an application program using a System
Call or System Call Vectored instruction.

system trap handler

A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

system error handler

A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

latency

Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.
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unavailable

Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book III.

undefined value

May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

boundedly undefined

The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.8.1 of Book
Il. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

“must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 07), the
results are boundedly undefined unless otherwise
stated.

sequential execution model

The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 33.

means the contents of register RA, and (FRA)
means the contents of register FRA, where RA and
FRA are instruction fields. Names such as LR and
CTR denote registers, not fields, so parentheses
are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value O if the RA
field is 0.

Bytes in registers, instructions, fields, and bit
strings are numbered from left to right, starting with
byte O (most significant).

Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of X, etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit O

- For all registers except the Vector registers,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector registers, bits in regis-
ters that are less than 128 bits start with bit
number 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- X, means bit p of register/instruction/field/
bit_string X.

- Xp,q means bits p through q of register/instruc-
tion/field/bit_string X.

- Xy q.. means bits p, g, ... of register/instruc-

tion/field/bit_string X.

1.3.2 Notation

The following notation is used throughout the Power
ISA documents.

B - (RA) means the one’s complement of the con-
tents of register RA.

_ - B A period (.) as the last character of an instruction
B All numbers are decimal unless specified in some

special way.

- Obnnnn means a number expressed in binary
format.

- 0xnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.
RT, RA, R1, ... refer to General Purpose Registers.

FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

B VRT, VRA, VR1, ... refer to Vector Registers.

(xX) means the contents of register x, where x is the
name of an instruction field. For example, (RA)

mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

x" means x raised to the n'" power.

"x means the replication of x, n times (i.e., x con-
catenated to itself n- 1 times). "0 and "1 are spe-
cial cases:

- "0 means a field of n bits with each bit equal to
0. Thus 50 is equivalent to 0b00000.

- M means a field of n bits with each bit equal to
1. Thus 1 is equivalent to Ob11111.

Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special

Power ISA™ |
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Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

1, 11, 1ll, ... denotes a reserved field, in a register,
instruction, field, or bit string.

?, ??, 7?2, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields, Reserved
Values, and Reserved SPRs

Reserved fields in instructions are ignored by the pro-
cessor.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 24. The only exception to the preceding rule is
that it does not apply to Reserved and lllegal classes of
instructions (see Section 1.6.3) or to portions of defined
fields that are specified, in the instruction description,
as being treated as reserved fields.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) depends on whether the processor is in
problem state. Unless otherwise stated, software is per-
mitted to write any value to such a bit. In problem state,
a subsequent reading of the bit returns 0 regardless of
the value written; in privileged states, a subsequent
reading of the bit returns 0 if the value last written to the
bit was 0 and returns an undefined value (0 or 1) other-
wise.

In some cases, a defined field of a System Register
has certain values that are reserved. Software must not
set a defined field of a System Register to a reserved
value. References elsewhere in this document to a
defined field (in an instruction or System Register) that
has reserved values assume the field does not contain
a reserved value, unless otherwise stated or obvious
from context.

In some cases, a given bit of a System Register is
specified to be set to a constant value by a given
instruction or event. Unless otherwise stated or obvious
from context, software should not depend on this con-
stant value because the bit may be assigned a mean-
ing in a future version of the architecture.

The reserved SPRs include SPRs 808, 809, 810, and
811. mtspr and mfspr instructions specifying these
SPRs are treated as no-ops. Reserved SPRs are pro-
vided in the architecture to anticipate the eventual
adoption of performance hint functionality that must be
controlled by SPRs. Control of these capabilities using
reserved SPRs will allow software to use these new
capabilities on new implementations that support them
while remaining compatible with existing implementa-
tions that may not support the new functionality.
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Reserved SPRs are not assigned names. There are no
individual descriptions of reserved SPRs in this docu-
ment.

—— Assembler Note

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

—— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

W |[nitialize each such register supplying zeros for
all reserved bits.

B Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

1.3.4 Description of Instruction
Operation

Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 7 of Book ).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-
isters, such as the Condition Register, is not shown.

(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning

« Assignment

“iea Assignment of an instruction effective
address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

- NOT logical operator

+ Two’s complement addition

- Two's complement subtraction, unary
minus

X Multiplication

X Signed-integer multiplication

Xi Unsigned-integer multiplication

/ Division

+ Division, with result truncated to integer

% Remainder of integer division

S Square root

= # Equals, Not Equals relations

<, <, >, Signed comparison relations

<u U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

@, = Exclusive OR, Equivalence logical opera-
tors ((a=b) = (a®-b))

ABS(x) Absolute value of x

BCD_TO_DPD(x)
The low-order 24 bits of x contain six, 4-bit
BCD fields which are converted to two
declets; each set of two declets is placed
into the low-order 20 bits of the result. See
Section B.1, “BCD-to-DPD Translation”.

CEIL(x) Least integer > x

DOUBLE(x) Result of converting x from floating-point
single format to floating-point double for-
mat, using the model shown on page 149

DPD_TO_BCD(x)

The low-order 20 bits of x contain two

declets which are converted to six, 4-bit

BCD fields; each set of six, 4-bit BCD

fields is placed into the low-order 24 bits of

the result. See Section B.2, “DPD-to-BCD

Translation”.

Result of extending x on the left with sign

bits

FLOOR(x) Greatest integer < x

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and 0s elsewhere

EXTS(X)
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MEM(x, y) Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.

MEMmetadata(%:y)

Metadata associated with MEM(X,y).

ROTLg4(X, Y)

Result of rotating the 64-bit value x left y
positions

ROTLgy(x, Y)

SINGLE(x)

SPR(X)
TRAP

Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 154
Special Purpose Register x

Invoke the system trap handler

characterization

undefined
CIA

NIA

Reference to the setting of status bits, in a
standard way that is explained in the text
An undefined value.

Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register. The CIA is sometimes referred to
as the Program Counter (PC).

Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other instruc-
tions that cause non-sequential instruction
fetching (see Book lll), the RTL is similar.
For instructions that do not branch, and do
not otherwise cause instruction fetching to
be non-sequential, the next instruction
address is CIA+4. Does not correspond to
any architected register.

if... then... else...

do

leave

Conditional execution, indenting shows
range; else is optional.

Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

Leave innermost do loop, or do loop
described in leave statement.

For loop, indenting shows range. Clause
after “for” specifies the entities for which to
execute the body of the loop.

switch/case/default

switch/case/default statement, indenting
shows range. The clause after “switch”
specifies the expression to evaluate. The
clause after “case” specifies individual val-
ues for the expression, followed by a
colon, followed by the actions that are
taken if the evaluated expression has any
of the specified values. “default” is
optional. If present, it must follow all the
“case” clauses. The clause after “default”
starts with a colon, and specifies the
actions that are taken if the evaluated
expression does not have any of the val-
ues specified in the preceding case state-
ments.

Chapter 1. Introduction 7
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The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to right,
from right to left, or not at all, as shown. (For example,
- associates from left to right, so a- b-c = (a- b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as

operands.

Table 1: Operator precedence

1.3.5 Phased-Out Facilities

Phased-Out Facilities

These are facilities and instructions that, in some
future version of the architecture, will be dropped
out of the architecture. System developers should
develop a migration plan to eliminate use of them
in new systems. These facilities are marked with a
[Phased-Out] marker.

Phased-Out facilities and instructions must be
implemented.

Programming Note

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

1 lea

Operators Associativity
subscript, function evaluation left to right
pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, = right to left
X, + left to right
+, -, left to right
Il left to right
=# < 5,5, 2<8 SU9 left to right
&, @, = left to right
| left to right
: (range) none
L none
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1.4 Processor Overview

The basic classes of instructions are as follows:

B branch instructions (Chapter 2)

B GPR-based scalar fixed-point instructions (Chap-
ter 3)

B FPR-based scalar floating-point
(Chapter 4)

B FPR-based scalar decimal floating-point instruc-
tions (Chapter 5)

B VR-based vector fixed-point and floating-point
instructions (Chapter 6)

B VSR-based scalar and vector floating-point
instructions (Chapter 7)

instructions

Scalar fixed-point instructions operate on byte, half-
word, word, doubleword, and quadword operands,
where each operand is contained in a GPR (or a pair of
GPRs for quadword operands). Vector fixed-point
instructions operate on vectors of nibble, byte, half-
word, word, doubleword, and quadword operands,
where each vector is contained in a VR. Scalar binary
floating-point instructions operate on single-precision,
double-precision, and quad-precision floating-point
operands, where each operand is contained in an FPR
or VSR. Scalar decimal floating-point instructions oper-
ate on short, long, and extended decimal floating-point
operands, where each operand is contained in an FPR
(or a pair of FPRs for quadword operands).

Vector floating-point instructions operate on vectors of
single-precision and double-precision floating-point
operands, where each vector is contained in a VR or
VSR.

The Power ISA uses instructions that are four or eight
bytes long and are word-aligned. It provides for byte,
halfword, word, doubleword,and quadword operand
loads and stores between storage and a set of 32 Gen-
eral Purpose Registers (GPRs). It provides for byte,
halfword, word, doubleword, quadword, and octword
operand loads and stores between storage and a set of
64 Vector-Scalar Registers (VSRS).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 1 is a logical representation of instruction pro-
cessing. Figure 2 shows the registers that are defined
in Book I. (A few additional registers that are available
to application programs are defined in other Books, and
are not shown in the figure.)

branch
»| instruction
processing
instructions ¢
4 a 4 4 h
GPR-based FPR-based || VR-based | VSR-based
instruction instruction instruction instruction
processing processing || processing | processing
scalar scalar vector scalar
fixed-point binary FP fixed-point binary FP
decimal FP binary FP vector
permute binary FP
scalar permute
integer (16B)
BCD
crypto
4 N 4 Y,
4
data
A
4
instructions
storage

Figure 1. Logical processing model
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CR |
32 63
“Condition Register” on page 34
| LR |
0 63
“Link Register” on page 35
| CTR |
0 63
“Count Register” on page 35
GPR O
GPR 1
GPR 30
GPR 31
0 63

“General Purpose Registers” on page 49

XER |

0 63
“Fixed-Point Exception Register” on page 49

VRSAVE |

32 63
“VR Save Register” on page 259

FPRO

FPR 1

FPR 30

FPR 31

0 63
“Floating-Point Registers” on page 132

| FPSCR
32 63
“Floating-Point Status and Control Register” on
page 132
VR 0
VR 1
VR 30
VR 31
0 127

“Vector-Scalar Registers” on page 258

VSCR
96 127
“Vector Status and Control Register” on page 258

VSR 0
VSR 1

VSR 62
VSR 63
0 127

“Vector-Scalar Registers” on page 498

Figure 2. Registers that are defined in Book |

1.5 Computation modes

Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how Condition Register bits and XER bits are
set, how the Link Register is set by Branch instructions

in which LK=1, and how the Count Register is tested by
Branch Conditional instructions. Nearly all instructions
are available in both modes (the only exceptions are a
few instructions that are defined in Book IlIl). In both
modes, effective address computations use all 64 bits
of the relevant registers (General Purpose Registers,

10 Power ISA™ |
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Link Register, Count Register, etc.) and produce a
64-bit result. However, in 32-bit mode the high-order 32
bits of the computed effective address are ignored for
the purpose of addressing storage; see Section 1.10.3
for additional details.

—— Programming Note

Although instructions that set a 64-bit register affect
all 64 bits in both 32-bit and 64-bit modes, operat-
ing systems often do not preserve the upper 32-bits
of all registers across context switches done in
32-bit mode. For this reason, application programs
operating in 32-bit mode should not assume that
the upper 32 bits of the GPRs are preserved from
instruction to instruction unless the operating sys-
tem is known to preserve these bits.

1.6 Instruction Formats

Instructions are encoded in either four or eight bytes
and are word-aligned. When referring specifically to
only one of these two types of instructions, the term
“word instruction” is used to refer to instructions that
are encoded in four bytes, and the term “prefixed
instruction” is used to refer to instructions that are
encoded in eight bytes using a prefix.

Bits 0:5 always specify the primary opcode (PO,
below). Many instructions also have an extended
opcode (XO, below). Some instructions also have a
third, expanded opcode (EO, below). The remaining
bits of the instruction contain one or more fields as
shown below for the different instruction formats.

Since all instructions are word-aligned, whenever
instruction addresses are presented to the processor
(as in Branch instructions) the low-order two bits are
ignored. Similarly, whenever the processor develops an
instruction address the low-order two bits are zero.

Prefixed instructions consist of a four-byte prefix fol-
lowed by a four-byte suffix. As such, the address of a
prefixed instruction is the address of its prefix. For
some prefixed instructions, the four-byte suffix is a
defined word instruction, and the prefix modifies or
extends the word instruction’s behavior. For other pre-
fixed instructions, while the suffix may or may not corre-
spond to (i.e., have the same 32-bit binary value as) a
defined word instruction, the prefix causes the suffix to
be decoded using a different opcode space from that
used by defined word instructions.

Prefixed instructions do not cross 64-byte instruction
address boundaries. When a prefixed instruction
crosses a 64-byte boundary, the system alignment
error handler is invoked.

Programming Note

The instruction address boundary error can only
occur with prefixed instructions. Word instructions
are word-aligned (four-byte), and thus cannot cross
64-byte boundaries.

The format diagrams given below show horizontally all
valid combinations of instruction fields. See
Section 1.6.3, “Instruction Prefix Formats” for defini-
tions of instruction fields defined in the prefix.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of hits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

Chapter 1. Introduction 11
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1.6.1 Word Instruction Formats

1.6.1.6 DX-FORM

0

6

1

16

26

31

1.6.1.1 A-FORM | po | RT | a1 | do | xo g
0 6 1 16 21 26 31 Figure 8. DX nstruction format
PO FRT " FRB " XO |Re
PO FRT | FRA | /Il | FRC | X0 [k 1.6.1.7 I-FORM
PO FRT FRA FRB i XO R 0 6 3031
PO FRT | FRA | FRB | FRC | X0 [k | po | LI i
PO RT RA RB BC xo |/ Figure 9. linstruction format
Figure 3. A instruction format
1.6.1.8 M-FORM
1.6.1.2 B'FORM 0 6 11 16 21 26 31
o 6 n 16 2031 PO RS RA RB MB ME |Re
| po | BO | B | BD e PO RS RA SH MB ME [
Figure 4. B instruction format Figure 10. M instruction format
1.6.1.3 D-FORM 1.6.1.9 MD-FORM
0 6 11 16 31 0 6 11 16 21 27 3031
PO BF |/ RA S| PO RS RA sh mb XO |[sh|Re
PO BF |/ RA ul PO RS RA sh me XO [sh{Re
PO FRS RA D Figure 11. MD instruction format
PO FRT RA
PO RS RA D 1.6.1.10 MDS-FORM
PO RS RA ul 0 6 11 16 21 25 27 31
PO RT RA D PO RS RA RB mb XO [Re
PO RT RA Sl PO RS RA RB me XO [Re
PO TO RA SI Figure 12. MDS instruction format
Figure 5. D instruction format
1.6.1.11 SC-FORM
1614 DQ'FORM 0 6 11 16 20 27 3031
0 6 1 16 2829 31 PO I I i LEV /Il |0]1
PO RTp RA DQ PT PO " " " LEV [/
PO S RA bR S X0 Figure 13. SC instruction format
PO T RA DQ X XO
Figure 6. DQ instruction format 16.1.12 VA-FORM
0 6 11 16 2122 26 31
1.6.1.5 DS-FORM PO RT RA RB RC X0
0 6 1 16 3031 PO VRT VRA VRB |[/| SHB XO
PO FRSp RA DS XO PO VRT VRA VRB VRC XO
PO FRTp | RA bs X0 Figure 14. VA instruction format
PO RS RA DS X0
PO RSp RA DS XO 1.6.1.13 VC-FORM
PO RT RA bs X0 0 6 1 16 2122 31
PO VRS | RA DS X0 | Po | VRT | VRA | VRB [ X0
PO VRT RA bs X0 Figure 15. VC instruction format

Figure 7. DS instruction format
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1.6.1.14 VX-FORM

0

6

11121314 16

212223

31

6 7 8 910111213141516171819202122232425262728293031

PO I i VRB X0
Po [BF[/] VRA | VRB X0
PO RT EO | VRB X0
PO VRT 1 I X0
PO VRT I VRB X0
PO VRT | |w| vrB X0
PO VRT |//|um| VRB X0
PO VRT |/[ um | vRB X0
PO VRT | EO | VRB [1]/ X0
PO VRT | EO | VRB [1]}s X0
PO VRT | EO | VRB X0
PO VRT | RA | VRB X0
PO VRT | siM I X0
PO VRT | um | VRB X0
PO VRT | VRA I X0
PO VRT | VRA | VRB 1]/ X0
PO VRT | VRA | VRB [1]s X0
PO VRT | VRA | VRB X0
Figure 16. VX instruction format
1.6.1.15 X-FORM
0 6 7 8 910111213141516171819202122232425262728293031
PO I i I X0 /
PO I i I X0 1
PO I i RB X0 /
PO I RA I X0 /
PO I RA I X0 1
PO I RA RB X0 /
PO mo L m I X0 /
PO mo L m RB X0 /
PO m 1 Rra RB X0 /
PO m oL ra RB X0 Re
PO |m| L | mlsc] m X0 /
po || L | RrRA RB X0 /
PO m e m[eL|m X0 /
PO ||| m I X0 /
PO [/| cT | RA RB X0 /
Po |as|i| EO I X0 /
PO | AT |/| EO I X0 /
PO | BF || I X0 /
Po | BF|u| FRB X0 /
PO |BF || m Ju u | X0 Re
PO | BF [/ [BFA[ ]| X0 /

Po | BF|/#| FRA | FRB X0 /
PO |BF|/| FRA | FRBp X0 /
PO | BF | /| FRAp | FRBp X0 /
PO |BF|/| RA RB X0 /
PO |BF|/| um | FRrB X0 /
PO |BF|/| uMm | FRep X0 /
PO |BF|/| VRA | VRB X0 /
po | BF /1] RA RB X0 /
po | BF /L] RA RB X0 /
PO |BF| DCMX | VRB X0 /
PO BT I I X0 Re
PO FRS | RA RB X0 /
PO FRSp | RA RB X0 /
PO FRT I FRB X0 Re
PO FRT | FRBep X0 Re
PO FRT | EO i X0 Re
PO FRT | EO I X0 /
PO FRT Eo | m [wi X0 /
PO FRT | EO || o X0 /
PO FRT | EO | FRB X0 /
PO FRT | FRA | FRB X0 /
PO FRT | FRA | FRB X0 Re
PO FRT | RA RB X0 /
PO FRT |s| m | FRB X0 Re
PO FRT [SP| | FRB X0 Re
PO FRTp | 1 FRB X0 Re
PO FRTp | /' | FRBp X0 Re
PO FRTp | FRA | FRBp X0 Re
PO FRTp | FRAp | FRBp X0 Re
PO FRTp | RA RB X0 /
PO FRTp s| i | FRBp o) Re
PO FRTp [sP| // | FRep X0 Re
PO RS I RB X0 /
PO RS oL om X0 /
PO RS |/[rclrr| R X0 /
PO RS |[BFA|N| X0 /
PO RS RA i X0 /
PO RS RA I X0 1
PO RS RA i X0 Re
PO RS RA FC X0 /
PO RS RA NB X0 /
PO RS RA SH X0 Re
PO RS RA RB X0 /
PO RS RA RB X0 1

Figure 17. X instruction format

Figure 17. Xinstruction format

Chapter 1. Introduction
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6 7 8 910111213141516171819202122232425262728293031

PO RS RA RB XO Re
PO RSp RA RB X0 1
PO RT I 7 X0 /
PO RT 1 RB XO /
PO RT I RB X0 1
PO RT 7 7 X0 /
PO RT RA FC XO /
PO RT RA NB X0 /
PO RT RA RB X0 /
PO RT RA RB XO EH
PO RTp RA RB X0 EH
PO S RA 7 X0 SX
PO S RA RB XO SX
PO T EO MM8 X0 1X
PO T RA 7 X0 1X
PO T RA RB XO 1X
PO TH RA RB X0 /
PO TO RA Sl X0 1
PO TO RA RB XO /
PO TO RA RB X0 1
PO VRS RA RB X0 /
PO VRT EO VRB XO /
PO VRT EO VRB X0 RO
PO VRT RA RB X0 /
PO VRT VRA VRB XO /
PO VRT VRA VRB X0 RO

Figure 17. X instruction format

14
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1.6.1.16 XFL-FORM

1.6.1.21 XX2-FORM

0 6 7 1516 21 31 0 6 910111213141516 21 2526 293031
| Ppo || FM W Fre | X0 e PO [BF[u]| m B X0 B/
Figure 18. XFL instruction format PO | BF | DCMX B X0 B/
PO RT EO B X0 BX| /
1.6.1.17 XFX-FORM PO T i B X0 BY[TX
0 6 112 1516 2021 31 PO T i |U|M B X0 BX{T
PO I mo | ow X0 / PO T [/] um B X0 B{Tx
PO RS [o| Fxm |/ X0 / PO T dx B x0 || x0
PO RS |1 FXM / XO / PO T EO B X0 BA(TY
PO RS spr X0 / Figure 23. XX2 instruction format
PO RT |0 " / XO /
PO RT |1 FXM / XO / 1.6.1.22 XX3-FORM
PO RT BHRBE XO / 0 6 9 1 16 2122 24 293031
PO RT spr XO / PO AT |11 A B X0 AX(BX| /
PO RT tbr X0 / PO AT || Ap B XO X(BX| /
Figure 19. XFX instruction format PO |BFI| A B X0 e/
PO T A B [o/om| XO |axiaxm
1.6.1.18 XL-FORM PO T A B [o|stW| XO o |axBm
0 6 9 11 14 16 192021 31 PO T A B R X0 AKIBX|TX
PO " " " X0 / PO T A B XO AX[BX|TX
PO m m i ‘S X0 / Figure 24. XX3 instruction format
PO | BF [/ [BFA[ ]| m X0 /
PO BO SR X0 I 1.6.1.23 XX4-FORM
PO BT BA BB XO / 0 6 11 16 21 262728293031
Figure 20. XL instruction format | o | 1 | A | B [ c [0fupp
Figure 25. XX4 instruction format
1.6.1.19 XO-FORM
0 6 9 10111213141516171819202122232425262728293031 1.6.1.24 Z22-FORM
PO RT RA I |og XO Re 0 6 9 1 1516 22 31
PO RT RA RB |/ X0 / PO BF | //| FRA | DCM XO /
PO RT RA RB |/ X0 Re PO BF | /| FRA | DGM XO /
PO RT RA RB  [0f X0 Re PO BF | // | FRAp | DCM X0 /
Figure 21. XO instruction format PO |BF|//| FRAp | DGM X0 /
PO FRT | FRA SH XO Re
1.6.1.20 XS-FORM PO FRTp | FRAp | SH X0 Re
0 6 u 16 21 3031 Figure 26. Z22 instruction format
| po | rs [ RA | sn | X0 B

Figure 22. XS instruction format

Chapter 1. Introduction
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1.6.1.25 Z23-FORM

0 6 11 1516 21 23 31
PO FRT | m [R] FrRB [nic X0 Re
PO FRT | FRA | FRB |RiC X0 Re
PO FRT | TE | FRB [RiC X0 Re
PO FRTp | /Il |R FRBp |RIC X0 Re
PO FRTp | FRA | FRBp |RIC X0 Re
PO FRTp | FRAp | FRBp |RiC X0 Re
PO FRTp | TE | FRBp [RIC X0 Re
PO VRT | 1 [R] VvRB [Ric X0 /
PO VRT | /1 [R| VRB [wc X0 X

Figure 27. Z23 instruction format

1.6.2 Word Instruction Fields

AA (30)
Absolute Address.

0 The immediate field represents an address
relative to the current instruction address. For
I-form branches the effective address of the
branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruction.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form branches
the effective address of the branch target is
the BD field sign-extended to 64 bits.

Formats: B, |

AX,A (29,11:15)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX3, XX4

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

Formats: XL

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.

Formats: A

BD (16:29)
Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with Ob00 and
sign-extended to 64 bits.

Formats: B

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

Formats: D, X, XL, XX2, XX3, Z22

BFA (11:13)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

Formats: X, XL

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, “Branch Instructions”.

Formats: XL

BHRBE (11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History
Rolling Buffer instruction.

Formats: X

Bl (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

Formats: B, XL

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, “Branch Instructions”.

Formats: B, XL, X, XL

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

Formats: XL

BX,B (30,16:20)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX2, XX3, XX4

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book II).

Formats: X
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CX,C (28,21:25)
Fields that are concatenated to specify a VSR to
be used as a source.

Formats: XX4

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

Formats: D

d0,d1,d2 (16:25,11:15,31)
Immediate fields that are concatenated to specify a
16-bit signed two’'s complement integer which is
sign-extended to 64 bits.

Formats: DX

dc,dm,dx (25,29,11:15)
Immediate fields that are concatenated to specify
Data Class Mask.

Formats: XX2

DCM (16:21)
Immediate field used to specify Data Class Mask.

Formats: Z22

DCMX (9:15)
Immediate field used to specify Data Class Mask.

Formats: X, XX2

DGM (16:21)
Immediate field used as the Data Group Mask.

Formats: Z22

DM (22:23)
Immediate field used by xxpermdi instruction as
doubleword permute control.

Formats: XX3

DRM (18:20)
Immediate operand field used to specify new deci-
mal floating-point rounding mode.

Formats: X

DQ (16:27)
Immediate field used to specify a 12-bit signed
two’s complement integer which is concatenated
on the right with Ob0000 and sign-extended to 64
bits.

Formats: DQ

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with 0b00 and sign-extended to 64 bits.

Formats: DS

EH (31)
Field used to specify a hint in the Load And
Reserve instructions. The meaning is described in
Section 4.6.2, “Load And Reserve and Store Con-
ditional Instructions”, in Book II.

Formats: X

EO (11:12)
Expanded opcode field
Formats: X

EO (11:15)
Expanded opcode field

Formats: VX, X, XX2

EX (31)
Field used to specify Inexact form of round to
gquad-precision integer.

Formats: X

FC (16:20)
Field used to specify the function code in Load/
Store Atomic instructions.

Formats: X

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

Formats: XFL

FRA (11:15)
Field used to specify a FPR to be used as a
source.

Formats: A, X, Z22, 723

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z22, Z23

FRB (16:20)
Field used to specify an FPR to be used as a
source.

Formats: A, X, XFL, Z23

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: X, Z23

FRC (21:25)
Field used to specify an FPR to be used as a
source.

Formats: A
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FRS (6:10)
Field used to specify an FPR to be used as a
source.

Formats: D, X

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

Formats: DS, X

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

Formats: A, D, X, Z22, Z23

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

Formats: DS, X, 7222, Z23

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

Formats: XFX

IB (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

IH (8:10)
Field used to specify a hint in the SLB Invalidate
All instruction. The meaning is described in
Section 6.9.3.2, “SLB Management Instructions”,
in Book III.

Formats: X

IMM8 (13:20)
Immediate field used to specify an 8-bit integer.

Formats: X

IS (6:10)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: MDS

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.

Formats: XFL

L (8:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book 1) and also by the
Synchronize instruction (see Section 4.6.3 of Book

1).

Formats: X

L (10)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Compare Range Byte instruction
to indicate whether to compare against 1 or 2
ranges of bytes.

Field used by the Paste instruction to indicate
whether to zero the metadata.

Formats: D, X

L (15)
Field used by the Move To Machine State Register
instruction (see Book Ill).

Field used by the SLB Invalidate All Global instruc-
tion to specify whether the invalidation is for a pro-
cess or for a partition (see Section 6.9.3.2 of Book

).

Field used by the SLB Move From Entry VSID and
SLB Move From Entry ESID instructions for imple-
mentation-specific purposes.

Formats: X

L (14:15)
Field used by the Deliver A Random Number
instruction (see Section 3.3.9, “Fixed-Point Arith-
metic Instructions”) to choose the random number
format.

Formats: X

LEV (20:26)
Field used by the System Call instructions.

Formats: SC

LI (6:29)
Immediate field used to specify a 24-bit signed
two’s complement integer which is concatenated
on the right with ObOO and sign-extended to 64
bits.

Formats: |

LK (31)
LINK bit.

0 Do not set the Link Register.

1 Set the Link Register. The address of the
instruction following the Branch instruction is
placed into the Link Register.

Formats: B, I, XL

MB (21:25)
Field used in M-form instructions to specify the first
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 107.

Formats: M
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mb (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 107.

Formats: MD, MDS

me (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, “Fixed-Point Rotate
and Shift Instructions” on page 107.

Formats: MD, MDS

ME (26:30)
Field used in M-form instructions to specify the last
1-bit of a 64-bit mask, as described in
Section 3.3.14, “Fixed-Point Rotate and Shift
Instructions” on page 107.

Formats: M

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

Formats: X

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

Formats: XO

PL (14:15)
Field used by the wait instruction to specify pause
length.

Formats: X

PO (0:5)
Primary opcode.

Formats: all

PRS (14)
Field used to specify whether to invalidate pro-
cess- or partition-scoped entries for tibie[l].

Formats: X

PS (22)
Field used to specify preferred sign for BCD opera-
tions.

Formats: VX

PT (28:31)
Immediate field used to specify a 4-bit unsigned
value.

Formats: DQ

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding

Field used to specify whether to invalidate Radix
Tree or HPT entries for tibie[l].

Formats: X, Z23

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

Formats: A, D, DQ, DQE, DS, M, MD, MDS, TX,
VA, VX, X, XO, XS

RB (16:20)
Field used to specify a GPR to be used as a
source.

Formats: A, M, MDS, VA, X, XO

Rc (21)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 6 as described in
Section 2.3.1, “Condition  Register” on
page 34.

Formats: VC, XX3

RC (21:25)
Field used to specify a GPR to be used as a
source.

Formats: VA

Rc (31)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field O or Field 1 as
described in Section 2.3.1, “Condition Regis-
ter” on page 34.

Formats: A, M, MD, MDS, X, XFL, XO, XS, 722,
723

RIC (12:13)
Field used to specify what types of entries to inval-
idate for tibie[l].

Formats: X

RM (19:20)
Immediate operand field used to specify new
binary floating-point rounding mode.

Formats: X

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

Formats: Z23
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RO (31)
Round to Odd override

Formats: X

RS (6:10)
Field used to specify a GPR to be used as a
source.

Formats: D, DS, M, MD, MDS, X, XFX, XS

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

Formats: DS, X

RT (6:10)
Field used to specify a GPR to be used as a target.

Formats: A, D, DQE, DS, DX, VA, VX, X, XFX,
XO, XX2

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

Formats: DQ, X

S (11)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

S (20)
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.

Formats: XL

SC (14:15)
Field used by the Synchronize instruction to spec-
ify the kind(s) of stores that are ordered.

Formats: X

SH (16:20)
Field used to specify a shift amount.

Formats: M, X

SH (16:21)
Field used to specify a shift amount.

Formats: Z22

sh (30,16:20)
Fields that are concatenated to specify a shift
amount.

Formats: MD, XS

SHB (22:25)
Field used to specify a shift amount in bytes.

Formats: VA

SHW (22:23)
Field used to specify a shift amount in words.

Formats: XX3
Sl (16:20)

Immediate field used to specify a 5-bit signed inte-
ger.

Formats: X
Sl (16:31)

Immediate field used to specify a 16-bit signed
integer.

Formats: D

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

Formats: VX

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

Formats: X

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

Formats: X

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III).

Formats: X

SX,S (28,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: DQ

SX,S (31,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.

Formats: X

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 5.1 of Book ).

Formats: X

TE (11:15)
Immediate field that specifies a DFP exponent.
Formats: Z23

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book

).

Formats: X
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TO (6:10)
Field used to specify the conditions on which to
trap. The  encoding is  described in
Section 3.3.10.1, “Character-Type =~ Compare
Instructions” on page 94.

Formats: TX, X

TX,T (28,6:10)
Fields that are concatenated to specify a VSR to
be used as either a target.

Formats: DQ
TX,T (31,6:10)

Fields that are concatenated to specify a VSR to
be used as either a target or a source.

Formats: X, XX2, XX3, XX4
U (16:19)

Immediate field used as the data to be placed into
a field in the FPSCR.

Formats: X
Ul (16:20)

Immediate field used to specify a 5-bit unsigned
integer.

Formats: TX

Ul (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

Formats: D

UIM (11:15)
Immediate field used to specify a 5-bit unsigned
integer.

Formats: VX, X

UIM (12:15)
Immediate field used to specify a 4-bit unsigned
integer.

Formats: VX, XX2

UIM (13:15)
Immediate field used to specify a 3-bit unsigned
integer.

Formats: VX
UIM (14:15)

Immediate field used to specify a 2-bit unsigned
integer.

Formats: VX, XX2

VRA (11:15)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRB (16:20)
Field used to specify a VR to be used as a source.

Formats: VA, VC, VX

VRC (21:25)
Field used to specify a VR to be used as a source.

Formats: VA

VRS (6:10)
Field used to specify a VR to be used as a source.

Formats: DS, X

VRT (6:10)
Field used to specify a VR to be used as a target.

Formats: DS, VA, VC, VX, X

W (15)
Field used by the mtfsfi and mtfsf instructions to
specify the target word in the FPSCR.

Formats: X, XFL

WC (9:10)
Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait instruction (see Section 4.6.4 of
Book II).

Formats: X

XBI (21:24)
Field used to specify a bit in the XER.

Formats: MDS, MDS, TX

XO (21,23:31)
Extended opcode field.

Formats: VX

XO (21:24,26:28)
Extended opcode field.

Formats: XX2

XO (21:24:28)
Extended opcode field.

Formats: XX3

XO (21:28)
Extended opcode field.

Formats: XX3

XO (21:29)
Extended opcode field.

Formats: XS, XX2

XO (21:30)
Extended opcode field.

Formats: X, XFL, XFX, XL
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XO (21:31)
Extended opcode field.

Formats: VX

XO (22:30)
Extended opcode field.

Formats: XO, XX3, Z22

XO (22:31)
Extended opcode field.

Formats: VC

XO (23:30)
Extended opcode field.

Formats: X, Z23

XO (25:30)
Extended opcode field.

Formats: TX

XO (26:27)
Extended opcode field.

Formats: XX4

XO (26:30)
Extended opcode field.

Formats: A, DX

XO (26:31)
Extended opcode field.

Formats: VA

XO (27:29)
Extended opcode field.

Formats: MD

XO (27:30)
Extended opcode field.

Formats: MDS

X0 (29:31)
Extended opcode field.

Formats: DQ

XO (30)
Extended opcode field.

Formats: SC

XO (30:31)
Extended opcode field.

Formats: DQE, DS, SC

1.6.3 Instruction Prefix Formats

Prefixed instructions consist of a 4-byte prefix followed
by a 4-byte suffix. The prefix formats are specified
below. The suffix formats share the same formats as
word instructions, as specified in Section 1.6.1 on
page 12.

Bits 0:5 of all prefixes are assigned the primary opcode
value 0b000001. 0b000001 is not available for use as a
primary opcode for either word instructions or suffixes
of prefixed instructions.

Prefix bits 6:7 are used to identify one of four prefix for-
mat types. When bit 6 is set to 0 (prefix types 00 and
01), the suffix is not a defined word instruction (i.e.,
requires the prefix to identify the alternate opcode
space the suffix is assigned to as well as additional or
extended operand and/or control fields); when bit 6 is
set to 1 (prefix types 10 and 11), the prefix is modifying
the behavior of a defined word instruction in the suffix.

1.6.3.1 Type 00 Prefix — Eight-Byte
Load/Store Instructions

1 o |ST{ /1 |R| 1/ Sub-Type Specific
0 6 |89 |uf2 |4 kil

The Type 00 prefix format provides a one-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0: Eight-Byte Load/Store Form (8LS)

1 o (o] /I |R] I IE
0 6 (8|9 (1112 |14 31

ST=1: Reserved

22 Power ISA™ |



Version 3.1

1.6.3.2 Type 01 Prefix — Eight-Byte Reg-
ister-to-Register Instructions

1 1| ST Sub-type Specific
0 6 |8 12 kil

ST=0b0001-0b1000: Reserved

ST=0b1001: Modified Masked Immediate Register
to Register Form (MMIRR)

The Type 01 prefix format provides a four-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0b0000: Eight-Byte Register-to-Register Form
(8RR)

1 3 9 I PMSK XMSK | YMSK
0 6 |8 12 [14115/16 24 28 31
1 3 9 I {I1{PMSK| /I |XMSK|YMSK
0 6 |8 12 |14]15/16 20 24 28 31
1 3 9 I 1]1{PMSK 1 XMSK | YMSK
0 6 |8 12 (14)115]16 |18 24 28 31

1 1 0 I 17

0 6 |8 12 |14 kil
1 1 0 I i UM

0 6 |8 12 |14 29 31
1 1 0 I 17 IMM

0 6 |8 12 |14 24 31
1 1 0 /aw immO

0 6 |8 12 |14 |16 31

ST=0b0001-0b1111: Reserved

1.6.3.3 Type 10 - Modified Load/Store
Instructions

1 2151 1 R| Sub-Type Specific

0 6 |8|9 [(1j12 |14 31

The Type 10 prefix format provides a one-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0: Modified Load/Store Form (MLS)

1 210 IT|R[ 1 IE

0 6 [8(9 |12 (14 31

ST=1: Reserved

1.6.3.4 Type 11 - Modified Regis-
ter-to-Register Instructions

1 3| ST Sub-type Specific
0 6 |8 12 kil

The Type 11 prefix format provides a four-bit subtype
(ST) field to specify the subformat employed by the pre-
fix. The subformats are defined as follows.

ST=0b0000: Modified Register to Register Form
(MRR)

1 3 0 1 0
0 6 |8 2 |14 3l
- pnop (See  Section 3.3.19, “Prefixed

No-Operation Instruction” on page 130)

ST=0b1010-0b1111: Reserved

1.6.4 Instruction Prefix Fields

IE (14:31)
18-bit immediate field that is concatenated
with the D field in the suffix to extend the
displacement value at the high-order end.
This field is reserved when this prefix
precedes instructions of other formats.

Alternate field names: d0O, siO, imm18

Formats: 8LS, MLS

immO (16:31)
16-bit immediate field that is concatenated
with the 16-bit immediate field in the suffix to
create a 32-bit value.

Formats: 8RR

IMM (24:31)
8-bit immediate field used as control operand.
Formats: 8RR

PMSK (16:23)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR

PMSK (16:19)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR

PMSK (16:17)
Immediate field used to specify product mask
for VSX Vector GER instructions.

Formats: MMIRR
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R (11)
Field used to specify whether the effective
address of the storage operand is computed
relative to the address of the instruction (CIA).

0b0 Effective address is not computed
relative to CIA

0bl Effective address is computed rela-
tive to CIA

Formats: 8LS, MLS

UIM (29:31)
3-bit immediate field used as control operand.

Formats: 8RR

XMSK (24:27)
Field used to specify ACC row mask for VSX
Vector GER instructions.

Formats: MMIRR

YMSK (28:31)
Field used to specify ACC column mask for
VSX Vector GER instructions.

Formats: MMIRR

1.7 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section1.8.1, “Preferred
Instruction Forms” and Section 1.8.2, “Invalid Instruc-
tion Forms”.

1.7.2

This class of instructions contains the set of instructions
described in Appendix B of Book Appendices. lllegal
instructions are available for future extensions of the
Power ISA ; that is, some future version of the Power

lllegal Instruction Class

ISA may define any of these instructions to perform
new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary 0s is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.7.3 Reserved Instruction Class

This class of instructions contains the set of instructions
described in Appendix C of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

B perform the actions described by the implementa-
tion if the instruction is implemented; or

B cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms

Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

B the Condition Register Logical instructions

the Load Quadword instruction

the Move Assist instructions

the Or Immediate instruction (preferred form of
no-op)

m the Move To Condition Register Fields instruction

1.8.2

Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

Invalid Instruction Forms

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.
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Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

Assembler Note

Assemblers should report uses of invalid instruc-
tion forms as errors.

1.8.3 Reserved-no-op Instructions

Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-
tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible
with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.9 Exceptions

There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

B an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book lIll) (system ille-
gal instruction error handler or system privileged
instruction error handler)

B the execution of a defined instruction using an
invalid form (system illegal instruction error han-
dler or system privileged instruction error handler)

H an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

B an attempt to execute a prefixed instruction that
crosses a 64-byte address boundary. (system
alignment error handler)

B an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

B an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

B the execution of a System Call or System Call Vec-
tored instruction (system service program)

B the execution of a Trap instruction that traps (sys-
tem trap handler)

B the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error
handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book 111

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error han-
dler is in effect (see page 141), then the invocation of
the system floating-point enabled exception error han-
dler may also be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc-
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the sys-
tem error handler, has not yet occurred).

Additional information about exception handling can be
found in Book III.

1.10 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book Il and Book Ill), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte.

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system.
This byte ordering is also referred to as the Endian
mode and it applies to both data accesses and instruc-
tion fetches. The Endian mode is specified by the LE
mode bit (see Section 4.2.1 of Book Ill), which applies
to all of storage.
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1.10.1 Storage Operands

A storage operand may be a byte, a halfword, a word, a
doubleword, a quadword, an octword, or, for the Load/
Store Multiple, Move Assist, and Load/Store VSX Vec-
tor with Length [Left-justified] instructions, a sequence
of bytes (Move Assist and Load/Store VSX Vector with
Length [Left-justified]) or words (Load/Store Multiple).
The address of a storage operand is the address of its
first byte (i.e., of its lowest-numbered byte). An instruc-
tion for which the storage operand is a byte is said to
cause a byte access, and similarly for halfword, word,
doubleword, quadword, and octword.

The length of the storage operand is the number of
bytes (of the storage operand) that the instruction
would access in the absence of invocations of the sys-
tem error handler. The length is generally implied by
the name of the instruction (equivalently, by the
opcode, and extended opcode if any). For example, the
length of the storage operand of a Load Word and
Zero, Load Floating-Point Single, and Load Vector Ele-
ment Word instruction is four bytes (one word), the
length of a Store Quadword, Store Floating-Point Dou-
ble Pair, and Store VSX Vector Word*4 instruction is 16
bytes (one quadword), and the length of a Load VSX
Vector Paired instruction is 32 bytes (one octword). The
only exceptions are the Load/Store Multiple and Move
Assist instructions, for which the length of the storage
operand is implied by the identity of the specified
source or target register (Load/Store Multiple), or by an
immediate field in the instruction or the contents of a
field in the XER (Move Assist), as well as by the name
of the instruction. For example, the length of the stor-
age operand of a Load Multiple Word instruction for
which the specified target register is GPR 20 is 48
bytes ((32-20)x4), and the length of the storage oper-
and of a Load String Word Immediate instruction for
which the immediate field contains the number 20 is 20
bytes.

The storage operand of a Load or Store instruction
other than a Load/Store Multiple or Move Assist instruc-
tion is said to be aligned if the address of the storage
operand is an integral multiple of the storage operand
length; otherwise it is said to be unaligned. See the fol-
lowing table. (The storage operand of a Load/Store
Multiple or Move Assist instruction is neither said to be
aligned nor said to be unaligned. Its alignment proper-

ties are described, when necessary, using terms such
as “word-aligned”, which are defined below.)

Operand Length |Addrgg.g3 if aligned
Byte 8 bits XXXXXX
Halfword 2 bytes XXXXX0
Word 4 bytes XxXxX00
Doubleword 8 bytes xxx000
Quadword 16 bytes xx0000
Octword 32 bytes x00000
Note: An “x”in an address bit position indicates that

the bit can be 0 or 1 independent of the con-
tents of other bits in the address.

The concept of alignment is also applied more gener-

ally, to any datum in storage.

B A datum having length that is an integral power of
2 is said to be aligned if its address is an integral
multiple of its length.

m A datum of any length is said to be half-
word-aligned (or aligned at a halfword boundary) if
its address is an integral multiple of 2,
word-aligned (or aligned at a word boundary) if its
address is an integral multiple of 4, etc. (All data in
storage is byte-aligned.)

The concept of alignment can also be applied to data in
registers, with the "address" of the datum interpreted as
the byte number of the datum in the register. E.g., a
word element (4 bytes) in a Vector Register is said to
be aligned if its byte number is an integral multiple of 4.

—— Programming Note

The technical literature sometimes uses the term
“naturally aligned” to mean “aligned.”

Versions of the architecture that precede Version
2.07 also used “naturally aligned” as defined
above. The term was dropped from the architecture
in Version 2.07 because it seemed to mean differ-
ent things to different readers and is not needed.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. In general, the best performance is
obtained when storage operands are aligned.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 28, unless otherwise specified in the
instruction description.
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Big-Endian Byte Ordering

Load Store
doi =0 toN-1: doi=0toN-1:
RTR-y+i € MEM(EA+i,1) MEM(EA+i,1) € (RS)(R-ny+i
Little-Endian Byte Ordering
Load Store
do i =0 to N-1: do i =0 to N-1:
RT(r-1)-i € MEM(EA+i,1) MEM(EA+i,1) € (RS)(R-1)-i

Notes:

1. In this table, subscripts refer to bytes in a register.

2. This table does not apply to the Ivebx, Ivehx,
Ivewx, stvebx, stvehx, and stvewx instructions.

Figure 28. Storage operands and byte ordering

Figure 29 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into

storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 30 and 31 show each scalar
as aligned. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and
two bytes between e and f. The same amount of pad-
ding is present for both Big-Endian and Little-Endian
mappings.

The Big-Endian mapping of structure s is shown in
Figure 30. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 29, are shown in hex (as characters for
the elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 31. Doublewords are shown laid out from right
to left, which is the common way of showing storage
maps for processors that implement only Little-Endian
byte ordering.

struct {
int a; /* 0x1112 1314 word */
double b /* 0x2122_2324 2526 2728 doubleword */
char * c; /* 0x3132_3334 word */
char d[71; /* ‘A, “B7, C’, ‘D’, ‘E’, ‘F’, ‘G” array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */
}s;
Figure 29. C structure ‘s’, showing values of elements
00 11 12 13 14 11 12 13 14 00
00 o1 02 03 04 05 06 07 07 06 05 04 03 02 o1 00
08 21 22 23 24 25 26 27 28 21 22 23 24 25 26 27 28 08
08 09 0A 0B oc oD OE OF OF OE oD oc 0B 0A 09 08
10 31 32 33 34 | ‘A B> C D’ ‘D> *C> B> *A” | 31 32 33 34 10
10 1 12 13 14 15 16 17 17 16 15 14 13 12 1 10
18 ‘E> ‘F7 G 51 52 51 52 ‘6> ‘F* °E” | 18
18 19 1A 1B 1c 1D 1E 1F 1F 1E 1D 1c 1B 1A 19 18
20 61 62 63 64 61 62 63 64 20
20 21 22 23 24 25 26 27 27 26 25 24 23 22 21 20

Figure 30. Big-Endian mapping of structure ‘s’

Figure 31. Little-Endian mapping of structure ‘s’
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1.10.2 Instruction Fetches The Big-Endian mapping of program p is shown in
Figure 34 (assuming the program starts at address 0).
Instructions are encoded in either four or eight bytes
and are word-aligned. For purposes of byte ordering, 00 loop: cmplwi 15,0 beq done
prefixed instructions are treated as if they are two inde- o0 o o o o - o6 o
pendent four-byte instructions, with the prefix preced-
ing the suffix in storage regardless of the Endian mode. 08 lwzux r4,rs,r6 add r7,r7,r7
08 09 0A 0B oc oD OE OF
When an instruction starting at effective address EA is 10 <inst 1 orefio <inst 1 suffio
fetched from storage, the relative order of the bytes P
within each word of the instruction image depends on 10 u 2 13 1 15 16 i
the byte ordering for the storage access as shown in 18 subi r5,r5,4 <inst 2 prefix>
Figure 32. 18 19 1A 1B 1c 1D 1E 1F
20 <inst 2 suffix> b loop
Big-Endian Byte Ordering 0 2 2 B |4 B 6
- 28 done: stw r7, total
for i=0 to 3: 28 29 2A 2B 2C 2D 2E 2F

inst; « MEM(EA+i,1)
! Figure 34. Big-Endian mapping of program ‘p’

Little-Endian Byte Orderin
Y 9 The Little-Endian mapping of program p is shown in

for i=0 to 3: Figure 35.
instg_j « MEM(EA+i,1)
Notes beq done loop: cmplwi r5,0 00
. . 00 01 02 03 04 05 06 07
1. In this tgb!e, sul:.)scrlpts' refer to add r7.r7.v4 IWzux r4.15.16 08
bytes within the instruction.
08 09 0A oB oc oD OE OF
Figure 32. Instructions and byte ordering <inst 1 suffix> <inst 1 prefix> 10
Figure 33 shows an example of a small assembly lan- 10 u 12 13 14 15 16 v
guage program p. In the program, prefixed instruction 1 <inst 2 prefix> subi r5,r5,r4 18
is doubleword-aligned and prefixed instruction 2 is 18 19 1A 18 1c 1D 1E 1F
word-aligned. b loop <inst 2 suffix> 20
|00p: cmplwi 5.0 20 21 22 23 24 25 26 27
beq done done: stw r7, total | 28
lwzux r4,rs,ré 28 29 2A 2B 2c 20 2E 2F
add r7,r7,rd
<prefixed instruction 1> Figure 35. Little-Endian mapping of program ‘p’
subi r5,r5,4
<prefixed instruction 2>
b loop
done: stw r7,total

Figure 33. Assembly language program ‘p’
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Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver's Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as | was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, command-
ing all his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

1

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or
at least in the Power of the chief Magistrate to
determine. Now the Big-Endian Exiles have found
so much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success;
during which Time we have lost Forty Capital
Ships, and a much greater Number of smaller Ves-
sels, together with thirty thousand of our best Sea-
men and Soldiers; and the Damage received by
the Enemy is reckoned to be somewhat greater
than ours. However, they have now equipped a
numerous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion

An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book Il and
Book Ill) when fetching the next sequential instruction,
or when invoking a system error handler. The following
provides an overview of this process. More detail is
provided in the individual instruction descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two's complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arithme-
tic wraps around from the maximum address, 264 1,
to address 0, except that if the current instruction is a
word instruction at effective address 264-4 or a prefixed
instruction at effective address 2%4-8, the effective
address of the next sequential instruction is undefined,
and if the current instruction is a prefixed instruction at
effective address 2%4-4, the effective address of the
suffix is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage, except
that if the current instruction is a word instruction at
effective address 2%2-4 or a prefixed instruction at effec-
tive address 232-8, the 64-bit effective address of the
next sequential instruction is undefined, and if the cur-
rent instruction is a prefixed instruction at effective
address 232-4, the effective address of the suffix is
undefined. Thus, as used to address storage, the effec-
tive address arithmetic appears to wrap around from
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the maximum address 2%2-1, to address 0, except when
the resulting 64-bit effective address is undefined as
just described. When an effective address is placed
into a register by an instruction or event, the value
placed into the register is as follows.

B Register RA when set by Load with Update and
Store with Update instructions: the entire 64-bit
result.

m  All other cases (e.g., the Link Register when set by
Branch instructions having LK=1, Special Purpose
Registers when set to an effective address by invo-
cation of a system error handler): the low-order 32
bits of the 64-bit result preceded by 32 0 bits,
except that if the intended effective address is that
of the NIA of either a word instruction at effective
address 232-4, or a prefixed instruction at effective
address 232-8, the value placed into the register is
undefined.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence of
the corresponding address component. A value of zero
is substituted for the absent component of the effective
address computation. This substitution is shown in the
instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

m With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for ldat,
, Iswi, lwat, Ixvl, Ixvll, stdat, , stswi, stwat, stxvl,
and stxvll) are added to the contents of the GPR
designated by RA or to zero if RA=0 or RA is not
used in forming the EA.

With X-form instructions that are preceded by an
MLS-form or MMLS-form prefix with the R bit set to
1 (see xref to Section 1.6.2), in computing the
effective address of the data element, the contents
of the GPR designated by RB are added to the CIA
and RA is not used in forming the EA.

B With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a D-form suffix
and an MLS-form or 8LS-form prefix, the 16-bit D
field is concatenated on the left with the 18-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-

nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIAif the R bit in the prefix is set to 1.

With prefixed instructions having a D-form suffix
and an MMLS-form or 8MLS-form prefix, the 16-bit
D field is concatenated on the left with the 12-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIA if the R bit in the prefix is set to 1.

With DS-form instructions, the 14-bit DS field is
concatenated on the right with Ob00 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a DS-form suffix
and an MLS-form or 8LS-form prefix, the 14-bit D
field is concatenated on the right with Ob00 and is
concatenated on the left with the 18-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

With prefixed instructions having a DS-form suffix
and an MMLS-form or 8MLS-form prefix, the 14-bit
D field is concatenated on the right with Ob00 and
is concatenated on the left with the 12-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

With DQ-form instructions, the 12-bit DQ field is
concatenated on the right with 0b0O000 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

With prefixed instructions having a DQ-form suffix
and an MLS-form or 8LS-form prefix, the 12-bit DQ
field is concatenated on the right with 0bO000 and
is concatenated on the left with the 18-bit IE field in
the prefix, and the concatenation is sign-extended
to form a 64-bit address component. In computing
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the effective address of a data element, this
address component is added to the contents of the
GPR designated by RA or to zero if RA=0 if the R
bit in the prefix is set to 0, or is added to the CIA if
the R bit in the prefix is set to 1.

With prefixed instructions having a DQ-form suffix
and an MMLS-form or 8MLS-form prefix, the 12-bit
DQ field is concatenated on the right with 0b0000
and is concatenated on the left with the 12-bit IE
field in the prefix, and the concatenation is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0 if the R bit in the prefix is set to 0, or is
added to the CIA if the R bit in the prefix is set to 1.

® With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

® With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the target instruction. If AA=1,
this address component is the effective address of
the target instruction.

®  With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with 0b00 to form the effective
address of the target instruction.

m With sequential instruction fetching, if the current
instruction is a word instruction, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
and if the current instruction is a prefixed instruc-
tion, the value 8 is added to the address of the cur-
rent instruction to form the effective address of the
next instruction, except that if the current instruc-
tion is at the maximum instruction effective
address for the mode (for a word instruction,
254 _ 4 in 64-bit mode and 2%2 - 4 in 32-bit mode;
for a prefixed instruction, 254-8 in 64-bit mode and
232.8 in 32-bit mode) the effective address of the
next sequential instruction is undefined.

If the size of the operand of a Storage Access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.
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Chapter 2. Branch Facility

2.1 Branch Facility Overview

This chapter describes the registers and instructions
that make up the Branch Facility.

2.2 Instruction Execution Order

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

B Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

B Trap instructions for which the trap conditions are
satisfied, and System Call and System Call Vec-
tored instructions, cause the appropriate system
handler to be invoked.

B Event-based exceptions can cause the
event-based branch handler to be invoked, as
described in Chapter 6 of Book II.

B Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 25.

B Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the proces-
sor appears to execute one instruction at a time, com-
pleting each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

B A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction
that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

B A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-

tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

—— Programming Note

This software synchronization will generally be
provided by system library programs (see
Section 1.8 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.
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2.3 Branch Facility Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

| CR

32 63
Figure 36. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO0), ..., CR Field
7 (CRY), which are set in one of the following ways.

B Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

B A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from OV, CA,
0OV32, and CA32 (mcrxrx), or from the FPSCR
(mcrfs).

B CR Field 0 can be set as the implicit result of a
fixed-point instruction.

B CR Field 1 can be set as the implicit result of a
floating-point instruction.

B CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

B CR Field 6 can be set as the implicit result of a
vector instruction.

B A specified CR field can be set as the result of a
Compatre instruction.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 32:34 of the Condition Register) are set by
sighed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)

then M € 0

else M « 32
if (target_register)y.s; < 0 then ¢ ¢ 0b100
else if (target register)y.q; > 0 then c < 0b010
else c € 0bo01
CRO ¢« ¢ || XERgq

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description
0 Negative (LT)

The result is negative.
1 Positive (GT)

The result is positive.
2 Zero (EQ)

The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERgg at the
completion of the instruction.

The paste. instruction (see Section 4.4, “Copy-Paste
Facility”, in Book Il) and the stbcx., sthex., stwex.,
stdcx., and stgcx. instructions (see Section 4.6.2,
“Load And Reserve and Store Conditional Instructions”,
in Book II) also set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
32:35 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 140). These bits are interpreted
as follows.

Bit Description

32 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRgx at
the completion of the instruction.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRggx at
the completion of the instruction.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This is a copy of the contents of FPSCRy at
the completion of the instruction.

35 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCRy at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.10, “Fixed-Point
Compare Instructions” on page 92, and Section 4.6.8,
“Floating-Point Compare Instructions” on page 179.

Bit Description
0 Less Than, Floating-Point Less Than (LT,
FL)
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For fixed-point Compare instructions, (RA) <
Sl or (RB) (signed comparison) or (RA) <" UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) <
(FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
Sl or (RB) (signed comparison) or (RA) > UI
or (RB) (unsigned comparison). For float-
ing-point Compare instructions, (FRA) >
(FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the contents of XERgg at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

The Vector Integer Compare instructions (see
Section 6.9.3, “Vector Integer Compare Instructions”)
compare two Vector Registers element by element,
interpreting the elements as unsigned or signed inte-
gers depending on the instruction, and set the corre-
sponding element of the target Vector Register to all 1s
if the relation being tested is true and Os if the relation
being tested is false.

If Rc=1, CR Field 6 is set to reflect the result of the
comparison, as follows

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).

3 0

The Vector Floating-Point Compare instructions com-
pare two Vector Registers word element by word ele-
ment, interpreting the elements as single-precision
floating-point numbers. With the exception of the Vector
Compare Bounds Floating-Point instruction, they set
the target Vector Register, and CR Field 6 if Rc=1, in
the same manner as do the Vector Integer Compare
instructions.

Bit Description

0 The relation is true for all element pairs (i.e.,
VRT is set to all 1s).

1 0

2 The relation is false for all element pairs (i.e.,
VRT is set to all 0s).
3 0

The Vector Compare Bounds Floating-Point instruction
on page 429 sets CR Field 6 if Rc=1, to indicate
whether the elements in VRA are within the bounds
specified by the corresponding element in VRB, as
explained in the instruction description. A single-preci-
sion floating-point value x is said to be “within the
bounds” specified by a single-precision floating-point
valueyif-y <x<y.

Bit Description
0 0
0

Set to indicate whether all four elements in
VRA are within the bounds specified by the
corresponding element in VRB, otherwise set
to 0.

3 0

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1 and after System Call Vectored instruc-
tions.

LR
0 63

Figure 37. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can be
used to hold a loop count that can be decremented
during execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is - 1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction. The Count Register is mod-
ified by the System Call Vectored instruction.

CTR
0 63

Figure 38. Count Register

2.3.4 Target Address Register

The Target Address Register (TAR) is a 64-bit register.
It can be used to provide bits 0:61 of the branch target
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address for the Branch Conditional to Branch Target
Address Register instruction. Bits 62:63 are ignored by
the hardware but can be set and reset by software.

Efffective Address | |
0 62

Figure 39. Target Address Register

Programming Note
Fhe TAR is reserved for system software.
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2.4 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following five ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 29.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

5. Using the address contained in the Target Address
Register (Branch Conditional to Target Address
Register).

In all five cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third through fifth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 40. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

BO Description

0000z | Decrement the CTR, then branch if the dec-
remented CTR),.3#20 and CRg,=0

0001z | Decrement the CTR, then branch if the dec-
remented CTRy.3=0 and CRg=0

001at | Branch if CRg=0

0100z | Decrement the CTR, then branch if the dec-
remented CTR),.43#20 and CRg=1

0101z | Decrement the CTR, then branch if the dec-
remented CTRy.3=0 and CRg=1

Ollat | Branch if CRg=1

1a00t | Decrement the CTR, then branch if the dec-
remented CTRy;.¢3#0

1a01t | Decrement the CTR, then branch if the dec-
remented CTRy.3=0

1z1zz | Branch always

Notes:
1. “z” denotes a bit that is ignored.

2. The “a” and “t” bits are used as described below.

Figure 40. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is
likely to be taken or is likely not to be taken, as shown
in Figure 41.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Figure 41. “at” bit encodings

— Programming Note

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to Ob00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

For Branch Conditional to Link Register, Branch Condi-
tional to Count Register, and Branch Conditional to Tar-
get Address Register instructions, the BH field provides
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a hint about the use of the instruction, as shown in
Figure 42.

BH Hint

00 bclr[l]: The instruction is a subroutine
return

bcctr[l] and bctar[l]:The instruction is not a
subroutine  return; the target
address is likely to be the same as
the target address used the pre-
ceding time the branch was taken

01 bclr[ll:  The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

bcctr[l] and bctar[l]:Reserved

10 Reserved

11 bclr[l], bectr[l], and betar[l]: The target
address is not predictable

Figure 42. BH field encodings

Programming Note

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and BI fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix C for additional extended mne-
monics.

—— Programming Note

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.
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Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr[l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken, other than the special form shown in the first
example below) and recently used branch target
addresses. To obtain the best performance across the
widest range of implementations, the programmer
should obey the following rules.

B Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.), or in
the special form shown in the first example below.

B Pair each subroutine call (i.e., each Branch
instruction for which LK=1 and the branch is taken,
other than the special form shown in the first
example below) with a bclr instruction that returns
from the subroutine and has BH=0b00.

B Do not use bclrl as a subroutine call. (Some imple-
mentations access the return address cache at
most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

B For bclr[l] and bcctr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

B Obtaining the address of the next instruction:
Use the following form of Branch and Link.
bcl 20,31,58+4

B | oop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

B Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to

1

branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

Direct subroutine linkage:

Here A calls B and B returns to A. The two

branches should be as follows.

- Acalls B: use a bl or bcl instruction (LK=1).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

A calls Glue: use a bl or bcl instruction

(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)

(the return address is in, or can be restored to,

the Link Register).

Function call:

Here A calls a function, the identity of which may
vary from one instance of the call to anocther,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.
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—— Compatibility Note

The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.

B The bit corresponding to the “t” bit was called
the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- Inall other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bectr[l]), the branch is not taken.

B The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.

B The “a” bit was a “z” bit.

Because these bhits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.
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Branch I-form

Branch Conditional B-form

b target_addr (AA=0 LK=0) bc BO,Bl target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bcl BO,Bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl target_addr (AA=1 LK=1)

18 LI AALK 16 BO BI BD AALK]
0 6 3031 0 6 i 16 3031

if AA then NIA ©gn EXTS(LI || 0b00)
else NIA €jeq CIA + EXTS(LI | 0b0O)
if LK then LR ©;q CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI|| ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || ObOO sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

if (64-bit mode)

then M € 0

else M « 32
if -B0, then CTR « CTR - 1
ctr_ok « BOZ I ((CTRM:Gg #0) @ B03)
CUnd_Ok « BOO I (CRB|+32 = BOl)
if ctr_ok & cond_ok then

if AA then NIA <jgq EXTS(BD || 0bOO)

else NIA €jgoq CIA + EXTS(BD || ObOO)
if LK then LR <04 CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || Ob0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended mnemonic: Equivalent to:

blt target bc 12,0, target
bne cr2,target bc 4,10, target
bdnz target bc 16,0, target
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Branch Conditional to Link Register
XL-form

Branch Conditional to Count Register
XL-form

belr BO,BI,BH (LK=0) beetr BO,BI,BH (LK=0)
belrl BO,BI,BH (LK=1) beetrl BO,BI,BH (LK=1)

19 BO BI /Il |BH 16 LK| 19 BO BI /Il |BH 528 LK|
0 6 1n 16 19 |21 31 0 6 1n 16 19 (21 31]

if (64-bit mode)
then M < 0
else M « 32
if TB0, then CTR « CTR - 1
ctr ok « B02 I ((CTRM:63 #0) @ BO3
Cond_ok « BOO I (CRB|+32 = BOl)
if ctr_ok & cond_ok then NIA <jeoq LRg-g1 || 0b0O
if LK then LR ¢o4 CIA + 4

B1+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is LRg.g7 || 0b0O,
with the high-order 32 bits of the branch target address
set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended mnemonic: Equivalent to:

belr 4,6 belr 4,6,0
bltlr belr 12,0,0
bnelr cr2 belr 4,10,0
bdnzlr belr 16,0,0

—— Programming Note

bclr, bclrl, bcctr, and bcctrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bcelrl, becetr, or beetrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, becetr, or bcectrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

cond_ok € B0y | (CRgy+32 = BO1)
if cond_ok then NIA <504 CTRg-g1 || 0000
if LK then LR € oo CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
CTRq.g1 | Ob00O, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

Extended mnemonic: Equivalent to:

bectr 4,6 bectr 4,6,0
bltctr bectr 12,0,0
bnectr cr2 bectr 4,10,0
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Branch Conditional to Branch Target
Address Register XL-form

bctar BO,BI,BH (LK=0)
betarl BO,BI,BH (LK=1)

19 BO BI Il |BH 560 LK
0 6 il 16 19 | 31

if (64-bit mode)
then M < 0
else M « 32
if TB0, then CTR « CTR - 1
ctr ok « B02 I ((CTRM:63 #0) @ BO3
Cond_ok « BOO I (CRB|+32 = BOl)
if ctr_ok & cond_ok then NIA <je4 TARg-g1 || 0bOO
if LK then LR €04 CIA + 4

B1+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 40. The BH field is used as described in
Figure 42. The branch target address is
TARq.1 || Ob00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

—— Programming Note

In some systems, the system software will restrict
usage of the bctar[l] instruction to only selected
programs. If an attempt is made to execute the
instruction when it is not available, the system error
handler will be invoked. See Book Il for additional
information.
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2.5 Condition Register Instructions

2.5.1 Condition Register Logical Instructions

The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.

B The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix C for additional
extended mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

Condition Register NAND XL-form

crnand BT,BA,BB

19 BT BA BB 257 /

0 6 u 16 21 31

19 BT BA BB 225 /

0 6 u 16 21 31

CRer432 < CRga+32 & CRpgis2

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRpT4+32

Condition Register OR XL-form

cror BT,BA,BB

CReT+32 € (CRpa+32 & CReB+32)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.

Special Registers Altered:
CRpT+32

Condition Register XOR XL-form

crxor BT,BA,BB

19 BT BA BB 449 /
0 6 u 16 21 31]

19 BT BA BB 193 /
0 6 u 16 21 31

CReT+32 € CRgar32 | CReges2

The bit in the Condition Register specified by BA+32 is
ORed with the bit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.
Special Registers Altered:

CRpT432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Extended mnemonic: Equivalent to:
crmove Bx,By cror Bx,By,By

CReT+32 < CRpa+32 @ CRap+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRpT+32
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

Extended mnemonic: Equivalent to:
crelr Bx crxor Bx,Bx,Bx
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Condition Register NOR XL-form

crnor BT,BA,BB

Condition Register Equivalent XL-form

creqv BT,BA,BB

19 BT BA BB 33 /
0 6 u 16 21 31]

19 BT BA BB 289 /
0 6 u 16 21 31

CReT+32 € (CRga+32 | CRep+32)

The bit in the Condition Register specified by BA+32 is
ORed with the hit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRpT+32

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Extended mnemonic: Equivalent to:
crnot Bx,By crnor Bx,By,By

Condition Register AND with Complement
XL-form

crandc BT,BA,BB

CReT+32 < CRga+32 = CRapia2

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRp1432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Extended mnemonic: Equivalent to:
crset Bx creqv Bx,Bx,Bx

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

19 BT BA BB 129 /
0 6 u 16 21 31]

19 BT BA BB 417 /

0 6 u 16 21 31

CRgT+32 € CRpas32 & 1CRepy32
The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRpT4+32

CReT+32 € CRgaraz | "CRepea2

The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRpT+32
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2.5.2 Condition Register Field Instruction

Move Condition Register Field XL-form

mcrf BF,BFA
19 BF | /| |BFA| // 1 0 /
0 6 9 |1 |14 [16 21 31

CRaxBF+32:4xBF+35 < CRaxBFA+32:4xBFA+35

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF
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2.6 System Call Instructions

These instructions provide the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form

sc LEV

17 7 7 7 LEV 1)/

0 6 u 16 20 27 30(31

System Call Vectored SC-form

scv LEV

Programming Note

Since the scv instruction modifies the Count Regis-
ter, programs should treat the contents of the Count
Register as undefined after executing this instruc-

tion. See Section 4.3 of Book IlI.

17 i 7 I LEV /Il |0]1
0 6 u 16 20 21 30|31}

These instructions call the system to perform a service.
A complete description of these instructions can be
found in Section 4.3.1 of Book IIl.

The first form of the instruction (sc) provides a single
system call. The second form of the instruction (scv)
provides the capability for 128 unique system calls.

The use of the LEV field is described in Book llI. In the
first form of the instruction the LEV values greater than
1 are reserved, and bits 0:5 of the LEV field (instruction
bits 20:25) are treated as a reserved field.

When control is returned to the program that executed
the System Call or System Call Vectored instruction,
the contents of the registers will depend on the register
conventions used by the program providing the system
service.

These instructions are context synchronizing (see Book

1.

Special Registers Altered:
Dependent on the system service

—— Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be O.

In application programs the value of the LEV oper-
and for sc should be 0.

Chapter 2. Branch Facility
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Chapter 3. Fixed-Point Facility

3.1 Fixed-Point Facility Over-
view

This chapter describes the registers and instructions
that make up the Fixed-Point Facility.

3.2 Fixed-Point Facility Regis-
ters

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Facility. The principal storage
internal to the Fixed-Point Facility is a set of 32 General
Purpose Registers (GPRs). See Figure 43.

GPRO
GPR 1

GPR 30

GPR 31

0 63

Figure 43. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception
Register

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER

0 63

Figure 44. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)

The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr and addex)
sets the Overflow bit. Once set, the SO bit
remains set until it is cleared by an mtspr
instruction (specifying the XER). It is not
altered by Compare instructions, by addex, or
by other instructions (except mtspr to the
XER) that cannot overflow. Executing an
mtspr instruction to the XER, supplying the
values 0 for SO and 1 for OV, causes SO to
be set to 0 and OV to be set to 1.

33 Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. The Overflow bit can also used as
an independent Carry bit by using the addex
with operand CY=0 instruction and avoiding
other instructions that modify the Overflow bit
(e.g., any XO-form instruction with OE=1).

XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to O otherwise.

XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divde,
divdu, divdeu) or in 32 bits (mullw, divw,
divwe, divwu, divweu), and set it to 0 other-
wise.
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addex with operand CY=0 sets OV to 1 if there
is a carry out of bit M, and sets it to O other-
wise.

The 0V bit is not altered by Compare instruc-
tions, or by other instructions (except mtspr to
the XER) that cannot overflow.

34 Carry (CA)

The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to 0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, or by other instructions
(except Shift Right Algebraic, mtspr to the
XER) that cannot carry.

35:43 Reserved

44 Overflow32 (OV32)

OV32 is set whenever OV is implicitly set, and
is set to the same value that OV is defined to
be set to in 32-bit mode.

45 Carry32 (CA32)

CA32 is set whenever CA is implicitly set, and
is set to the same value that CA is defined to
be set to in 32-bit mode.

46:56 Reserved

Bits 48:55 are implemented, and can be read
and written by software as if the bits contained
a defined field.

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

—— Programming Note

Bits 48:55 of the XER correspond to hits 16:23 of
the XER in the POWER Architecture. In the
POWER Architecture bits 16:23 of the XER contain
the comparison byte for the Iscbx instruction.
Power ISA lacks the Iscbx instruction, but some
application programs that run on processors that
implement Power ISA may still use Iscbx, and
privileged software may emulate the instruction.
XERyg:55 may be assigned a meaning in a future
version of the architecture, when POWER compati-
bility for Iscbx is no longer needed, so these bits
should not be used for purposes other than the

Iscbx comparison byte.

3.2.3 VR Save Register

| VRSAVE
32 63

The VR Save Register (VRSAVE) is a 32-hit register
that can be used as a software use SPR; see Section
6.3.3.
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3.3 Fixed-Point Facility Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 29.

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

—— Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA#0 and RA#RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EAis loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions. More-
over, Load with Update instructions may take lon-
ger to execute in some implementations than the
corresponding pair of a non-update Load instruc-
tion and an Add instruction.
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Load Byte and Zero D-form
Ibz RT,D(RA)

Load Byte and Zero Indexed X-form

Ibzx RT,RA,RB

34 RT RA D
0 6 u 16 31

31 RT RA RA 87 /

0 6 u 16 21 31

Prefixed Load Byte and Zero MLS:D-form

plbz RT,D(RA),R
Prefix:

1 20| /11 |R| 1 do
0 6 (8|9 [1]12 |4 kil
Suffix:

34 RT RA dl
0 6 il 16 kil

if “lIbz” then

EA « (RAJO) + EXTS64(D)
if “plbz” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “plbz” & R=1 then7

EA « CIA + EXTS64(d0]|d1)

RT « EXTZ(MEN(EA, 1))

For Ibz, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plbz with R=0, let EA be the sum of the contents of
register RA, or the value 0 if RA=0, and the value d0||d1,
sign-extended to 64 bits.

For plbz with R=1, let EA be the sum of the address of
the instruction and the value d0||d1, sign-extended to 64
bits.

The byte in storage addressed by EA is loaded into
RT56263' RTO:55 are set to 0.

For plbz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Load Byte and Zero:

Extended mnemonic: Equivalent to:
plhz Rx, value(Ry) plbz Rx,value(Ry),0
plbz Rx,value plbz Rx,value(0),1

if RA =0 then b « 0
else b « (RA)
EA « b + (RB)

RT « 350 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA]0) + (RB). The byte in storage addressed by EA is
loaded into RTsg-g3. RTg-55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form
Ibzu RT,D(RA)

35 RT RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
RT « %0 || MEM(EA, 1)
RA « EA

Let the effective address (EA) be the sum (RA) + D. The
byte in storage addressed by EA is loaded into RTsg-g3.
RTy-55 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed
X-form

Ilbzux RT,RA,RB

31 RT RA RA 119 /

0 6 u 16 21 31

EA « (RA) + (RB)
RT « %0 || MEM(EA, 1)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
The byte in storage addressed by EA is loaded into
RTgg-63- RTg-55 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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Load Halfword and Zero D-form

Ihz RT,D(RA)

Load Halfword and Zero Indexed X-form

Ihzx RT,RA,RB

40 RT RA D

0 6 u 16 31

31 RT RA RA 279 /

0 6 u 16 21 31

Prefixed Load Halfword and Zero MLS:D-form

plhz RT,D(RA),R
Prefix:

1 20| I/ |R| 1 do
0 6 (8|9 [1]12 |4 kil
Suffix::

40 RT RA dl
0 6 il 16 kil

if “Ihz” then

EA « (RAJO) + EXTS64(D)
if “plhz” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “plhz” & R=1 then

EA « CIA + EXTS64(d0]|d1)

RT « EXTZ(MEN(EA, 2))

For |hz, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For plhz with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plhz with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The halfword in storage addressed by EA is loaded into
RT48:63' RTO:47 are set to 0.

For plhz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Halfword and
Zero:

Extended mnemonic: Equivalent to:
plhz Rx, value(Ry) plhz Rx,value(Ry),0
plhz Rx,value plhz Rx,value(0),1

if RA =0 then b « 0
else b « (RA)
EA « b + (RB)

RT « “80 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA]0) + (RB). The halfword in storage addressed by
EA is loaded into RT4g-43. RTg-47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update D-form
lhzu RT,D(RA)

41 RT RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
RT « “80 || MEM(EA, 2)
RA « EA

Let the effective address (EA) be the sum (RA) + D. The
halfword in storage addressed by EA is loaded into
RT4g-63- RTg-47 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero with Update Indexed
X-form

lhzux RT,RA,RB

31 RT RA RA 311 /

0 6 u 16 21 31

EA « (RA) + (RB)
RT « “80 || MEM(EA, 2)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded into
RT4g-63- RTg-47 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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Load Halfword Algebraic D-form
lha RT,D(RA)

Load Halfword Algebraic Indexed X-form

Ihax RT,RA,RB

42 RT RA D

0 6 u 16 31

31 RT RA RA 343 /
0 6 u 16 21 31

Prefixed Load Halfword Algebraic MLS:D-form

plha RT,D(RA),R
Prefix:
1 20| /11 |R| 1 do
0 6 [8(9 |12 (14 31
Suffix:
42 RT RA dl
0 6 il 16 kil
if “Iha” then

EA « (RAJO) + EXTS64(D)
if “plha” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “plha” & R=1 then

EA « CIA + EXTS64(d0]|d1)

RT « EXTSQMEN(EA, 2))

For Iha, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For plha with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plha with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The halfword in storage addressed by EA is loaded into
RT4g-63- RTg-47 are filled with a copy of bit 0 of the loaded
halfword.

For plha, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Halfword Alge-
braic:

Extended mnemonic: Equivalent to:
plha Rx, value(Ry) plha Rx,value(Ry),0
plha Rx,value plha Rx,value(0),1

ifRA=0thenbh« 0
else b « (RA)
EA « b + (RB)

RT « EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA]0) + (RB). The halfword in storage addressed by
EA is loaded into RT,g-43. RTg-47 are filled with a copy of
bit O of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update D-form
lhau RT,D(RA)

43 RT RA D

0 6 u 16 31

EA < (RA) + EXTS(D)
RT « EXTS(UEM(EA, 2))
RA « EA

Let the effective address (EA) be the sum (RA) + D. The
halfword in storage addressed by EA is loaded into
RT4g-63- RTg-47 are filled with a copy of bit O of the loaded
halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword Algebraic with Update Indexed
X-form

lhaux RT,RA,RB

31 RT RA RA 375 /

0 6 u 16 21 31

EA « (RA) + (RB)
RT « EXTS(UEM(EA, 2))
RA  EA

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded into
RT4g-63- RTg-47 are filled with a copy of bit O of the loaded
halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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Load Word and Zero D-form

lwz RT,D(RA)

Load Word and Zero Indexed X-form
lwzx RT,RA,RB

32 RT RA D

0 6 u 16 31

31 RT RA RA 23 /

0 6 u 16 21 31

Prefixed Load Word and Zero MLS:D-form

plwz RT,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 (8|9 [1]12 |4 kil
Suffix::
32 RT RA dl
0 6 il 16 kil
if “lwz” then

EA « (RAJO) + EXTS64(D)
if “plwz” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “plwz” & R=1 then

EA « CIA + EXTS64(d0]|d1)

RT « 320 || MEN(EA, 4)

For lwz, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For plwz with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plwz with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The word in storage addressed by EA is loaded into
RT32:63. RTO:31 are set to 0.

For plwz, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Word and
Zero:

Extended mnemonic: Equivalent to:
pliz Rx, value(Ry) plwz Rx,value(Ry),0
plwz Rx,value plwz Rx,value(0),1

if RA =0 then b « 0
else b « (RA)
EA « b + (RB)

RT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA]0) + (RB). The word in storage addressed by EA is
loaded into RT3,.43. RTg-31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form
Iwzu RT,D(RA)

33 RT RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
RT « 320 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA) + D. The
word in storage addressed by EA is loaded into RTs;.43.
RTy-31 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero with Update Indexed
X-form

lwzux RT,RA,RB

31 RT RA RA 55 /
0 6 u 16 21 31

EA « (RA) + (RB)
RT « 320 || MEM(EA, 4)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
The word in storage addressed by EA is loaded into
RT3p-g3. RTg-3; are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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3.3.2.1 64-bit Fixed-Point Load Instructions

Load Word Algebraic DS-form
lwa RT,DS(RA)

Load Word Algebraic Indexed X-form
lwax RT,RA,RB

58 RT RA DS 2

0 6 u 16 30 31

31 RT RA RA 341 /

0 6 u 16 21 31

Prefixed Load Word Algebraic 8LS:D-form

plwa RT,D(RA),R
Prefix:
1 0 |0| /I |R| /I do
0 6 (8|9 [1]12 |4 kil
Suffix:
41 RT RA dl
0 6 il 16 kil
if “lwa” then

EA « (RAJ0) + EXTS64(DS||0b00)
if “plwa” & R=0 then

EA « (RAJ0) + EXTS64(d0j|dL)
if “plwa” & R=1 then

EA « CIA + EXTS64(d0]|d1)

RT « EXTSQMEN(EA, 4))

For lwa, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For plwa with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plwa with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The word in storage addressed by EA is loaded into
RT35-63- RTg-31 are filled with a copy of bit 0 of the loaded
word.

For plwa, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Prefixed Load Word Alge-
braic:

Extended mnemonic: Equivalent to:
plva Rx, value(Ry) plwa Rx,value(Ry),0
plwa Rx,value plwa Rx,value(0),1

ifRA=0thenbh« 0
else b « (RA)
EA « b + (RB)

RT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA]0) + (RB). The word in storage addressed by EA is
loaded into RTg,-g3. RTg-3; are filled with a copy of bit O
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed
X-form

lwaux RT,RA,RB

31 RT RA RA 373 /
0 6 u 16 21 31

EA < (RA) + (RB)
RT « EXTS(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
The word in storage addressed by EA is loaded into
RT3,-63- RTg-31 are filled with a copy of bit 0 of the loaded
word.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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Load Doubleword DS-form

Id RT,DS(RA)

Load Doubleword Indexed X-form

ldx RT,RA,RB

58 RT RA DS 0

0 6 u 16 30 31|

31 RT RA RA 21 /

0 6 u 16 21 31

Prefixed Load Doubleword 8LS:D-form

pld RT,D(RA),R
Prefix:

1 0 |0| /I |R| /I do
0 6 (8|9 [1]12 |4 kil
Suffix::

57 RT RA dl
0 6 il 16 kil

if “Id” then

EA « (RAJ0) + EXTS64(DS||0b00)
if “pld” & R=0 then

EA « (RAJ0) + EXTS64(d0]|dL)
if “pld” & R=1 then

EA « CIA + EXTS64(d0]|d1)

RT & MEM(EA, 8)

For Id, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pld with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pld with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

The doubleword in storage addressed by EA is loaded
into RT.

For pld, if R is equal to 1 and RA is not equal to O, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Load Doubleword:

Extended mnemonic: Equivalent to:
pld Rx, value(Ry) pld Rx,value(Ry),0
pld Rx,value pld Rx,value(0),1

ifRA=0thenbh« 0
else b « (RA)
EA « b + (RB)

RT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA]0) + (RB). The doubleword in storage addressed
by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update DS-form
Idu RT,DS(RA)

58 RT RA DS 1

0 6 u 16 30 31

EA « (RA) + EXTS(DS || 0b0O)
RT « MEN(EA, 8)
RA « EA

Let the effective address (EA) be the sum
(RA) + (DS]]0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Doubleword with Update Indexed X-form
Idux RT,RA,RB

31 RT RA RA 53 /

0 6 u 16 21 31

EA < (RA) + (RB)
RT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None
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3.3.3 Fixed-Point Store Instructions

The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

If RA#0, the effective address is placed into regis-
ter RA.

If RS=RA, the contents of register RS are copied to
the target storage element and then EA is placed
into RA (RS).
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Store Byte D-form
stb RS,D(RA)

Store Byte Indexed X-form
sthx RS,RA,RB

38 RS RA D

0 6 u 16 31

31 RS RA RA 215 /

0 6 u 16 21 31

Prefixed Store Byte MLS:D-form

psth RS,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 [8(9 |12 (14 31
Suffix::
38 RS RA dl
0 6 il 16 kil
if “sth” then

EA « (RAJO) + EXTS64(D)
if “pstb” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “pstb” & R=1 then

EA « CIA + EXTS64(d0]|d1)

NEM(EA, 1) < (RS)s56:63

For stb, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For pstb with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstb with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)s56-63 are stored into the byte in storage addressed
by EA.

For pstb, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Store Byte:

Extended mnemonic: Equivalent to:
psth Rx, value(Ry) psth Rx,value(Ry),0
psth Rx,value psth Rx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 1) « (RS)s6:63

Let the effective address (EA) be the sum
(RA]0) + (RB). (RS)sg-43 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form
stbu RS,D(RA)

39 RS RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
MEM(EA, 1) « (RS)s6:63
RA « EA

Let the effective address (EA) be the sum (RA) + D.
(RS)s¢-43 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Byte with Update Indexed X-form
stbux RS,RA,RB

31 RS RA RA 247 /

0 6 u 16 21 31

EA « (RA) + (RB)
MEM(EA, 1) « (RS)s56:-63
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)56-43 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Halfword D-form

sth RS,D(RA)

Store Halfword Indexed X-form

sthx RS,RA,RB

44 RS RA D

0 6 u 16 31

31 RS RA RA 407 /

0 6 u 16 21 31

Prefixed Store Halfword MLS:D-form

psth RS,D(RA),R
Prefix:
1 20| /11 |R| 1 do
0 6 [8(9 |12 (14 31
Suffix:
44 RS RA dl
0 6 il 16 kil
if “sth” then

EA « (RAJO) + EXTS64(D)
if “psth” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “psth” & R=1 then

EA « CIA + EXTS64(d0]|d1)

MEM(EA, 2) < (RS)ag:63

For sth, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For psth with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For psth with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)4g:-63 are stored into the halfword in storage
addressed by EA.

For psth, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Store Halfword:

Extended mnemonic: Equivalent to:
psth Rx, value(Ry) psth Rx,value(Ry),0
psth Rx,value psth Rx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 2) « (RS)4s:63

Let the effective address (EA) be the sum
(RA]0) + (RB). (RS)4g:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form
sthu RS,D(RA)

45 RS RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
MEM(EA, 2) « (RS)4s:63
RA « EA

Let the effective address (EA) be the sum (RA) + D.
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword with Update Indexed X-form
sthux RS,RA,RB

31 RS RA RA 439 /

0 6 u 16 21 31

EA « (RA) + (RB)
MEM(EA, 2) « (RS)ag:-63
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)45-63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Word D-form
Stw RS,D(RA)

Store Word Indexed X-form
stwx RS,RA,RB

36 RS RA D

0 6 u 16 31

31 RS RA RA 151 /

0 6 u 16 21 31

Prefixed Store Word MLS:D-form

pstw RS,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 [8(9 |12 (14 31
Suffix::
36 RS RA dl
0 6 il 16 kil
if “stw” then

EA « (RAJO) + EXTS64(D)
if “pstw” & R=0 then

EA « (RAJO) + EXTS64(d0j|dL)
if “pstw” & R=1 then

EA « CIA + EXTS64(d0]|d1)

NEM(EA, 4) < (RS)32:63

For stw, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value D, sign-extended to 64 bits.

For pstw with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstw with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS)3,-43 are stored into the word in storage addressed
by EA.

For pstw, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Store Word:

Extended mnemonic: Equivalent to:
pstw Rx, value(Ry) pstu Rx,value(Ry),0
pstw Rx,value pstw Rx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 4) « (RS)32:63

Let the effective address (EA) be the sum
(RA]0) + (RB). (RS)3p-43 are stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
MEM(EA, 4) «— (RS)32:63
RA « EA

Let the effective address (EA) be the sum (RA) + D.
(RS)3,.43 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed X-form
stwux RS,RA,RB

31 RS RA RA 183 /

0 6 u 16 21 31

EA « (RA) + (RB)
MEM(EA, 4) « (RS)32-63
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).
(RS)3,-43 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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3.3.3.1 64-bit Fixed-Point Store Instructions

Store Doubleword DS-form

std RS,DS(RA)

Store Doubleword Indexed X-form

stdx RS,RA,RB

62 RS RA DS 0

0 6 u 16 30 31

31 RS RA RA 149 /

0 6 u 16 21 31

Prefixed Store Doubleword 8LS:D-form

pstd RS,D(RA),R
Prefix:
1 0 |0| /I |R| /I do
0 6 |(8(9 (1112 |14 31
Suffix:
61 RS RA dl
0 6 il 16 kil
if “std” then

EA « (RAJ0) + EXTS64(DS||0b00)
if “pstd” & R=0 then

EA « (RAJ0) + EXTS64(d0j|dL)
if “pstd” & R=1 then

EA « CIA + EXTS64(d0]|d1)

MEM(EA, 8) € (RS)

For std, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pstd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

(RS) is stored into the doubleword in storage addressed
by EA.

For pstd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Store Doubleword:

Extended mnemonic:
pstd Rx,value(Ry) pstd
pstd Rx,value pstd

Equivalent to:
Rx,value(Ry),0
Rx,value(0),1

ifRA=0thenbh« 0
else b « (RA)
EA « b + (RB)

MEM(EA, 8) « (RS)

Let the effective address (EA) be the sum
(RAJ0) + (RB).

(RS) is stored into the doubleword in storage addressed
by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form
stdu RS,DS(RA)

62 RS RA DS 1

0 6 u 16 30 31

EA « (RA) + EXTS(DS || 0b0O)
VEN(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum
(RA) + (DS]|0b00).

(RS) is stored into the doubleword in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

31 RS RA RA 181 /
0 6 u 16 21 31]

EA « (RA) + (RB)
MEM(EA, 8) « (RS)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).

(RS) is stored into the doubleword in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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3.3.4 Fixed Point Load and Store Quadword Instructions

For |g, the quadword in storage addressed by EA is
loaded into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA
and the odd-numbered GPR is loaded with the double-
word addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

On the other hand, for plq, the quadword in storage
addressed by EA is loaded into an even-odd pair of
GPRs as follows. Independent of endian mode, the
even-numbered GPR is loaded with the doubleword
from storage addressed by EA and the odd-numbered
GPR is loaded with the doubleword addressed by EA+8.

In the preferred form of the Load Quadword instruction
RA # RTp+l.

For stq, the contents of an even-odd pair of GPRs is
stored into the quadword in storage addressed by EA
as follows. In Big-Endian mode, the even-numbered
GPR is stored into the doubleword in storage
addressed by EA and the odd-numbered GPR is stored
into the doubleword addressed by EA+8. In Little-Endian
mode, the even-numbered GPR is stored
byte-reversed into the doubleword in storage
addressed by EA+8 and the odd-numbered GPR is
stored byte-reversed into the doubleword addressed by
EA.

On the other hand, for pstq, the contents of an
even-odd pair of GPRs is stored into the quadword in
storage addressed by EA as follows. Independent of
endian mode, the even-numbered GPR is stored into
the doubleword in storage addressed by EA and the
odd-numbered GPR is stored into the doubleword
addressed by EA+8.

—— Programming Note

The Ig and stq instructions exist primarily to permit
software to access quadwords in storage "atomi-
cally"; see Section 1.4 of Book Il. Because GPRs
are 64 bits long, the Fixed-Point Facility on many
designs is optimized for storage accesses of at
most eight bytes. On such designs, the quadword
atomicity required for Ig and stq makes these
instructions complex to implement, with the result
that the instructions may perform less well on these
designs than the corresponding two Load Double-
word or Store Doubleword instructions.

The complexity of providing quadword atomicity
may be especially great for storage that is Write
Through Required or Caching Inhibited (see
Section 1.6 of Book II). This is why Iq and stq are
permitted to cause the data storage error handler to
be invoked if the specified storage location is in
either of these kinds of storage (see Section
3.3.1.1).
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Load Quadword DQ-form
Iq RTp,DQ(RA)

56 RTp RA DQ i
0 6 1n 16 28 31

Prefixed Load Quadword 8LS:D-form

plg RTp,D(RA),R
Prefix:
1 0 |0| /I |R| /I do
0 6 (8|9 [1]12 |4 kil
Suffix::
56 RTp RA dl
0 6 il 16 kil
if “lg” then

EA « (RA]0) + EXTS64(DQ||0b0000)

if “plg” & R=0 then
EA « (RA]O) + EXTS64(d0||d1)

if “plg” & R=1 then
EA « CIA + EXTS64(d0||d1)

if Big-Endian byte ordering then
RTp| IRTp+1 « MEM(EA,16)

if “1g” and Little-Endian byte ordering then
RTp| IRTp+1 « MEM(EA,16)

if “plg” and Little-Endian byte ordering then
RTp+1] |[RTp « MEM(EA,16)

For 1g, let the effective address (EA) be the sum of the
contents of register RA, or the value O if RA=0, and the
value DQ||0b0000, sign-extended to 64 bits.

For plg with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For plg with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

For Big-Endian byte ordering, the quadword in storage
addressed by EA is loaded into RTp| |[RTp+1.

For |q and Little-Endian byte ordering, the quadword in
storage addressed by EA is byte-reversed and loaded
into RTp| |RTp+1.

For plg and Little-Endian byte ordering, the quadword
in storage addressed by EA is byte-reversed and loaded
into RTp+1] |RTp.

If RTp is odd or RTp=RA, the instruction form is invalid. If
RTp=RA, an attempt to execute this instruction will invoke

the system illegal instruction error handler. (The RTp=RA
case includes the case of RTp=RA=0.)

The quadword in storage addressed by EA is loaded
into an even-odd pair of GPRs as follows. In
Big-Endian mode, the even-numbered GPR is loaded
with the doubleword from storage addressed by EA and
the odd-numbered GPR is loaded with the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is loaded with the byte-reversed
doubleword from storage addressed by EA+8 and the
odd-numbered GPR is loaded with the byte-reversed
doubleword addressed by EA.

For plq, if R is equal to 1 and RA is not equal to O, the
instruction form is invalid.

Programming Note

In versions of the architecture prior to v2.07, this
instruction was privileged.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Load Quadword:

Extended mnemonic: Equivalent to:
plq Rx,value(Ry) plg Rx,value(Ry),0
plq Rx,value plg Rx,value(0),1
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Store Quadword DS-form
stq RSp,DS(RA)

62 RSp RA DS 2

0 6 u 16 30 31

Prefixed Store Quadword 8LS:D-form

pstq RSp,D(RA),R
Prefix:
1 0 |0| /I |R| /I do
0 6 |(8(9 (1112 |14 31
Suffix::
60 RSp RA dl
0 6 1 16 kil
if “stq” then

EA « (RA]0) + EXTS64(DS||0b00)

if “pstg” & R=0 then
EA « (RA]O) + EXTS64(d0||d1)

if “pstq” & R=1 then
EA « CIA + EXTS64(d0||d1)

if Big-Endian byte ordering then
MEM(EA,16) « (RSp)||(RSp+1)

if “stq” and Little-Endian byte ordering then
MEM(EA,16) « (RSp)||(RSp+1)

if “pstq” and Little-Endian byte ordering then
MEM(EA,16) « (RSp+1)||(RSp)

For stq, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value DS||0b00, sign-extended to 64 bits.

For pstq with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0||d1, sign-extended to 64 bits.

For pstq with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0||d1, sign-extended to 64 bits.

For Big-Endian byte ordering, the content of register
pair RSp|] |[RSp+1 is stored into the quadword in storage
addressed by EA.

For stq and Little-Endian byte ordering, the content of
register pair RSp||RSp+l is byte-reversed and stored
into the quadword in storage addressed by EA.

For pstq and Little-Endian byte ordering, the content of
register pair RSp+1]|RSp is byte-reversed and stored
into the quadword in storage addressed by EA.

If RSp is odd, the instruction form is invalid.

The contents of an even-odd pair of GPRs is stored into
the quadword in storage addressed by EA as follows. In
Big-Endian mode, the even-numbered GPR is stored
into the doubleword in storage addressed by EA and the
odd-numbered GPR is stored into the doubleword
addressed by EA+8. In Little-Endian mode, the
even-numbered GPR is stored byte-reversed into the
doubleword in storage addressed by EA+8 and the
odd-numbered GPR is stored byte-reversed into the
doubleword addressed by EA.

For pstq, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Programming Note

In versions of the architecture prior to V. 2.07, this
instruction was privileged.

Special Registers Altered:
None

Extended Mnemonics:
Extended mnemonics for Prefixed Store Quadword:

Extended mnemonic: Equivalent to:
pstq Rx,value(Ry) pstq Rx,value(Ry),0
pstq Rx,value pstq Rx,value(0),1

66 Power ISA™ |



Version 3.1

3.3.5 Fixed-Point Load and Store with Byte Reversal Instructions

Programming Note

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed X-form

Ihbrx RT,RA,RB

Store Halfword Byte-Reverse Indexed X-form

sthbrx RS,RA,RB

31 RT RA RA 790 /

0 6 u 16 21 31

31 RS RA RA 918 /
0 6 u 16 21 31

ifRA=0thenb « 0

else b « (RA)

EA « b + (RB)

load_data « MEM(EA, 2)

RT « %80 || load_datag-15 || load_datag-7

Let the effective address (EA) be the sum (RA]0)+(RB).

Bits 0:7 of the halfword in storage addressed by EA are
loaded into RTsg-g3.

Bits 8:15 of the halfword in storage addressed by EA are
loaded into RT4g-55.

RTy-47 are set to 0.

Special Registers Altered:
None

ifRA=0thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 2) « (RS)s56:63 Il (RS)as:s5

Let the effective address (EA) be the sum (RA|0)+ (RB).

(RS)56-43 are stored into bits 0:7 of the halfword in stor-
age addressed by EA.

(RS)4g:55 are stored into bits 8:15 of the halfword in
storage addressed by EA.

Special Registers Altered:
None
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Load Word Byte-Reverse Indexed X-form

Iwbrx RT,RA,RB

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RARB

31 RT RA RA 534 /

0 6 u 16 21 31,

31 RS RA RA 662 /

0 6 u 16 21 31

if RA=0then b « 0

else b « (RA)

EA « b + (RB)

load_data « MEM(EA, 4)

RT « 320 || load_datayy-3; || load_datayg: o3
|| load_datag.,5 || load_datag-7

Let the effective address (EA) be the sum
(RAJ0)+ (RB).

Bits 0:7 of the word in storage addressed by EA are
loaded into RTxg-g3.

Bits 8:15 of the word in storage addressed by EA are
loaded into RTyg-55.

Bits 16:23 of the word in storage addressed by EA are
loaded into RT4qg-47.

Bits 24:31 of the word in storage addressed by EA are
loaded into RT3;-3g.

RTy-3; are setto 0.

Special Registers Altered:
None

ifRA=0thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 4) « (RS)se:63 Il (RS)ag:55 Il (RS)40:47
11(RS)32:39

Let the effective address (EA) be the sum (RA]0)+ (RB).

(RS)s56-63 are stored into bits 0:7 of the word in storage
addressed by EA.

(RS)45:55 are stored into bits 8:15 of the word in storage
addressed by EA.

(RS)49-47 are stored into bits 16:23 of the word in stor-
age addressed by EA.

(RS)3-39 are stored into bits 24:31 of the word in stor-
age addressed by EA.

Special Registers Altered:
None
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3.3.5.1 64-Bit Load and Store with Byte Reversal Instructions

Load Doubleword Byte-Reverse Indexed
X-form

Idbrx RT,RA,RB

Store Doubleword Byte-Reverse Indexed
X-form

stdbrx RS,RARB

31 RT RA RA 532 /

0 6 u 16 21 31

31 RS RA RA 660 /

0 6 u 16 21 31

if RA=0 thenb « 0

else b « (RA)

EA « b + (RB)

load_data « MEM(EA, 8)

RT « load_datagg.g3 || load_datasg-5ss5

|| load_datasg-47 || load_datags,-39
|| load_datass-31 || load_data;g-»3
|| load_datag.,5 || load_datag-.-

Let the effective address (EA) be the sum (RA]0)+(RB).

Bits 0:7 of the doubleword in storage addressed by EA
are loaded into RTsg-g3.

Bits 8:15 of the doubleword in storage addressed by EA
are loaded into RTyg-55.

Bits 16:23 of the doubleword in storage addressed by
EA are loaded into RT4q-47.

Bits 24:31 of the doubleword in storage addressed by
EA are loaded into RT3- 3.

Bits 32:39 of the doubleword in storage addressed by
EA are loaded into RTy4-3;.

Bits 40:47 of the doubleword in storage addressed by
EA are loaded into RT4g- 3.

Bits 48:55 of the doubleword in storage addressed by
EA are loaded into RTg. 5.

Bits 56:63 of the doubleword in storage addressed by
EA are loaded into RTj.7.

Special Registers Altered:
None

ifFRA=0thenb « 0

else b « (RA)

EA « b + (RB)

MEM(EA, 8) « (RS)se:63 |l (RS)as:s5
Il (RS)a0:47 1l (RS)32:39
Il (RS)24:31 Il (RS)16:23
Il (RS)g:15 |1 (RS)o:7

Let the effective address (EA) be the sum (RA]0)+ (RB).

(RS)s56-63 are stored into bits 0:7 of the doubleword in
storage addressed by EA.

(RS) 4555 are stored into bits 8:15 of the doubleword in
storage addressed by EA.

(RS) 49-47 are stored into bits 16:23 of the doubleword in
storage addressed by EA.

(RS)3,-39 are stored into bits 23:31 of the doubleword in
storage addressed by EA.

(RS),4-31 are stored into bits 32:39 of the doubleword in
storage addressed by EA.

(RS)16-23 are stored into bits 40:47 of the doubleword in
storage addressed by EA.

(RS)g-15 are stored into bits 48:55 of the doubleword in
storage addressed by EA.

(RS)g-7 are stored into bits 56:63 of the doubleword in
storage addressed by EA.

Special Registers Altered:
None
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3.3.6 Fixed-Point Load and Store Multiple Instructions

Load Multiple Word D-form

Imw RT,D(RA)

46 RT RA D
0 6 u 16

ifFRA=0thenb« 0

else b « (RA)
EA « b + EXTS(D)
r « RT

do while r < 31
GPR(r) « 320 || MEM(EA, 4)
rer+1
EA « EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0) + D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

Store Multiple Word D-form

stmw RS,D(RA)

47 RS RA D
0 6 u 16

ifFRA=0thenb« 0

else b « (RA)
EA « b + EXTS(D)
r « RS

do while r < 31
MEM(EA, 4) « GPR(r)32:63
rer+1
EA « EA + 4

Let n = (32-RS). Let the effective address (EA) be the
sum (RA|0) + D.

n consecutive words starting at EA are stored from the
low-order 32 bits of GPRs RS through 31.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None
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3.3.7 Fixed-Point Move Assist Instructions [Phased Out]

The Move Assist instructions allow movement of an
arbitrary sequence of bytes from storage to registers or
from registers to storage without concern for alignment.
These instructions can be used for a short move
between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

The Move Assist instructions have preferred forms; see
Section 1.8.1, “Preferred Instruction Forms” on

page 24. In the preferred forms, register usage satisfies
the following rules.

e RS=4o0r5
e RT=4o0r5
« last register loaded/stored < 12

For some implementations, using GPR 4 for RS and RT
may result in slightly faster execution than using GPR
5.
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Load String Word Immediate X-form
Iswi RT,RA,NB

Load String Word Indexed X-form
Iswx RT,RA,RB

31 RT RA NB 597 /
0 6 u 16 21 31,

31 RT RA RB 533 /

0 6 u 16 21 31

if RA =0 then EA « 0
else EA « (RA)
if NB = 0 then n « 32
else n < NB
r«RT -1
i« 32
do while n >0
if 1 = 32 then
r«r+1 (mod 32)
GPR(r) « 0
GPR(N)j-j+7 < MEM(EA, 1)
i«1+8
if 1 =64 then i « 32
EA « EA + 1
nen-1

Let the effective address (EA) be (RA]0). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to load. Let
nr=CEIL(n/4); nr is the number of registers to receive
data.

n consecutive bytes starting at EA are loaded into GPRs
RT through RT+nr-1. Data are loaded into the low-order
four bytes of each GPR; the high-order four bytes are
setto 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)
N « XERs7:63
re«<RT -1
i« 32
RT « undefined
do while n >0
if i = 32 then
r«r+1(mod 32)
GPR(r) « 0
GPR(r)j-j+7 < MEM(EA, 1)
i«i+8
if i =64 then i « 32
EA « EA + 1
nen-1

Let the effective address (EA) be the sum (RA]0)+ (RB).
Let n=XERs7.¢3; N is the number of bytes to load. Let
nr=CEIL(n/4); nr is the number of registers to receive
data.

If n>0, n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register RT+nr-1
are only partially filled, the unfilled low-order byte(s) of
that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA or
RT=RB, the instruction form is invalid.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None
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Store String Word Immediate X-form

stswi RS,RA,NB

Store String Word Indexed X-form
stswx RS,RA,RB

31 RS RA NB 725 /
0 6 u 16 21 31,

31 RS RA RB 661 /

0 6 u 16 21 31

if RA =0 then EA « 0

else EA « (RA)
if NB = 0 then n « 32
else n < NB
r<RS-1

i« 32

do while n >0
ifi=32thenr «r+1 (nod 32)
MEM(EA, 1) « GPR(N)j-j+7
i«1+8
if 1 =64 theni « 32
EA « EA + 1
nen-1

Let the effective address (EA) be (RA|0). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to store.
Let nr = CEIL(n/4); nr is the number of registers to
supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode, the system align-
ment error handler is invoked.

Special Registers Altered:
None

ifRA=0thenb « 0

else b « (RA)

EA « b + (RB)

N « XERs7:63

r<RS-1

i« 32

do while n >0
ifi=32thenr «r +1 (mod 32)
MEM(EA, 1) « GPR(N)j-i+7

P<i+8
if i =64 then i1 « 32
EA « EA + 1
nen-1

Let the effective address (EA) be the sum
(RA]0) + (RB). Let n = XERs7.43; N is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

If n=0, no bytes are stored.

This instruction is not supported in Little-Endian mode.
If it is executed in Little-Endian mode and n>0, the sys-
tem alignment error handler is invoked.

Special Registers Altered:
None
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3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bhit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bhits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Programming Note

Instructions with the OE bit set or that set CA and
CA32 may execute slowly or may prevent the execu-
tion of subsequent instructions until the instruction
has completed.
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3.3.9 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.8, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. These instructions also always set
CA32 to reflect the carry out of bit 32. The XO-form
Arithmetic instructions set SO, OV, and OV32 when
OE=1 to reflect overflow of the result. Except for the
Multiply Low and Divide instructions, the setting of SO
and OV is mode-dependent, and reflects overflow of
the 64-bit result in 64-bit mode and overflow of the
low-order 32-bit result in 32-bit mode, while OV32
reflects overflow of the low-order 32-bit result indepen-
dent of the mode. For XO-form Multiply Low and Divide
instructions, the setting of SO, OV, and OV32 is
mode-independent, and reflects overflow of the 64-bit
result for mulld, divd, divde, divdu and divdeu, and
overflow of the low-order 32-bit result for mullw, divw,
divwe, divwu, and divweu.

Programming Note

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix C for additional extended mnemonics.

Chapter 3. Fixed-Point Facility 75



Version 3.1

Add Immediate D-form

addi RT,RA,SI

14 RT RA Sl

0 6 u 16 31

Prefixed Add Immediate MLS:D-form

paddi RT,RA,SIR
Prefix:
1 20| /11 |R| 1 si0
0 6 (8|9 [1]12 |4 kil
Suffix:
14 RT RA sil
0 6 il 16 kil

if “addi” then

RT « (RA]O) + EXTS64(SI)
if “paddi” & R=0 then

RT « (RA]0) + EXTS64(siO|sil)
if “paddi” & R=1 then

RT « CIA + EXTS64(siO||sil)

For addi, let the sum of the contents of register RA, or
the value 0 if RA=0, and the value Sl, sign-extended to
64 bits, is placed into register RT.

For paddi with R=0, the sum of the contents of register
RA, or the value O if RA=0, and the value siO||sil,
sign-extended to 64 bits, is placed into register RT.

For paddi with R=1, the sum of the address of the
instruction and the value si0||sil, sign-extended to 64
bits, is placed into register RT.

For paddi, if R is equal to 1 and RA is not equal to O, the
instruction form is invalid.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Add Immediate:

Extended mnemonic: Equivalent to:

li Rx,value addi Rx,0,value
la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,-value

Examples of extended mnemonics for Prefixed Add
Immediate:

Extended mnemonic: Equivalent to:

paddi Rx,Ry,value paddi Rx,Ry,value,0
pli Rx,value paddi Rx,0,value,0
pla Rx,value(Ry) paddi Rx,Ry,value,0
pla Rx,value paddi Rx,0,value,1
psubi Rx,Ry,value paddi Rx,Ry,-value,0

— Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

Add Immediate Shifted D-form
addis RT,RA,SI

15 RT RA Sl
0 6 n 16 31

if RA = 0 then RT « EXTS(SI || °0)
else RT « (RA) + EXTS(SI || *%0)

The sum (RAJ0) + (SI || 0x0000) is placed into regis-
ter RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended mnemonic: Equivalent to:
lis Rx,value addis Rx,0,value
subis Rx,disp(Ry) addis Rx,Ry,-value

Add PC Immediate Shifted DX-form
addpcis RT,D

19 RT dl do 2 02
0 6 u 16 26 31

D « doJd1]]d2
RT « NIA + EXTS(D || *0)

The sum of NIA + (D || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add PC Immedi-
ate Shifted:

Extended mnemonic: Equivalent to:
Inia RX addpcis Rx,0
subpcis Rx,value addpcis Rx,-value
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Add XO-form Subtract From XO-form
add RT,RA,RB (OE=0 Rc=0) subf RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1) subf. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0) subfo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1) subfo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB  |0f 266 Re 31 RT RA RB  [0F 40 Re
0 6 u 16 2122 31 0 6 u 16 2122 31
RT « (RA) + (RB) RT « 7(RA) + (RB) + 1
The sum (RA) + (RB) is placed into register RT. The sum =(RA) + (RB) + 1is placed into register RT.
Special Registers Altered: Special Registers Altered:
CRO (if Re=1) CRO (if Re=1)
S0 0V 0v32 (if OE=1) SO OV 0v32 (if OE=1)
Add Immediate Carrying D-form Extended Mnemonics:
) Example of extended mnemonics for Subtract From:
addic RT,RA,SI
Extended mnemonic: Equivalent to:
12 RT RA SI sub RX,Ry,Rz subf Rx,Rz,Ry
0 6 1 16 31

RT « (RA) + EXTS(SD)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CA CA32

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended mnemonic: Equivalent to:
subic Rx,Ry,value addic Rx,Ry, -value

Add Immediate Carrying and Record D-form

addic. RT,RA,SI

Subtract From Immediate Carrying D-form

subfic RT,RA,SI

8 RT RA Sl
0 6 u 16

31

13 RT RA Sl

0 6 u 16 31

RT « (RA) + EXTS(SD)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA CA32

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended mnemonic: Equivalent to:
subic. Rx,Ry,value addic. Rx,Ry,-value

RT « =1(RA) + EXTS(SI) + 1
The sum =(RA) + Sl + 1is placed into register RT.

Special Registers Altered:
CA CA32
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Add Carrying XO-form

Subtract From Carrying XO-form

addc RT,RA,RB (OE=0 Rc=0) subfc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1) subfc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0) subfco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1) subfco. RT,RARB (OE=1 Rc=1)
31 RT RA RB  |0f 10 Re 31 RT RA RB  [0F 8 Re
0 6 u 16 21122 31 0 6 u 16 2122 31
RT « (RA) + (RB) RT « ~(RA) + (RB) + 1
The sum (RA) + (RB) is placed into register RT. The sum =(RA) + (RB) + 1is placed into register RT.
Special Registers Altered: Special Registers Altered:
CA CA32 CA CA32
CRO (if Re=1) CRO (if Re=1)
S0 OV 0v32 (if OE=1) S0 OV 0V32 (if OE=1)
Extended Mnemonics:
Example of extended mnemonics for Subtract From
Carrying:
Extended mnemonic: Equivalent to:
subc Rx,Ry,Rz subfc Rx,Rz,Ry
Add Extended XO-form Subtract From Extended XO-form
adde RT,RA,RB (OE=0 Rc=0) subfe RT,RA,RB (OE=0 Rc=0)
adde. RT,RARB (OE=0 Rc=1) subfe. RT,RA,RB (OE=0 Rc=1)
addeo RT,RARB (OE=1 Rc=0) subfeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RARB (OE=1 Rc=1) subfeo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB  |0f 138 Re 31 RT RA RB  [0F 136 Re
0 6 1 16 2122 31 0 6 il 16 2122 31

RT « (RA) + (RB) + CA
The sum (RA) + (RB) + CAis placed into register RT.
Special Registers Altered:

CA CA32
CRO (if Re=1)
SO OV 0V32 (if OE=1)

RT < -(RA) + (RB) + CA
The sum =(RA) + (RB) + CAis placed into register RT.
Special Registers Altered:

CA CA32
CRO (if Re=1)
SO OV 0V32 (if OE=1)
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Add to Minus One Extended XO-form

Subtract From Minus One Extended XO-form

addme RT,RA (OE=0 Rc=0) subfme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1) subfme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0) subfmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1) subfmeo. RT,RA (OE=1 Rc=1)

31 RT RA mn OE 234 Re 31 RT RA i OF 232 Re
0 6 1 16 2122 31 0 6 1 16 21[22 31

RT « (RA) +CA -1
The sum (RA) + CA + %1 is placed into register RT.
Special Registers Altered:

RT « -(RA) + CA - 1
The sum ~(RA) + CA + 541 is placed into register RT.
Special Registers Altered:

CA CA32 CA CA32
CRO (if Re=1) CRO (if Re=1)
S0 OV 0v32 (if OE=1) S0 OV 0vV32 (if OE=1)
Add to Zero Extended XO-form Subtract From Zero Extended XO-form
addze RT,RA (OE=0 Rc=0) subfze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1) subfze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0) subfzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1) subfzeo. RT,RA (OE=1 Rc=1)
31 RT RA J// 202 Re 31 RT RA J// 1 200 Re
0 6 u 16 2122 31 0 6 u 16 2122 31
RT « (RA) + CA RT « =(RA) + CA
The sum (RA) + CAis placed into register RT. The sum =(RA) + CAis placed into register RT.
Special Registers Altered: Special Registers Altered:
CA CA32 CA CA32
CRO (if Re=1) CRO (if Re=1)
S0 OV 0v32 (if OE=1) S0 OV 0V32 (if OE=1)

Programming Note

The setting of CA and CA32 by the Add and Subtract From instructions, including the Extended versions thereof, is
mode-dependent. If a sequence of these instructions is used to perform extended-precision addition or subtrac-
tion, the same mode should be used throughout the sequence.
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Add Extended using alternate carry bit
Z23-form

addex RT,RA,RB,CY

31 RT RA RB |CY 170 /

0 6 u 16 21 |23 31

if CY=0 then RT « (RA) + (RB) + OV

For CY=0, the sum (RA) + (RB) + OV is placed into regis-
ter RT.

For CY=0, 0V is set to 1 if there is a carry out of bit O of
the sum in 64-bit mode or there is a carry out of bit 32
of the sum in 32-bit mode, and set to 0 otherwise. 0V32
is set to 1 if there is a carry out of bit 32 bit of the sum.

CY=1, CY=2, and CY=3 are reserved.

Special Registers Altered:

oV 0V32 (if CY=0)

Programming Note

Negate XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

31 RT RA i OF 104 Re
0 6 1 16 21[22 31

An addc-equivalent instruction using OV is not pro-
vided. An equivalent capability can be emulated by
first initializing OV to 0, then using addex. OV can
be initialized to 0 using subfo, subtracting any
operand from itself.

RT « -(RA) + 1
The sum =(RA) + 1is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains  the most  negative 64-bit number
(0x8000_0000_0000_0000), the result is the most nega-
tive number and, if OE=1, OV is set to 1. If (RA)35-63 CON-
tain the most negative 32-bit number (0x8000_0000) and
OE=1, 0V32 is set to 1.

Similarly, if the processor is in 32-bit mode and
(RA)3p.63 contain the most negative 32-bit number
(0x8000_0000), the low-order 32 bits of the result contain
the most negative 32-bit number and, if OE=1, OV and
0V32 are set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV 0v32 (if OE=1)
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Multiply Low Immediate D-form

mulli RT,RA,SI

7 RT RA Sl

Multiply High Word XO-form

0 6 u 16 31

prodg-107 < (RA) x EXTS(SI)
RT « prodgs:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the Sl field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word XO-form

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Re=1)

31 RT RA RB | 75 Re
0 6 1 16 21[22 31

prodg:e3 < (RA)32:63 X (RB)32:63

RT32:63 ¢ Prodp:ag

RTg-31 « undefined
The 32-bit operands are the low-order 32 hits of RA and
of RB. The high-order 32 bits of the 64-bit product of the
operands are placed into RT3;.63. The contents of RTy-3;
are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 235 Re
0 6 1 16 21|22 31

CRO (bits 0:2 undefined in 64-bit mode) (if Re=1)
Multiply High Word Unsigned XO-form

mulhwu RT,RA,RB (Rc=0)

mulhwu. RT,RA,RB (Re=1)

31 RT RA RB | 11 Re

0 6 1 16 21(22 31

RT « (RA)32:63 X (RB)32:63

The 32-bit operands are the low-order 32 bits of RA and
of RB. The 64-bit product of the operands is placed into
register RT.

If OE=1 then OV and 0V32 are set to 1 if the product can-
not be represented in 32 hits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO OV 0v32 (if OE=1)

—— Programming Note

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

prodg:e3 < (RA)32:63 X (RB)32:63
RT32:63 ¢ Prodp:3;
RTg-31 ¢ undefined

The 32-bit operands are the low-order 32 bits of RA and
of RB. The high-order 32 bits of the 64-bit product of the
operands are placed into RT3;.63. The contents of RTy-3;
are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field O are set by signed comparison of the result
to zero.

Special Registers Altered:

CRO (bits 0:2 undefined in 64-bit mode) (if Re=1)
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Divide Word XO-form

Divide Word Unsigned XO-form

divw RT,RA,RB (OE=0 Rc=0) divwu RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1) divwu. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0) divwuo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1) divwuo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 491 Rel 31 RT RA RB  |Og] 459 Re|
0 6 1 16 21122 31 0 6 1 16 21|22 31

diVidend0:31 — (RA)32:63
divisorg.3; ¢ (RB)32:63
RT35.63 < dividend =+ divisor
RTg-31 ¢ undefined

The 32-bit dividend is (RA)35.63. The 32-bit divisor is
(RB)35-3. The 32-bit quotient is placed into RT3,.63. The
contents of RTy.3; are undefined. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor] if the dividend is nonnega-
tive, and -|divisor| < r < 0if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and 0V32 are set
to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode)
SO OV 0v32

(if Re=1)
(if OE=1)

—— Programming Note

The 32-bit signed remainder of dividing (RA)3;.43 by
(RB)3,.43 can be computed as follows, except in the
case that (RA)32:63 = -231 and (RB)32:63 = -1.

divw  RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf  RT,RT,RA # RT = remainder

diVidendo:gl — (RA)32:63
divisorg:3; < (RB)32:63
RT32.63 ¢« dividend + divisor
RTg-31 « undefined

The 32 bit dividend is (RA)3,.63. The 32-bit divisor is
(RB)3,.43. The 32-bit quotient is placed into RT3,-63. The
contents of RTj.3; are undefined. The remainder is not
supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient x divisor) +r

where 0 < r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In this case, if OE=1 then OV and 0V32 are set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode)
SO 0oV 0v32

(if Re=1)
(if OE=1)

—— Programming Note

The 32-bit unsigned remainder of dividing (RA)35-43
by (RB)3,-63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf  RT,RT,RA # RT = remainder
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Divide Word Extended XO-form

Divide Word Extended Unsigned XO-form

divwe RT,RA,RB (OE=0 Rc=0) divweu RT,RA,RB (OE=0 Rc=0)
divwe. RT,RA,RB (OE=0 Rc=1) divweu. RT,RA,RB (OE=0 Rc=1)
divweo RT,RA,RB (OE=1 Rc=0) divweuo RT,RA,RB (OE=1 Rc=0)
divweo. RT,RA,RB (OE=1 Rc=1) divweuo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 427 Rel 31 RT RA RB  |Og] 395 Re|
0 6 1 16 21|22 31 0 6 1 16 21[22 31

dividendg.g3 « (RA)32:63 11 320
divisorg.3; ¢ (RB)32:63

RT35.63 « dividend =+ divisor
RTg-31 ¢ undefined

The 64-bit dividend is (RA)3;-63 || 20. The 32-bit divi-
sor is (RB)3,-43. If the quotient can be represented in 32
bits, it is placed into RT3,-¢3. The contents of RTj.3; are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor] if the dividend is nonnega-
tive, and -|divisor| < r < 0if the dividend is negative.

If the quotient cannot be represented in 32 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then 0V and 0V32 are set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode)
SO OV 0v32

(if Re=1)
(if OE=1)

dividendg-g3 « (RA)32-63 11 320
divisorg.3; < (RB)32:63

RT32.63 ¢« dividend + divisor
RTg-31 « undefined

The 64-bit dividend is (RA)3;.¢3 |1 20. The 32-bit divi-
sor is (RB)3,-63. If the quotient can be represented in 32
bits, it is placed into RT3,-¢3. The contents of RT,.3; are
undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned inte-
ger that satisfies

dividend = (quotient x divisor) +r
where 0 < r < divisor.
If (RA) = (RB), or if an attempt is made to perform the
division
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if 0E=1 then 0V and 0V32 are set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode)
SO 0oV 0v32

(if Re=1)
(i OE=1)
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Programming Note

Unsigned long division of a 64-bit dividend contained in
two 32-bit registers by a 32-bit divisor can be computed
as follows. The algorithm is shown first, followed by
Assembler code that implements the algorithm. The
dividend is Dh || DI, the divisor is Dv, and the quotient
and remainder are Q and R respectively, where these
variables and all intermediate variables represent
unsigned 32-bit integers. It is assumed that Dv > Dh,
and that assigning a value to an intermediate variable
assigns the low-order 32 bits of the value and ignores
any higher-order bits of the value. (In both the algorithm
and the Assembler code, “r1” and “r2” refer to “remain-
der 1" and “remainder 2", rather than to GPRs 1 and 2.)

Algorithm:

3. gl « divweu Dh, Dv
4. rl«-(qlxDv) # remainder of step 1
divide operation
(see Note 1)
5. g2 « divwu DI, Dv
6. r2« DI- (g2 xDv) # remainder of step 2
divide operation
7. Q«qgl+qg2
8. Rerl+r2
9. if(R<r2)|(R=Dv)then # (see Note 2)
Q « Q +1 #increment quotient
R « R - Dv # decrement rem’der

Assembler Code:

# Dh in r4, D1 in r5
# Dv in r6

divweu 1r3,r4,r6 # ql

divwu r7,r5,16 # q2

mullw r8,r3,16 # -rl = ql * Dv

mullw r0,r7,16 # g2 * Dv

subf r10,r0,r5 # r2 =Dl - (g2 * Dv)

add r3,r3,r7 #Q=0ql +q2

subf r4,r8,rl0 #R=rl+ 12

cmplw r4,rl0 #R<r2?

blt *+12 # must adjust Q and R if yes
cmplw 14, r6 # R 2=2Dv?

blt *+12 # must adjust Q and R if yes
addi r3,r3,1 #0=0+1

subf rd,r6,rd #R =R - Dv

# Quotient in r3
# Remainder in r4

Notes:

1. The remainder is Dh || %20 - (g1 ~ Dv). Because
the remainder must be less than Dv and Dv < 2%,
the remainder is representable in 32 bits. Because
the low-order 32 bits of bh || 320 are Os, the
remainder is therefore equal to the low-order 32
bits of -(q1l x Dv). Thus assigning -(ql x Dv) torl
yields the correct remainder.

2. Risless than r2 (and also less than rl) if and only
if the addition at step 6 carried out of 32 bits — i.e.,
if and only if the correct sum could not be repre-
sented in 32 bits — in which case the correct sum
is necessarily greater than Dv.

3. For additional information see the book Hacker's
Delight, by Henry S. Warren, Jr., as potentially
amended at the web site http://www.hackersde-
light.org.
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Modulo Signed Word X-form

modsw RT,RA,RB

Modulo Unsigned Word X-form

moduw RT,RA,RB

31 RT RA RB 779 /
0 6 1 16 21 31

31 RT RA RB 267 /
0 6 1 16 21 31

dividendy.3; < (RA)3p:63
divisorg.3; ¢ (RB)zp:63-
RT35-63 « dividend % divisor
RTp-31 « undefined

The 32-bit dividend is (RA)s;.53. The 32-bit divisor is
(RB)3;-43. The 32-bit remainder of the dividend divided
by the divisor is placed into RT3,.43. The contents of
RTy-3; are undefined. The quotient is not supplied as a
result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)

where 0 < remainder < |divisor]| if the dividend is
nonnegative, and -|divisor] < remainder < 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 % -1
<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None

dividendy.3; < (RA)3p:63
divisorg.z; ¢ (RB)3z:e3
RT3.63 « dividend % divisor
RTg-31 « undefined

The 32-bit dividend is (RA)35.¢3. The 32-bit divisor is
(RB)3,.43. The 32-bit remainder of the dividend divided
by the divisor is placed into RT3,.43. The contents of
RTg:31 are undefined. The quotient is not supplied as a
result.

Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies
remainder = dividend - (quotient x divisor)
where 0 < remainder < divisor.
If an attempt is made to perform any of the divisions
<anything> % 0

then the contents of register RT are undefined.

Special Registers Altered:
None
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Deliver A Random Number X-form — Programming Note

darn RT,L The random number generator provided by this
instruction is NIST SP800-90B and SP800-90C
31 RT | (L 755 / compliant to the extent possible given the com-
0 6 R L 2L AL pleteness of the standards at the time the hardware
RT « random(L) is designed. The random number generator pro-
vides a minimum of 0.5 bits of entropy per bit.
A random number is placed into register RT in a format

selected by L as shown in the following table. The
value OxFFFFFFFF_FFFFFFFF indicates an error condition.
For L=0, the random number range is 0:0xFFFFFFFF. For
L=1 and L=2, the random number range is
0:0XFFFFFFFF_FFFFFFFE.

L Format

0 %20 |1 CRNg:3y
1 CRNp: 63

2 RRNp: 63

3 reserved

Format above is for non-error conditions.
OXFFFFFFFF_FFFFFFFF for error conditions.
CRN = conditioned random number

RRN = raw random number

A raw random number is unconditioned noise source
output. A conditioned random number has been pro-
cessed by hardware to reduce bias.

Special Registers Altered:
none

—— Programming Note

32-bit software running in an environment that does
not preserve the high-order 32 bits of GPRs across
invocations of the system error handler, signal han-
dlers, event-based branch handlers, etc. may use
the L=0 variant of darn and interpret the value
OXFFFFFFFF to indicate an error condition. The fact
that the error condition includes the valid value
0x00000000_FFFFFFFF together with the true error
value OxFFFFFFFF_FFFFFFFF is not a problem.

—— Programming Note

When the error value is obtained, software is
expected to repeat the operation. If a non-error
value has not been obtained after several attempts,
a software random number generation method
should be used. The recommended number of
attempts may be implementation specific. In the
absence of other guidance, ten attempts should be
adequate.
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3.3.9.1 64-bit Fixed-Point Arithmetic Instructions

Multiply Low Doubleword XO-form

Multiply High Doubleword XO-form

mulhd RT,RA,RB (Rc=0)
mulhd. RT,RA,RB (Re=1)

31 RT RA RB | 73 Re
0 6 n 16 21(22 31

mulld RT,RA,RB (OE=0 Rc=0)
mulld. RT,RA,RB (OE=0 Rc=1)
mulldo RT,RA,RB (OE=1 Rc=0)
mulldo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 233 Rel
0 6 n 16 21(22 31

prodp:127 « (RA) x (RB)
RT « prodes:127
The 64-bit operands are (RA) and (RB). The low-order

64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV and 0V32 are set to 1 if the product can-
not be represented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)
SO OV 0v32 (if OE=1)

Programming Note

prodg.1p7 < (RA) x (RB)
RT « pr0d0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Re=1)

Multiply High Doubleword Unsigned XO-form

mulhdu RT,RARB (Re=0)
mulhdu. RT,RARB (Re=1)

31 RT RA RB | 9 Re|
0 6 1 16 21|22 31

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the

operand having the smaller absolute value.

prodo:127 < (RA) x (RB)
RT « pr0d0:63

The 64-bit operands are (RA) and (RB). The high-order
64 bits of the 128-bit product of the operands are
placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero.

Special Registers Altered:
CRO (if Re=1)
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Multiply-Add High Doubleword VA-form

maddhd RT,RA.RB,RC

4 RT RA RB RC 48
0 6 un 16 21 26 31

prodo:127 < (RA) x (RB)
Sumgy-197 ¢ prod + EXTS(RC)
RT « SuMg-63

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is added
to (RC). The high-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None

Multiply-Add High Doubleword Unsigned
VA-form

maddhdu RT,RA.RB,RC

4 RT RA RB RC 49

0 6 u 16 21 26 31

prodo:157 < (RA) x (RB)
Sumg.1p7 « prod + EXTZ(RC)
RT « SuMMy-63

The 64-bit operands are (RA), (RB), and (RC). The
128-hit product of the operands (RA) and (RB) is added
to (RC). The high-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
unsigned integers.

Special Registers Altered:
None

Multiply-Add Low Doubleword VA-form

maddid RT,RA.RB,RC

4 RT RA RB RC 51
0 6 u 16 21 26 31

prody:1p7 « (RA) x (RB)
Sumg-1p7 « prod + EXTS(RC)
RT « sumgy. 157

The 64-bit operands are (RA), (RB), and (RC). The
128-bit product of the operands (RA) and (RB) is added
to (RC). The low-order 64 bits of the 128-bit sum are
placed into register RT.

All three operands and the result are interpreted as
signed integers.

Special Registers Altered:
None
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Divide Doubleword XO-form

Divide Doubleword Unsigned XO-form

divd RT,RA,RB (OE=0 Rc=0) divdu RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divdu. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divduo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1) divduo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 489 Rel 31 RT RA RB  |Og] 457 Re|
0 6 1 16 21122 31 0 6 1 16 21|22 31

dividend0:63 «— (RA)
divisorg-g3 < (RB)
RT « dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 + -1

<anything> + 0
then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV and OV32 are
setto 1.

Special Registers Altered:
CRO (if Re=1)
SO OV 0v32 (if OE=1)

—— Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -2%% and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf  RT,RT,RA # RT = remainder

diVidEndo:63 «— (RA)
divisorg-g3 < (RB)
RT « dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient is placed into register RT. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient x divisor) +r
where 0 <r < divisor.
If an attempt is made to perform the division
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In this case, if OE=1 then OV and 0V32 are set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV 0v32 (if OE=1)

— Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf  RT,RT,RA # RT = remainder
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Divide Doubleword Extended XO-form

divde RT,RA,RB (OE=0 Rc=0)
divde. RT,RA,RB (OE=0 Rc=1)
divdeo RT,RA,RB (OE=1 Rc=0)
divdeo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB  |0E 425 Rel
0 6 1 16 21122 31

dividendg-107 « (RA) || &%
divisorg-g3 < (RB)
RT « dividend + divisor

The 128-bit dividend is (RA) || 840. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied as
aresult.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < |divisor] if the dividend is nonnega-
tive, and -|divisor| < r < 0if the dividend is negative.

If the quotient cannot be represented in 64 bits, or if an
attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then 0V and 0V32 are set to 1.

Special Registers Altered:
CRO (if Re=1)
SO OV 0v32 (if OE=1)

Divide Doubleword Extended Unsigned
XO-form

divdeu RT,RARB (OE=0 Rc=0)
divdeu. RT,RARB (OE=0 Re=1)
divdeuo RT,RARB (OE=1 Rc=0)
divdeuo. RT,RARB (OE=1 Re=1)

31 RT RA RB  |Og] 393 Re|
0 6 1 16 21|22 31]

dividendg- 107 « RA) || %%
divisorg-g3 ¢« (RB)
RT « dividend + divisor

The 128-bit dividend is (RA) || 40. The 64-bit divisor is
(RB). If the quotient can be represented in 64 bits, it is
placed into register RT. The remainder is not supplied as
a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three bits
of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer
that satisfies

dividend = (quotient x divisor) +r
where 0 < r < divisor.
If (RA) = (RB), or if an attempt is made to perform the
division
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR Field
0. In these cases, if OE=1 then 0V and 0V32 are set to 1.

Special Registers Altered:
CRO (if Re=1)
SO oV 0v32 (if OE=1)

— Programming Note

Unsigned long division of a 128-bit dividend con-
tained in two 64-bit registers by a 64-bit divisor can
be accomplished using the technique described in
the Programming Note with the divweu instruction
description: divd[e]Ju would be used instead of
divw[e]u (and cmpld instead of cmplw, etc.).
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Modulo Signed Doubleword X-form
modsd RT,RA,RB

Modulo Unsigned Doubleword X-form

modud RT,RA,RB

31 RT RA RB 7 /

0 6 u 16 21 31,

31 RT RA RB 265 /
0 6 un 16 21 31

dividend « (RA)
divisor « (RB)
RT « dividend % divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder of the dividend divided by the
divisor is placed into register RT. The quotient is not
supplied as a result.

Both operands and the remainder are interpreted as
signed integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)

where 0 < remainder < |divisor]| if the dividend is
nonnegative, and -|divisor| < remainder < 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

<anything> % 0
0x8000_0000_0000_0000 % -1

then the contents of register RT are undefined.

Special Registers Altered:
None

dividend < (RA)
divisor « (RB)
RT « dividend % divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit remainder of the dividend divided by the
divisor is placed into register RT. The quotient is not
supplied as a result.

Both operands and the remainder are interpreted as
unsigned integers. The remainder is the unique signed
integer that satisfies

remainder = dividend - (quotient x divisor)
where 0 < remainder < divisor.

If an attempt is made to perform any of the divisions
<anything> % 0
then the contents of register RT are undefined.

Special Registers Altered:
None
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3.3.10 Fixed-Point Compare Instructions

The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the Sl field, (2) the zero-extended value of the Ul field,
or (3) the contents of register RB. The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the desighated CR field to 1, and the other
two to 0. XERgg is copied to bit 3 of the designated CR
field.

The CR field is set as follows

Bit Name Description

0 LT (RA) < Sl or (RB) (signed comparison)
(RA) <Y Ul or (RB) (unsigned comparison)

1 6T (RA) > Sl or (RB) (signed comparison)
(RA) >Y Ul or (RB) (unsigned comparison)

2 EQ (RA) = SI, Ul, or (RB)

3 SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix C for additional extended
mnemonics.
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Compare Immediate D-form

Compare Logical Immediate D-form

cmpi BF,L,RA,SI cmpli BF,L,RA,UI
11 BF |/|L RA S 10 BF |/|L RA Ul
0 6 9|10/1 16 31 0 6 91011 16 31

if L=0 then a « EXTS((RA)3263)
else a « (RA)

if a < EXTS(SI) then c « 0b100

else if a > EXTS(SI) then ¢ « 0b010

else ¢ « 0b001

CRaxpr+32:4xBF+35 < C || XERgo

The contents of register RA ((RA)3,-63 Sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the Sl field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended mnemonic: Equivalent to:

if L=0thena« 320 || (RA)az-63
else a « (RA)

if a <* (“®0 || UI) then ¢ « 00100

else if a >* (*0 || UI) then ¢ « 00010

else ¢ « 0b001

CRaxBr+32:4xBF+35 < € || XERgo

The contents of register RA ((RA)3,.43 zero-extended to
64 bits if L=0) are compared with &) || Ul, treating the
operands as unsigned integers. The result of the com-

parison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logical
Immediate:

Extended mnemonic: Equivalent to:

cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value
Compare X-form
cmp BF,L,RA,RB

31 BF |/|L RA RB 0 |
0 6 9|10/1 16 21 31

cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value
Compare Logical X-form
cmpl BF,L,RA,RB

31 BF |/|L RA RB 32 |
0 6 91011 16 21 31

if L=0 then a « EXTS((RA)3263)
b « EXTS((RB)32:63)
else a « (RA)
b « (RB)
if a < b then ¢ « 0b100
else if a > b then ¢ « 0b010
else ¢ « 0b001

CRaxgr+a2:axer+3s < € || XERso
The contents of register RA ((RA)3;-43 if L=0) are com-
pared with the contents of register RB ((RB)3;-¢3 if L=0),

treating the operands as signed integers. The result of
the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:
Examples of extended mnemonics for Compare:

Extended mnemonic: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpd cr3,Rx,Ry cmp 3,0,Rx,Ry

if L=0thena« 320 || (RA)az-63

b« 20 || (RB)32:63
else a « (RA)

b « (RB)

if a <" b then ¢ « 0b100
else if a >" b then ¢ « 00010
else ¢ « 0b001

CRaxpF+32:4xBF+35 < C || XERsp

The contents of register RA ((RA)3;-¢3 if L=0) are com-
pared with the contents of register RB ((RB)3;:43 if L=0),
treating the operands as unsigned integers. The result
of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

Extended mnemonic: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry
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3.3.10.1 Character-Type Compare Instructions

Compare Ranged Byte X-form

cmprb BF,L,RA,RB
31 BF |/|L RA RB 192 /
0 6 9|10/1 16 21 31

srcl < EXTZ((RA)s5-63)

src21hi « EXTZ((RB)3p:-39)
src2llo « EXTZ((RB)4g-47)
src22hi « EXTZ((RB)4g:55)
src2210 « EXTZ((RB)s5-63)

if L=0 then
in_range « (src22lo < srcl) & (srcl < src22hi)
else

in_range « ((src2llo < srcl) & (srcl < src2lhi)) |
((src22lo < srcl) & (srcl < src22hi))

CRyxpr+30:4xeF+35 <— 0DO || in_range || 0b0O

Let srcl be the unsigned integer value in bits 56:63 of
register RA.

Let src21hi be the unsigned integer value in bits 32:39
of register RB.

Let src21lo be the unsigned integer value in bits 40:47
of register RB.

Let src22hi be the unsigned integer value in bits 48:55
of register RB.

Let src22lo be the unsigned integer value in bits 56:63
of register RB.

Let x be considered “in range” of y:z if the value x is
greater than or equal to the value y and the value x is
less than or equal to the value z.

When L=0, the value in_range is set to 1 if srcl is in
range of src22lo:src22hi. Otherwise, the value
in_range is setto 0.

When L=1, the value in_range is set to 1 if either srcl
is in range of src21lo:src21hi, or srcl is in range of
src22lo:src22hi. Otherwise, the value in_range is set
to 0.

CR field BF is set to the value 0b0 concatenated with
in_range concatenated with 0b00.

Special Registers Altered:
CR field BF

— Programming Note

cmprb is useful for implementing character typing
functions such as isalpha(), isdigit(), isupper(),
and islower() that are implemented using one or
two range compares of the character.

A single-range compare can be implemented with
an addi to load the upper and lower bounds in the
range, such as isdigit().

addi rRNG,0,0x3930 ; loads ASCII values for “9”
and “0” into rRNG
cmprb  crTGT,0,rCHAR,rRNG ; perform range compare
sets CR field TGT to

indicate in range

A combination of addi-addis can be used to set up
2 ranges, such as for isalpha().

addi rRNG,0,0x7A61 ; loads ASCII values for “z”
and “a’ into rRNG
; appends ASCII values for “Z”
and “A” into rRNG
cmprb  crTGT,1,rCHAR,rRNG ; perform range compare on
; character in rCHAR,
setting CR field TGT to

indicate in range

addis  rRNG, rRNG,0x5A41
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Compare Equal Byte X-form
cmpegb BF,RA,RB

31 BF | // RA RB 224
0 6 9 |1 16 21

31,

srcl < GPR[RA].bit[56:63]

match < (srcl = (RB)gg-07) |
(srel = (RB)gg:15) |
(srel = (RB)ig:29) |
(srel = (RB)gs:30) |
(srel = (RB)32:30) |
(srel = (RB)gg-an) |
(srcl = (RB)gg:s5) |
(srcl = (RB)se:63)

CRyxgr+32:4xF+35 <= Ob0 || match || 0b0O

CR field BF is set to indicate if the contents of bits 56:63

of register RA are equal to the contents of any of the
bytes in register RB.

Results are undefined in 32-bit mode.

Special Registers Altered:
CR field BF

—— Programming Note

8

cmpeqb is useful for implementing character
typing functions such as isspace() that are
implemented by comparing the character to 1 or
more values.

A function such as isspace() can be implemented
by loading the 6 byte codes corresponding to
characters considered as whitespace (HT, LF, VT,
FF, CR, and SP) and using the cmpeb to compare
the subject character to those 6 values to
determine if any match occurs.

ldx rSPC,WS_CHARS ; rSPC = 0x0909_090A_0BOC_0D20
; load rSPC with all 6 ASCII
; values corresponding to
white spaces
cmpegb  2,crl,rCHAR,rSPC  ; perform match compare on
; character in rCHAR with
byte values in rSPC

In this case, the byte code for HT (0x09) was
replicated to fill the all 8 bytes to avoid a potential
miscompare.
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3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci-
fied set of conditions. If any of the conditions tested by
a Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the Sl field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition

Less Than, using signed comparison
Greater Than, using signed comparison
Equal

Less Than, using unsigned comparison
Greater Than, using unsigned comparison

A OWNPFO

Extended mnemonics for traps

A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix C for additional extended mne-
monics.
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Trap Word Immediate D-form

twi TO,RA,SI

3 TO RA Sl
0 6 u 16 31

a « EXTS((RA)32:63)

if (a < EXTS(SI)) & T0p then TRAP
if (a > EXTS(SI)) & TO, then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a <" EXTS(SI)) & TO3 then TRAP
if (a >* EXTS(SI)) & TO, then TRAP

The contents of RAj;.q3 are compared with the
sign-extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Ill).Special Registers
Altered:

None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word

Immediate:

Extended mnemonic: Equivalent to:

tugti Rx,value tw 8,Rx,value
twllei Rx, value tw 6,Rx,value

Trap Word X-form
tw TO,RARB

31 TO RA RB 4 /
0 6 n 16 21 31

a « EXTS((RA)32:63)

b « EXTS((RB)32:63)

if (a <b) & T0y then TRAP
if (a > b) & T0, then TRAP
if (a="D) & T0, then TRAP
if (a <" b) & T05 then TRAP
if (a>" b) & 70, then TRAP

The contents of RAz,-g3 are compared with the contents
of RB3,-63. If @any bit in the TO field is set to 1 and its cor-
responding condition is met by the result of the compar-
ison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Ill).Special Registers
Altered:

None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended mnemonic: Equivalent to:

tweq Rx,Ry tw 4,Rx,Ry
twlge Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0
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3.3.11.1 64-bit Fixed-Point Trap Instructions

Trap Doubleword Immediate D-form

Trap Doubleword X-form

tdi TO,RA,SI td TO,RA,RB
2 TO RA Sl 31 TO RA RB 68 I
0 6 il 16 kil 0 6 1 16 21 31
a « (RA) a « (RA)
b « EXTS(SI) b « (RB)

if (a <b) & T0y then TRAP
if (a > b) & T0, then TRAP
if (a="D) & T0, then TRAP
if (a <" b) & T05 then TRAP
if (a>"b)&T0, then TRAP

The contents of register RA are compared with the
sign-extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book IlI).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word Immediate:

Extended mnemonic: Equivalent to:
talti Rx,value tdi 16,Rx,value
tanei Rx,value tdi 24,Rx,value

3.3.12 Fixed-Point Select

Integer Select A-form

isel RT,RA,RB,BC

31 RT RA RB BC 15 /
0 6 u 16 21 26 31]

if RA=0 then a « 0 else a « (RA)
if CRBC+3Z:1 then

RT « a
else

RT « (RB)

If the contents of bit BC+32 of the Condition Register are
equal to 1, then the contents of register RA (or 0) are
placed into register RT. Otherwise, the contents of regis-
ter RB are placed into register RT.

Special Registers Altered:
None

if (a <b) & TOy then TRAP
if (a > b) & T0; then TRAP
if (a =b) & TO, then TRAP
if (a <" b) & TO5 then TRAP
if (a>"b) & T0, then TRAP

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Il1).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Double-
word:

Extended mnemonic: Equivalent to:
tdge Rx,Ry td 12,Rx,Ry
tdinl Rx,Ry td 5,Rx,Ry

Extended Mnemonics:
Examples of extended mnemonics for Integer Select:

Extended mnemonic: Equivalent to:

isellt Rx,Ry,Rz isel Rx,Ry,Rz,0
iselgt Rx,Ry,Rz isel Rx,Ry,Rz,1
iseleq Rx,Ry,Rz isel Rx,Ry,Rz,2
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3.3.13 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.8, “Other Fixed-Point Instructions” on
page 74. The Logical instructions do not change the S0,
0V, 0V32, CA, and CA32 hits in the XER.

Extended mnemonics for logical oper-
ations

Extended mnemonics are provided that generate two
different types of “no-ops” (instructions that do nothing).
The first type is the preferred form, which is optimized
to minimize its use of the processor's execution
resources. This form is based on the OR Immediate
instruction. The second type is the executed form,
which is intended to consume the same amount of the
processor's execution resources as if it were not a

no-op. This form is based on the XOR Immediate
instruction. (There are also no-ops that have other
uses, such as affecting program priority, for which
extended mnemonics have not been defined.)

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing. These
are shown as examples with the two instructions.

See Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

Programming Note

Warning: Some forms of no-op may have side
effects such as affecting program priority. Program-
mers should use the preferred no-op unless the
side effects of some other form of no-op are
intended.

AND Immediate D-form
andi. RA,RS,Ul

OR Immediate D-form

ori RARS,UI

28 RS RA ul
0 6 n 16 3]

24 RS RA Ul
0 6 u 16 31

RA « (RS) & (*%0 [] UD)

The contents of register RS are ANDed with 80 || Ul
and the result is placed into register RA.

Special Registers Altered:
CRO

AND Immediate Shifted D-form
andis. RA,RS,Ul

29 RS RA ul
0 6 n 16 3]

RA « (RS) & (%0 [] Ul |] *b0)

The contents of register RS are ANDed with
320 11 Ul 1] *®0 and the result is placed into register
RA.

Special Registers Altered:
CRO

RA « (RS) | (*%0 I] UD)

The contents of register RS are ORed with 30 || Ul
and the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:

ori 0,0,0

Some other forms of ori Rx,Rx,0 provide special func-
tions; see <xref to Book Il Section 4.4.2+>.

Special Registers Altered:
None

Extended Mnemonics:
Example of extended mnemonics for OR Immediate:

Extended mnemonic: Equivalent to:
nop ori 0,0,0
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OR Immediate Shifted D-form
oris RA,RS,Ul

25 RS RA ul
0 6 n 16 31

RA « (RS) | (320 |] Ul ] *°0)

The contents of register RS are ORed with
320 11 vl 1] ®0 and the result is placed into register
RA.

Special Registers Altered:
None

XOR Immediate D-form
Xori RA,RS,Ul

26 RS RA ul
0 6 n 16 31

RA « (RS) XOR (*%0 ] UN)

The contents of register RS are XORed with 80 || Ul
and the result is placed into register RA.

The executed form of a “no-op” (an instruction that
does nothing, but consumes execution resources nev-
ertheless) is:

xori  0,0,0

Special Registers Altered:
None

Extended Mnemonics:
Example of extended mnemonics for XOR Immediate:
Extended mnemonic: Equivalent to:

xnop xori 0,0,0

Programming Note

The executed form of no-op should be used only
when the intent is to alter the timing of a program.

XOR Immediate Shifted D-form
Xoris RA,RS,Ul

27 RS RA ul
0 6 n 16 31

RA « (RS) XOR (320 [] UI || *°0)

The contents of register RS are XORed with
320 11 vl 1] ®0 and the result is placed into register
RA.

Special Registers Altered:
None

AND X-form

and RA,RS,RB (Rc=0)

and. RARS,RB (Re=1)
31 RS RA RB 28 Re

0 6 1 16 21 31

RA « (RS) & (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

Some forms of and Rx, Rx, Rx provide special func-
tions; see Section 10.3 of Book IlI.

Special Registers Altered:

CRO (if Re=1)
XOR X-form

Xor RARS,RB (Rc=0)

XOr. RARS,RB (Re=1)

31 RS RA RB 316 Re|

0 6 1 16 21 31

RA « (RS) @ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:

CRO (if Re=1)

NAND X-form

nand RARS,RB (Rc=0)

nand. RARS,RB (Re=1)
31 RS RA RB 476 Re

0 6 1 16 21 31

RA < ~((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)
Programming Note

nand or nor with RS=RB can be used to obtain the
one’s complement.
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OR X-form Equivalent X-form
or RA,RS,RB (Re=0) eqv RA,RS,RB (Rc=0)
or. RA,RS,RB (Re=1) eqv. RA,RS,RB (Re=1)
31 RS RA RB 444 Ro 31 RS RA RB 284 Re
0 6 1 16 2 31 0 6 1 16 21 31
RA « (RS) | (RB) RA « (RS) = (RB)

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

Some forms of or Rx,Rx,Rx provide special functions;
see Section 3.2 and Section 4.3.3, both in Book II.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:
Example of extended mnemonics for OR:

Extended mnemonic: Equivalent to:

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

AND with Complement X-form

andc RARS,RB (Rc=0)
andc. RARS,RB (Re=1)

31 RS RA RB 60 Rol
0 6 1 16 21 31

mr Rx,Ry or RX,Ry,Ry

OR with Complement X-form

orc RA,RS,RB (Rc=0)

orc. RA,RS,RB (Re=1)
31 RS RA RB 412 Re

0 6 1 16 2 31

RA « (RS) | ~(RB)

The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:

CRO (if Re=1)

NOR X-form

nor RA,RS,RB (Rc=0)

nor. RA,RS,RB (Re=1)
31 RS RA RB 124 Re

0 6 u 16 2 31

RA « =((RS) | (RB))

The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:
Example of extended mnemonics for NOR:

Extended mnemonic: Equivalent to:
not Rx,Ry nor RX,Ry,Ry

RA « (RS) & ~(RB)

The contents of register RS are ANDed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)
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Extend Sign Byte X-form

Count Leading Zeros Word X-form

extsb RARS (Re=0)
extsh. RARS (Re=1)
31 RS RA 1 954 R
0 6 1 16 21 31
S « (RS)SG
RAse:63 < (RS)s6:63
RAg:s5 « 77

(RS)56-43 are placed into RAsg.g3. RAg-55 are filled with a
copy of (RS)sg.
Special Registers Altered:

CRO (if Re=1)

Extend Sign Halfword X-form

extsh RARS (Rc=0)
extsh. RARS (Re=1)
31 RS RA 1 922 R
0 6 1 16 21 31
S « (RS)48
RA4g:63 ¢ (RS)4g:63
RAg.47 « ™7

(RS) 4343 are placed into RAyg-g3. RAg-47 are filled with a
copy of (RS) 4.
Special Registers Altered:

CRO (if Re=1)

Compare Bytes X-form

cntlzw RARS (Rc=0)
cntlzw. RARS (Rc=1)
31 RS RA 7 26 Rel
0 6 il 16 21 31
n« 32
do while n < 64
if (RS),, = 1 then leave
nen+l
RA «n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA. This
number ranges from 0 to 32, inclusive.

If Rc is equal to 1, CR field O is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)

Programming Note

For both Count Leading Zeros instructions, if Rc=1
then LT is set to O in CR Field O.

Count Trailing Zeros Word X-form

cmpb RA,RS,RB
31 RS RA RB 508 Re
0 6 u 16 21 31
don=0to7

iT RSgyn:gxn+7 = g?B)an:an+7 then
RAgun:gxne7 1

else
RAgun:uns7 © 20

Each byte of the contents of register RS is compared to
each corresponding byte of the contents in register RB.
If they are equal, the corresponding byte in RA is set to
OxFF. Otherwise the corresponding byte in RA is set to
0x00.

Special Registers Altered:
None

cnttzw RA,RS (Rc=0)
cnttzw. RARS (Re=1)
31 RS RA 17 538 Re
0 6 1 16 21 31
neo
do while n < 32
if (RS)gs.n = Obl then leave
n «n+1

RA « EXTZ64(n)

A count of the number of consecutive zero bits starting
at bit 63 of the rightmost word of register RS is placed
into register RA. This number ranges from 0 to 32,
inclusive.

If Rc is equal to 1, CR field O is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)
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Population Count Bytes X-form

Parity Word X-form

popcntb RA, RS prtyw RARS
31 RS RA 1 122 Re 31 RS RA 7 154 /
0 6 u 16 21 31 0 6 il 16 21 31
doi=0to7 s« 0
neo t«0
doj=0to7 doi=0to3
if (RS)(ix8)+j = 1 then S«s® (RS)i%gq
n « n+l doi=4t7

RA(ixg): (ixg)+7 € N

A count of the number of one bits in each byte of regis-
ter RS is placed into the corresponding byte of register
RA. This number ranges from 0O to 8, inclusive.

Special Registers Altered:
None

Population Count Words X-form

popcntw RA, RS
31 RS RA 17 378 |
0 6 u 16 21 31,
doi=0to1l
ne«o
doj=0to3l
if (RS)(ix32)+j = 1 then

n « ntl
RA(ix32): (ix32)+31 € N
A count of the number of one bits in each word of regis-

ter RS is placed into the corresponding word of register
RA. This number ranges from 0 to 32, inclusive.

Special Registers Altered:
None

t t & RS)jugsr
RAg:a « 210 1] s
RAgp:s3 « 210 [] t

The least significant bit in each byte of (RS)q.3; is
examined. If there is an odd number of one bits the
value 1 is placed into RAj.3;; otherwise the value 0 is
placed into RAj-3;. The least significant bit in each byte
of (RS)3,-63 is examined. If there is an odd number of
one bits the value 1 is placed into RA3,.63; Otherwise the
value 0 is placed into RAz,-g3.

Special Registers Altered:
None

— Programming Note

The Parity instructions are designed to be used in
conjunction with the Population Count instruction to
compute the parity of words or a doubleword. The
parity of the upper and lower words in (RS) can be
computed as follows.

popcntb RA, RS
prtyw  RA, RA

The parity of (RS) can be computed as follows.

popcntb RA, RS
prtyd  RA, RA
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3.3.13.1 64-bit Fixed-Point Logical Instructions

Extend Sign Word X-form

Count Leading Zeros Doubleword X-form

extsw RARS (Re=0) cntlzd RARS (Rc=0)
extsw. RARS (Re=1) cntlzd. RARS (Re=1)
31 RS RA 1 986 R 31 RS RA i 58 Rl

0 6 1 16 21 31 0 6 1 16 21 31

S « (RS)32 neo

RA32:63 ¢« (RS)32:63 do while n < 64

RAg-31 ¢« °“s if (RS),, = 1 then leave

. . . nen+l

(RS)3,-43 are placed into RA3y-g3. RAg-3; are filled with a RA < n

copy of (RS)3,.

Special Registers Altered:
CRO (if Re=1)

Population Count Doubleword X-form

popcntd RA, RS

31 RS RA I 506 /

neo
doi=0to63
if (RS); = 1 then
n« ntl
RA «n

A count of the number of one bits in register RS is
placed into register RA. This number ranges from 0 to
64, inclusive.

Special Registers Altered:
None

Parity Doubleword X-form

A count of the number of consecutive zero bits starting
at bit O of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Re=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)

Count Trailing Zeros Doubleword X-form

prtyd RARS
31 RS RA 1 186 /
0 6 u 16 21 31
s« 0
doi=0t?7
s <5 ® (RS)jyg+
RA « 80 ] s

The least significant bit in each byte of the contents of
register RS is examined. If there is an odd number of
one bits the value 1 is placed into register RA; otherwise
the value 0 is placed into register RA.

Special Registers Altered:
None

cnttzd RA,RS (Rc=0)
cnttzd. RARS (Re=1)
31 RS RA " 570 Rej
0 6 1 16 21 31
n «0
do while n < 64
if (RS)g3.n = Obl then leave
n «n+1

RA « EXTZ64(n)
A count of the number of consecutive zero bits starting
at bit 63 of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Rc is equal to 1, CR field O is set to reflect the result.

Special Registers Altered:
CRO (if Re=1)
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Count Leading Zeros Doubleword under bit
Mask X-form

cntlzdm RA,RS,RB
31 RS RA RB 59 |
0 6 1 16 21 31
count = 0
doi=0to63

if((RB);=1) then do
if((RS)j=1) then break
count « count + 1
end
end
RA « EXTZ64(count)

Let n be the number of bits in register RB having the
value 1.

Extract and pack together the contents of the bits in
register RS corresponding to a mask specified in
register RB, creating an n-bit value.

Count the number of contiguous leftmost 0 bits in the
n-bit extracted value and place the result into register
RA.

Special Registers Altered:
None

Count Trailing Zeros Doubleword under bit
Mask X-form

cnttzdm RA,RS,RB
31 RS RA RB 571 |
0 6 1 16 21 31
count « 0
doi=0to63

if((RB)g3-i=1) then do
if((RS)gs-i=1) then break
count « count + 1
end
end
RA « EXTZ64(count)

Let n be the number of bits in register RB having the
value 1.

Extract and pack together the contents of bits in
register RS corresponding to a mask specified in
register RB, creating an n-bit value.

Count the number of contiguous rightmost 0 bits in the
n-bit extracted value and place the result into register
RA.

Special Registers Altered:
None

Bit Permute Doubleword X-form

bpermd RARS,RB
31 RS RA RB 252 |
0 6 1 16 21 31
doi=0to7
index « (RS)g=j-g*j+7
If index < 64

then perm; « (RB)index
else permj « 0
RA « 560 || permg.7

Eight permuted bits are produced. For each permuted
bit i where i ranges from 0 to 7 and for each byte 1 of
RS, do the following.

If byte i of RS is less than 64, permuted bit i is set
to the bit of RB specified by byte i of RS; otherwise
permuted bit i is set to 0.

The permuted bits are placed in the least-significant
byte of RA, and the remaining bits are filled with Os.

Special Registers Altered:
None

— Programming Note

The fact that the permuted bit is O if the corre-
sponding index value exceeds 63 permits the per-
muted bits to be selected from a 128-bit quantity,
using a single index register. For example, assume
that the 128-bit quantity Q, from which the permuted
bits are to be selected, is in registers r2 (high-order
64 bits of Q) and r3 (low-order 64 bits of Q), that the
index values are in register r1, with each byte of rl1
containing a value in the range 0:127, and that
each byte of register r4 contains the value 64. The
following code sequence selects eight permuted
bits from Q and places them into the low-order byte
of r6.

bpermd r6,rl,r2 # select from high-
order half of Q

XOor r0,rl, rd # adjust index values

bpermd r5,r0,1r3 # select from low-
order half of Q

or r6,r6,r5 # merge the two

selections
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Centrifuge Doubleword X-form

Parallel Bits Deposit Doubleword X-form

cfuged RA,RS,RB pdepd RARS,RB
31 RS RA RB 220 | 31 RS RA RB 156 /
0 6 u 16 21 31 0 6 u 16 21 31
ptr0 « 0 result « 0
ptrl « 0 mask « (RB)
doi=0to63 me«0
if((RB)j=0) then do k<0

resultyyg < (RS);
ptr0 « ptr0 + 1
end
if((RB)g3.i==1) then do
resultes pers ¢ (RS)gs-i
ptrl « ptrl + 1
end
end
RA « result

The bits in GPR[RS] whose corresponding bits in the
mask in GPR[RB] equal 1 are placed in the rightmost
bits in GPR[RA] maintaining their relative original order.
The other bits in GPR[RS] are placed in the leftmost bits
in GPR[RA] maintaining their relative original order.

Special Registers Altered:
None

Parallel Bits Extract Doubleword X-form

pextd RA,RS,RB

31 RS RA RB 188 /
0 6 u 16 21 31,

result « 0
mask « (RB)
meo0
k0
do while(m < 64)
if((RB)g3-y == 1) then do
reSU|t63_k « (RS)GS-m
kek+1
end
mem+1
end
RA « result

Let mask be the contents of register RB.

The contents of the bits in register RS corresponding to
bits in mask containing a 1 are packed into an n-bit
value. The extracted value is placed into register RA.

Special Registers Altered:
None

do while(m < 64)
if(maskgs_, == 1) then do
result63_m « (RS)GS-k
kek+1
end
mem+ 1
end
RA « result

Let mask be the contents of register RB.
Let n be the number of bits in mask having the value 1.

The contents of the rightmost n bits of register RS are
placed into register RA under control of mask as follows.

— The contents of bit 63 of register RS are placed into
the bit in register RA corresponding to the
rightmost bit in mask that contains a 1,

— the contents of bit 62 of register RS are placed into
the bit in register RA corresponding to the second
rightmost bit in mask that contains a 1, and so forth
until

— the contents of bit 64-n of register RS are placed
into the bit in register RA corresponding to the
leftmost bit in mask that contains a 1.

The contents of bits in register RA corresponding to bits
in mask that contain a O are set to O.

Special Registers Altered:
None
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3.3.14 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Facility performs rotation operations
on data from a GPR and returns the result, or a portion
of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotateg, or ROTLg,, the
value rotated is the given 64-bit value. The rotateg,
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotatez, or ROTL3,, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other
in bits 32:63. The rotatez, operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and O-bits elsewhere. The values of mstart and
mstop range from 0 to 63. If mstart > mstop, the 1-bits
wrap around from position 63 to position 0. Thus the
mask is formed as follows:

if mstart < mstop then

maskpstart:mstop = ONES

maskany other bits = Z€ros
else

maskpstart:63 = ONes
maskg: mstop = ONes

maskanl other bits = 26108

There is no way to specify an all-zero mask.

For instructions that use the rotate;, operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.8,
“Other Fixed-Point Instructions” on page 74. Rotate
and Shift instructions do not change the 0V, 0vV32, and SO
bits. Rotate and Shift instructions, except algebraic
right shifts, do not change the CA and CA32 bits.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

3.3.14.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register. The

result of the rotation is

* inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

* ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64-n, where n is the number of bits by
which to rotate right. They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.

Rotate Left Word Immediate then AND with
Mask M-form

riwinm RARS,SH,MB,ME (Rc=0)

rlwinm. RARS,SH,MB,ME (Re=1)

21 RS RA SH MB ME R

0 6 1 16 21 26 31
n« SH

I « ROTLao((RS)32:63. M)
M« NASK(MB+32, ME+32)
RAeré&n

The contents of register RS are rotateds, left SH bits. A
mask is generated having 1-bits from bit MB+32 through
bit ME+32 and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)
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Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Word
Immediate then AND with Mask:

Extended mnemonic: Equivalent to:

extlwi RX,Ry,n,b rlwinm Rx,Ry,b,0,n-1
snwi Rx,Ry,n rlwinm Rx,Ry,32-n,n,31
clrrvi Rx,Ry,n rlwinm Rx,Ry,0,0,31-n

—— Programming Note

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rliwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into the
low-order 32 bits of register RA (clearing the remain-
ing 32-n bits of the low-order 32 bits of RA), by set-
ting SH=b+n, MB=32-n, and ME=31. It can be used to
extract an n-bit field that starts at bit position b in
RSL, left-justified into the low-order 32 bits of regis-
ter RA (clearing the remaining 32-n bits of the
low-order 32 bits of RA), by setting SH=b, MB = 0, and
ME=n-1. It can be used to rotate the contents of the
low-order 32 bits of a register left (right) by n bits,
by setting SH=n (32-n), MB=0, and ME=31. It can be
used to shift the contents of the low-order 32 bits of
a register right by n bits, by setting SH=32-n, MB=n,
and ME=31. It can be used to clear the high-order b
bits of the low-order 32 bits of the contents of a reg-
ister and then shift the result left by n bits, by setting
SH=n, MB=b-n, and ME=31-n. It can be used to clear
the low-order n bits of the low-order 32 bits of a
register, by setting SH=0, MB=0, and ME=31-n.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for all of these
uses; see Appendix C, “Assembler Extended Mne-
monics” on page 1011.

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Extended mnemonic: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

—— Programming Note

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-justified
into the low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of RA),
by setting RBgg.g3=b+n, MB=32-n, and ME=31. It can be
used to extract an n-bit field that starts at variable
bit position b in RSL, left-justified into the low-order
32 bits of register RA (clearing the remaining 32-n
bits of the low-order 32 bits of RA), by setting
RBsg-63=b, MB = 0, and ME=n-1. It can be used to
rotate the contents of the low-order 32 bits of a reg-
ister left (right) by variable n bits, by setting
RBsg-63=N (32-n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.

Rotate Left Word then AND with Mask M-form

rlwnm RA,RS,RB,MB,ME (Re=0)
rlwnm. RA,RS,RB,MB,ME (Re=1)

23 RS RA RB MB ME [R¢
0 6 1 16 21 26 31

n « (RB)s9:63

I « ROTL32((RS)32:63, M)
M e MASK(VB+32, VE+32)
RAeré&m

The contents of register RS are rotateds, left the num-
ber of bits specified by (RB)sg-63. A mask is generated
having 1-bits from bit MB+32 through bit ME+32 and 0-bits
elsewhere. The rotated data are ANDed with the gener-
ated mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Rotate Left Word Immediate then Mask Insert
M-form

riwimi RARS,SH,MB,ME (Rc=0)

riwimi. RARS,SH,MB,ME (Re=1)

20 RS RA SH MB ME [R

0 6 u 16 21 26 31,
n« SH

r « ROTLgo((RS)32:63, M)
M« NASK(MB+32, NE+32)
RA « ré&m | (RA) & -m

The contents of register RS are rotateds, left SH bits. A
mask is generated having 1-bits from bit MB+32 through
bit ME+32 and 0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended mnemonic: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-h,b,btn-1
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—— Programming Note

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from O through 31.

riwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting SH=32-b,
MB=b, and ME=(b+n)-1. It can be used to insert an
n-bit field that is right-justified in the low-order 32
bits of register RS, into RAL starting at bit position b,
by setting SH=32-(b+n), MB=b, and ME=(b+n)-1.

Extended mnemonics are provided for both of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.
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3.3.14.1.1 64-bit Fixed-Point Rotate Instructions

Rotate Left Doubleword Immediate then Clear
Left MD-form

Rotate Left Doubleword Immediate then Clear
Right MD-form

ridicl RA,RS,SH,MB (Rc=0) ridicr RARS,SH,ME (Rc=0)
ridicl. RA,RS,SH,MB (Re=1) ridicr. RARS,SH,ME (Re=1)

30 RS RA sh mb 0 |[shfRe 30 RS RA sh me 1 |shfRe
0 6 1 16 21 27 |33 0 6 i 16 21 7 |33t

n ¢ shg || shg:4

r « ROTLg4((RS), n)
b & mbs || mbo:4

m « MASK(b, 63)
RAeré&m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63 and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left:

Extended mnemonic: Equivalent to:

extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n rldicl Rx,Ry,64-n,n
clrldi Rx,Ry,n rldicl RX,Ry,0,n

—— Programming Note

ridicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into reg-
ister RA (clearing the remaining 64-n bits of RA), by
setting SH=b+n and MB=64-n. It can be used to rotate
the contents of a register left (right) by n bits, by
setting SH=n (64-n) and MB=0. It can be used to shift
the contents of a register right by n bits, by setting
SH=64-n and MB=n. It can be used to clear the
high-order n bits of a register, by setting SH=0 and
MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix C, “Assembler Extended Mne-
monics” on page 1011.

N« shs || shg.q

r « ROTLg4((RS), n)
e « mes || meg:4

m « MASK(0, e)
RAré&m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit O through bit
ME and O-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right:

Extended mnemonic: Equivalent to:

extldi Rx,Ry,n,b rldicr Rx,Ry,b,n-1
sldi Rx,Ry,n rldicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63-n

—— Programming Note

ridicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified into
register RA (clearing the remaining 64-n bits of RA),
by setting SH=b and ME=n-1. It can be used to rotate
the contents of a register left (right) by n bits, by
setting SH=n (64-n) and ME=63. It can be used to shift
the contents of a register left by n bits, by setting
SH=n and ME=63-n. It can be used to clear the
low-order n bits of a register, by setting SH=0 and
ME=63-n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix C,
“Assembler Extended Mnemonics” on page 1011.
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Rotate Left Doubleword Immediate then Clear
MD-form

Rotate Left Doubleword then Clear Left
MDS-form

rldic RA,RS,SH,MB (Re=0) rldcl RA,RS,RB,MB (Rc=0)
ridic. RA,RS,SH,MB (Re=1) rldcl. RARS,RB,MB (Re=1)

30 RS RA sh mb 2 |sh|Re 30 RS RA RB mb 8 [R(
0 6 1 16 21 27 30(31, 0 6 1 16 21 27 31

n ¢ shg || sho:4

I « ROTLg4((RS), n)
b« mbs || mbo: 4

m « MASK(b, -n)
RAré&m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and O0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

Extended mnemonic:
clrisldi

Equivalent to:
RX,Ry,b,n rldic RX,Ry,n,b-n

—— Programming Note

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b-n. It can be
used to clear the high-order n bits of a register, by
setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl); see
Appendix C, “Assembler Extended Mnemonics” on
page 1011.

n < (RB)sg:63

r  ROTLg4((RS), )
b« mbs || mbo-4

n < NASK(b, 63)
RA«ré&m

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.63. A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Left:

Extended mnemonic: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

—— Programming Note

rldcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justified
into register RA (clearing the remaining 64-n bits of
RA), by setting RBgg.g3=b+n and MB=64-n. It can be
used to rotate the contents of a register left (right)
by variable n bits, by setting RBsg-g3=n (64-n) and
MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix C, “Assembler Extended
Mnemonics” on page 1011.
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Rotate Left Doubleword then Clear Right
MDS-form

Rotate Left Doubleword Immediate then Mask
Insert MD-form

rldcr RA,RS,RB,ME (Rc=0) rldimi RA,RS,SH,MB (Rc=0)
ridcr. RA,RS,RB,ME (Re=1) ridimi. RARS,SH,MB (Re=1)

30 RS RA RB me 9 R 30 RS RA sh mb 3 |shRd
0 6 1 16 2 27 31 0 6 1 16 21 27 (303

n « (RB)sg:63

r ¢ ROTLg4((RS), )
e « nmeg || meg:4

m « MASK(0, e)
RAeré&m

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.63. A mask is generated
having 1-bits from bit O through bit ME and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Re=1)

—— Programming Note

ridcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits of
RA), by setting RBsg-g3=b and ME=n-1. It can be used
to rotate the contents of a register left (right) by
variable n bits, by setting RBgsg.g3=n (64-n) and
ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl); see
Appendix C, “Assembler Extended Mnemonics” on

page 1011.

n & shs || shg.4

r « ROTLg4((RS), n)
b« mbs || mbo-4

m « MASK(b, -n)

RA « rém | (RA) & -m

The contents of register RS are rotatedg, left SH bits. A
mask is generated having 1-bits from bit MB through bit
63-SH and O0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CRO (if Re=1)
Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert:

Extended mnemonic: Equivalent to:
insrdi Rx,Ry,n,b rldimi Rx,Ry,64 - (b+n),b

—— Programming Note

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA starting
at bit position b, by setting SH=64-(b+n) and MB=b.

An extended mnemonic is provided for this use;
see Appendix C, “Assembler Extended Mnemon-
ics” on page 1011.
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3.3.14.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are

shown as examples with the Rotate instructions. See
Appendix C, “Assembler Extended Mnemonics” on
page 1011 for additional extended mnemonics.

Programming Note

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2". The
setting of the CA and CA32 bits by the Shift Right
Algebraic instructions is independent of mode.

Shift Left Word X-form

stw RA,RS,RB (Re=0)
shw. RA,RS,RB (Re=1)

31 RS RA RB 24 Re|
0 6 1 16 21 31

n « (RB)s9:63
r « ROTL32((RS)32:63. M)
if (RB)sg = 0 then

M e NASK(32, 63-n)
else m « ®%0
RAeré&m

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)sg-g3.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RA3;.¢3. RAg-3; are set to zero. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Re=1)

Shift Right Word X-form

Srw RA,RS,RB (Rc=0)
SIW. RA,RS,RB (Re=1)

31 RS RA RB 536 Re|
0 6 1 16 vl 31

n « (RB)sg:63
I« ROTL32((RS)32:63, 64-N)
if (RB)sg = 0 then
n o NASK(N+32, 63)
else m « 540
RAré&nm

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)sg-g3.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RA3;.¢3. RAg-3; are set to zero. Shift
amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Re=1)
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Shift Right Algebraic Word Immediate X-form

Shift Right Algebraic Word X-form

srawi RA,RS,SH (Rc=0) sraw RARS,RB (Rc=0)

srawi. RA,RS,SH (Re=1) sraw. RARS,RB (Re=1)

31 RS RA SH 824 Re| 31 RS RA RB 792 Re|

0 6 1 16 21 31 0 6 1 16 21 31
n « SH n « (RB)59:63

r « ROTL32((RS)32:63, 64-N)

m « MASK(n+32, 63)

s « (RS)32

RA « rén | (®%s) & n

carry « s & ((r & -m)zp.¢3 # 0 )
CA  « carry

CA32 « carry

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Bit 32 of RS is replicated to fill the vacated positions
on the left. The 32-bit result is placed into RAz;-g3. Bit 32
of RS is replicated to fill RAg.3;. CA and CA32 are set to 1 if
the low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA and CA32 are set to 0. A shift amount of zero causes
RA to receive EXTS((RS)3;-43), @and CA and CA32 to be set
to 0.

Special Registers Altered:
CA CA32
CRO (if Re=1)

I < ROTL32((RS)32:63, 64-N)
if (RB)5g = 0 then
m « MASK(n+32, 63)
else m « %40
s « (RS)z2
RA « rém | (®%s) & m
carry « s & ((r & -m)zp-g3 # 0)
CA  « carry
CA32 « carry

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)sg-g3.
Bits shifted out of position 63 are lost. Bit 32 of RS is
replicated to fill the vacated positions on the left. The
32-bit result is placed into RAz,-g3. Bit 32 of RS is repli-
cated to fill RAy.3;. CA and CA32 are set to 1 if the
low-order 32 bits of (RS) contain a negative number
and any 1-bits are shifted out of position 63; otherwise
CA and CA32 are set to 0. A shift amount of zero causes
RA to receive EXTS((RS)35:-63), @and CA and CA32 to be set
to 0. Shift amounts from 32 to 63 give a result of 64
sign bits, and cause CA and CA32 to receive the sign bit

of (RS)32-63-

Special Registers Altered:
CA CA32
CRO (if Re=1)

114 Power ISA™ |



Version 3.1

3.3.14.2.1 64-bit Fixed-Point Shift Instructions

Shift Left Doubleword X-form

Shift Right Doubleword X-form

sld RA,RS,RB (Re=0) srd RARS,RB (Rc=0)
sld. RA,RS,RB (Re=1) srd. RARS,RB (Re=1)

31 RS RA RB 27 Re| 31 RS RA RB 539 Re|
0 6 1 16 21 31 0 6 1 16 21 31

n < (RB)sg:63
r « ROTLg4((RS), n)
if (RB)57 = 0 then

m « MASK(0, 63-n)
else n « ¢4
RAeré&m

The contents of register RS are shifted left the number
of bits specified by (RB)s7-63. Bits shifted out of position
0 are lost. Zeros are supplied to the vacated positions
on the right. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Re=1)

Shift Right Algebraic Doubleword Immediate
XS-form

sradi RARS,SH (Rc=0)
sradi. RA,RS,SH (Re=1)

31 RS RA sh 413 shiRg
0 6 1 16 2 3031

n ¢ shg || shg:4

r « ROTLg4((RS), 64-n)

m « MASK(n, 63)

s « (RS)g

RA « ré&m | (645) & -m
carry « s & ((r & -m) # 0)
CA  « carry

CA32 « carry

The contents of register RS are shifted right SH bits. Bits
shifted out of position 63 are lost. Bit O of RS is repli-
cated to fill the vacated positions on the left. The result
is placed into register RA. CA and CA32 are set to 1 if (RS)
is negative and any 1-bits are shifted out of position 63;
otherwise CA and CA32 are set to 0. A shift amount of
zero causes RA to be set equal to (RS), and CA and CA32
to be set to 0.

Special Registers Altered:
CA CA32
CRO (if Re=1)

n < (RB)sg:63
r « ROTLg4((RS), 64-n)
if (RB)57 = 0 then

m « MASK(n, 63)
else m « %0
RA«-ré&m

The contents of register RS are shifted right the number
of bits specified by (RB)s7.43. Bits shifted out of position
63 are lost. Zeros are supplied to the vacated positions
on the left. The result is placed into register RA. Shift
amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Re=1)

Shift Right Algebraic Doubleword X-form

srad RARS,RB (Rc=0)
srad. RARS,RB (Re=1)

31 RS RA RB 794 Re|
0 6 1 16 21 31

n « (RB)ss:63
r « ROTLg4((RS), 64-n)
if (RB)57 = 0 then
m « MASK(n, 63)
else m « ¢4
s « (RS)g
RA « rém | (®%s) & m
carry « s & ((r & -m) # 0)
CA  « carry
CA32 « carry

The contents of register RS are shifted right the number
of bits specified by (RB)s7.43. Bits shifted out of position
63 are lost. Bit O of RS is replicated to fill the vacated
positions on the left. The result is placed into register
RA. CA and CA32 are set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA and
CA32 are set to 0. A shift amount of zero causes RA to be
set equal to (RS), and CA and CA32 to be set to 0. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA and CA32 to receive the sign bit of

(RS).

Special Registers Altered:
CA CA32
CRO (if Re=1)
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Extend Sign Word and Shift Left Immediate
XS-form

extswsli RA,RS,SH (Rc=0)
extswsli. RARS,SH (Re=1)

31 RS RA sh 445 sh[Rc|
0 6 1 16 21 30[31

N« shs || shy:q

r « ROTL64(EXTS64(RS3263), n)
n « NASK(O, 63-n)

RAcré&nm

The contents of the low order 32 bits of RS are
sign-extended to 64 bits and then shifted left SH bits.
Bits shifted out of bit O are lost. Zeros are supplied to
vacated bits on the right. The result is placed in
register RA.

Special Registers Altered:
CRO (if Re=1)
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3.3.15 Binary Coded Decimal (BCD) Assist Instructions

The Binary Coded Decimal Assist instructions operate
on Binary Coded Decimal operands (cbcdtd and

addg6s) and Decimal Floating-Point operands (cdt-
bcd) See Chapter 5. for additional information.

Convert Declets To Binary Coded Decimal
X-form

Convert Binary Coded Decimal To Declets
X-form

cdtbed RA, RS chcdtd RA, RS
31 RS RA n 282 / 31 RS RA n 314 /
0 6 1 16 21 31 0 6 1 16 21 31
doi=0tol doi=0tol
neix32 ne1ix32

RAnig:ne7 < 0
RAnsg:nitg < DPD_TO_BCD((RS)n+12:n+21)
RAns20:n+31 ¢ DPD_TO_BCD((RS)ps22:n+31)

The low-order 20 bits of each word of register RS con-
tain two declets which are converted to six, 4-bit BCD
fields; each set of six, 4-bit BCD fields is placed into the
low-order 24 bits of the corresponding word in RA. The
high-order 8 bits in each word of RA are set to 0.

Special Registers Altered:
None

RAnso:man < 0
RAn+12:n+21 ¢ BCD_TO_DPD((RS)psg:n+19)
RAns22:n+31 ¢ BCD_TO_DPD((RS)ps20:n+31)

The low-order 24 bits of each word of register RS con-
tain six, 4-bit BCD fields which are converted to two
declets; each set of two declets is placed into the
low-order 20 bits of the corresponding word in RA. The
high-order 12 bits in each word of RA are set to 0.

If a 4-bit BCD field has a value greater than 9 the
results are undefined.

Special Registers Altered:
None
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Add and Generate Sixes XO-form

addg6s RT,RA,RB
31 RT RA RB / 74 /
0 6 n 16 21|22 31
doi=0to15
dej « carry_out(RAgyi-e3 + RBaxi-63)
¢ & “(dcg) 11 *(dey) I --- 11 *(deys)

RT « (-c) & 0x6666_6666_6666_6666

The contents of register RA are added to the contents of
register RB. Sixteen carry bits are produced, one for
each carry out of decimal position n (bit position 4xn).

A doubleword is composed from the 16 carry bits, and
placed into RT. The doubleword consists of a decimal
six (0b0110) in every decimal digit position for which the
corresponding carry bit is 0, and a zero (0b0000) in
every position for which the corresponding carry bit is
1.

Special Registers Altered:
None

—— Programming Note

addg6s can be used to add or subtract two BCD
operands. In these examples it is assumed that r0
contains 0x666...666. (BCD data formats are
described in Section 5.3.)

Addition of the unsigned BCD operand in register
RA to the unsigned BCD operand in register RB can
be accomplished as follows.

add r1,RA,r0
add r2,rl,RB
addgés RT,rl,RB
subf RT,RT,r2  #RT = RA +gp RB

Subtraction of the unsigned BCD operand in regis-
ter RA from the unsigned BCD operand in register
RB can be accomplished as follows. (In this exam-
ple it is assumed that RB is not register 0.)

addi r1,RB,1

nor r2,RA,RA  # one"s complement of RA
add r3,rl,r2

addg6s RT,rl,r2

subf RT,RT,r3  #RT = RB —g¢p RA

Additional instructions are needed to handle signed
BCD operands, and BCD operands that occupy
more than one register (e.g., unsigned BCD oper-
ands that have more than 16 decimal digits).
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| 3.3.16 Byte-Reverse Instructions

Byte-Reverse Halfword X-form

brh RA,RS

31 RS RA i 219 /
0 6 u 16 21 31,

RA € (RS)g:15 Il (RS)o:7 Il
(RS)24:31 Il (RS)16:23 1l
(RS)40:47 Il (RS)32:30 Il
(RS)s6:63 Il (RS)sg:55

The contents of bits 0:15 of register RS are placed into
bits 0:15 of register RA in byte-reversed order.

The contents of bits 16:31 of register RS are placed into
bits 16:31 of register RA in byte-reversed order.

The contents of bits 32:47 of register RS are placed into
bits 32:47 of register RA in byte-reversed order.

The contents of bits 48:63 of register RS are placed into
bits 48:63 of register RA in byte-reversed order.

Special Registers Altered:
None

Byte-Reverse Word X-form
brw RARS

31 RS RA i 155 /
0 6 u 16 21 31,

RA € (RS)24:31 Il (RS)16:23 Il
(RSs:15 Il RS)o:7 I
(RS)s6:63 Il (RS)ag:55 11
(RS)40:47 Il (RS)32:390

The contents of bits 0:31 of register RS are placed into
bits 0:31 of register RA in byte-reversed order.

The contents of bits 32:63 of register RS are placed into
bits 32:63 of register RA in byte-reversed order.

Special Registers Altered:
None

Byte-Reverse Doubleword X-form

brd RARS

31 RS RA 7 187
0 6 u 16 21 31]

RA € (RS)se:63 Il (RS)4g:55 1l
(RS)40:47 1l (RS)32:39 |1
(RS)24:31 Il (RS)16:23 Il
(R)sg:15 Il (RS)o-7

The contents of register RS are placed into register RA in
byte-reversed order.

Special Registers Altered:
None
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3.3.17 Move To/From Vector-Scalar Register Instructions

Move From VSR Doubleword X-form

mfvsrd RAXS

Move From VSR Lower Doubleword X-form

mfvsrld RA,XS

31 S RA i 51 S
0 6 u 16 21 31,

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] « VSR[32xSX+S].dword[0]
Let XS be the value 32xSX + S.

The contents of doubleword element 0 of VSR[XS] are
placed into GPR[RA].

For SX=0, mfvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrd is treated as a Vector instruction in
terms of resource availability.
Extended Mnemonics:

Extended mnemonics for Move From VSR Double-
word:

Extended mnemonic:
mffprd RA,FRS
mfvrd RA, VRS

Equivalent to:
mfvsrd
mfvsrd

RA,FRS
RA,VRS+32

Special Registers Altered
None

Data Layout for mfvsrd

src

| VSR[XS] - dword[0] | unused

tgt
\ GPR[RA] |
0 64 127

31 S RA 1 307 SX
0 6 1 16 21 31

if SX=0 & MSR.VSX=0 then VSX_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] < VSR[32xSX+S].dword[1]
Let XS be the value 32xSX + S.

The contents of doubleword 1 of VSR[XS] are placed
into GPR[RA].

For SX=0, mfvsrld is treated as a VSX instruction in
terms of resource availability.

For SX=1, mfvsrld is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

Data Layout for mfvsrid

src

| unused | VSR[XS] -dword[1]

tgt

| GPRIRA] |

0 64 127
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Move From VSR Word and Zero X-form
mfvsrwz RA,XS

Move To VSR Doubleword X-form
mtvsrd XT,RA

31 S RA 1 115 S
0 6 u 16 21 31,

31 T RA 1 179 I
0 6 u 16 21 31

if SX=0 & MSR.FP=0 then FP_Unavailable()
if SX=1 & MSR.VEC=0 then Vector_Unavailable()

GPR[RA] « EXTZ64(VSR[32xSX+S].word[1])
Let XS be the value 32xSX + S.

The contents of word element 1 of VSR[XS] are placed
into bits 32:63 of GPR[RA]. The contents of bits 0:31 of
GPR[RA] are set to 0.

For SX=0, mfvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For SX=1, mfvsrwz is treated as a Vector instruction in
terms of resource availability.
Extended Mnemonics:

Extended mnemonics for Move To VSR Word and
Zero:

Extended mnemonic: Equivalent to:

mffprwz RA,FRS mfvsrwz RA,FRS
mfvrwz RA,VRS mfvsrwz RA,VRS+32
Special Registers Altered
None
Data Layout for mfvsrwz
src
‘ unused VSR[XS].word[0]| unused |
tgt
\ GPRIRA] |
0 2 64 127

if TX=0 & MSR.FP=0 then FP_Unavailable()
if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32¢TX+T].dword[0] « GPR[RA]
VSR[32¢TX+T].dword[1] « O0xUUUU_UUUU_UUUU_UULU

Let XT be the value 32xTX + T.

The contents of GPR[RA] are placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrd is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrd is treated as a Vector instruction in
terms of resource availability.

Extended Mnemonics:

Extended mnemonics for Move To VSR Doubleword:

Extended mnemonic:
mtfprd FRT,RA
mtvrd VRT,RA

Equivalent to:
mtvsrd
mtvsrd

FRT,RA
VRT+32,RA

Special Registers Altered
None

Data Layout for mtvsrd
src

| GPRIRA] |
tgt

| VSR[XT] . dword[0] | undefined
0 64 127
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Move To VSR Word Algebraic X-form

mtvsrwa XT,RA

Move To VSR Word and Zero X-form

mtvsrwz XT,RA

31 T RA 1 211 X
0 6 u 16 21 31,

31 T RA 1 243 I
0 6 u 16 21 31

if TX=0 & MSR.FP=0 then FP_Unavailable()
if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32xTX+T].dword[0] ¢ EXTS64(GPR[RA].bit[32:63])
VSR[32xTX+T] .dword[1] « 0xUUUU_UUUY_UUUU_ULUU

Let XT be the value 32xTX + T.

The two’s-complement integer in bits 32:63 of GPR[RA]
is sign-extended to 64 bits and placed into doubleword
element 0 of VSR[XT].

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwa is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwa is treated as a Vector instruction in
terms of resource availability.
Extended Mnemonics:

Extended mnemonics for Move To VSR Word Alge-
braic:

Extended mnemonic: Equivalent to:

if TX=0 & MSR.FP=0 then FP_Unavailable()
if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32¢TX+T] .dword[0] « EXTZ64(GPR[RA].word[1])
VSR[32xTX+T].dword[1] « OxUUUU_UUUU_UUUU_UUUU

Let XT be the value 32xTX + T.

The contents of bits 32:63 of GPR[RA] are placed into
word element 1 of VSR[XT]. The contents of word
element 0 of VSR[XT] are set to 0.

The contents of doubleword element 1 of VSR[XT] are
undefined.

For TX=0, mtvsrwz is treated as a Floating-Point
instruction in terms of resource availability.

For TX=1, mtvsrwz is treated as a Vector instruction in
terms of resource availability.
Extended Mnemonics:

Extended mnemonics for Move To VSR Word and
Zero:

Extended mnemonic: Equivalent to:

mtfprwa FRT,RA mtvsrwa FRT,RA mtfprwz FRT,RA mtvsrwz FRT,RA
mtvrwa VRT,RA mtvsrwa VRT+32,RA mtvrwz VRT,RA mtvsrwz VRT+32,RA
Special Registers Altered Special Registers Altered
None None
Data Layout for mtvsrwa Data Layout for mtvsrwz
src src
| undefined | GPRIRALq:gs | | unused | GPRIRALy:gs |
tgt tgt
\ VSR[XT] .dword[0] | undefined | | 0x0000_0000 \ VSR[XT].word[1] | undefined
0 32 64 127 0 R 64 127
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Move To VSR Double Doubleword X-form

mtvsrdd XT,RA,RB

Move To VSR Word & Splat X-form

mtvsrws XT,RA

31 T RA RB 435 X
0 6 1 16 21 31

if TX=0 & MSR.VSX=0 then VSX_Unavailable()
if TX=1 & MSR.VEC=0 then Vector_Unavailable()

if RA=0 then
VSR[32xTX+T] .dword[0] « 0x0000_0000_0000_0000
else
VSR[32xTX+T].dword[0] « GPR[RA]
VSR[32xTX+T].dword[1] « GPR[RB]
Let XT be the value 32xTX + T.

The contents of GPR[RA], or the value O if RA=0, are
placed into doubleword 0 of VSR[XT].

The contents of GPR[RB] are placed into doubleword 1
of VSR[XT].

For TX=0, mtvsrdd is treated as a VSX instruction in
terms of resource availability.

For TX=1, mtvsrdd is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

Data Layout for mtvsrdd
src.dword[0]

31 T RA i 403 I

0 6 un 16 21 31

| GPRIRA] |

src.dword[1]

\ GPR[RB] |

tgt

\ VSRXT]. dword[0] | VSR[XT].dword[L]

0 32 64 127

if TX=0 & MSR.VSX=0 then VSX_Unavailable()
if TX=1 & MSR.VEC=0 then Vector_Unavailable()

VSR[32xTX+T].word[0] « GPR[RA].bit[32:63]
VSR[32xTX+T] .word[1] ¢ GPR[RA].bit[32:63]
VSR[32xTX+T].word[2] < GPR[RA].bit[32:63]
VSR[32xTX+T].word[3] « GPR[RA].bit[32:63]

Let XT be the value 32xTX + T.

The contents of bits 32:63 of GPR[RA] are placed into
each word element of VSR[XT].

For TX=0, mtvsrws is treated as a VSX instruction in
terms of resource availability.

For TX=1, mtvsrws is treated as a Vector instruction in
terms of resource availability.

Special Registers Altered:
None

Data Layout for mtvsrws

Src

| unused |GPR[RA]32:63|

gt

| VSR[xT] word[0] | VSR[XT] word[1] | VSRIXT] word[2] | VSRIXT] .word[3]
0 R 64 96 127
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3.3.18 Move To/From System Register Instructions

The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 24. In the preferred form, the FXM
field satisfies the following rule.

« Exactly one bit of the FXM field is set to 1.

Extended mnemonics

Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mtcrf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See Appendix C, “Assembler Extended
Mnemonics” on page 1011 for additional extended
mnemonics.

Move To Special Purpose Register XFX-form

mtspr SPR,RS

31 RS spr 467 |

0 6 u 21 31

N« sprs:g || spro:a
switch (n)
case(13): see Book 111
case(808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
SPR(n) « (RS)
else
SPR(N) « (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, unless the SPR field
contains 13 (denoting the AMR), the contents of register
RS are placed into the designated Special Purpose Reg-
ister. For Special Purpose Registers that are 32 bits
long, the low-order 32 bits of RS are placed into the
SPR.

The AMR (Authority Mask Register) is used for “stor-
age protection.” This use, and operation of mtspr for

. SPR*! Register
decimal
SPrs:.9 SPro:4 Name
771 11000 00011 PMC1
772 11000 00100 PMC2
773 11000 00101 PMC3
774 11000 00110 PMC4
775 11000 00111 PMC5
776 11000 01000 PMC6
779 11000 01011 MMCRO
800 11001 00000 BESCRS
801 11001 00001 BESCRSU
802 11001 00010 BESCRR
803 11001 00011 BESCRRU
804 11001 00100 EBBHR
805 11001 00101 EBBRR
806 11001 00110 BESCR
808 11001 01000 reserved?
809 11001 01001 reserved?
810 11001 01010 reserved?
811 11001 01011 reserved?
815 11001 01111 TAR?
896 11100 00000 PPR
898 11100 00010 PPR32
1. Note that the order of the two 5-bit
halves of the SPR number is reversed.
2. Accesses to these registers are no-ops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”

the AMR, are described in Book Ill.

. SPR* Register
decimal
SPrs.9 SPro:a Name
1 0000000001 XER
3 00000 00011 DSCR
8 0000001000 LR
9 0000001001 CTR
13 0000001101 AMR
256 01000 00000 VRSAVE
769 11000 00001 MMCR2
770 11000 00010 MMCRA
1. Note that the order of the two 5-bit
halves of the SPR number is reversed.
2. Accesses to these registers are no-ops;
see Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”

If execution of this instruction is attempted specifying
an SPR number that is not shown above, one of the fol-
lowing occurs.
o |If sprg = 0, the illegal instruction error handler is
invoked.
* If spry = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above
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Extended Mnemonics:

Examples of extended mnemonics for Move To Special

Purpose Register:

Extended mnemonic: Equivalent to:
mtxer RX mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx
mtppr Rx mtspr 896,Rx
mtppr32 Rx mtspr 898,Rx

—— Programming Note

The AMR is part of the “context” of the program
(see Book lll). Therefore modification of the AMR
requires “synchronization” by software. For this
reason, most operating systems provide a system
library program that application programs can use
to modify the AMR.

—— Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in Assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.
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Move From Special Purpose Register
XFX-form

mfspr RT,SPR

31 RT spr 339 |

0 6 u 21 31

N« sprs-g || spro:4

switch (n)
case(808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
RT « SPR(n)

else
RT « 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, the contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are 32
bits long, the low-order 32 bits of RT receive the con-
tents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

. SPR*! Register
decimal
SPrs.g SPro.4  |Name
1 00000 00001 XER
3 00000 00011 DSCR
8 00000 01000 LR
9 0000001001 CTR
13 00000 01101 AMR
136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
268 01000 01100 TB?
269 0100001101 TBU?
768 11000 00000 SIER
769 11000 00001 MMCR2
770 11000 00010 MMCRA
771 11000 00011 PMC1
772 11000 00100 PMC2
773 11000 00101 PMC3
774 11000 00110 PMC4
775 11000 00111 PMC5
776 11000 01000 PMC6
779 11000 01011 MMCRO
780 11000 01100 SIAR
781 11000 01101 SDAR
782 11000 01110 MMCR1
800 11001 00000 BESCRS
1. Note that the order of the two 5-bit halves
of the SPR number is reversed.
2. See Chapter 5 of Book Il
3. Accesses to these SPRs are no-ops; see
Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”.

. SPR? Register
decimal
SPrs.g SPro.4  |Name
801 11001 00001 BESCRSU
802 11001 00010 BESCRR
803 11001 00011 BESCRRU
804 11001 00100 EBBHR
805 11001 00101 EBBRR
806 11001 00110 BESCR
808 11001 01000 reserved’
809 11001 01001 reserved’
810 11001 01010 reserved’
811 11001 01011 reserved?
815 11001 01111 TAR
896 11100 00000 PPR
898 11100 00010 PPR32
1. Note that the order of the two 5-bit halves
of the SPR number is reversed.
2. See Chapter 5 of Book Il
3. Accesses to these SPRs are no-ops; see
Section 1.3.3, “Reserved Fields,
Reserved Values, and Reserved SPRs”.

If execution of this instruction is attempted specifying
an SPR number that is not shown above, one of the fol-
lowing occurs.
* If sprg = 0, the illegal instruction error handler is
invoked.
e If spry = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

Extended mnemonic: Equivalent to:

mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

Note
’zee the Notes that appear with mtspr.
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Move to CR from XER Extended X-form

MCrXrx BF

31 BF | // 1 7 576 /
0 6 9 |1 16 21 31

CRaxgr+32:4x8r+35 < XERov ov32 ca case

The contents of the 0V, 0V32, CA, and CA32 are copied to
Condition Register field BF.

Special Registers Altered:
CR field BF

Move To One Condition Register Field
XFX-form

mtocrf FXM,RS
31 RS |1 FXM / 144 |
0 6 112 2021 31
count « 0
doi=0to7
if FXMj = 1 then
ne i

count « count + 1
if count = 1 then

CRaxn+32:4xn+35 ¢ (RS)4xn+32:4xn+35
else

CR « undefined

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of bits 4xn+32:4xn+35 of register RS are placed into CR
field n (CR bits 4xn+32:4xn+35). Otherwise, the contents
of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

Move To Condition Register Fields XFX-form

mtcrf FXM,RS
31 RS |0 FXM / 144 !
0 6 1112 2021 31
mask « “(FXMg) 1 *(FXMD) 1] -.. *(FXM)

CR « ((RS)32-63 & mask) | (CR & —mask)

The contents of bits 32:63 of register RS are placed into
the Condition Register under control of the field mask
specified by FXM. The field mask identifies the 4-bit
fields affected. Let i be an integer in the range 0-7. If
FXM;=1 then CR field 1 (CR bits 4xi+32:4xi+35) is set to
the contents of the corresponding field of the low-order
32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

Extended mnemonic: Equivalent to:
mtcr RX mterf OXFF,Rx

Chapter 3. Fixed-Point Facility 127



Version 3.1

Move From One Condition Register Field
XFX-form

Move From Condition Register XFX-form

mfocrf RT,FXM
31 RT 1 FXM / 19 /
0 6 11)12 20[21 31

RT « undefined
count « 0
doi=0to7
if FXMj =1 then
nei
count « count + 1
if count = 1 then
RT « 640

RT4xn+32:4xn+35 ¢ CRaxn+32:4xn+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of CR field n (CR bits 4*n+32:4*n+35) are placed into
bits 4xn+32:4xn+35 of register RT, and the contents of
the remaining bits of register RT are undefined.
Otherwise, the contents of register RT are undefined.

If exactly one bit of the FXM field is set to 1, the
contents of the remaining bits of register RT are set to
0's instead of being undefined as specified above.

Special Registers Altered:
None

—— Programming Note

Warning: mfocrf is not backward compatible with
processors that comply with versions of the
architecture that precede Version 2.08. Such
processors may not set to 0 the bits of register RT
that do not correspond to the specified CR field. If
programs that depend on this clearing behavior
are run on such processors, the programs may get
incorrect results.

The POWER4, POWER5, POWER7 and
POWERS processors set to 0's all bytes of register
RT other than the byte that contains the specified
CR field. In the byte that contains the CR field, bits
other than those containing the CR field may or
may not be set to 0s.

mfcr RT
31 RT |0 7 / 19 /
0 6 11)12 20(21 31
RT « 320 ] CR

The contents of the Condition Register are placed into
RT32:63. RTO:31 are set to 0.

Special Registers Altered:
None
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Set Boolean X-form

Set Boolean Condition X-form

setb RT,BFA setbc RT,BI
31 RT BFA| /I 1/ 128 / 31 RT BI 1 384 /
0 6 n |14 |16 vl 31 0 6 1 16 21 31

if CR4prA+32:1 then
RT « OXFFFF_FFFF_FFFF_FFFF

else if CRyupratas=1 then
RT « 0x0000_0000_0000_0001

else
RT <« 0x0000_0000_0000_0000

If the contents of bit 0 of CR field BFA are equal to 0Obl,
the contents of register RT are set to
OXFFFF_FFFF_FFFF_FFFF.

Otherwise, if the contents of bit 1 of CR field BFA are
equal to Obl, the contents of register RT are set to
0x0000_0000_0000_0001.

Otherwise, the contents of register RT are set to
0x0000_0000_0000_0000.

Special Registers Altered:
None

RT = (CRB|:1) 2 1:0

If bit BI of the CR contains a 1, register RT is set to 1.
Otherwise, register RT is set to 0.

Special Registers Altered:
None

Set Boolean Condition Reverse X-form

sethcr RT,BI

31 RT Bl i 416 /

0 6 u 16 21 31

RT = (CRB|:1) ?2 0: 1

If bit BI of the CR contains a 1, register RT is set to 0.
Otherwise, register RT is set to 1.

Special Registers Altered:
None

Set Negative Boolean Condition X-form

setnbc RT,BI

31 RT Bl 17 448 /

0 6 u 16 21 31

RT = (CRgy=1) 2 -1 : 0

If bit BI of the CR contains a 1, register RT is set to -1.
Otherwise, register RT is set to 0.

Special Registers Altered:
None

Set Negative Boolean Condition Reverse
X-form

setnber RT,BI

31 RT Bl i 480 /

0 6 u 16 21 31

RT = (CRB|:1) ?2 0:-1

If bit BI of the CR contains a 1, register RT is set to 0.
Otherwise, register RT is set to -1.

Special Registers Altered:
None
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3.3.19 Prefixed No-Operation Instruction

Prefixed Nop MRR:*-form

pnop
Prefix:
1 3 0 1 0
0 6 |8 12 |14 31
Suffix::
any valuel
0 31

1. Value must not correspond to a Branch instruction, an rfebb
instruction, a context synchronizing instruction other than isync, or
a "Service Processor Attention" instruction

No operation is performed.

Special Registers Altered:
None

—— Programming Note

The pnop instruction behaves as a b $+8 instruc-
tion regardless of its suffix. However, it does not
cause any side effects such as modification of the
Come From Address Register. (see Section 9.2 of
Book IlI).

—— Programming Note

If the value in the suffix of a pnop instruction corre-
sponds to a Branch instruction, an rfebb instruc-
tion, a context synchronizing instruction other than
isync, or a "Service Processor Attention" instruc-
tion, the instruction form is invalid. The behavior
associated with invalid form instructions is
described in Section 1.8.2 on page 24. rfebb and
isync are defined in Book II: Power ISA Virtual
Environment Architecture. Context synchroniza-
tion and other context synchronizing instructions
are defined in Book Ill: Power ISA Operating Envi-
ronment Architecture. Service Processor Attention
is a reserved instruction; see Appendix C,
“Reserved Instructions” on page 1347.)

This restriction eases hardware implementation
complexity.

— Engineering Note
Because the list of word instructions that must not
be used as the suffix of pnop may change in the
future, hardware should treat these invalid instruc-
tion forms of pnop either as a no-op or as an illegal
instruction. This treatment enhances software com-
patibility. The choice may vary according to which
of the word instructions is used as the suffix.
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Chapter 4. Floating-Point Facility

4.1 Floating-Point Facility Over-
view

This chapter describes the registers and instructions
that make up the Floating-Point Facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IIEEE Standard
754-1985, “IEEE Standard for Binary Floating-Point
Arithmetic” (hereafter referred to as “the IEEE stan-
dard”). That standard defines certain required “opera-
tions” (addition, subtraction, etc.). Herein, the term
“floating-point operation” is used to refer to one of these
required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency.

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.
e computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.6
through 4.6.8.

¢ non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-

itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.5, and 4.6.10.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 28XPONeNt Encodings are provided in the data
format to represent finite numeric values, *Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to the Float-
ing-Point Facility: the Floating-Point Exception. Float-
ing-point exceptions are signaled with bits set in the
Floating-Point Status and Control Register (FPSCR).
They can cause the system floating-point enabled
exception error handler to be invoked, precisely or
imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

< Invalid Operation Exception (VX)
SNaN (VXSNAN)
Infinity- Infinity (VXISI)
Infinity+Infinity (VXIDI)
Zero+Zero (VXzZDz)
InfinityxZero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
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Invalid Integer Convert (VXcvi)
e Zero Divide Exception (2X)
* Overflow Exception (0X)
* Underflow Exception (UX)
* Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 132 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 140 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Facility Reg-
isters

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 45 on page 132.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-
ister.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double
format from the FPRs to the same value in float-
ing-point single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condition
Register explicitly. Some of these instructions copy
data from an FPR to the Floating-Point Status and Con-
trol Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values
must be representable in single format; if they are not,

the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

FPR O
FPR 1

FPR 30
FPR 31

0 63

Figure 45. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR
0 63

Figure 46. Floating-Point Status and Control
Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:31 Reserved

29:31 Decimal Rounding Mode (DRN)
See Section 5.2.1, “DFP Usage of Float-
ing-Point Registers” on page 188.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that instruc-
tion causes any of the floating-point exception
bits in the FPSCR to change from 0 to 1.
mcrfs, mtfsfi, mtfsf, mtfsbO, and mtfsbl
can alter FX explicitly.
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33

34

35

36

37

38

39

40

41

—— Programming Note

FX is defined not to be altered implicitly by
mtfsfi and mtfsf because permitting
these instructions to alter FX implicitly
could cause a paradox. An example is an
mtfsfi or mtfsf instruction that supplies 0
for FX and 1 for 0X, and is executed when
0X=0. See also the Programming Notes
with the definition of these two instruc-
tions.

Floating-Point Enabled Exception Sum-
mary (FEX)

This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsbl1 cannot alter FEX explicitly.

Floating-Point Invalid Operation Excep-
tion Summary (VX)

This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsbO,
and mtfsb1 cannot alter VX explicitly.

Floating-Point Overflow Exception (0X)
See Section 4.4.3, “Overflow Exception” on
page 143.

Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 144.

Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 142.

Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 144.

XX is a sticky version of FI (see below). Thus
the following rules completely describe how XX
is set by a given instruction.

* |f the instruction affects FI, the new
value of XX is obtained by ORing the
old value of XX with the new value of
FI.

« |f the instruction does not affect Fl, the
value of XX is unchanged.

Floating-Point Invalid Operation Excep-
tion (SNaN) (VXSNAN)

See Section 4.4.1, “Invalid Operation Excep-
tion” on page 142.

Floating-Point Invalid Operation Excep-
tion (o - o0) (VXISI)
See Section 4.4.1.

Floating-Point Invalid Operation Excep-
tion (e +o0) (VXIDI)
See Section 4.4.1.

42

43

44

45

46

47:51

47

Floating-Point Invalid Operation Excep-
tion (0 +0) (VXZDZ)
See Section 4.4.1.

Floating-Point Invalid Operation Excep-
tion (e x0) (VXIMZ)
See Section 4.4.1.

Floating-Point Invalid Operation Excep-
tion (Invalid Compare) (VXVC)
See Section 4.4.1.

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction
during rounding. See Section 4.3.6, “Round-
ing” on page 139. This bit is not sticky.

Floating-Point Fraction Inexact (FI)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.

Floating-Point Result Flags (FPRF)
Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the
value placed into FPRF is undefined. Additional
details are given below.

— Programming Note

A single-precision operation that produces
a denormalized result sets FPRF to indicate
a denormalized number. When possible,
single-precision denormalized numbers
are represented in normalized double for-
mat in the target register.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
ger instructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 47 on page 135.
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48:51

48

49

50
51
52
53

54

55

56

57

58

59

Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC bits
to 0. Arithmetic, rounding, and Convert From
Integer instructions may set the FPCC bits with
the C bit, to indicate the class of the result as
shown in Figure 47 on page 135. Note that in
this case the high-order three bits of the FPCC
retain their relational significance indicating
that the value is less than, greater than, or
equal to zero.

Floating-Point Less Than or Negative (FL or
)

Floating-Point Greater Than or Positive (FG
or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Excep-
tion (Software-Defined Condition)

(VXSOFT)

This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsbO, or mtfsbl. See Section 4.4.1.

—— Programming Note

FPSCRyxsorT can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Floating-Point Invalid Operation Excep-
tion (Invalid Square Root) (VXSQRT)
See Section 4.4.1.

Floating-Point Invalid Operation Excep-
tion (Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

Floating-Point
tion Enable (VE)
See Section 4.4.1.

Invalid Operation Excep-

Floating-Point Overflow Exception Enable
(OE)

See Section 4.4.3, “Overflow Exception” on
page 143.

Floating-Point Underflow
Enable (UE)
See Section 4.4.4, “Underflow Exception” on

page 144.

Exception

Floating-Point Zero Divide
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on

page 142.

Exception

60

61

62:63

Floating-Point Inexact Exception Enable
(XE)

See Section 4.4.5, “Inexact Exception” on
page 144.

Floating-Point Non-IEEE Mode (NI)

Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not

apply.

If floating-point non-lIEEE mode is imple-
mented, this bit has the following meaning.

0 The processor is not in floating-point
non-IEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-IEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRy=1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

—— Programming Note

When the processor is in floating-point
non-lIEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode. For example, in
non-IEEE mode an implementation may
return O instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 139.

00 Round to Nearest

01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity
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mats can be specified by the parameters listed in
Figure 50.

Result
Flags Result Value Class Format
C<>=7? Single Double
10001 Quiet NaN
0100 1] - Infinity Exponent Bias +127 +1023
0100 0| - Normalized Number Maximum Exponent +127 +1023
11000 |- Denormalized Number Minimum Exponent -126 - 1022
10010 |- Zero
00010]| +Zero Widths (bits)
1010 0| +Denormalized Number Format 32 64
0010 0| +Normalized Number Sign 1 1
0010 1] +Infinity Exponent 8 11
. . . Fraction 23 52
Figure 47. Floating-Point Result Flags Significand 24 53

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields dif-
fer between these two formats. The structure of the sin-
gle and double formats is shown below.

|[S| EXP | FRACTION
01 9 31

Figure 48. Floating-point single format

|S| EXP FRACTION

01 12 63

Figure 49. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the signifi-
cand. The significand consists of a leading implied bit
concatenated on the right with the FRACTION. This lead-
ing implied bit is 1 for normalized numbers and 0 for
denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-

Figure 50. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Facility support the floating-point double for-
mat only.

4.3.2 Value Representation

This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-
ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 51.

-INF |—NOR |—DEN |-o |+o|+DEN| +NOR | +INF
< »

Figure 51. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to con-
vey diagnostic information such as the representation
of uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers

Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.
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Normalized numbers (+x NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1) x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:
1.2x10738 < M < 3.4x1038

Double Format:
2.2x107308 <\ < 1.8x10308

Zero values (£ 0)

These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to - 0).

Denormalized numbers (£ DEN)

These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)° x 2EMN x (0.fraction)

where Emin is the minimum representable exponent
value (- 126 for single-precision, - 1022 for double-pre-
cision).

Infinities (£ o)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- oo < every finite number < + o

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception occurs

due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 142.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)

These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is 0 then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (VE=0). Quiet NaNs propagate through
all floating-point operations except ordered compari-
son, Floating Round to Single-Precision, and conver-
sion to integer. Quiet NaNs do not signal exceptions,
except for ordered comparison and conversion to inte-
ger operations. Specific encodings in QNaNs can thus
be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
then FRT « (FRA)
else if (FRB) is a NaN
then if instruction is frsp
then FRT « (FRB)g-34 1] %0
else FRT « (FRB)
else if (FRC) is a NaN
then FRT « (FRC)
else if generated QNaN
then FRT « generated QNaN

If the operand specified by FRA is a NaN, then that NaN
is stored as the result. Otherwise, if the operand speci-
fied by FRB is a NaN (if the instruction specifies an FRB
operand), then that NaN is stored as the result, with the
low-order 29 bits of the result set to 0 if the instruction is
frsp. Otherwise, if the operand specified by FRC is a
NaN (if the instruction specifies an FRC operand), then
that NaN is stored as the result. Otherwise, if a QNaN
was generated due to a disabled Invalid Operation
Exception, then that QNaN is stored as the result. If a
QNaN is to be generated as a result, then the QNaN
generated has a sign bit of 0, an exponent field of all
1s, and a high-order fraction bit of 1 with all other frac-
tion bits 0. Any instruction that generates a QNaN as
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the result of a disabled Invalid Operation Exception
generates this QNaN (i.e., 0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN's fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

e The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(- y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
- Infinity, in which mode the sign is negative.

« The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

« The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of - 0 is - Infinity.

« The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

4.3.4 Normalization and
Denormalization

The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces an
intermediate result which carries out of the significand,
or in which the significand is nonzero but has a leading
zero bit, it is not a normalized number and must be nor-
malized before it is stored. For the carry-out case, the
significand is shifted right one bit, with a one shifted into
the leading significand bit, and the exponent is incre-

mented by one. For the leading-zero case, the signifi-
cand is shifted left while decrementing its exponent by
one for each bit shifted, until the leading significand bit
becomes one. The Guard bit and the Round bit (see
Section 4.5.1, “Execution Model for IEEE Operations”
on page 145) participate in the shift with zeros shifted
into the Round bit. The exponent is regarded as if its
range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 144) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision

Most of the Floating-Point Facility Architecture, includ-
ing all computational, Move, and Select instructions,
use the floating-point double format to represent data in
the FPRs. Single-precision and integer-valued oper-
ands may be manipulated using double-precision oper-
ations. Instructions are provided to coerce these values
from a double format operand. Instructions are also
provided for manipulations which do not require dou-
ble-precision. In addition, instructions are provided to
access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands

For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts it
to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.
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2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

If any input value is not representable in single for-
mat and either OE=1 or UE=1, the result placed into
the target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1),
are undefined.

For fres[.] or frsqrtes[.], if the input value is finite
and has an unbiased exponent greater than +127,
the input value is interpreted as an Infinity.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)

When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29
FRACTION bits are zero.

— Programming Note

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding. This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

— Programming Note

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

4.3.5.2 Integer-Valued Operands

Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-Point facilities, instructions are provided to con-
vert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued
operands are described below.

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) exceptions.
See Sections 4.3.6 and 4.5.1 for more information
about rounding.

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on
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the value of FPSCRgy and to round toward zero.
These instructions may cause Invalid Operation
(VXSNAN, VXCVI) and Inexact exceptions. The Float-
ing Convert From Integer instruction converts a
64-bit signed fixed-point integer to a double-preci-
sion floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding

The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and FI generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then Fl is set
to 1, otherwise Fl is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
FI to 0. The Estimate instructions set FR and FI to unde-
fined values. The remaining floating-point instructions
do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the
FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

RN Rounding Mode

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 52 shows the relation of z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit".

By Incrementing LSB of Z
Infinitely Precise Value

17 By Truncating after LSB

v

L1l | L]
42'2££1 ! o>

Negative values <—l—>

Figure 52. Selection of Z1 and Z2

Positive values

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward - Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 145 for a detailed explanation of round-

ing.
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4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

¢ Invalid Operation Exception
SNaN
Infinity- Infinity
Infinity+Infinity
Zero+Zero
InfinityxZero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert

e Zero Divide Exception

* Overflow Exception

* Underflow Exception

* Inexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur
during execution of computational instructions. An
Invalid Operation Exception due to Software-Defined
Condition occurs when a Move To FPSCR instruction
sets VXSOFT to 1.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FEO and FE1 bits (see page 141),
whether and how the system floating-point enabled
exception error handler is invoked. (In general, the
enabling specified by the enable bit is of invoking the
system error handler, not of permitting the exception to
occur. The occurrence of an exception depends only on
the instruction and its inputs, not on the setting of any
control bits. The only deviation from this general rule is
that the occurrence of an Underflow Exception may
depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:
¢ Inexact Exception may be set with Overflow
Exception.
¢ Inexact Exception may be set with Underflow
Exception.
¢ Invalid Operation Exception (SNaN) is set with
Invalid Operation Exception (ex0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.
¢ Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.
¢ Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

« Enabled Invalid Operation
« Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

« Disabled Invalid Operation
* Disabled Zero Divide

* Disabled Overflow

* Disabled Underflow

* Disabled Inexact

* Enabled Overflow

¢ Enabled Underflow

¢ Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of O causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be setto 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-
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ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FEO and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book Ill. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of these
bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause
the system floating-point enabled excep-

tion error handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

Precise Mode

The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book

).

— Programming Note

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. (It
always applies in the latter case.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

« |If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

« If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

« Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
setto 1.

* Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.
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4.4.1 Invalid Operation Exception

4.41.1 Definition

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:

« Any floating-point operation on a Signaling NaN
(SNaN)

« For add or subtract operations, magnitude subtrac-
tion of infinities (o - o)

¢ Division of infinity by infinity (co + o)

« Division of zero by zero (0 + 0)

« Multiplication of infinity by zero (e x 0)

e Ordered comparison involving a NaN (Invalid
Compare)

e Square root or reciprocal square root of a negative
(and nonzero) number (Invalid Square Root)

« Integer convert involving a number too large in
magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsbl instruction is executed that
sets VXSOFT to 1 (Software-Defined Condition).

44.1.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled (VE=1)
and an Invalid Operation Exception occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set

VXSNAN (if SNaN)
VXISI (if o - o)
VXIDI (if oo + o0)
VXZDZ (if 0+ 0)
VXIMZ (if o x 0)
VXVC (if invalid compare)
VXSOFT (if software-defined condition)
VXSQRT (if invalid square root)

VXCVI (if invalid integer convert)
2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,
the target FPR is unchanged
FR FI are set to zero
FPRF is unchanged
3. If the operation is a compare,
FR FI C are unchanged
FPCC is set to reflect unordered
4. If an mtfsfi, mtfsf, or mtfsbl instruction is exe-
cuted that sets VXSOFT to 1,
The FPSCR is set as specified in the instruc-
tion description.

When Invalid Operation Exception is disabled (VE=0)
and an Invalid Operation Exception occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set

VXSNAN (if SNaN)
VXISI (if oo - o)
VXIDI (if o0 + o0)
VXZDZ (if 0+ 0)
VXINZ (if o x 0)
VXVC (if invalid compare)
VXSOFT (if software-defined condition)
VXSQRT (if invalid square root)

VXCVI (if invalid integer convert)
2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,
the target FPR is set to a Quiet NaN
FR FI are set to zero
FPRF is set to indicate the class of the result
(Quiet NaN)
3. If the operation is a convert to 64-bit integer opera-
tion,
the target FPR is set as follows:
FRT is set to the most positive 64-hit integer
if the operand in FRB is a positive number
or + «, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - «, or NaN
FR FI are set to zero
FPRF is undefined
4. If the operation is a convert to 32-bit integer opera-
tion,
the target FPR is set as follows:
FRTg.31 < undefined
FRT3,.63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-hit integer if the operand in FRB is a
negative number, -infinity, or NaN
FR FI are set to zero
FPRF is undefined
5. If the operation is a compare,
FR FI C are unchanged
FPCC is set to reflect unordered
6. If an mtfsfi, mtfsf, or mtfsbl instruction is exe-
cuted that sets VXSOFT to 1,
The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1 Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqrte[s]) is exe-
cuted with an operand value of zero.
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4.42.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (ZE=1) and a
Zero Divide Exception occurs, the following actions are
taken:

1. Zero Divide Exception is set
X1

2. The target FPR is unchanged

3. FR FI are set to zero

4. FPRFis unchanged

When Zero Divide Exception is disabled (ZE=0) and a
Zero Divide Exception occurs, the following actions are
taken:

1. Zero Divide Exception is set
X« 1

2. The target FPR is set to £ Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FR FI are set to zero

4. FPRF is set to indicate the class and sign of the
result (£ Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

4.43.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (0E=1) and an
Overflow Exception occurs, the following actions are
taken:

1. Overflow Exception is set
0Xe1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPRF is set to indicate the class and sign of the
result (£ Normal Number)

When Overflow Exception is disabled (0E=0) and an
Overflow Exception occurs, the following actions are
taken:

No ok

Overflow Exception is set
0X¢«1
Inexact Exception is set
XX 1
The result is determined by the rounding mode (RN)
and the sign of the intermediate result as follows:
- Round to Nearest
Store = Infinity, where the sign is the sign
of the intermediate result
- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result
- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity
- Round toward - Infinity
For negative overflow, store - Infinity; for
positive overflow, store the format's larg-
est finite number
The result is placed into the target FPR
FR is undefined
Flissetto 1
FPRF is set to indicate the class and sign of the
result (£ Infinity or £ Normal Number)
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4.4.4 Underflow Exception

4.44.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

¢ Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

¢ Disabled:

Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A“Tiny” result is detected before rounding, when a non-
zero intermediate result computed as though both the
precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (UE=0) then the intermediate
result is denormalized (see Section 4.3.4, “Normaliza-
tion and Denormalization” on page 137) and rounded
(see Section 4.3.6, “Rounding” on page 139) before
being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (UE=1) and an
Underflow Exception occurs, the following actions are
taken:

1. Underflow Exception is set
UX«1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPRF is set to indicate the class and sign of the
result (£ Normalized Number)

— Programming Note

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

When Underflow Exception is disabled (UE=0) and an
Underflow Exception occurs, the following actions are
taken:

1. Underflow Exception is set
UX«1
2. The rounded result is placed into the target FPR
3. FPRF is set to indicate the class and sign of the
result (x Normalized Number, + Denormalized
Number, or £ Zero)

4.4.5 Inexact Exception

4.45.1 Definition

An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Excep-
tion, an Inexact Exception also occurs only if the
significands of the rounded result and the interme-
diate result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4.45.2 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set

XX« 1
2. The rounded or overflowed result is placed into the
target FPR
3. FPRF is set to indicate the class and sign of the
result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.
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4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

¢ Underflow during multiplication using a denormal-
ized operand.

¢ Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arithme-
tic. The standard requires that single-precision arithme-
tic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

45.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Is|c|L] FRACTION IG[R[X]
01 53 54 55

Figure 53. |IEEE 64-bit execution model
The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out of
the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the fraction of
the operand.

The Guard (G), Round (R), and Sticky (X) bits are exten-
sions to the low-order bits of the accumulator. The G
and R bits are required for postnormalization of the
result. The G, R, and X bits are required during rounding
to determine if the intermediate result is equally near
the two nearest representable values. The X bit serves
as an extension to the G and R bits by representing the
logical OR of all bits that may appear to the low-order
side of the R bit, due either to shifting the accumulator
right or to other generation of low-order result bits. The
G and R bits participate in the left shifts with zeros being
shifted into the R bit. Figure 54 shows the significance
of the G, R, and X bits with respect to the intermediate
result (IR), the representable number next lower in
magnitude (NL), and the representable number next
higher in magnitude (NH).

G R X | Interpretation

000 |[IRisexact

001

010 |IRclosertoNL

011

100 |IRmidway between NL and NH
101

110 |[IRclosertoNH

111

Figure 54. Interpretation of G, R, and X bits

Figure 55 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 53.

Format |Guard |Round |[Sticky
Double |G bit R bit X bit
Single (24 25 OR of 26:52, G, R, X

Figure 55. Location of the Guard, Round, and
Sticky bits in the IEEE execution model
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The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through RN as
described in Section 4.3.6, “Rounding” on page 139.
Using Z1 and Z2 as defined on page 139, the rules for
rounding in each mode are as follows.

¢ Round to Nearest

Guard bit=0

The result is truncated. (Result exact (GRX=000) or
closest to next lower value in magnitude (GRX=001,
010, or 011))

Guard bit=1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to
next higher value in magnitude (GRX=101,
110, or 111))

Case b

If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

¢ Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is
inexact.

¢ Round toward + Infinity
Choose Z1.

¢ Round toward - Infinity
Choose 72.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.
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4.5.2 Execution Model for
Multiply-Add Type Instructions

The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION field
is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

[s|c]L] FRACTION [X]
0123 106

Figure 56. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the FRAC-
TION and shifting the C bit (carry out) into the L bit. All
106 bits (L bit, the FRACTION) of the product take part in
the add operation. If the exponents of the two inputs to
the adder are not equal, the significand of the operand
with the smaller exponent is aligned (shifted) to the
right by an amount that is added to that exponent to
make it equal to the other input’s exponent. Zeros are
shifted into the left of the significand as it is aligned and
bits shifted out of bit 105 of the significand are ORed
into the X” bit. The add operation also produces a result
conforming to the above model with the X’ bit taking
part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 57
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Format |Guard |[Round |Sticky
Double (53 54 OR of 55:105, X”
Single |24 25 OR of 26:105, X”

Figure 57. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.
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4.6 Floating-Point Facility Instructions

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 29.

—— Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section C.10, “Miscellaneous Mne-
monics” on page 1022.

4.6.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.
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4.6.2 Floating-Point Load Instructions

There are three basic forms of load instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Load Floating-Point as
Integer Word Algebraic instruction, described on
page 153. Because the FPRs support only float-
ing-point double format, single-precision Load Float-
ing-Point instructions convert single-precision data to
double format prior to loading the operand into the tar-
get FPR. The conversion and loading steps are as fol-
lows.

Let WORDy.3; be the floating-point single-precision oper-
and accessed from storage.

Normalized Operand
if WORD;.g > 0 and WORD;.g < 255 then
FRTg.1 « WORDg-4
FRT, « -WORD
FRT3 « —WORD;
FRT, ¢ —WORD;
FRT5.g3 « WORD,.3; | 290

Denormalized Operand

if WORD;.g = 0 and WORDg.31 # O then

sign « WORD

exp « -126

fracg.5, « 0b0 || WORDg-3; || 2%0

normalize the operand

do while fracg = 0

fracg.5, « fracy-so || 0b0
exp « exp - 1

FRTq « sign

FRTlle «— exp + 1023

FRT12:63 « frac;:sp

Zero / Infinity / NaN
if WORD;.g = 255 or WORD;.3; = O then
FRTg-1 « WORDg-4
FRT, < WORD;
FRT3 « WORD;
FRT, « WORDq
FRTs-63 « WORDy.3; || 29

For double-precision Load Floating-Point instructions
and for the Load Floating-Point as Integer Word Alge-
braic instruction no conversion is required, as the data
from storage are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA=0, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Regis-
ter.
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Load Floating-Point Single D-form
Ifs FRT,D(RA)

Load Floating-Point Single Indexed X-form

Ifsx FRT,RA,RB

48 FRT RA D

0 6 u 16 31

31 FRT RA RB 535 /

0 6 u 16 21 31

Prefixed Load Floating-Point Single
MLS:D-form

plfs FRT,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 |8|9 (112 |14 kil
Suffix::
48 FRT RA dl
0 6 u 16 31
if “Ifs” then

EA « (RA]0) + EXTS64(D)
if “plfs” & R=0 then

EA « (RA]O0) + EXTS64(d0||d1)
if “plfs” & R=1 then

EA « CIA + EXTS64(d0||d1)

FRT « DOUBLE(MEM(EA, 4))

For Ifs, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plfs with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0j|d1, sign-extended to 64 bits.

For plfs with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0j|d1, sign-extended to 64 bits.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

For plfs, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Load Floating-Point
Single:

Extended mnemonic: Equivalent to:
plfs  Fx,value(Ry) plfs  Fx,value(Ry),0
plfs  Fx,value plfs  Fx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

FRT « DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA]0) + (RB).

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

Ifsu FRT,D(RA)

49 FRT RA D
0 6 n 16 31

EA « (RA) + EXTS(D)
FRT « DOUBLE(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA) + D.

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Load Floating-Point Single with Update
Indexed X-form

Ifsux FRT,RA,RB

31 FRT RA RB 567 /
0 6 u 16 21 31]

EA « (RA) + (RB)
FRT « DOUBLE(MEM(EA, 4))
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).

The word in storage addressed by EA is interpreted as a
floating-point single-precision operand. This word is
converted to floating-point double format (see
page 149) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Load Floating-Point Double D-form
Il FRT,D(RA)

Load Floating-Point Double Indexed X-form

Ifdx FRT,RA,RB

50 FRT RA D

0 6 u 16 31

31 FRT RA RB 599 /
0 6 u 16 21 31

Prefixed Load Floating-Point Double
MLS:D-form

pifd FRT,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 |8|9 (112 |14 kil
Suffix::
50 FRT RA dl
0 6 u 16 31
if “Ifd” then

EA « (RA]0) + EXTS64(D)
if “plfd” & R=0 then

EA « (RA]O0) + EXTS64(d0||d1)
if “plfd” & R=1 then

EA « CIA + EXTS64(d0||d1)

FRT « MEM(EA, 8)

For Ifd, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For plfd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0j|d1, sign-extended to 64 bits.

For plfd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0j|d1, sign-extended to 64 bits.

The doubleword in storage addressed by EA is loaded
into register FRT.

For plfd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Load Floating-Point
Double:

Extended mnemonic: Equivalent to:
plfd  Fx,value(Ry) plfd  Fx,value(Ry),0
plfd Fx,value plfd Fx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

FRT « MEM(EA, 8)

Let the effective address (EA) be the sum
(RA]0) + (RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

Ifdu FRT,D(RA)

51 FRT RA D
0 6 n 16 31

EA « (RA) + EXTS(D)
FRT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum (RA) + D.

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

Ifdux FRT,RA,RB

31 FRT RA RB 631 /
0 6 u 16 21 31

EA « (RA) + (RB)
FRT « MEM(EA, 8)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Load Floating-Point as Integer Word Algebraic
Indexed X-form

Ifiwax FRT,RA,RB

Load Floating-Point as Integer Word & Zero
Indexed X-form

Ifiwzx FRT,RA,RB

31 FRT RA RB 855 /

0 6 u 16 21 31

31 FRT RA RB 887 /

0 6 u 16 21 31

if RA=0 thenb « 0
else b « (RA)
EA « b + (RB)

FRT « EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RAJ0) + (RB).

The word in storage addressed by EA is loaded into
FRT3,.63. FRTg.3; are filled with a copy of bit O of the
loaded word.

Special Registers Altered:
None

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

FRT « 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA]0) + (RB).

The word in storage addressed by EA is loaded into
FRT3p.63. FRTp-3; are setto 0.

Special Registers Altered:
None
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4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 158.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORDg.3; be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRSl:ll > 896 or FR51:63 = 0 then
WORDo:l — FRSO:l
WORD2:31 — FR85:34

Denormalization Required
if 874 < FRS1.11 < 896 then
sign « FRSy
exp « FRSlCll - 1023
fracy.s; < Obl || FRS12:63
denormalize operand
do while exp < - 126
fracg.gp « 0b0 || fracg-s5q1
exp « exp + 1
WORDg « sign
WORDq.g « 0x00
WORD9:31 — fracl:23
else WORD « undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies. The result stored in WORD is then a
well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-
gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA#0, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Register.
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Store Floating-Point Single D-form

stfs FRS,D(RA)

Store Floating-Point Single Indexed X-form

stfsx FRS,RA,RB

52 FRS RA D

0 6 u 16 31

31 FRS RA RB 663 /

0 6 u 16 21 31

Prefixed Store Floating-Point Single
MLS:D-form

pstfs FRS,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 |8|9 (112 |14 kil
Suffix::
52 FRS RA dl
0 6 1 16 31
if “stfs” then

EA « (RA]0) + EXTS64(D)
if “pstfs” & R=0 then

EA « (RA]O0) + EXTS64(d0||d1)
if “pstfs” & R=1 then

EA « CIA + EXTS64(d0||d1)

MEM(EA, 4) « SINGLE((FRS))

For stfs, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstfs with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0j|d1, sign-extended to 64 bits.

For pstfs with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0j|d1, sign-extended to 64 bits.

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

For pstfs, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Store Floating-Point
Single:

Extended mnemonic: Equivalent to:
pstfs  Fx,value(Ry) pstfs  Fx,value(Ry),0
pstfs Fx,value pstfs  Fx,value(0),1

ifRA=0thenb « 0

else b « (RA)
EA « b + (RB)

MEM(EA, 4) « SINGLE((FRS))

Let the effective address (EA) be the sum
(RAJ0) + (RB).

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

53 FRS RA D

0 6 u 16 31

EA « (RA) + EXTS(D)
MEM(EA, 4) « SINGLE((FRS))
RA « EA

Let the effective address (EA) be the sum (RA) +D.

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

31 FRS RA RB 695 /
0 6 u 16 21 31]

EA « (RA) + (RB)
MEM(EA, 4) « SINGLE((FRS))
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS are converted to single for-
mat (see page 154) and stored into the word in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Floating-Point Double D-form

stfd FRS,D(RA)

Store Floating-Point Double Indexed X-form

stfdx FRS,RA,RB

54 FRS RA D

0 6 u 16 31

31 FRS RA RB 727 /

0 6 u 16 21 31

Prefixed Store Floating-Point Double
MLS:D-form

pstfd FRS,D(RA),R
Prefix:
1 20| I/ |R| 1 do
0 6 |8|9 (112 |14 kil
Suffix::
54 FRS RA dl
0 6 u 16 kil
if “stfd” then

EA « (RA]0) + EXTS64(D)
if “pstfd” & R=0 then

EA « (RA]O0) + EXTS64(d0||d1)
if “pstfd” & R=1 then

EA « CIA + EXTS64(d0||d1)

MEM(EA, 8) « (FRS)

For stfd, let the effective address (EA) be the sum of the
contents of register RA, or the value 0 if RA=0, and the
value D, sign-extended to 64 bits.

For pstfd with R=0, let the effective address (EA) be the
sum of the contents of register RA, or the value 0 if RA=0,
and the value d0j|d1, sign-extended to 64 bits.

For pstfd with R=1, let the effective address (EA) be the
sum of the address of the instruction and the value
d0j|d1, sign-extended to 64 bits.

The contents of register FRS are stored into the double-
word in storage addressed by EA.

For pstfd, if R is equal to 1 and RA is not equal to 0, the
instruction form is invalid.

Special Registers Altered:
None

Extended mnemonics for Prefixed Store Floating-Point
Double:

Extended mnemonic: Equivalent to:
pstfd  Fx,value(Ry) pstfd  Fx,value(Ry),0
pstfd  Fx,value pstfd  Fx,value(0),1

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

MEM(EA, 8) « (FRS)

Let the effective address (EA) be the sum
(RAJ0) + (RB).

The contents of register FRS are stored into the double-
word in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

55 FRS RA D
0 6 n 16 31

EA « (RA) + EXTS(D)
MEM(EA, 8) « (FRS)
RA « EA

Let the effective address (EA) be the sum (RA) + D.

The contents of register FRS are stored into the double-
word in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None
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Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

31 FRS RA RB 759 /
0 6 u 16 21 31]

EA « (RA) + (RB)
MEM(EA, 8) « (FRS)
RA « EA

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS are stored into the double-
word in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.
Special Registers Altered:

None

Store Floating-Point as Integer Word Indexed
X-form

stfiwx FRS,RA,RB

31 FRS RA RB 983 /
0 6 u 16 21 31]

if RA=0thenb« 0
else b « (RA)
EA « b + (RB)

MEM(EA, 4) — (FRS)32:63

Let the effective address (EA) be the sum (RA]0)+(RB).

(FRS)3,-63 are stored, without conversion, into the word
in storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register FRS are produced directly by such an instruc-
tion if FRS is the target register for the instruction. The
contents of register FRS are produced indirectly by such
an instruction if FRS is the final target register of a
sequence of one or more Floating-Point Move instruc-
tions, with the input to the sequence having been pro-
duced directly by such an instruction.)

Special Registers Altered:
None
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4.6.4 Floating-Point Load and Store Double Pair Instructions [Phased-Out]

For Ifdp[x], the doubleword-pair in storage addressed
by EA is loaded into an even-odd pair of FPRs with the
even-numbered FPR being loaded with the leftmost
doubleword from storage and the odd-numbered FPR
being loaded with the rightmost doubleword.

For stfdp[x], the content of an even-odd pair of FPRs
is stored into the doubleword-pair in storage
addressed by EA, with the even-numbered FPR being
stored into the leftmost doubleword in storage and the

odd-numbered FPR being stored into the rightmost
doubleword.

Programming Note

The instructions described in this section should
not be used to access an operand in DFP
Extended format when the processor is in Lit-
tle-Endian mode.

Load Floating-Point Double Pair DS-form
Ifdp FRTp,DS(RA)

57 FRTp RA

Load Floating-Point Double Pair Indexed
X-form

Ifdpx FRTp,RA,RB

0 6 u 16 30 31

ifFRA=0thenb« 0
else b «(RA)
EA « b + EXTS(DS]||0b00)
FRTpeven < MEM(EA,8)
FRTpogg ¢« MEM(EA+8, 8)

Let the effective address (EA) be the sum
(RAJ0) + (DS]|0b00).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is placed
into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

31 FRTp RA RB 791 /
0 6 u 16 21 31

ifRA=0thenb « 0
else b « (RA)
EA « b + (RB)

FRTPeven < MEM(EA,8)
FRTPpogg < MEM(EA+8, 8)

Let the effective address (EA) be the sum
(RAJ0) + (RB).

The doubleword in storage addressed by EA is placed
into the even-numbered register of FRTp.

The doubleword in storage addressed by EA+8 is placed
into the odd-numbered register of FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None
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Store Floating-Point Double Pair DS-form
stfdp FRSp,DS(RA)

61 FRSp RA DS 0

Store Floating-Point Double Pair Indexed
X-form

stfdpx FRSp,RA,RB

0 6 u 16 30 31

ifFRA=0thenb« 0

else b « (RA)
EA « b + EXTS(DS||0b00)
MEM(EA, 8)  « FRSpgyven

MEM(EA+8, 8) « FRSPogq

Let the effective address (EA) be the sum
(RAJ0) + (DS]|0b00).

The contents of the even-numbered register of FRSp are
stored into the doubleword in storage addressed by EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

31 FRSp RA RB 919 /

0 6 u 16 21 31

ifRA=0thenb « 0

else b « (RA)
EA « b + (RB)
MEM(EA, 8)  « FRSpeven

MEM(EA+8, 8) « FRSPoqq

Let the effective address (EA) be the sum
(RA]0) + (DS]|0b00).

The contents of the even-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA.

The contents of the odd-numbered register of FRSp are
stored into the doubleword in storage addressed by
EA+8.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None
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4.6.5 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs, fnabs, and fcpsgn). These instructions do
not alter the FPSCR.

Floating Move Register X-form

Floating Absolute Value X-form

fmr FRT,FRB (Rc=0) fabs FRT,FRB (Rc=0)
fmr. FRT,FRB (Re=1) fabs. FRT,FRB (Re=1)

63 FRT mn FRB 72 Re 63 FRT mn FRB 264 R
0 6 1 16 2 31 0 6 1 16 21 31

The contents of register FRB are placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Negate X-form

fneg FRT,FRB (Rc=0)
fneg. FRT,FRB (Re=1)

63 FRT 7 FRB 40 R
0 6 u 16 21 31

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Negative Absolute Value X-form

The contents of register FRB with bit O inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

63 FRT 1 FRB 136 Re
0 6 u 16 21 31

The contents of register FRB with bit O set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

Floating Copy Sign X-form

fcpsgn FRT, FRA, FRB (Rc=0)
fcpsgn. FRT, FRA, FRB (Re=1)

63 FRT FRA FRB 8 Re
0 6 u 16 21 31

The contents of register FRB with bit O set to the value of
bit O of register FRA are placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)
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Floating Merge Even Word X-form

fmrgew FRT,FRA,FRB

Floating Merge Odd Word X-form

fmrgow FRT,FRA,FRB

63 FRT FRA FRB 966 /

0 6 u 16 21 31,

63 FRT FRA FRB 838 /
0 6 u 16 21 31

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] « FPR[FRA].word[0]
FPR[FRT].word[1] « FPR[FRB].word[0]

The contents of word element 0 of FPR[FRA] are placed
into word element O of FPR[FRT].

The contents of word element 0 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgew is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None

if MSR.FP=0 then FP_Unavailable()
FPR[FRT].word[0] « FPR[FRA].word[1]
FPR[FRT].word[1] « FPR[FRB].word[1]

The contents of word element 1 of FPR[FRA] are placed
into word element O of FPR[FRT].

The contents of word element 1 of FPR[FRB] are placed
into word element 1 of FPR[FRT].

fmrgow is treated as a Floating-Point instruction in
terms of resource availability.

Special Registers Altered
None
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4.6.6 Floating-Point Arithmetic Instructions

4.6.6.1 Floating-Point Elementary Arithmetic Instructions

Floating Add A-form

Floating Subtract A-form

fadd FRT,FRA,FRB (Rc=0) fsub FRT,FRA,FRB (Rc=0)
fadd. FRT,FRA,FRB (Re=1) fsub. FRT,FRA,FRB (Re=1)

63 FRT FRA FRB 1/ 21 Re 63 FRT FRA FRB 1/ 20 Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

Floating Add Single A-form

Floating Subtract Single A-form

fadds FRT,FRA,FRB (Rc=0) fsubs FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Re=1) fsubs. FRT,FRA,FRB (Re=1)

59 FRT FRA FRB 1/ 21 Re 59 FRT FRA FRB 1/ 20 Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The exponents
of the two operands are compared, and the significand
accompanying the smaller exponent is shifted right,
with its exponent increased by one for each bit shifted,
until the two exponents are equal. The two significands
are then added or subtracted as appropriate, depend-
ing on the signs of the operands, to form an intermedi-
ate sum. All 53 bits of the significand as well as all three
guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXISI
CR1 (if Re=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign bit
(bit 0) inverted.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXISI
CR1 (if Re=1)
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Floating Multiply A-form

Floating Divide A-form

fmul FRT,FRA,FRC (Rc=0) fdiv FRT,FRA,FRB (Rc=0)
fmul. FRT,FRA,FRC (Re=1) fdiv. FRT,FRA,FRB (Rc=1)
63 FRT | FRA i FRC 25 |k 63 FRT | FRA | FRB i 18 R
0 6 u 16 21 2 31 0 6 u 16 21 26 31
Floating Multiply Single A-form Floating Divide Single A-form
fmuls FRT,FRA,FRC (Rc=0) fdivs FRT,FRA,FRB (Rc=0)
fmuls. FRT,FRA,FRC (Re=1) fdivs. FRT,FRA,FRB (Rc=1)
59 FRT | FRA i FRC 25 |k 59 FRT | FRA | FRB i 18 R
0 6 u 16 21 2 31 0 6 u 16 21 26 31

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXIMZ
CR1 (if Re=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB. The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX ZX XX
VXSNAN  VXIDI  VXZDZ
CR1 (if Re=1)
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Floating Square Root A-form

Floating Reciprocal Estimate A-form

fsqrt FRT,FRB (Rc=0) fre FRT,FRB (Rc=0)
fsqrt. FRT,FRB (Rec=1) fre. FRT,FRB (Rc=1)

63 FRT 7 FRB i 22 Re 63 FRT i FRB 7 24 Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

Floating Square Root Single A-form

Floating Reciprocal Estimate Single A-form

fsqrts FRT,FRB (Rc=0) fres FRT,FRB (Rc=0)
fsgrts. FRT,FRB (Re=1) fres. FRT,FRB (Rc=1)

59 FRT 7 FRB i 22 Re 59 FRT i FRB 7 24 Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
- oo QNaN? VXSQRT

<0 QNaN? VXSQRT

-0 -0 None

+oo +oo None
SNaN ONaN? VXSNAN
QNaN QNaN None

1 No result if VE=1

FPSCRepre is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI FX OX UX XX
VXSNAN  VXSQRT
CR1 (if Re=1)

An estimate of the reciprocal of the floating-point
operand in register FRB is placed into register FRT.
Unless the reciprocal would be a zero, an infinity, the
result of a trap-disabled Overflow exception, or a
QNaN, the estimate is correct to a precision of one
part in 256 of the reciprocal of (FRB), i.e.,

estimate — 1/x) < 1
1/x ~ 256
where X is the initial value in FRB.

ABS(

Operation with various special values of the operand is
summarized below.

Operand Result Exception
-Y% -0 None

-0 -5t X

+0 +5t X

+ +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1" No result if zE=1.
2 No result if VE=1.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX O0X UX ZX XX (undefined)
VXSNAN
CR1 (if Re=1)

—— Programming Note

mentations.

For the Floating-Point Estimate instructions, some implementations might implement a precision higher than the
minimum architected precision. Thus, a program may take advantage of the higher precision instructions to
increase performance by decreasing the iterations needed for software emulation of floating-point instructions.
However, there is no guarantee given about the precision which may vary (up or down) between implementa-
tions. Only programs targeted at a specific implementation (i.e., the program will not be migrated to another
implementation) should take advantage of the higher precision of the instructions. All other programs should rely
on the minimum architected precision, which will guarantee the program to run properly across different imple-
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Floating Reciprocal Square Root Estimate
A-form

frsqrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Re=1)

63 FRT 7 FRB 1 26 |Re
0 6 1 16 21 26 31

Floating Reciprocal Square Root Estimate
Single A-form

frsqrtes FRT,FRB (Rc=0)
frsgrtes. FRT,FRB (Re=1)

59 FRT mn FRB mn 26 |Re
0 6 il 16 2 26 31

A estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into reg-
ister FRT. The estimate placed into register FRT is correct
to a precision of one part in 32 of the reciprocal of the
square root of (FRB), i.e.,

estimate - 1/(./%), . 1

1/(X) 32
where X is the initial value in FRB.

ABS(

Operation with various special values of the operand is
summarized below.

Operand Result Exception
. QNaN? VXSQRT

<0 QNaN? VXSQRT

-0 - ool PAY

+0 +ool PAY

+o0 +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1" No result if ZE=1.
2 No result if VE=1.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1 and Zero
Divide Exceptions when ZE=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF  FR (undefined) FI (undefined)
FX 0X UX ZX XX (undefined)
VXSNAN VXSQRT
CR1 (if Re=1)

Note
Fee the Notes that appear with fre[s].

Floating Test for software Divide X-form

ftdiv BF,FRA,FRB

63 BF | /]| FRA FRB 128 /
0 6 9 |u 16 21 31

Let e_a be the unbiased exponent of the double-preci-
sion floating-point operand in register FRA.

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if any of the following conditions
occurs.

* The double-precision floating-point operand in reg-
ister FRA is a NaN or an Infinity.

* The double-precision floating-point operand in reg-
ister FRB is a Zero, a NaN, or an Infinity.

e e _bislessthan or equal to -1022.
e e_bis greater than or equal to 1021.

* The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is greater than or equal to 1023.

* The double-precision floating-point operand in reg-
ister FRA is not a zero and the difference,
e_a - e_b, is less than or equal to -1021.

« The double-precision floating-point operand in reg-
ister FRA is not a zero and e_a is less than or equal
to -970

Otherwise fe_flag is set to 0.

fg_flag is set to 1 if either of the following conditions
occurs.

* The double-precision floating-point operand in reg-
ister FRA is an Infinity.

* The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
fre[s][.] of less than or equal to 2714, then flI_flag is set
to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || ObO.

Special Registers Altered:
CR field BF
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Floating Test for software Square Root
X-form

ftsqrt BF,FRB

63 BF | /I i FRB 160 /

0 6 9 Ju 16 21 31

Let e_b be the unbiased exponent of the double-preci-
sion floating-point operand in register FRB.

fe_flag is set to 1 if either of the following conditions
occurs.

« The double-precision floating-point operand in reg-
ister FRB is a zero, a NaN, or an infinity, or a nega-
tive value.

¢ e_hisless than or equal to -970.
Otherwise fe_flag is set to 0.
fg_flag is set to 1 if the following condition occurs.

« The double-precision floating-point operand in reg-
ister FRB is a Zero, an Infinity, or a denormalized
value.

Otherwise fg_flag is set to 0.

If the implementation guarantees a relative error of
frsqrte[s][.] of less than or equal to 2714, then fl_flag is
set to 1. Otherwise fl_flag is set to 0.

CR field BF is set to the value
fl_flag || fg_flag || fe_flag || ObO.

Special Registers Altered:
CR field BF

— Programming Note

ftdiv and ftsqgrt are provided to accelerate software
emulation of divide and square root operations, by
performing the requisite special case checking.
Software needs only a single branch, on FE=1 (in
CR[BF]), to a special case handler. FG and FL may
provide further acceleration opportunities.
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4.6.6.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

¢ Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

< Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsubl[s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add A-form

Floating Multiply-Subtract A-form

fmadd FRT,FRA,FRC,FRB (Rc=0) fmsub FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Re=1) fmsub. FRT,FRA,FRC,FRB (Re=1)

63 FRT FRA FRB FRC 29  Re 63 FRT FRA FRB FRC 28 |Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

Floating Multiply-Add Single A-form

Floating Multiply-Subtract Single A-form

fmadds FRT,FRA,FRC,FRB (Rc=0) fmsubs FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Re=1) fmsubs. FRT,FRA,FRC,FRB (Rec=1)

59 FRT FRA FRB FRC 29  Re 59 FRT FRA FRB FRC 28 |Re
0 6 1 16 21 26 31 0 6 1 16 21 26 31

The operation
FRT « [(FRA)"(FRC)] + (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN ~ VXISI  VXIMZ
CR1 (if Re=1)

The operation
FRT « [(FRA)"(FRC)] - (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN and placed into
register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FlI
FX 0X UX XX
VXSNAN  VXISI  VXIMZ
CR1 (if Re=1)
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Floating Negative Multiply-Add A-form

Floating Negative Multiply-Subtract A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0) fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Re=1) fnmsub. FRT,FRA,FRC,FRB (Re=1)

63 FRT FRA FRB FRC 31 |k 63 FRT FRA FRB FRC 30 R
0 6 1 16 21 26 31 0 6 1 16 21 26 31

Floating Negative Multiply-Add Single A-form

fnmadds FRT,FRA,FRC,FRB (Rc=0)
fnmadds.  FRT,FRA,FRC,FRB (Re=1)

59 FRT FRA FRB FRC 31 |k
0 6 1 16 21 26 31

The operation
FRT « - ( [(FRA)"(FRC)] + (FRB) )
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is added to this inter-
mediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

¢ QNaNs propagate with no effect on their “sign” bit.

¢ QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

¢« SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN ~ VXISI  VXIMZ
CR1 (if Re=1)

Floating Negative Multiply-Subtract
Single A-form

fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnmsubs. FRT,FRA,FRC,FRB (Re=1)

59 FRT FRA FRB FRC 30 Re
0 6 1 16 21 26 31

The operation
FRT « - ( [(FRA)"(FRC)] - (FRB) )
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The float-
ing-point operand in register FRB is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of RN, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

« QNaNs propagate with no effect on their “sign” bit.

« QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

« SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXISI  VXIMZ
CR1 (if Re=1)
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4.6.7 Floating-Point Rounding and Conversion Instructions

4.6.7.1 Floating-Point Rounding
Instruction

Floating Round to Single-Precision X-form

frsp FRT,FRB (Rc=0)
frsp. FRT,FRB (Re=1)

63 FRT " FRB 12 Re
0 6 1 16 21 31

The floating-point operand in register FRB is rounded to
single-precision, using the rounding mode specified by
RN, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point  Round to Single-Precision Model” on
page 995.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR FI
FX O0X UX XX VXSNAN
CR1 (if Re=1)

4.6.7.2 Floating-Point Convert To/From
Integer Instructions

Floating Convert with round Double-Precision
To Signed Doubleword format X-form

fetid FRT,FRB (Rc=0)
fctid. FRT,FRB (Re=1)

63 FRT /i FRB 814 Re
0 6 1 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 253-1, then the
result is OX7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -25, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)
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Floating Convert with truncate
Double-Precision To Signed Doubleword
format X-form

Floating Convert with round Double-Precision
To Unsigned Doubleword format X-form

fctidz FRT,FRB (Rc=0)
fctidz. FRTFRB (Re=1)

63 FRT /i FRB 815 Re
0 6 1n 16 21 31

fctidu FRT,FRB (Rc=0)
fetidu. FRT,FRB (Re=1)

63 FRT /i FRB 942 Re
0 6 1 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x8000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%-1, then the
result is OX7FFF_FFFF_FFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than -2%, then
the result is 0x8000_0000_0000_0000 and VXCVI is set to
1.

Otherwise, the result is the rounded value converted to
64-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 254-1, then the
result is OXFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)
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Floating Convert with truncate
Double-Precision To Unsigned Doubleword
format X-form

fctiduz FRT,FRB (Rc=0)
fctiduz. FRT,FRB (Re=1)

63 FRT /i FRB 943 Re
0 6 1n 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is
0x0000_0000_0000_0000, VXCVI is set to 1, and, if src is
an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 24-1, then the
result is OXFFFF_FFFF_FFFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000_0000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
64-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

Floating Convert with round Double-Precision
To Signed Word format X-form

fctiw FRT,FRB (Rc=0)
fctiw. FRT,FRB (Re=1)

63 FRT /i FRB 14 Re
0 6 1 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
setto 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 251-1, then the
result is OX7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is setto 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.63 and FRTg.31
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)
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Floating Convert with truncate
Double-Precision To Signed Word fomat
X-form

fctiwz FRT,FRB (Rc=0)
ftiwz. FRT,FRB (Re=1)

63 FRT 1 FRB 15 Re
0 6 1n 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x8000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%1-1, then the
result is OX7FFF_FFFF, and VXCVI is set to 1.

Otherwise, if the rounded value is less than -231, then
the result is 0x8000_0000, and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit signed-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.43 and FRTj.3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN ~ VXCVI
CR1 (if Re=1)

Floating Convert with round Double-Precision
To Unsigned Word format X-form

fctiwu FRT,FRB (Rc=0)
fctiwu. FRT,FRB (Rc=1)

63 FRT 1 FRB 142 Re
0 6 1 16 21 31

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
setto 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode specified by RN.

If the rounded value is greater than 2%2-1, then the
result is OXFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0, then the
result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.¢3 and FRT-3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. Fl is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN ~ VXCVI
CR1 (if Re=1)
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Floating Convert with truncate
Double-Precision To Unsigned Word format
X-form

Floating Convert with round Signed
Doubleword to Double-Precision format
X-form

fctiwuz FRT,FRB (Rc=0) fcfid FRT,FRB (Rc=0)
fctiwuz. FRT,FRB (Re=1) fcfid. FRT,FRB (Rc=1)

63 FRT /i FRB 143 Re 63 FRT " FRB 846 Re|
0 6 1n 16 21 31 0 6 1n 16 21 31]

Let src be the double-precision floating-point value in
FRB.

If src is a NaN, then the result is 0x0000_0000, VXCVI is
set to 1, and, if src is an SNaN, VXSNAN is set to 1.

Otherwise, src is rounded to a floating-point integer
using the rounding mode Round toward Zero.

If the rounded value is greater than 2%-1, then the
result is OXFFFF_FFFF and VXCVI is set to 1.

Otherwise, if the rounded value is less than 0.0, then
the result is 0x0000_0000 and VXCVI is set to 1.

Otherwise, the result is the rounded value converted to
32-bit unsigned-integer format, and XX is set to 1 if the
result is inexact.

If an enabled Invalid Operation Exception does not
occur, then the result is placed into FRT3,.43 and FRTj.3;
is undefined,

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 999.

Except for enabled Invalid Operation Exceptions, FPRF
is undefined. FR is set if the result is incremented when
rounded. FI is set if the result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX VXSNAN VXCVI
CR1 (if Re=1)

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. Fl is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI FX XX
CR1 (if Re=1)

Programming Note

Converting a signed integer word to double-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfid.
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Floating Convert with round Unsigned
Doubleword to Double-Precision format
X-form

fcfidu FRT,FRB (Rc=0)
ffidu. FRT,FRB (Re=1)

63 FRT /i FRB 974 Re
0 6 1n 16 21 31

The 64-bit unsigned fixed-point operand in register FRB
is converted to an infinitely precise floating-point inte-
ger. The result of the conversion is rounded to dou-
ble-precision, using the rounding mode specified by RN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. Fl is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Floating Convert with round Signed
Doubleword to Single-Precision format X-form

fcfids FRT,FRB (Rc=0)
fcfids. FRT,FRB (Re=1)

63 FRT /i FRB 846 Re
0 6 1 16 21 31

Programming Note

Converting an unsigned integer word to dou-
ble-precision floating-point can be accomplished by
loading the word from storage using Load Float
Word and Zero Indexed and then using fcfidu.

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to single-preci-
sion, using the rounding mode specified by RN, and
placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. Fl is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Programming Note

Converting a signed integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word Alge-
braic Indexed and then using fcfids.
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Floating Convert with round Unsigned
Doubleword to Single-Precision format X-form

fcfidus FRT,FRB (Rc=0)
fcfidus. FRT,FRB (Re=1)

59 FRT " FRB 974 Re
0 6 1 16 21 31

The 64-bit unsigned fixed-point operand in register FRB
is converted to an infinitely precise floating-point inte-
ger. The result of the conversion is rounded to sin-
gle-precision, using the rounding mode specified by RN,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model".

FPRF is set to the class and sign of the result. FR is set if
the result is incremented when rounded. Fl is set if the
result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

Programming Note

Converting a unsigned integer word to single-preci-
sion floating-point can be accomplished by loading
the word from storage using Load Float Word and
Zero Indexed and then using fcfidus.

176 Power ISA™ |



Version 3.1

4.6.7.3 Floating Round to Integer Instructions

The Floating Round to Integer instructions provide Round to Nearest function, which is often further
direct support for rounding functions found in high level described as “ties to even.” The rounding performed by
languages. For example, frin, friz, frip, and frim imple- these instructions is described fully in Section A.4,
ment C++ round(), trunc(), ceil(), and floor(), respec- “Floating-Point Round to Integer Model” on page 1004.

tively. Note that frin does not implement the IEEE

Programming Note

These instructions set FR and FI to 0b0O0 regardless of whether the result is inexact or rounded because there is a
desire to preserve the value of XX. Furthermore, it is believed that most programs do not need to know whether
these rounding operations produce inexact or rounded results. If it is necessary to determine whether the result is
inexact or rounded, software must compare the result with the original source operand.
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Floating Round to Integer Nearest X-form

Floating Round to Integer Plus X-form

frin FRT,FRB (Rc=0) frip FRT,FRB (Rc=0)
frin. FRT,FRB (Re=1) frip. FRT,FRB (Re=1)

63 FRT /i FRB 392 Re 63 FRT " FRB 456 Re|
0 6 1 16 21 31 0 6 1 16 21 31

The floating-point operand in register FRB is rounded to
an integral value as follows, with the result placed into
register FRT. If the sign of the operand is positive,
(FRB) + 0.5 s truncated to an integral value, otherwise
(FRB) - 0.5 s truncated to an integral value.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (set to 0) FI (setto 0)
FX
VXSNAN
CR1 (if Re=1)

Floating Round to Integer Toward Zero X-form

friz FRT,FRB (Rc=0)
friz. FRT,FRB (Re=1)

63 FRT /i FRB 424 Re
0 6 il 16 21 31

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward zero, and the result is placed into register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (setto 0)
FX
VXSNAN
CR1 (if Re=1)

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (setto 0) FI (setto 0)
FX
VXSNAN
CR1 (if Re=1)

Floating Round to Integer Minus X-form

frim FRT,FRB (Rc=0)
frim. FRT,FRB (Re=1)

63 FRT " FRB 488 Re|
0 6 il 16 21 31

The floating-point operand in register FRB is rounded to
an integral value using the rounding mode round
toward -infinity, and the result is placed into register FRT.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exceptions when VE=1.

Special Registers Altered:
FPRF FR (setto 0) FI (setto 0)
FX
VXSNAN
CR1 (if Re=1)
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4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
- 0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

Floating Compare Ordered X-form

fcmpo BF,FRA,FRB

63 BF | // | FRA FRB 0 [

0 6 9 Ju 16 21 31

63 BF | //| FRA FRB 32 /
0 6 9 |u 16 21 31

if (FRA) is a NaN or

(FRB) 1s a NaN then c « 0b0001
else if (FRA) < (FRB) then ¢ « 0b1000
else if (FRA) > (FRB) then ¢ « 0b0100
else ¢ « 0b0010
FPCC « ¢c

CRaxpF:4xBF+3 < ©C
if (FRA) is an SNaN or

(FRB) 1s an SNaN then
VXSNAN « 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signhaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

if (FRA) is a NaN or

(FRB) is a NaN then c « 0b0001
else if (FRA) < (FRB) then ¢ « 0b1000
else if (FRA) > (FRB) then ¢ « 0b0100
else ¢ « 0b0010
FPCC « ¢

CRaxpF:4xBF+3 ¢« C
if (FRA) is an SNaN or

(FRB) 1is an SNaN then
VXSNAN « 1
if VE = 0 then VXVC « 1
else if (FRA) is a QNaN or
(FRB) is a QNaN then VXVC « 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The result
of the compare is placed into CR field BF and the FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is disabled
(VE=0), VXVC is set. If neither operand is a Signaling NaN
but at least one operand is a Quiet NaN, then VXVC is
set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC
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4.6.9 Floating-Point Select Instruction

Floating Select A-form

fsel FRT,FRA,FRC,FRB (Rc=0)
fsel. FRT,FRA,FRC,FRB (Re=1)

63 FRT FRA FRB FRC 23 Re
0 6 1n 16 21 26 31

if (FRA) > 0.0 then FRT « (FRC)
else FRT « (FRB)

The floating-point operand in register FRA is compared
to the value zero. If the operand is greater than or equal
to zero, register FRT is set to the contents of register
FRC. If the operand is less than zero or is a NaN, regis-
ter FRT is set to the contents of register FRB. The com-
parison ignores the sign of zero (i.e., regards +0 as
equal to - 0).

Special Registers Altered:
CR1 (if Re=1)

Programming Note

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities.
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fsel Usage Notes

1

This section gives examples of how the Floating Select instruction can be used to implement certain simple forms of

if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming language, and the corre-
sponding program fragment using fsel and other Power ISA instructions. In the examples, a, b, X, y, and z are float-
ing-point variables, which are assumed to be in FPRs fa, fh, fx, fy, and fz. FPR fs is assumed to be available for

scratch space.

Warning: Care must be taken in using fsel if IEEE compatibility is required, or if the values being tested can be NaNs

or infinities; see Section .

Comparison to Zero

Simple if-then-else Constructions

High-level language: |Power ISA: Notes High-level language: |Power ISA: Notes
if a > 0.0 then fsel fx,fa,fy,fz | (1) ifa>bthen x <y fsub fs,fa,fb (4,5)
X <y else X « z fsel fx,fs,fy,fz
else ifa>b then x « y fsub fs,fo,fa (3,4.5)
else X « z fsel fx,fs,fz,fy
if a > 0.0 then fneg fs,fa 1,2 "
ifa=>bthen x « vy fsub fs,fa,fb (4,5)
i X<y fsel fx.fs,fz,fy else X « z fsel fx,fs,fy,fz
else fneg fs,fs
Xez fsel fx,fs,fx,fz
if a = 0.0 then fsel fx,fa,fy,fz (€))
X &y fneg fs,fa
else fsel fTx,fs,fx,fz
X« Z
Notes:

The following Notes apply to the preceding examples
and to the corresponding cases using the other three
arithmetic relations (<, <, and #). They should also be
considered when any other use of fsel is contemplated.

In these Notes, the “optimized program” is the Power
ISA program shown, and the “unoptimized program”
(not shown) is the corresponding Power ISA program
that uses fcmpu and Branch Conditional instructions
instead of fsel.

1. The unoptimized program affects the VXSNAN bit of
the FPSCR, and therefore may cause the system
error handler to be invoked if the corresponding
exception is enabled, while the optimized program
does not affect this bit. This property of the opti-
mized program is incompatible with the IEEE stan-
dard.

2. The optimized program gives the incorrect result if
ais a NaN.

3.

The optimized program gives the incorrect result if
a and/or b is a NaN (except that it may give the cor-
rect result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

The optimized program gives the incorrect result if
a and b are infinities of the same sign. (Here it is
assumed that Invalid Operation Exceptions are
disabled, in which case the result of the subtrac-
tion is a NaN. The analysis is more complicated if
Invalid Operation Exceptions are enabled,
because in that case the target register of the sub-
traction is unchanged.)

The optimized program affects the 0X, UX, XX, and
VXISI bits of the FPSCR, and therefore may cause
the system error handler to be invoked if the corre-
sponding exceptions are enabled, while the unopti-
mized program does not affect these bits. This
property of the optimized program is incompatible
with the IEEE standard.

]
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4.6.10 Floating-Point Status and Control Register Instructions

Except as described below for mffsce, mffscdrn]i],
mffscrn[i], and mffsl, Floating-Point Status and Con-
trol Register instructions synchronize the effects of all
floating-point instructions executed by a given proces-
sor. Executing a Floating-Point Status and Control Reg-
ister instruction ensures that all floating-point
instructions previously initiated by the given processor
have completed before the Floating-Point Status and
Control Register instruction is initiated, and that no sub-
sequent floating-point instructions are initiated by the
given processor until the Floating-Point Status and
Control Register instruction has completed. In particu-
lar:

« All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

« Allinvocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

¢ No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

While not satisfying all of the conditions described
above, mffsce, mffscdrnl[i], mffscrnli], and mffsl still
obey the sequential execution model. Any FPSCR sta-
tus bits read by mffsce or mffsl will reflect updates due
to all preceding floating-point instructions. That is, all
floating-point instructions following an mffsce, mffsc-
drn[i], or mffscrnli] will execute based on any updates
applied to any control bits in the FPSCR by the mffsce,
mffscdrnli], or mffscrnli].

(Floating-point Storage Access instructions are not
affected.)

The instruction descriptions in this section refer to
“FPSCR fields,” where FPSCR field k is FPSCR bits
4%k 1 4*k+3.

Move From FPSCR X-form

mffs FRT (Rc=0)
mffs. FRT (Rc=1)

63 FRT 0 " 583 Re
0 6 1 16 21 31

The contents of the FPSCR are placed into register
FRT.
If Re=1, CR field 1 is set to the value FX||FEX||VX||OX.

Special Registers Altered:
CR1

(if Rc=1)
Move From FPSCR & Clear Enables X-form

mffsce FRT

63 FRT 1 i 583 /
0 6 u 16 21 31

The contents of the FPSCR are placed into register FRT.

The contents of bits 56:60 (VE, OE, UE, ZE, XE) of the
FPSCR are setto 0.

Special Registers Altered:
VE (set to 0) OE (set to 0) UE (set to 0)
ZE (set to 0) XE (set to 0)

Move From FPSCR Control & Set DRN X-form

mffscdrn FRT,FRB

63 FRT 20 FRB 583 /

0 6 u 16 21 31

Let new_DRN be the contents of bits 29:31 of register
FRB.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OF, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

new_DRN is placed into bits 62:64 of the FPSCR (DRN).

Special Registers Altered:
DRN

Programming Note
mffscdrn permits software to simultaneously read
control bits in the FPSCR and set the DRN field
without the higher latency typically associated with
accessing the status bits.

182 Power ISA™ |



Version 3.1

Move From FPSCR Control & Set DRN
Immediate X-form

mffscdrni FRT,DRM

Move From FPSCR Control & Set RN
Immediate X-form

mffscrni FRT,RM

63 FRT 21 /| DRM 583 /
0 6 u 16 (18 21 31,

63 FRT 23 /R 583 /
0 6 u 16 19 |2 31

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

The contents of bits 29:31 of the FPSCR (DRN) are set
to the value of DRM.
Special Registers Altered:

DRN

Programming Note

mffscdrni permits software to simultaneously read
control bits in the FPSCR and set the DRN field
without the higher latency typically associated with
accessing the status bits.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI, RN),
are placed into the corresponding bits in register FRT. All
other bits in register FRT are set to 0.

The contents of bits 62:63 of the FPSCR (RN) are set to
the value of RM.

Special Registers Altered:
RN

Programming Note
mffscrni permits software to simultaneously read
control bits in the FPSCR and set the RN field
without the higher latency typically associated with
accessing the status bits.

Move From FPSCR Control & Set RN X-form

mffscrn FRT,FRB

Move From FPSCR Lightweight X-form

mffsl FRT

63 FRT 22 FRB 583
0 6 u 16 21 31]

63 FRT 24 1 583 /
0 6 n 16 21 31

Let new_RN be the contents of bits 62:63 of register
FRB.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OE, UE, ZE, XE, NI,
RN), are placed into the corresponding bits in register
FRT. All other bits in register FRT are set to 0.

new_RN is placed into bits 62:63 of the FPSCR (RN).

Special Registers Altered:
RN

Programming Note

mffscrn permits software to simultaneously read
control bits in the FPSCR and set the RN field
without the higher latency typically associated with

accessing the status bits.

The contents of the control bits in the FPSCR, that is,
bits 29:31 (DRN) and bits 56:63 (VE, OF, UE, ZE, XE, NI, RN),
and the non-sticky status bits in the FPSCR, that is, bits
45:51 (FR, FI, C, FL, FG, FE, FU), are placed into the cor-
responding bits in register FRT. All other bits in register
FRT are set to O.

Special Registers Altered:
None

Programming Note

mffsl permits software to read the control and
non-sticky status bits in the FPSCR without the
higher latency typically associated with accessing
the sticky status bits.
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Move to Condition Register from FPSCR
X-form

Move To FPSCR Fields XFL-form

mtfsf FLM,FRB,L,W (Re=0)

mcrfs BF,BFA mtfsf. FLM,FRB,L,W (Rc=1)
63 BF | // |BFA| // " 64 63 L FLM W FRB 711 Re

0 6 9 Ju |14 |16 2 31 0 6|7 15[16 21 31

The contents of FPSCR3,-¢3 field BFA are copied to Condi-
tion Register field BF. All exception bits copied are set to
0 in the FPSCR. If the FX bit is copied, it is set to 0 in
the FPSCR.

Special Registers Altered:

CR field BF

FX OX (if BFA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXINZ (if BFA=2)

VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

Move To FPSCR Field Immediate X-form

mtfsfi BF,U,W (Rc=0)
mitfsfi. BF,U,W (Re=1)

63 BF | /] I (W u / 134 Re
0 6 9 |u 15/16 20[21 31

The value of the U field is placed into FPSCR field
BF+8*(1-W).

FX is altered only if BF=0 and W=0.

Special Registers Altered:
FPSCR field BF + 8*(1-W)
CR1 (if Re=1)

—— Programming Note

mtfsfi serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsfi
mnemonic with three operands as the basic form,
and a mtfsfi mnemonic with two operands as the
extended form. In the extended form the W oper-
and is omitted and assumed to be 0.

—— Programming Note

When FPSCR3;-35 is specified, bits 32 (FX) and 35
(0X) are set to the values of Uy and Us (i.e., even if
this instruction causes 0X to change from 0 to 1, FX
is set from Uy and not by the usual rule that FX is set
to 1 when an exception bit changes from 0 to 1).
Bits 33 and 34 (FEX and VX) are set according to the

usual rule, given on page 133, and not from Uy 5.

The FPSCR is modified as specified by the FLM, L, and
W fields.

L=0

The contents of register FRB are placed into the
FPSCR under control of the W field and the field
mask specified by FLM. W and the field mask identify
the 4-bit fields affected. Let i be an integer in the
range 0-7. If FLMj=1 then FPSCR field k is set to the
contents of the corresponding field of register FRB,
where k=i+8*(1-W).

L=1

The contents of register FRB are placed into the
FPSCR.

FX is not altered implicitly by this instruction.

Special Registers Altered:
FPSCR fields selected by mask, L, and W
CR1 (if Re=1)

—— Programming Note

mtfsf serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsf
mnemonic with four operands as the basic form,
and a mtfsf mnemonic with two operands as the
extended form. In the extended form the W and L
operands are omitted and both are assumed to be
0.

—— Programming Note

If L=1 or if L=0 and FPSCR3,.35 is specified, bits 32
(FX) and 35 (0X) are set to the values of (FRB)3, and
(FRB)35 (i.e., even if this instruction causes OX to
change from 0 to 1, FX is set from (FRB)3, and not
by the usual rule that FX is set to 1 when an excep-
tion bit changes from 0 to 1). Bits 33 and 34 (FEX
and VX) are set according to the usual rule, given
on page 133, and not from (FRB)33-34.
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Move To FPSCR Bit 0 X-form

Move To FPSCR Bit 1 X-form

mtfsb0 BT (Rc=0) mtfsbl BT (Rc=0)
mtfsbO. BT (Re=1) mtfsbl. BT (Rc=1)

63 BT 7 i 70 Re 63 BT 1/ i 38 Re
0 6 1 16 21 31 0 6 1 16 21 31

Bit BT+32 of the FPSCR is set to 0.

Special Registers Altered:
FPSCR bit BT+32
CR1 (if Re=1)

Programming Note

Bits 33 and 34 (FEX and VX) cannot be explicitly
reset.

Bit BT+32 of the FPSCR is set to 1.

Special Registers Altered:
FPSCR bits BT+32 and FX
CR1 (if Re=1)

Programming Note
Fits 33 and 34 (FEX and VX) cannot be explicitly set.
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Chapter 5. Decimal Floating-Point

5.1 Decimal Floating-Point
(DFP) Facility Overview

This chapter describes the behavior of the decimal
floating-point facility, the supported data types, formats,
and classes, and the usage of registers. Also included
are the execution model, exceptions, and instructions
supported by the decimal floating-point facility.

The decimal floating-point (DFP) facility shares the 32
floating-point registers (FPRs) and the Floating-Point
Status and Control Register (FPSCR) with the float-
ing-point (BFP) facility. However, the interpretation of
data formats in the FPRs, and the meaning of some
control and status bits in the FPSCR are different
between the BFP and DFP facilities.

The DFP facility also shares the Condition Register
(CR) with the fixed-Point facility, the BFP faciltiy, and
the vector facility.

The DFP facility supports three DFP data formats: DFP
Short (single precision), DFP Long (double precision),
and DFP Extended (quad precision). Most operations
are performed on DFP Long or DFP Extended format
directly. Support for DFP Short is limited to conversion
to and from DFP Long. Some DFP instructions operate
on other data types, including signed or unsigned
binary fixed-point data, and signed or unsigned decimal
data.

DFP instructions are provided to perform arithmetic,
compare, test, quantum-adjustment, conversion, and
format operations on operands held in FPRs or FPR
pairs.

B Arithmetic instructions

These instructions perform addition, subtraction,
multiplication, and division operations.

B Compare instructions

These instructions perform a comparison opera-
tion on the numerical value of two DFP operands.

B Test instructions

These instructions test the data class, the data
group, the exponent, or the number of significant
digits of a DFP operand.

B Quantum-adjustment instructions

These instructions convert a DFP number to a
result in the form that has the designated expo-
nent, which may be explicitly or implicitly specified.

B Conversion instructions

These instructions perform conversion between
different data formats or data types.

B Format instructions

These instructions facilitate composing or decom-
posing a DFP operand.

These instructions are described in Section 5.6 “DFP
Instruction Descriptions” on page 205.

The three DFP data formats allow finite numbers to be
represented with different precision and ranges. Spe-
cial codes are also provided to represent +Infinity, -Infin-
ity, Quiet NaN (Not-a-Number), and Signaling NaN.
Operations involving infinities produce results obeying
traditional mathematical conventions. NaNs have no
mathematical interpretation. The encoding of NaNs
provides a diagnostic information field. This diagnostic
field may be used to indicate such things as the source
of an uninitialized variable or the reason an invalid
result was produced.

The DFP processor recognizes a set of DFP excep-
tions which are indicated via bits set in the FPSCR.
Additionally, the DFP exception actions depend on the
setting of the various exception enable bits in the
FPSCR.
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The following DFP exceptions are detected by the DFP
processor. The exception status bits in the FPSCR are
indicated in parentheses.

B Invalid Operation Exception (VX)

SNaN (VXSNAN)
o0 - 00 (VXIST)
00 + 00 (vxXIDI)
0=+0 (VXZDZz)
o X 0 (VXIMZ)
Invalid Compare (VXVC)
Invalid conversion (VXcvi)
B Zero Divide Exception (2X)
m Overflow Exception (0X)
B Underflow Exception (UX)
B Inexact Exception (XX)

Each DFP exception and each category of Invalid
Operation Exception has an exception status bit in the
FPSCR. In addition, each of the five DFP exceptions
has a corresponding enable bit in the FPSCR. These
enable bits enable or disable the invocation of the sys-
tem floating-point enabled exception error handler, and
may affect the setting of some exception status bits in
the FPSCR.

The usage of these bits by the DFP facility differs from
the usage by the BFP facility. Section 5.5.10 “DFP
Exceptions” on page 197 provides a detailed discus-
sion of DFP exceptions, including the effects of the
enable bits.

5.2 DFP Register Handling

The following sections describe first how the float-
ing-point registers are utilized by the DFP facility. The
subsequent section covers the DFP usage of CR and
FPSCR.

5.2.1 DFP Usage of Float-
ing-Point Registers

The DFP facility shares the same 32 64-bit FPRs with
the BFP facility. Like the FP instructions, DFP instruc-
tions also use 5-hit fields for designating the FPRs to
hold the source or target operands.

When data in DFP Short format is held in a FPR, it
occupies the rightmost 32 bits of the FPR. The Load
Floating-Point as Integer Word Algebraic instruction is
provided to load the rightmost 32 hits of a FPR with a
single-word data from storage. The Store Float-
ing-Point as Integer Word instruction is available to
store the rightmost 32 bits of a FPR to a storage loca-
tion.

Data in DFP Long format, 64-bit binary fixed-point val-
ues, or 64-bit BCD values is held in a FPR using all 64
bits. Data of 64 bits may be loaded from storage via any
of the Load Floating-Point Double instructions and

stored via any of the Store Floating-Point Double
instructions.

Data in DFP Extended format or 128-bit BCD values is
held in an even-odd FPR pair using all 128 bits. Data of
128 bits must be loaded into the desired even-odd pair
of floating-point registers using an appropriate
sequence of the Load Floating-Point Double instruc-
tions and stored using an appropriate sequence of the
Store Floating-Point Double instructions.

Data used as a source operand by any Decimal Float-
ing-Point instruction that was produced, either directly
or indirectly, by a Load Floating-Point Single instruc-
tion, a Floating Round to Single-Precision instruction,
or a binary floating-point single-precision arithmetic
instruction is boundedly undefined.

When an even-odd FPR pair is used to hold a 128-bit
operand, the even-numbered FPR is used to hold the
leftmost doubleword of the operand and the next
higher-numbered FPR is used to hold the rightmost
doubleword. A DFP instruction designating an
odd-numbered FPR for a 128-bit operand is an invalid
instruction form.

Programming Note

The Floating-Point Move instructions can be used
to move operands between FPRs.

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:28 Reserved

29:31 DFP Rounding Control (DRN)
See Section 5.5.2, “Rounding Mode Specifica-
tion” on page 195.

000 Round to Nearest, Ties to Even

001 Round toward Zero

010 Round toward +Infinity

011 Round toward -Infinity

100 Round to Nearest, Ties away from 0

101 Round to Nearest, Ties toward 0

110 Round to away from Zero

111 Round to Prepare for Shorter Preci-
sion

Programming Note

FPSCRog is reserved for extension of the
DRN field, therefore DRN may be set using
the mtfsfi instruction to set the rounding
mode.

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FX to 1 if that instruc-
tion causes any of the floating-point exception
bits in the FPSCR to change from 0 to 1.
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33

34

35

36

37

38

39

40

41

142

43

44

mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsbl
can alter FX explicitly.

Floating-Point Enabled Exception Sum-
mary (FEX)

This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsbO,
and mtfsb1 cannot alter FEX explicitly.

Floating-Point Invalid Operation Excep-
tion Summary (VX)

This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsbO,
and mtfsb1 cannot alter VX explicitly.

Floating-Point Overflow Exception (0X)See
Section 5.5.10.3, “Overflow Exception” on
page 201.

Floating-Point Underflow Exception (UX)
See Section 5.5.10.4, “Underflow Exception”
on page 201.

Floating-Point Zero Divide Exception (ZX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 200.

Floating-Point Inexact Exception (XX)
See Section 5.5.10.5, “Inexact Exception” on
page 202.

XX is a sticky version of FI (see below). Thus
the following rules completely describe how XX
is set by a given instruction.

B If the instruction affects FI, the new
value of XX is obtained by ORing the
old value of XX with the new value of
FI.

B If the instruction does not affect FI, the
value of XX is unchanged.

Floating-Point Invalid Operation Excep-
tion (SNaN) (VXSNAN)

See Section 5.5.10.1,
Exception” on page 199.

“Invalid Operation

Floating-Point Invalid Operation Excep-
tion (Infinity - Infinity) (VXISI)
See Section 5.5.10.1.

Floating-Point Invalid Operation Excep-
tion (Infinity + Infinity) (VXIDI)
See Section 5.5.10.1.

Floating-Point Invalid Operation Excep-
tion (Zero + Zero) (VXZDZ)
See Section 5.5.10.1.

Floating-Point Invalid Operation Excep-
tion (Infinity x Zero) (VXIMZ)
See Section 5.5.10.1.

Floating-Point Invalid Operation Excep-
tion (Invalid Compare) (VXVC)
See Section 5.5.10.1.

45

46

47:51

47

48:51

48

49

50
51
52
53

54

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction
during rounding. See Section 5.5.1, “Round-
ing” on page 194. This bit is not sticky.

Floating-Point Fraction Inexact (FI)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 5.5.1. This
bit is not sticky.

See the definition of XX, above, regarding the
relationship between FI and XX.

Floating-Point Result Flags (FPRF)

This field is set as described below. For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instruc-
tions may set this bit with the FPCC bits, to
indicate the class of the result as shown in
Figure 58 on page 190.

Floating-Point Condition Code (FPCC)
Floating-point Compare and DFP Test instruc-
tions set one of the FPCC bits to 1 and the other
three FPCC bits to 0. Arithmetic, rounding, and
conversion instructions may set the FPCC bits
with the C bit, to indicate the class of the result
as shown in Figure 58 on page 190. Note that
in this case the high-order three bits of the
FPCC retain their relational significance indicat-
ing that the value is less than, greater than, or
equal to zero.

Floating-Point Less Than or Negative (FL or
<)

Floating-Point Greater Than or Positive (FG
or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Excep-
tion (Software Request) (VXSOFT)

This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsbO, or mtfsbl. See
Section 5.5.10.1, “Invalid Operation Excep-
tion” on page 199.

Neither used nor changed by DFP.
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— Programming Note 5.3 DFP Support for Non-DFP

Although the architecture does not pro- Data Types
vide a DFP square root instruction, if soft-
ware simulates such an instruction, it In addition to the DFP data types, the DFP processor
should set bit 54 whenever the source provides limited support for the following non-DFP data
operand of the square root function is types: signed or unsigned binary fixed-point data, and
invalid. signed or unsigned decimal data.
55 Floating-Point Invalid Operation Excep- In unsigned binary fixed-point data, all bits are us_ed to
tion (Invalid Conversion) (YC) express the ab_solute value of the number. For signed
See Section 5.5.10.1. b_|nary f|>_<ed-_p0|nt data, the leftmost b_|t r_epresents_t_he
sign, which is followed by the numeric field. Positive
56 Floating-Point Invalid Operation Excep- numbers are represented in true binary notation with
tion Enable (FEX) the sign bit set to zero. When the value is zero, all bits
See Section 5.5.10.1. are zeros, including the sign bit. Negative numbers are
57 Floating-Point Overflow Exception Enable represented in two's complement binary notation with a
(FEX) one in the sign-bit position.
See Section 5.5.10.3, “Overflow Exception” For decimal data, each byte contains a pair of four-bit
on page 201. nibbles; each four-bit nibble contains a
58 Floating-Point Underflow Exception binary-coded-decimal (BCD) code. There are two kinds
Enable (FEX) of BCD codes: digit code and sign code. For unsigned
See Section 5.5.10.4, “Underflow Exception” decimal data, all nibbles contain a digit code (D) as
on page 201. shown in Figure 59
59 Floating-Point Zero Divide Exception
Enableg(FEX) P [pfp[o[p]...[o]p][pbp]D]
See Section 5.5.10.2, “Zero Divide Exception” Figure 59. Format for Unsigned Decimal Data
on page 200. ] ) ] ] )
For signed decimal data, the rightmost nibble contains
60 Floating-Point Inexact Exception Enable a sign code (S) and all other nibbles contain a digit code
(FEX) as shown in Figure 60.
See Section 5.5.10.5, “Inexact Exception” on
page 202 [pfpo[o[p]...[o]p][pD]s]
61 Reserved (not used by FEX) Figure 60. Format for Signed Decimal Data
62:63 Binary Floating-Point Rounding Control ) o ) .
(FEX) The decimal digits 0-9 have the binary encoding

0000-1001. The preferred plus-sign codes are 1100 and

See Section 5.5.1, “Rounding” on page 194. ; - .
1111. The preferred minus sign code is 1101. These are

00 Round to Nearest the sign codes generated for the results of the Decode
01 Round toward Zero DPD To BCD instruction. A selection is provided by this
10 Round toward +Infinity instruction to specify which of the two preferred plus
11 Round toward -Infinity sign codes is to be generated. Alternate sign codes are
also recognized as valid in the sign position: 1010 and
Result 1110 are alternate sign codes for plus, and 1011 is an
Flags Result Value Class alternate sign code for minus. Alternate sign codes are
C<>=7 accepted for any source operand, but are not gener-
00001 Signaling NaN (DFP only) ated as a result by the instruction. When an invalid digit
10001 Quiet NaN or sign code is detected by the Encode BCD To DPD
0100 1] - Infinity instruction, an invalid-operation exception occurs. A
0100 0| - Normal Number
1100 0| - Subnormal Number
10010 |- Zero
00010 | +Zero
10100 | + Subnormal Number
0010 0| +Normal Number
0010 1] +Infinity

Figure 58. Floating-Point Result Flags
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summary of digit and sign codes are provided in
Figure 61.

Binary Recognized As

Code Digit Sign

0000 0 Invalid

0001 1 Invalid

0010 2 Invalid

0011 3 Invalid

0100 4 Invalid

0101 5 Invalid

0110 6 Invalid

0111 7 Invalid

1000 8 Invalid

1001 9 Invalid

1010 Invalid Plus

1011 Invalid Minus

1100 Invalid Plus (preferred; option 1)
1101 Invalid Minus (preferred)
1110 Invalid Plus

1111 Invalid Plus (preferred; option 2)

Figure 61. Summary of BCD Digit and Sign Codes

5.4 DFP Number Representation

A DFP finite number consists of three components: a
sign bit, a signed exponent, and a significand. The
signed exponent is a signed binary integer. The signifi-
cand consists of a number of decimal digits, which are
to the left of the implied decimal point. The rightmost
digit of the significand is called the units digit. The
numerical value of a DFP finite number is represented
as (-1)%"9" x significand x 108Xt and the unit
value of this number is (I x 107727 which is called
the quantum.

DFP finite humbers are not normalized. This allows
leading zeros and trailing zeros to exist in the signifi-
cand. This unnormalized DFP number representation
allows some values to have redundant forms; each
form represents the DFP number with a different com-
bination of the significand value and the exponent
value. For example, 1000000 x 10° and 10 x 100 are
two different forms of the same numerical value. A form
of this number representation carries information about
both the numerical value and the quantum of a DFP
finite number.

The significant digits of a DFP finite number are the dig-
its in the significand beginning with the leftmost non-
zero digit and ending with the units digit.

5.4.1 DFP Data Format

DFP numbers and NaNs may be represented in FPRs
in any of the three data formats: DFP Short, DFP Long,
or DFP Extended. The contents of each data format
represent encoded information. Special codes are
assigned to NaNs and infinities. Different formats sup-
port different sizes in both significand and exponent.
Arithmetic, compare, test, quantum-adjustment, and
format instructions are provided for DFP Long and DFP
Extended formats only.

The sign is encoded as a one bit binary value. Signifi-
cand is encoded as an unsigned decimal integer in two
distinct parts. The leftmost digit (LMD) of the significand
is encoded as part of the combination field; the remain-
ing digits of the significand are encoded in the trailing
significand field. The exponent is contained in the com-
bination field in two parts. However, prior to encoding,
the exponent is converted to an unsigned binary value
called the biased exponent by adding a bias value
which is a constant for each format. The two leftmost
bits of the biased exponent are encoded with the left-
most digit of the significand in the leftmost bits of the
combination field. The rest of the biased exponent
occupies the remaining portion of the combination field.

5.4.1.1 Fields Within the Data Format

The DFP data representation comprises three fields, as
diagrammed below for each of the three formats:

sLe | Tt ]
01 V) 31
Figure 62. DFP Short format

s o | T |
01 14 63
Figure 63. DFP Long format

N T |
01 18 63
| T (continued) ‘

64 127
Figure 64. DFP Extended format

The fields are defined as follows:

Sign bit (S)
The sign bit is in bit O of each format, and is zero for
plus and one for minus.

Combination field (G)

As the name implies, this field provides a combination
of the exponent and the left-most digit (LMD) of the sig-
nificand, for finite numbers, or provides a special code
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for denoting the value as either a Not-a-Number or an
Infinity.

The first 5 bits of the combination field contain the
encoding of NaN or infinity, or the two leftmost bits of
the biased exponent and the leftmost digit (LMD) of the
significand. The following tables show the encoding:

Go:4 Description
11111 NaN
11110 Infinity
All others | Finite Number (see Figure 66)

Figure 65. Encoding of the G field for Special

Symbols
Leftmost 2-bits of biased exponent
LMD
00 01 10

0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01101 10101
6 00110 01110 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

Figure 66. Encoding of bits 0:4 of the G field for
Finite Numbers

For DFP finite numbers, the rightmost N-5 bits of the
N-bit combination field contain the remaining bits of the
biased exponent. For NaNs, bit 5 of the combination
field is used to distinguish a Quiet NaN from a Signal-
ing NaN; the remaining bits in a source operand are
ignored and they are set to zeros in a target operand by
most operations. For infinities, the rightmost N-5 bits of
the N-bit combination field of a source operand are
ignored and they are set to zeros in a target operand by
most operations.

Trailing Significand field (T)

For DFP finite numbers, this field contains the remain-
ing significand digits. For NaNs, this field may be used
to contain diagnostic information. For infinities, con-
tents in this field of a source operand are ignored and
they are set to zeros in a target operand by most opera-
tions. The trailing significand field is a multiple of 10-bit
blocks. The multiple depends on the format. Each
10-bit block is called a declet and represents three dec-
imal digits, using the Densely Packed Decimal (DPD)
encoding defined in Appendix B.

5.4.1.2 Summary of DFP Data Formats

The properties of the three DFP formats are summa-
rized in the following table:.

Format
DFP Short DFP Long DFP Extended

Widths (bits):

Format 32 64 128

Sign (S) 1 1 1

Combination (G) 11 13 17

Trailing Significand (T) 20 50 110
Exponent:

Maximum biased 191 767 12,287

Maximum (Xpax) 90 369 6111

Minimum (X;in) -101 -398 -6176

Bias 101 398 6176
Precision (p) (digits) 7 16 34
Magnitude:

Maximum normal number (Ny,) (107 - 1) x 10% (1016 - 1) x 10%6% | (10% - 1) x 106111

Minimum normal number (Npjn) 1x10% 1 x 10738 1 x 1076143

Minimum subnormal number (Dy,) 1 x 10710 1 x 1073% 1 x 1076176

Figure 67. Summary of DFP Formats
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5.4.1.3 Preferred DPD Encoding

Execution of DFP instructions decodes source oper-
ands from DFP data formats to an internal format for
processing, and encodes the operation result before
the final result is returned as the target operand.

As part of the decoding process, declets in the trailing
significand field of source operands are decoded to
their corresponding BCD digit codes using the
DPD-to-BCD decoding algorithm. As part of the encod-
ing process, BCD digit codes to be stored into the
trailing significand field of the target operand are
encoded into declets using the BCD-to-DPD encoding
algorithm. Both the decoding and encoding algorithms
are defined in Appendix B.

As explained in Appendix B, there are eight 3-digit dec-
imal values that have redundant DPD codes and one
preferred DPD code. All redundant DPD codes are rec-
ognized in source operands for the associated 3-digit
decimal number. DFP operations will always generate
the preferred DPD codes for the trailing significand field
of the target operand.

5.4.2 Classes of DFP Data

There are six classes of DFP data, which include
numerical and nonnumeric entities. The numerical enti-
ties include zero, subnormal number, normal number,
and infinity data classes. The nonnumeric entities
include quiet and signaling NaNs data classes. The
value of a DFP finite number, including zero, subnormal
number, and normal number, is a quantization of the
real number based on the data format. The Test Data
Class instruction may be used to determine the class of
a DFP operand. In general, an operation that returns a
DFP result sets the FPRF field to indicate the data class
of the result.

The following tables show the value ranges for
finite-number data classes, and the codes for NaNs
and infinities.

Data Class S G T
+Infinity 0| 11110XXX . . . XXX | XXX . .. XXX
—Infinity 1| 11110XXX ... XXX | XXX ...XXX
Quiet NaN X | 111220XX . . . XXX | XXX ... XXX
Signaling NaN X | L111TIXX . .. XXX | XXX . .. XXX
x Don't care

Data Class Sign Magnitude
Zero * 0*
Subnormal * Dnin < IXI < Nyin
Normal * Nnin < 1Yl < Npax

* The significand is zero and the exponent is any rep-
resentable value

Figure 68. Value Ranges for Finite Number Data
Classes

Figure 69. Encoding of NaN and Infinity Data
Classes

Zeros

Zeros have a zero significand and any representable
value in the exponent. A +0 is distinct from -0, and
zeros with different exponents are distinct, except that
comparison treats them as equal.

Subnormal Numbers
Subnormal numbers have values that are smaller than
Nnin and greater than zero in magnitude.

Normal Numbers
Normal numbers are nonzero finite numbers whose
magnitude is between Ny, and Np,a inclusively.

Infinities

Infinities are represented by 0b11110 in the leftmost 5
bits of the combination field. When an operation is
defined to generate an infinity as the result, a default
infinity is sometimes supplied. A default infinity has all
remaining bits in the combination field and trailing sig-
nificand field set to zeros.

When infinities are used as source operands, only the
leftmost 5 bits of the combination field are interpreted
(i.e., 0b11110 indicates the value is an infinity). The trail-
ing significand field of infinities is usually ignored. For
generated infinities, the leftmost 5 bits of the combina-
tion field are set to 0b11110 and all remaining combina-
tion bits are set to zero.

Infinities can participate in most arithmetic operations
and give a consistent result. In comparisons, any
+Infinity compares greater than any finite number, and
any -Infinity compares less than any finite number. All
+Infinity are compared equal and all -Infinity are com-
pared equal.

Signaling and Quiet NaNs
There are two types of Not-a-Numbers (NaNs), Signal-
ing (SNaN) and Quiet (QNaN).

0b111110 in the leftmost 6 bits of the combination field
indicates a Quiet NaN, whereas 0b111111 indicates a
Signaling NaN.

A special QNaN is sometimes supplied as the default
QNaN for a disabled invalid-operation exception; it has
a plus sign, the leftmost 6 bits of the combination field
set to 0b111110 and remaining bits in the combination
field and the trailing significand field set to zero.

Normally, source QNaNs are propagated during opera-
tions so that they will remain visible at the end. When a
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QNaN is propagated, the sign is preserved, the decimal
value of the trailing significand field is preserved but
reencoded using the preferred DPD codes, and the
contents in the rightmost N-6 bits of the combination
field set to zero, where N is the width of the combination
field for the format.

A source SNaN generally causes an invalid-operation
exception. If the exception is disabled, the SNaN is
converted to the corresponding QNaN and propagated.
The primary encoding difference between an SNaN
and a QNaN is that bit 5 of an SNaN is 1 and bit 5 of a
QNaN is 0. When an SNaN is propagated as a QNaN,
bit 5 is set to 0, and, just as with QNaN proagation, the
sign is preserved, the decimal value of the trailing sig-
nificand field is preserved but reencoded using the pre-
ferred DPD codes, and the contents in the rightmost
N-6 bits of the combination field set to zero, where N is
the width of the combination field for the format. For
some format-conversion instructions, a source SNaN
does not cause an invalid-operation exception, and an
SNaN is returned as the target operand.

For instructions with two source NaNs and a NaN is to
be propagated as the result, do the following.
B |f there is a QNaN in FRA and an SNaN in FRB, the
SNaN in FRB is propagated.
B Otherwise, propagate the NaN is FRA.

5.5 DFP Execution Model

DFP operations are performed as if they first produce
an intermediate result correct to infinite precision and
with unbounded range. The intermediate result is then
rounded to the destination’s precision according to one
of the eight DFP rounding modes. If the rounded result
has only one form, it is delivered as the final result; if
the rounded result has redundant forms, then an ideal
exponent is used to select the form of the final result.
The ideal exponent determines the form, not the value,
of the final result. (See Section 5.5.3 “Formation of
Final Result” on page 195.)

5.5.1 Rounding

Rounding takes a humber regarded as infinitely precise
and, if necessary, modifies it to fit the destination’s pre-
cision. The destination’s precision of an operation
defines the set of permissible resultant values. For
most operations, the destination’s precision is the tar-
get-format precision and the permissible resultant val-
ues are those values representable in the target format.
For some special operations, the destination precision
is constrained by both the target format and some addi-
tional restrictions, and the permissible resultant values
are a subset of the values representable in the target
format.

Rounding sets FPSCR bits FR and FI. When an inexact
exception occurs, Fl is set to one; otherwise, Fl is set to

zero. When an inexact exception occurs and if the
rounded result is greater in magnitude than the inter-
mediate result, then FR is set to one; otherwise, FR is set
to zero. The exception is the Round to FP Integer
Without Inexact instruction, which always sets FR and
FI to zero. Rounding may cause an overflow exception
or underflow exception; it may also cause an inexact
exception.

Refer to Figure 70 below for rounding. Let Z be the
intermediate result of a DFP operation. Z may or may
not fit in the destination’s precision. If Z is exactly one of
the permissible representable resultant values, then the
final result in all rounding modes is Z. Otherwise, either
Z1 or Z2 is chosen to approximate the result, where 71
and Z2 are the next larger and smaller permissible
resultant values, respectively.

By increasing |Z|
Infinitely precise value
By decreasing |Z]

1]

o — |

|| ||
AR 0 2]
z z

Negative values <—|—> Positive Values

<
<

>
|
1

Figure 70. Rounding

Round to Nearest, Ties to Even

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the one whose units digit would have
been even in the form with the largest common quan-
tum of the two permissible resultant values. However,
an infinitely precise result with magnitude at least
(Npax T 0.5Q(Npax)) is rounded to infinity with no change
in sign; where Q(Npay) is the quantum of N4y

Round toward 0
Choose the smaller in magnitude (Z1 or Z2).

Round toward +
Choose Z1.

Round toward -~
Choose Z2.

Round to Nearest, Ties away from 0

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the larger in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude at
least (Npax + 0.5Q(Npax)) is rounded to infinity with no
change in sign; where Q(N;5x) is the quantum of N,y

Round to Nearest, Ties toward 0O

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the smaller in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude
greater than (Nya + 0.5Q(Nya)) is rounded to infinity
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with no change in sign; where Q(Ny4y) is the quantum of
Nmax-

Round away from 0
Choose the larger in magnitude (Z1 or Z2).

Round to prepare for shorter precision

Choose the smaller in magnitude (Z1 or z2). If the
selected value is inexact and the units digit of the
selected value is either O or 5, then the digit is incre-
mented by one and the incremented result is delivered.
In all other cases, the selected value is delivered.
When a value has redundant forms, the units digit is
determined by using the form that has the smallest
exponent.

5.5.2 Rounding Mode Specifica-
tion

Unless otherwise specified in the instruction definition,
the rounding mode used by an operation is specified in
the DFP rounding control (DRN) field of the FPSCR. The
eight DFP rounding modes are encoded in the DRN field
as specified in the table below.

DRN Rounding Mode

000 Round to Nearest, Ties to Even

001 Round toward 0

010  Round toward +Infinity

011  Round toward -Infinity

100 Round to Nearest, Ties away from O
101 Round to Nearest, Ties toward O

110  Round away from O

111  Round to Prepare for Shorter Precision

Figure 71. Encoding of
Control (DRN)

DFP Rounding-Mode

For the quantum-adjustment, a 2-bit immediate field,
called RMC (Rounding Mode Control), in the instruction
specifies the rounding mode used. The RMC field may
contain a primary encoding or a secondary encoding.
For Quantize, Quantize Immediate, and Reround, the
RMC field contains the primary encoding. For Round
to FP Integer the field contains either encoding,
depending on the setting of a RMC-encoding-selection
bit. The following tables define the primary encoding
and the secondary encoding.

PrFlenlle(i:ry Rounding Mode
00 Round to nearest, ties to even
01 Round toward 0
10 Round to nearest, ties away from 0

11 Round according to DRN

Figure 72. Primary Encoding of Rounding-Mode
Control

Sec;i\;((j:ary Rounding Mode
00 Round to +
01 Round to - oo
10 Round away from O
11 Round to nearest, ties toward O

Figure 73. Secondary Encoding of Rounding-Mode
Control

5.5.3 Formation of Final Result

An ideal exponent is defined for each DFP instruction
that returns a DFP data operand.

5.5.3.1 Use of Ideal Exponent

For all DFP operations,

W if the rounded intermediate result has only one
form, then that form is delivered as the final result.

W if the rounded intermediate result has redundant.
forms and is exact, then the form with the expo-
nent closest to the ideal exponent is delivered.

W if the rounded intermediate result has redundant
forms and is inexact, then the form with the small-
est exponent is delivered.

The following table specifies the ideal exponent for
each instruction.

Operations Ideal Exponent

Add min(E(FRA), E(FRB))

Subtract min(E(FRA), E(FRB))
Multiply E(FRA) + E(FRB)

Divide E(FRA) - E(FRB)
Quantize-Immediate | See Instruction Description
Quantize E(FRA)

Reround See Instruction Description

Round to FP Integer |max(0, E(FRA))
Convert to DFP Long |E(FRA)

Convert to DFP E(FRA)
Extended

Round to DFP Short | E(FRA)

Round to DFP Long |E(FRA)

Convert from Fixed 0
Encode BCD to DPD |0

Insert Biased Expo- |E(FRA)
nent

Notes:

E(x) - exponent of the DFP operand in register x.

Figure 74. Summary of Ideal Exponents
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5.5.4 Arithmetic Operations

Four arithmetic operations are provided: Add, Subtract,
Multiply, and Divide.

5.5.4.1 Sign of Arithmetic Result

The following rules govern the sign of an arithmetic
operation when the operation does not yield an excep-
tion. They apply even when the operands or results are
zeros or infinities.

B The sign of the result of an add operation is the
sign of the source operand having the larger abso-
lute value. If both source operands have the same
sign, the sign of the result of an add operation is
the same as the sign of the source operands.
When the sum of two operands with opposite signs
is exactly zero, the sign of the result is positive in
all rounding modes except Round toward -co, in
which case the sign is negative.

B The sign of the result of the subtract operation x - y
is the same as the sign of the result of the add
operation X + (-y).

B The sign of the result of a multiply or divide opera-
tion is the exclusive-OR of the signs of the source
operands.

5,55 Compare Operations

Two sets of instructions are provided for comparing
numerical values: Compare Ordered and Compare
Unordered. In the absence of NaNs, these instructions
work the same. These instructions work differently
when either of the followings is true:

1. Atleast one source operand of the instruction is an
SNaN and the invalid-operation exception is dis-
abled.

2. When there is no SNaN in any source operand, at
least one source operand of the instruction is a
QNaN

In case 1, Compare Unordered recognizes an
invalid-operation exception and sets the VXSNAN flag,
but Compare Ordered recognizes the exception and
sets both the VXSNAN and VXVC flags. In case 2, Com-
pare Unordered does not recognize an exception, but
Compare Ordered recognizes an invalid-operation
exception and sets the VXVC flag.

For finite numbers, comparisons are performed on val-
ues, that is, all redundant forms of a DFP number are
treated equal.

Comparisons are always exact and cannot cause an
inexact exception.

Comparison ignores the sign of zero, that is, +0 equals
-0.

Infinities with like sign compare equal, that is, +eo
equals +eo, and - equals -co.

A NaN compares as unordered with any other operand,
whether a finite humber, an infinity, or another NaN,
including itself.

Execution of a compare instruction always completes,
regardless of whether any DFP exception occurs or
not, and whether the exception is enabled or not.

5.5.6 Test Operations

Four kinds of test operations are provided: Test Data
Class, Test Data Group, Test Exponent, and Test Sig-
nificance.

The Test Data Class instruction examines the contents
of a source operand and determines if the operand is
one of the specified data classes. The test result and
the sign of the source operand are indicated in the FPCC
field and CR field BF.

The Test Data Group instruction examines the contents
of a source operand and determines if the operand is
one of the specified data groups. The test result and
the sign of the source operand are indicated in the FPCC
field and CR field BF.

The Test Exponent instruction compares the exponent
of the two source operands. The test operation ignores
the sign and significand of operands. Infinities compare
equal, and NaNs compare equal. The test result is indi-
cated in the FPCC field and CR field BF.

The Test Significance instruction compares the number
of significant digits of one source operand with the ref-
erenced number of significant digits in another source
operand. The test result is indicated in the FPCC field
and CR field BF.

Execution of a test instruction does not cause any DFP
exception.

5.5.7 Quantum Adjustment Opera-
tions

Four kinds of quantum-adjustment operations are pro-
vided: Quantize, Quantize Immediate, Reround, and
Round To FP Integer. Each of them has an immediate
field which specifies whether the rounding mode in
FPSCR or a different one is to be used.

The Quantize instruction is used to adjust a DFP num-
ber to the form that has the specified target exponent.
The Quantize Immediate instruction is similar to the
Quantize instruction, except that the target exponent is
specified in a 5-bit immediate field as a signed binary
integer and has a limited range.

The Reround instruction is used to simulate a DFP
operation of a precision other than that of DFP Long or
DFP Extended. For the Reround instruction to produce
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a result which accurately reflects that which would have
resulted from a DFP operation of the desired precision
d in the range {1: 33} inclusively, the following condi-
tions must be met:

B The precision of the preceding DFP operation
must be at least one digit larger than d.

B The rounding mode used by the preceding DFP
operation must be round-to-pre-
pare-for-shorter-precision.

The Round To FP Integer instruction is used to round a
DFP number to an integer value of the same format.
The target exponent is implicitly specified, and is
greater than or equal to zero.

5.5.8 Conversion Operations

There are two kinds of conversion operations: data-for-
mat conversion and data-type conversion.

5.5.8.1 Data-Format Conversion

The instructions Convert To DFP Long and Convert To
DFP Extended convert DFP operands to wider formats;
the instructions Round To DFP Short and Round To
DFP Long convert DFP operands to narrower formats.

When converting a finite number to a wider format, the
result is exact. When converting a finite number to a
narrower format, the source operand is rounded to the
target-format precision, which is specified by the
instruction, not by the target register size.

When converting a finite number, the ideal exponent of
the result is the source exponent.

Conversion of an infinity or NaN to a different format
does not preserve the source combination field. Let N
be the width of the target format’s combination field.

B When the result is an infinity or a QNaN, the con-
tents of the rightmost N-5 bits of the N-bit target
combination field are set to zero.

B When the result is an SNaN, bit 5 of the target for-
mat’s combination field is set to one and the right-
most N-6 bits of the N-bit target combination field
are set to zero.

When converting a NaN to a wider format or when con-
verting an infinity from DFP Short to DFP Long, digits in
the source trailing significand field are reencoded using
the preferred DPD codes with sufficient zeros
appended on the left to form the target trailing signifi-
cand field. When converting a NaN to a narrower for-
mat or when converting an infinity from DFP Long to
DFP Short, the appropriate number of leftmost digits of
the source trailing significand field are removed and the
remaining digits of the field are reencoded using the
preferred DPD codes to form the target trailing signifi-
cand field.

When converting an infinity between DFP Long and
DFP Extended, a default infinity with the same sign is
produced.

When converting an SNaN between DFP Short and
DFP Long, it is converted to an SNaN without causing
an invalid-operation exception. When converting an
SNaN between DFP Long and DFP Extended, the
invalid-operation exception occurs; if the invalid-opera-
tion exception is disabled, the result is converted to the
corresponding QNaN.

5.5.8.2 Data-Type Conversion

The instructions Convert From Fixed and Convert To
Fixed are provided to convert a number between the
DFP data type and the signed 64-bit binary-integer data

type.

Conversion of a signed 64-bit binary integer to a DFP
Extended number is always exact.

Conversion of a DFP number to a signed 64-bit binary
integer results in an invalid-operation exception when
the converted value does not fit into the target format,
or when the source operand is an infinity or NaN. When
the exception is disabled, the most positive integer is
returned if the source operand is a positive number or
+o00, and the most negative integer is returned if the
source operand is a negative number, -o, or NaN.

5.5.9 Format Operations

The format instructions are provided to facilitate com-
posing or decomposing a DFP number, and consist of
Encode BCD To DPD, Decode DPD To BCD, Extract
Biased Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right Imme-
diate. A source operand of SNaN does not cause an
invalid-operation exception, and an SNaN may be pro-
duced as the target operand.

5.5.10 DFP Exceptions

This architecture defines the following DFP exceptions:

B Invalid Operation Exception
SNaN
0+0
X0
Invalid Compare
Invalid Conversion
Zero Divide Exception
Overflow Exception
Underflow Exception
B [nexact Exception

These exceptions may occur during execution of a DFP
instruction.
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Each DFP exception, and each category of the Invalid
Operation Exception, has an exception status bit in the
FPSCR. In addition, each DFP exception has a corre-
sponding enable bit in the FPSCR. The exception sta-
tus bit indicates occurrence of the corresponding
exception. If an exception occurs, the corresponding
enable bit governs the result produced by the instruc-
tion and, in conjunction with the FEO and FE1 bits (see
the discussion of FEO and FE1 below), whether and how
the system floating-point enabled exception error han-
dler is invoked. (In general, the enabling specified by
the enable bit is of invoking the system error handler,
not of permitting the exception to occur. The occur-
rence of an exception depends only on the instruction
and its source operands, not on the setting of any con-
trol bits. The only deviation from this general rule is that
the occurrence of an Underflow Exception may depend
on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:

B Inexact Exception may be set with Overflow
Exception.

B Inexact Exception may be set with Underflow
Exception.

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Conver-
sion) for Convert To Fixed instructions.

When an exception occurs the instruction execution
may be completed or partially completed, depending on
the exception and the operation.

For all instructions, except for the Compare and Test
instructions, the following exceptions cause the instruc-
tion execution to be partially completed. That is, setting
of CR field 1(when Rc=1) and exception status flags is
performed, but no result is stored into the target FPR or
FPR pair. For Compare and Test instructions, instruc-
tion execution is always completed, regardless of
whether any DFP exception occurs or not, and whether
the exception is enabled or not.

® Enabled Invalid Operation
B Enabled Zero Divide

For the remaining kinds of exceptions, instruction exe-
cution is completed, a result, if specified by the instruc-
tion, is generated and stored into the target FPR or
FPR pair, and appropriate status flags are set. The
result may be a different value for the enabled and dis-
abled conditions for some of these exceptions. The
kinds of exceptions that deliver a result in target FPR
are the following:

Disabled Invalid Operation
B Disabled Zero Divide

B Disabled Overflow

B Disabled Underflow

Disabled Inexact
Enabled Overflow
Enabled Underflow
Enabled Inexact

Subsequent sections define each of the DFP excep-
tions and specify the action that is taken when they are
detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, a FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case: the expecta-
tion is that the exception will be detected by software,
which will revise the result. A FPSCR exception enable
bit of O causes generation of the “default result” value
specified for the “trap disabled” (or “no trap occurs” or
“trap is not implemented”) case: the expectation is that
the exception will not be detected by software, which
will simply use the default result. The result to be deliv-
ered in each case for each exception is described in
the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software.
In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to zero and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if DFP exceptions
occur: software can inspect the FPSCR exception bits if
necessary, to determine whether exceptions have
occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to one and
a mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled DFP
exception occurs. The system floating-point enabled
exception error handler is also invoked if a Move To
FPSCR instruction causes an exception bit and the cor-
responding enable bit both to be 1; the Move To
FPSCR instruction is considered to cause the enabled
exception.

The FEO and FE1 bits control whether and how the sys-
tem floating-point enabled exception error handler is
invoked if an enabled DFP exception occurs. The loca-
tion of these bits and the requirements for altering them
are described in Book Ill, Power ISA Operating Envi-
ronment Architecture.  (The system floating-point
enabled exception error handler is never invoked
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because of a disabled DFP exception.) The effects of
the four possible settings of these bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
DFP exceptions do not cause the system
floating-point enabled exception error

handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

Precise Mode

The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In all cases, the question of whether a DFP result is
stored, and what value is stored, is governed by the
FPSCR exception enable bits, as described in subse-
guent sections, and is not affected by the value of the
FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. (Recall that, for
the two Imprecise modes, the instruction at which the
system floating-point enabled exception error handler
is invoked need not be the instruction that caused the
exception.) The instruction at which the system float-
ing-point enabled exception error handler is invoked
has not been executed unless it is the excepting
instruction, in which case it has been executed if the

exception is not among those listed on page 197 as
suppressed.

— Programming Note

In the ignore and both imprecise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

B If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
zero.

B [f the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to one for those exceptions for
which the system floating-point enabled exception
error handler is to be invoked.

B Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to one.

B Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

5.5.10.1 Invalid Operation Exception

Definition

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified DFP operation. The
invalid DFP operations are:

B Any DFP operation on a signaling NaN (SNaN),
except for Test, Round To DFP Short, Convert To
DFP Long, Decode DPD To BCD, Extract Biased
Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right
Immediate

Chapter 5. Decimal Floating-Point 199



Version 3.1

For add or subtract operations, magnitude subtrac-

tion of infinities (+e0) + (-e0)

Division of infinity by infinity (co + o)

Division of zero by zero (0 + 0)

Multiplication of infinity by zero (e x 0)

Ordered comparison involving a NaN (Invalid

Compare)

B The Quantize operation detects that the significand
associated with the specified target exponent
would have more significant digits than the tar-
get-format precision

B For the Quantize operation, when one source
operand specifies an infinity and the other speci-
fies a finite number

B The Reround operation detects that the target
exponent associated with the specified target sig-
nificance would be greater than X,y

B The Encode BCD To DPD operation detects an
invalid BCD digit or sign code

B The Convert To Fixed operation involving a num-

ber too large in magnitude to be represented in the

target format, or involving a NaN.

—— Programming Note

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mtfsf, or mtfsbl instruction that sets
VXSOFT to 1 (Software Request). The purpose of
VXSOFT is to allow software to cause an Invalid
Operation Exception for a condition that is not nec-
essarily associated with the execution of a DFP
instruction. For example, it might be set by a pro-
gram that computes a square root, if the source
operand is negative.

Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled (VE=1)
and Invalid Operation occurs, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set:

VXSNAN (if SNaN)
VXISI (if o - o)
VXIDI (if o + o0)
VXZDZ (if0 + 0)
VXIMZ (if o x 0)
VXVC (if invalid comp)
VXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, conversion, or format,
the target FPR is unchanged,
FR and FI are set to zero, and
FPRF is unchanged.
3. If the operation is a compare,
FR, FI, and C are unchanged, and
FPCC is set to reflect unordered.

When Invalid Operation Exception is disabled (VE=0)
and Invalid Operation occurs, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set:

VXSNAN (if SNaN)
VXISI (if oo = o0)
VXIDI (if o0 + o0)
VXZDZ (if 0+ 0)
VXINZ (if = x0)
VXVC (if invalid comp)
VXCVI (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, Round to DFP Long, Convert to DFP
Extended, or format

the target FPR is set to a Quiet NaN
FR and FI are set to zero
FPRF is set to indicate the class of the result
(Quiet NaN)
3. If the operation is a Convert To Fixed
the target FPR is set as follows:
FRT is set to the most positive 64-bit binary
integer if the operand in FRB is a positive or
+00, and to the most negative 64-bit binary
integer if the operand in FRB is a negative
number, - , or NaN.
FR and FI are set to zero
FPRF is unchanged
4. If the operation is a compare,
FR, FI, and C are unchanged
FPCC is set to reflect unordered

5.5.10.2 Zero Divide Exception

Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value.

Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (ZE=1) and
Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
X< 1

2. The target FPR is unchanged

3. FRand FI are set to zero

4. FPRFis unchanged

When Zero Divide Exception is disabled (ZE=0) and
Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
E<1
2. The target FPR is set to te, where the sign is
determined by the XOR of the signs of the oper-
ands
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3. FRand Fl are set to zero
4. FPRF is set to indicate the class and sign of the
result (+e)

5.5.10.3 Overflow Exception

Definition

An overflow exception occurs whenever the target for-
mat’s largest finite number is exceeded in magnitude
by what would have been the rounded result if the
exponent range were unbounded.

Action

Except for Reround, the following describes the han-
dling of the IEEE overflow exception condition. The
Reround operation does not recognize an overflow
exception condition.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (0E=1) and over-
flow occurs, the following actions are taken:

1. Overflow Exception is set

0Xe1

2. The infinitely precise result is divided by 10*. That
is, the exponent adjustment o is subtracted from
the exponent. This is called the wrapped result.
The exponent adjustment for all operations, except
for Round To DFP Short and Round To DFP Long,
is 576 for DFP Long and 9216 for DFP Extended.
For Round To DFP Short and Round To DFP Long,
the exponent adjustment is 192 for the source for-
mat of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision.  This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of subtracting the exponent adjustment
from the ideal exponent.

5. FPRF is set to indicate the class and sign of the
result (£ Normal Number)

When Overflow Exception is disabled (0E=0) and over-
flow occurs, the following actions are taken:

1. Overflow Exception is set
0X <1

2. Inexact Exception is set
XX <1

3. The result is determined by the rounding mode
and the sign of the intermediate result as follows.

Sign of inter-
mediate result
Rounding Mode Plus | Minus
Round to Nearest, Ties to Even +oo -00
Round toward 0 +Npax ~Npax
Round toward +eo + 00 -Nnax
Round toward - o +Npax -co
Round to Nearest, Ties away +oo0 -00
from O
Round to Nearest, Ties toward O +o0 -o0
Round away from 0 +oo0 -00
Round to prepare for shorter pre- | +Npax ~Npax
cision

Figure 75. Overflow Results When Exception Is
Disabled

4. The result is placed into the target FPR

5. FRis set to one if the returned result is + «, and is
set to zero if the returned result is N,

6. Flissettoone

7. FPRF is set to indicate the class and sign of the
result (£ « or £ Normal number)

5.5.10.4 Underflow Exception

Definition

Except for Reround, the following describes the han-
dling of the IEEE underflow exception condition. The
Reround operation does not recognize an underflow
exception condition.

The Underflow Exception is defined differently for the
enabled and disabled states. However, a tininess con-
dition is recognized in both states when a result com-
puted as though both the precision and exponent range
were unbounded would be nonzero and less than the
target format’s smallest normal number, Ny, in magni-
tude.

Unless otherwise defined in the instruction description,
an underflow exception occurs as follows:

B Enabled:
When the tininess condition is recognized.

B Disabled:
When the tininess condition is recognized and
when the delivered result value differs from what
would have been computed were both the preci-
sion and the exponent range unbounded.
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Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (UE=1) and
underflow occurs, the following actions are taken:

1. Underflow Exception is set
UX <1

2. The infinitely precise result is multiplied by 10%.
That is, the exponent adjustment o is added to the
exponent. This is called the wrapped result. The
exponent adjustment for all operations, except for
Round To DFP Short and Round To DFP Long, is
576 for DFP Long and 9216 for DFP Extended. For
Round To DFP Short and Round To DFP Long, the
exponent adjustment is 192 for the source format
of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of adding the exponent adjustment to the
ideal exponent.

5. FPRF is set to indicate the class and sign of the
result (£ Normal number)

When Underflow Exception is disabled (UE=0) and
underflow occurs, the following actions are taken:

1. Underflow Exception is set
UXe1

2. The infinitely precise result is rounded to the tar-
get-format precision.

3. The rounded result is returned. If this result has
redundant forms, the result of the form that is clos-
est to the ideal exponent is returned.

4. FPRF is set to indicate the class and sign of the
result (= Normal number, = Subnormal Number, or
+ Zero)

5.5.10.5 Inexact Exception

Definition

Except for Round to FP Integer Without Inexact, the fol-
lowing describes the handling of the IEEE inexact
exception condition. The Round to FP Integer Without
Inexact does not recognize an inexact exception condi-
tion.

An Inexact Exception occurs when either of two condi-
tions occur during rounding:

1. The delivered result differs from what would have
been computed were both the precision and expo-
nent range unbounded.

2. The rounded result overflows and Overflow Excep-
tion is disabled.

Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
XX« 1
2. The rounded or overflowed result is placed into the
target FPR
3. FPRF is set to indicate the class and sign of the
result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.
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5.5.11 Summary of Normal Rounding And Range Actions

Figure 76 and Figure 77 summarize rounding and

range actions, with the following exceptions:

B The Reround operation recognizes neither an
underflow nor an overflow exception.

B  The Round to FP Integer Without Inexact opera-
tion does not recognize the inexact operation

exception.
Result (r)
when Rounding Mode Is
Range of v Case RNE RNTZ RNAZ RAFZ RTMI RFSP RTPI RTZ
v < -Nmax, q < -Nmax Overflow | -oot —ool —ool —ool —ool -Nmax | -Nmax | -Nmax
v < -Nmax, q = -Nmax Normal -Nmax -Nmax -Nmax - - -Nmax -Nmax -Nmax
-Nmax £ v <-Nmin Normal b b b b b b b b
-Nmin <v <-Dmin Tiny b* b* b* b* b* b* b b
-Dmin <v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0
v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0
-Dmin/2<v<0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0
v=0 EZD +0 +0 +0 +0 -0 +0 +0 +0
0 <v < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin +Dmin +0
v = +Dmin/2 Tiny +0 +0 +Dmin +Dmin +0 +Dmin +Dmin +0
+Dmin/2 < v < +Dmin Tiny +Dmin +Dmin +Dmin +Dmin +0 +Dmin +Dmin +0
+Dmin £ v < +Nmin Tiny b* b* b* b* b b* b* b
+Nmin < v < +Nmax Normal b b b b b b b b
+Nmax < v, g = +Nmax Normal +Nmax +Nmax +Nmax - +Nmax +Nmax - +Nmax
+Nmax < v, q > +Nmax Overflow |+t +ool +ool +ool +Nmax | +Nmax +ool +Nmax
Explanation:
— This situation cannot occur.
1 The normal result r is considered to have been incremented.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception conditions are underflow,
inexact, and incremented.
b The value derived when the precise result v is rounded to the destination’s precision, including both bounded
precision and bounded exponent range.
q The value derived when the precise result v is rounded to the destination’s precision, but assuming an
unbounded exponent range.
r This is the returned value when neither overflow nor underflow is enabled.
\Y Precise result before rounding, assuming unbounded precision and an unbounded exponent range. For
data-format conversion operations, v is the source value.

Dmin Smallest (in magnitude) representable subnormal number in the target format.

EZD The result r of the exact-zero-difference case applies only to ADD and SUBTRACT with both source operands
having opposite signs. (For ADD and SUBTRACT, when both source operands have the same sign, the sign of
the zero result is the same sign as the sign of the source operands.)

Nmax Largest (in magnitude) representable finite number in the target format.

Nmin Smallest (in magnitude) representable normalized number in the target format.
RAFZ Round away from 0.

RFSP Round to Prepare for Shorter Precision.

RNAZ Round to Nearest, Ties away from 0.

RNE Round to Nearest, Ties to even.

RNTZ Round to Nearest, Ties toward 0.

RTPI Round toward +eo.

RTMI Round toward -eo.

RTZ Round toward 0.

Figure 76. Rounding and Range Actions (Part 1)
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Isr Isrincre-| Isq |IsqIncre-
inexact mented | inexact | mented
Case (r#v) |OE=1|UE=1|XE=1| (|r[>|v]) (g=v) | (lgl>|v]) Returned Results and Status Setting*
Overflow | Yes! No — No No — — T(r), 0X<1, Fl«1, FR<0, XXe1
Overflow | Yes! No — No Yes — — T(r), OX<1, Fl«1, FRe<1, XXe1
Overflow | Yes! No — Yes No — — T(r), OX<1, Fl<l, FR<0, XX«1, TX
Overflow | Yes! No — Yes Yes — — T(r), OX<1, Fl«1, FRe1, XXe1, TX
overflow | Yes! | Yes | — | — — No Nol  |Tw(g+b), OX«1, Fl<0, FReO, TO
Overflow | Yes! Yes — — — Yes No Tw(g+b), 0X<1, Fl«1, FR«0, XX«1, TO
Overflow | Yes! Yes | — — — Yes Yes Tw(g+h), 0X<1, Fl«1, FR«1, XX«1, TO
Normal No — — — — — — T(r), FI<0, FR<0
Normal Yes — — No No — — T(r), Fl<1l, FR<0, XX¢«1
Normal Yes — — No Yes — — T(r), Fl«1l, FR<1, XXe1
Normal Yes — — Yes No — — T(r), Fl<1l, FR<0, XX<1, TX
Normal Yes — — Yes Yes — — T(r), Fl<l, FR<1, XXe1, TX

Tiny No — No — — — — T(r), FI<0, FR<0O

Tiny No — | Yes — — No! Nol! Tw(gxb), UX«1, Fl<0, FR« 0, TU

Tiny Yes — No No No — — T(r), UX<1, Fl«1l, FR<0, XXe1

Tiny Yes — No No Yes — — T(r), UXe1l, Fl«l, FRe1, XXe1

Tiny Yes — No | Yes No — — T(r), UX<1, Fl<l, FR<0, XX«1, TX

Tiny Yes — No | Yes Yes — — T(r), UX<1, Fl<l, FRe1, XX«1, TX

Tiny Yes — | Yes — — No Nol! Tw(gxb), UX«1, Fl«0, FR«0, TU

Tiny Yes — | Yes — — Yes No Tw(gxb), UX«1, Flel, FR<0, XX<1, TU

Tiny Yes — | Yes — — Yes Yes Tw(gxb), UXe1, Flel, FRe<1, XX<1, TU

Explanation:

— The results do not depend on this condition.

1 This condition is true by virtue of the state of some condition to the left of this column.

* Rounding sets only FI and FR. Setting of 0X, XX, or UX is part of the exception actions. They are listed here for reference.

B Wrap adjust, which depends on the type of operation and operand format. For all operations except Round to DFP
Short and Round to DFP Long, the wrap adjust depends on the target format: § = 10% where o is 576 for DFP Long,
and 9216 for DFP Extended. For Round to DFP Short and Round to DFP Long, the wrap adjust depends on the source
format: B = 10€ where « is 192 for DFP Long and 3072 for DFP Extended.

q The value derived when the precise result v is rounded to destination’s precision, but assuming an unbounded
exponent range.

r The result as defined in Part 1 of this figure.

\Y Precise result before rounding, assuming unbounded precision and unbounded exponent range.

Fl Floating-Point-Fraction-Inexact status flag, FI. This status flag is non-sticky.

FR Floating-Point-Fraction-Rounded status flag, FR.

0X Floating-Point Overflow Exception status flag, OX.

TO The system floating-point enabled exception error handler is invoked for the overflow exception if FEO and FE1 are set to
any mode other than the ignore-exception mode.

T The system floating-point enabled exception error handler is invoked for the underflow exception if FEO and FE1 are set
to any mode other than the ignore-exception mode.

X The system floating-point enabled exception error handler is invoked for the inexact exception if FEO and FE1 are set to
any mode other than the ignore-exception mode.

T(x)  The value x is placed at the target operand location.

Tw(x) The wrapped rounded result x is placed at the target operand location. For all operations except data format
conversions, the wrapped rounded result is in the same format and length as normal results at the target location. For
data format conversions, the wrapped rounded result is in the same format and length as the source, but rounded to the
target-format precision.

UXx Floating-Point-Underflow-Exception status bit.
XX Float-Point Inexact exception status bit. The flag is a sticky version of FI. When Fl is set to a new value, the new value

of XX is set to the result of ORing the old value of XX with the new value of FI.

Figure 77. Rounding and Range Actions (Part 2)
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5.6 DFP Instruction Descriptions

The following sections describe the DFP instructions.
When a 128-bit operand is used, it is held in a FPR pair
and the instruction mnemonic uses a letter “q” to mean
the quad-precision operation. Note that in the following
descriptions, FRXp denotes a FPR pair and must
address an even-odd pair. If the FRXp field specifies an
odd-numbered register, then the instruction form is
invalid. The notation FRX[p] means either a FPR, FRX,
or a FPR pair, FRXp.

For DFP instructions, if a DFP operand is returned, the
trailing significand field of the target operand is
encoded using preferred DPD codes.

5.6.1 DFP Arithmetic Instructions

All DFP arithmetic instructions are X-form instructions.
They all set the Fl and FR status flags, and also set the
FPREF field. Furthermore, they all have an ideal expo-
nent assigned and employ the record bit (Rc).

The arithmetic instructions consist of Add, Divide, Multi-
ply, and Subtract.
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DFP Add X-form

DFP Subtract X-form

dadd FRT,FRAFRB (Re=0) dsub FRT,FRAFRB (Rc=0)
dadd. FRT,FRAFRB (Re=1) dsub. FRT,FRAFRB (Re=1)

59 FRT FRA FRB 2 Ra 59 FRT FRA FRB 514 Rq
0 6 1 16 21 31 0 6 1 16 21 31

DFP Add Quad X-form

DFP Subtract Quad X-form

daddq FRTp,FRAp,FRBp (Rc=0) dsubq FRTp,FRAp,FRBp (Rc=0)
daddq. FRTp,FRAp,FRBp (Re=1) dsubg. FRTp,FRAp,FRBp (Re=1)

63 FRTp | FRAp | FRBp 2 Ro 63 FRTp | FRAp | FRBp 514 R
0 6 il 16 2 31 0 6 il 16 21 31

The DFP operand in FRA[p] is added to the DFP oper-
and in FRB[p].

The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

Figure 78 summarizes the actions for Add. Figure 78
does not include the setting of FPRF. FPRF is always set
to the class and sign of the result, except for an
enabled invalid-operation exception, in which case the
field remains unchanged.

dadd[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXISI
CR1 (if Re=1)

The DFP operand in FRB[p] is subtracted from the DFP
operand in FRA[p].

The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

The execution of Subtract is identical to that of Add,
except that the operand in FRB participates in the opera-
tion with its sign bit inverted. See Figure 78. The table
does not include the setting of FPRF. FPRF is always set
to the class and sign of the result, except for an
enabled invalid-operation exception, in which case the
field remains unchanged.

dsublq][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN  VXISI
CR1 (if Re=1)
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Operand a Actions for Add (a + b) when operand b in FRB[p] is
in FRA[p] is 00 F +o0 QNaN SNaN
-00 T(-dINF) T(-dINF) VXISI: T(dNaN) P(b) VXSNAN: U(b)
F T(-dINF) S(atb) T(+dINF) P(b) VXSNAN: U(b)
+oo VXISI: T(dNaN) T(+dINF) T(+dINF) P(b) VXSNAN: U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)
SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)
Explanation:

ath The value a added to b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 203)

+dINF Default plus infinity.

- dINF Default minus infinity.

dNaN Default quiet NaN.

F All finite numbers, including zeros.

P(x) The QNaN of operand x is propagated and placed in FRT[p].

S(xX) The value x is placed in FRT[p] with the sign set by the rules of algebra. When the source oper-
ands have the same sign, the sign of the result is the same as the sign of the operands, includ-
ing the case when the result is zero. When the operands have opposite signs, the sign of a zero
result is positive in all rounding modes, except round toward -, in which case, the sign is
minus.

TX) The value x is placed in FRT[p].

u(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

VXISI: Floating-Point Invalid Operation (Infinity - Infinity) exception occurs. The result is produced only
when the exception is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on
page 199.)

VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Figure 78. Actions: Add
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DFP Multiply X-form Figure 79 summarizes the actions for Multiply.

Figure 79 does not include the setting of FPRF. FPRF is

dmul FRT,FRAFRB (Re=0) always set to the class and sign of the result, except for
dmul. FRT,FRA,FRB (Re=1) an enabled invalid-operation exception, in which case
the field remains unchanged.

59 FRT FRA FRB 34 Rq
0 6 u 16 4 & dmul[q][.] are treated as Floating-Point instructions in
DFP Multiply Quad X-form terms of resource availability.

Special Registers Altered:

dmulg FRTp,FRAp,FRBp (Rc=0) FPRF FR FI
dmulg. FRTp,FRAp,FRBp (Re=1) FX OX UX XX VXSNAN VXIMZ

63 FRTp | FRAp | FRBp 34 Ro CRL (if Re=1)
0 6 u 16 21 31
The DFP operand in FRA[p] is multiplied by the DFP
operand in FRB[p].
The result is rounded to the target-format precision
under control of DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the sum of the two exponents of
the source operands.

Operand a Actions for Multiply (a*b) when operand b in FRB[p] is

in FRA[p] is 0 Fn oo QNaN SNaN

0 S(a x b) S(a x b) VXIMZ: T(dNaN) P(b) VXSNAN: U(b)

Fn S(a x b) S(a x b) S(dINF) P(b) VXSNAN: U(b)

o0 VXIMZ: T(dNaN) S(dINF) S(INF) P(b) VXSNAN: U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)
SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
axh The value a multiplied by b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 203)
dINF Default infinity.
dNaN Default quiet NaN.

Fn Finite nonzero number (includes both normal and subnormal numbers).

P(X) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(X) The value x is placed in FRT[p].
ux) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXIMZ: Floating-Point Invalid Operation (Infinity x Zero) exception occurs. The result is produced only when
the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)
VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Figure 79. Actions: Multiply
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DFP Divide X-form

Figure 80 summarizes the actions for Divide.
Figure 80 does not include the setting of FPRF. FPRF is

ddiv FRT,FRAFRB (Re=0) always set to the class and sign of the result, except
ddiv. FRT,FRAFRB (Re=1) for an enabled invalid-operation and enabled

59 ERT FRA FRE 546 ~ zero-_divide exceptions, in which cases the field
0 6 i " ’ N remains unchanged.
DFP Divide Quad X-form ddiv[q][.] are treated.as'I.:Ioating-Point instructions in

terms of resource availability.

dd?vq FRTp,FRAp,FRBp (Re=0) Special Registers Altered:
ddivg. FRTp,FRAp,FRBp (Re=1) FPRE FR FI

63 FRTp | FRAp | FRBp 546 R FX OX UX ZX XX
0 6 " " n 2 VXSNAN  VXIDI VXZDZ

CR1 (if Re=1)
The DFP operand in FRA[p] is divided by the DFP
operand in FRB[p].
The result is rounded to the target-format precision
under control of the DRN (bits 29:31 of the FPSCR). An
appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the difference of subtracting the
exponent of the divisor from the exponent of the
dividend.
Operand a Actions for Divide (a+ b) when operand b in FRB[p] is
in FRA[p] is 0 Fn ) QNaN SNaN

0 VXZDZ: T(dNaN) S(a+b) S(zt) P(b) VXSNAN: U(b)

Fn Zx:  S(dINF) S(a+b) S(zt) P(b) VXSNAN: U(b)

oo S(dINF) S(dINF) VXIDI: T(dNaN) P(b) VXSNAN: U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)
SNaN VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a) VXSNAN: U(a)

Explanation:
a+h The value a divided by b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 203.)
dINF Default infinity.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both normal and subnormal numbers).
P(X) The QNaN of operand x is propagated and placed in FRT[p].
S(X) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
TX) The value x is placed in FRT[p].
ux) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXIDI : Floating-Point Invalid Operation (Infinity + Infinity) exception occurs. The result is produced only
when the exception is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on
page 199 for the exception actions.)
VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)
VXZDZ: Floating-Point Invalid Operation (Zero + Zero) exception occurs. The result is produced only when
the exception is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on page 199.)
zt True zero (zero significand and most negative exponent).
X The Zero-Divide Exception occurs. The result is produced only when the exception is disabled (See
Section 5.5.10.2 “Zero Divide Exception” on page 200.)

Figure 80. Actions: Divide
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5.6.2 DFP Compare Instructions

The DFP compare instructions consist of the Compare The codes in the CR field BF and FPCC are defined for
Ordered and Compare Unordered instructions. The the DFP compare operations as follows.
compare instructions do not provide the record bit.

. . . o Bit Name Description
The comparison sets the designated CR field to indi- 0 FL (FRALPD) < (FRB[PI)

cate the result. FPCC is set in the same way. G (FRALPD) > (FRB[pD)

1
2 FE  (FRA[p]) = (FRBLPD)
3 FU  (FRA[pD) ? (FRB[pD)
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DFP Compare Unordered X-form

dempu

BF,FRA,FRB

59 BF | //

0 6 9

FRA FRB
u 16

21

642 /

31,

DFP Compare Unordered Quad X-form

dempug

BF,FRAp,FRBp

63 BF | //

0 6 9

FRAp
1 16

FRBp

21

642 /
31]

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPCC.

dcmpu[qg] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC
FX  VXSNAN
Operand a in Actions for Compare Unordered (a:b) when operand b in FRB[p] is
FRA[p] is -c0 F +o0 QNaN SNaN
-00 AeqB AltB AltB AuoB Fu, VXSNAN
F AgtB C(a:b) AltB AuoB Fu, VXSNAN
+oo AgtB AgtB AeqB AuoB Fu, VXSNAN
QNaN AuoB AuoB AuoB AuoB Fu, VXSNAN
SNaN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN Fu, VXSNAN
Explanation:
C(a:b) Algebraic comparison. See the table below.
F All finite numbers, including zeros.
AegB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.
VXSNAN Floating-Point Invalid Operation (SNaN) exception occurs. (See Section 5.5.10.1  “Invalid
Operation Exception” on page 199.)
Relation of Value ato Value b Action for C(a:b)
a = b AeqgB
a < b AltB
a > b AgtB

Figure 81. Actions: Compare Unordered
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DFP Compare Ordered X-form
dempo BF,FRA,FRB

59 BF | // | FRA FRB 130 /
0 6 9 |1 16 21 31,

DFP Compare Ordered Quad X-form

dempog BF,FRAp,FRBp

63 BF | // | FRAp | FRBp 130 /
0 6 9 |1 16 21 31]

The DFP operand in FRA[p] is compared to the DFP
operand in FRB[p]. The result of the compare is placed
into CR field BF and the FPCC.

dcmpolq] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC
FX VXSNAN VXVC

tion” on page 199.)

abled (VE=0), then VXVC is also set to one. (See Section 5.5.10.1

Operand ain Actions for Compare ordered (a:b) when operand b in FRB[p] is
FRA[p] is -c0 F +o0 QNaN SNaN
-00 AeqB AltB AltB AuoB, VXVC AuoB, VXSV
F AgtB C(a:b) AltB AuoB, VXVC AuoB, VXSV
+oo AgtB AgtB AeqgB AuoB, VXVC AuoB, VXSV
QNaN AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXVC AuoB, VXSV
SNaN AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV AuoB, VXSV
Explanation:
C(a:b) Algebraic comparison. See the table below
F All finite numbers, including zeros
AegB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.
VXSV Floating-Point Invalid Operation (SNaN) exception occurs. Additionally, if the exception is dis-

“Invalid Operation Excep-

VXVC Floating-Point Invalid Operation (Invalid Compare) exception occurs. (See Section 5.5.10.1
“Invalid Operation Exception” on page 199.)

Relation of Value ato Value b

Action for C(a:b)

a = b AegB
a < b AltB
a > b AgtB

Figure 82. Actions: Compare Ordered
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5.6.3 DFP Test Instructions

The DFP test instructions consist of the Test Data
Class, Test Data Group, Test Exponent, and Test
Significance instructions, and they do not provide the
record bit.

The test instructions set the designated CR field to
indicate the result. The FPSCRgpcc is set in the same
way.

DFP Test Data Class Z22-form
dtstdc BF,FRA,DCM

DFP Test Data Group Z22-form
dtstdg BF,FRA,DGM

59 BF | // | FRA DCM 194 /
0 6 9 |1 16 21 31,

59 BF | /]| FRA DGM 226 /
0 6 9 |1 16 21 31

DFP Test Data Class Quad Z22-form
dtstdcq BF,FRAp,DCM

DFP Test Data Group Quad Z22-form
dtstdgq BF,FRAp,DGM

63 BF | // | FRAp DCM 194 /
0 6 9 |1 16 21 31]

63 BF | // | FRAp DGM 226 /
0 6 9 u 16 21 31

Let the DCM (Data Class Mask) field specify one or
more of the 6 possible data classes, where each bit
corresponds to a specific data class.

DCM Bit Data Class
Zero
Subnormal
Normal
Infinity

Quiet NaN
Signaling NaN

g~ wWwNEFO

CR field BF and FPCC are set to indicate the sign of the
DFP operand in FRA[p] and whether the data class of
the DFP operand in FRA[p] matches any of the data
classes specified by DCM.

Field Meaning

0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

dtstdc[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

Let the DGM (Data Group Mask) field specify one or
more of the 6 possible data groups, where each bit
corresponds to a specific data group.

The term extreme exponent means either the
maximum exponent, X,ax Or the minimum exponent,

Xmin-

DGM Bit Data Group

0 Zero with non-extreme exponent

1 Zero with extreme exponent

2 Subnormal or (Normal with extreme expo-
nent)

3 Normal with non-extreme exponent and
leftmost zero digit in significand

4 Normal with non-extreme exponent and
leftmost nonzero digit in significand

5 Special symbol (Infinity, QNaN, or SNaN)

CR field BF and FPCC are set to indicate the sign of the
DFP operand in FRA[p] and whether the data group of
the DFP operand in FRA[p] matches any of the data
groups specified by DGM.

Field Meaning

0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

dtstdg[qg] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC
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DFP Test Exponent X-form

dtstex BF,FRA,FRB

59 BF |//| FRA | FRB 162 I
0 6 9 |1 16 21 31,
DFP Test Exponent Quad X-form
dtstexq BF,FRAp,FRBp

63 BF | // | FRAp | FRBp 162 /

0 6 9

u 16 21 31

The exponent value (Ea) of the DFP operand in FRA[p]
is compared to the exponent value (Eb) of the DFP

operand in FRB[p].

The result of the compare is placed

into CR field BF and the FPCC.

The codes in the CR field BF and FPCC are defined for
the DFP Test Exponent operations as follows.

Bit Description
0 Ea < Eb
1 Ea > Eb
2 Ea = Eb
3 Ea ? Eb
Special Registers Altered:
CR field BF
FPCC
Operand ain Actions for Test Exponent (Ea:Eb) when operand b in FRB[p] is
FRA[p] is F o QNaN SNaN
F C(Ea:Eb) AuoB AuoB AuoB
oo AuoB AeqB AuoB AuoB
QNaN AuoB AuoB AeqB AeqB
SNaN AuoB AuoB AeqB AeqB
Explanation:
C(Ea:Eb) Algebraic comparison. See the table below.
F All finite numbers, including zeros
AegB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.
Relation of Value Ea to Value Eb Action for C(Ea:Eb)
Ea = Eb AeqgB
Ea < Eb AltB
Ea > Eb AgtB

Figure 83. Actions: Test Exponent
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DFP Test Significance X-form
dtstsf BF,FRA,FRB

59 BF | // | FRA FRB 674 /
0 6 9 |1 16 21 31,

DFP Test Significance Quad X-form
dtstsfq BF,FRA,FRBp

63 BF | // | FRA FRBp 674 /
0 6 9 |1 16 21 31]

Let k be the contents of bits 58:63 of FPR[FRA] that
specifies the reference significance.

For dtstsf, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRB].

For dtstsfq, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRBp:FRBp+1].

For this instruction, the number of significant digits of
the value 0 is considered to be zero.

NSDb is compared to k. The result of the compare is
placed into CR field BF and the FPCC as follows.

Bit Description

0 k # 0and k < NSDb

1 k #0andk > NSDb, ork = 0
2 k # 0and k = NSDb

3 k ? NSDb

dtstsf[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

Actions for Test Significance
when the operand in VSR[FRB] or VSR[FRBp:FRBp+1] is

F oo QNaN SNaN
C(UIM:NSDb) AuoB AuoB AuoB
Explanation:
C(k:NSDb) Algebraic comparison. See the table
below.
F All finite numbers, including zeros.
AegB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.

Relation of Value NSDb to Value k

Action for C(k:NSDb)

k # 0and k = NSDb AeqB
k # 0and k < NSDb AltB
k # 0and k > NSDb, ork = 0 AgtB

Figure 84. Actions: Test Significance

—— Programming Note

instruction

The reference significance can be loaded into a
FPR using a Load Float as Integer Word Algebraic

Chapter 5. Decimal Floating-Point 215



Version 3.1

DFP Test Significance Immediate X-form

dtstsfi BF,UIM,FRB

59 BF |/ UM FRB 675 /
0 6 9|10 16 21 31,

DFP Test Significance Immediate Quad X-form

dtstsfiq BF,UIM,FRBp

63 BF |/ UM FRBp 675 /
0 6 910 16 21 31]

Let the value UIM specify the reference significance.

For dtstsfi, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRB].

For dtstsfig, let the value NSDb be the number of
significant digits of the DFP value in FPR[FRBp:FRBp+1].

For this instruction, the number of significant digits of
the value 0 is considered to be zero.

NSDb is compared to UIM. The result of the compare is
placed into CR field BF and the FPCC as follows.

Bit Description
UIM # 0 and UIM < NSDb
UIM # 0 and UIM > NSDb, or UIM = 0
UIM # 0 and UIM = NSDb
UIM ? NSDb

WN PO

dtstsfi[q] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR field BF
FPCC

Actions for Test Significance
when the operand in VSR[FRB] or VSR[FRBp:FRBp+1] is

F oo QNaN SNaN
C(UIM:NSDb) AuoB AuoB AuoB
Explanation:

Algebraic comparison. See the table
below.

F All finite numbers, including zeros.
AegB CR field BF and FPCC are set to 0b0010.
AgtB CR field BF and FPCC are set to 0b0100.
AltB CR field BF and FPCC are set to 0b1000.
AuoB CR field BF and FPCC are set to 0b0001.

C(UIM:NSDb)

Relation of Value NSDb to Value UIM |Action for C(UIM:NSDb)
UIM=0 and UIM = NSDb AeqB
UIM0 and UIM < NSDb AltB
UIM20 and UIM > NSDb, or UIM =0 AgtB

Figure 85. Actions: Test Significance
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5.6.4 DFP Quantum Adjustment Instructions

The Quantum Adjustment operations consist of the
Quantize, Quantize Immediate, Reround, and Round
To FP Integer operations.

The Quantum Adjustment instructions are Z23-form
instructions and have an immediate RMC
(Rounding-Mode-Control) field, which specifies the
rounding mode used. For Quantize, Quantize
Immediate, and Reround, the RMC field contains the
primary encoding. For Round to FP Integer, the field
contains either primary or secondary encoding,
depending on the setting of a RMC-encoding-selection
bit. See Section 5.5.2 “Rounding  Mode
Specification” on page 195 for the definition of RMC
encoding.

All Quantum Adjustment instructions set the FI and FR
status flags, and also set the FPRF field. The record
bit is provided to each of these instructions. They
return the target operand in a form with the ideal
exponent.

DFP Quantize Immediate Z23-form

dquai TE,FRT,FRB,RMC (Re=0)
dquai. TE,FRT,FRB,RMC (Re=1)

59 FRT TE FRB |RMC 67 Ra
0 6 1n 16 21 |23 31

DFP Quantize Immediate Quad Z23-form

dquaiq TE,FRTp,FRBp,RMC (Rc=0)
dquaiq. TE,FRTp,FRBp,RMC (Re=1)

63 FRTp TE FRBp [RMC 67 Ro
0 6 1 16 21 |23 31

The DFP operand in FRB[p] is converted and rounded
to the form with the exponent specified by TE based on
the rounding mode specified in the RMC field. TE is a
5-bit signed binary integer. The result of that form is
placed in FRT[p]. The sign of the result is the same as
the sign of the operand in FRB[p]. The ideal exponent
is the exponent specified by TE.

When the value of the operand in FRB[p] is greater
than (10°-1) % 10", where p is the format precision,
an invalid operation exception is recognized.

When the delivered result differs in value from the
operand in FRB[p], an inexact exception is recognized.
No underflow exception is recognized by this
operation, regardless of the value of the operand in

FRB[p].

FPRF is always set to the class and sign of the result,
except for an enabled invalid-operation exception, in
which case the field remains unchanged.

dquai[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:

FPRF FR FI
FX XX

VXSNAN  VXCVI

CR1 (if Re=1)
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—— Programming Note

DFP Quantize Immediate can be used to adjust
values to a form having the specified exponent in
the range -16 to 15. If the adjustment requires the
significand to be shifted left, then:

m if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field.

DFP Quantize Immediate can round a value to a
specific number of fractional digits. Consider the
computation of sales tax. Values expressed in U.S.
dollars have 2 fractional digits, and sales tax rates
typically have 3 fractional digits. The product of
value and rate will yield 5 fractional digits. For
example:

39.95 * 0.075 = 2.99625

This result needs to be rounded to the penny to
compute the correct tax of $3.00.

The following sequence computes the sales tax
assuming the pre-tax total is in FRA and the tax rate
is in FRB. The DFP Quantize Immediate instruction
rounds the product (FRA * FRB) to 2 fractional digits
(TE = -2) using Round to nearest, ties away from 0
(RMC = 2). The quantized and rounded result is
placed in FRT.

dmul £0,FRA,FRB
dquai -2,FRT,£0,2
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DFP Quantize Z23-form

dqua FRT,FRA,FRB,RMC (Rc=0)
dqua. FRT,FRA,FRB,RMC (Re=1)
59 FRT FRA FRB |RMC 3 Ro
0 6 1 16 2 |3 31
DFP Quantize Quad Z23-form
dquag FRTp,FRAp,FRBp,RMC (Rc=0)
dquag. FRTp,FRAp,FRBp,RMC (Re=1)
63 FRTp | FRAp | FRBp [RMC 3 Ro
0 6 il 16 2n |3 31

The DFP operand in register FRB[p] is converted and
rounded to the form with the same exponent as that of
the DFP operand in FRA[p] based on the rounding
mode specified by RMC. The result of that form is placed
in FRT[p]. The sign of the result is the same as the
sign of the operand in FRB[p]. The ideal exponent is
the exponent specified in FRA[p].

When the value of the operand in FRB[p] is greater
than (10°-1) x 10%, where p is the format precision
and Ea is the exponent of the operand in FRA[p], an
invalid operation exception is recognized.

When the delivered result differs in value from the
operand in FRB[p], an inexact exception is recognized.
No underflow exception is recognized by this
operation, regardless of the value of the operand in

FRB[p].

Figure 87 and Figure 88 summarize the actions. The
tables do not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except
for an enabled invalid-operation exception, in which
case the field remains unchanged.

dqualq][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Register Altered:

FPRF FR FI
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

— Programming Note

DFP Quantize can be used to adjust one DFP
value (FRB[p]) to a form having the same exponent
as a second DFP value (FRA[p]). If the adjustment
requires the significand to be shifted left, then:

B if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of RMC. Figure 86 shows examples of these
adjustments.

FRA FRB FRT when RMC=1 FRT when RMC=2
1 (1 x 109 9. (9 x 109 9 (9 x 109 9 (9 x 109
1.00 (100 x 1072) 9. (9 x 109 9.00 (900 x 1072 9.00 (900 x 107%)

1 (1 x 109 49.1234 (491234 x 10™%)

49 (49 x 109 49 (49 x 109

1.00 (100 x 1079) 49.1234 (491234 x 10™%)

49.12 (4912 x 107%) 49.12 (4912 x 107%)

1 (1 x 109 49.9876 (499876 x 107%)

49 (49 x 109 50 (50 x 10%)

1.00 (100 x 1079) 49.9876 (499876 x 10™%)

49.98 (4998 x 107%) 49.99 (4999 x 107%)

0.01 (1 x 107 49.9876 (499876 x 10%)

49.98 (4998 x 1072) 49.99 (4999 x 1072)

9999999999999999

0
1(1x 109 (9999999999999999 x 10°)

9999999999999999
(9999999999999999 x 10°)

9999999999999999
(9999999999999999 x 10°)

9999999999999999

-1
1.0 (10 x 107) (9999999999999999 x 10°)

QNaN QNaN

Figure 86. DFP Quantize examples
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Operand a Actions for Quantize when operand b in FRB[p] is
in FRA[p] is Fn oo QNaN SNaN
0 * * VXCVI: T(dNaN) P(b) VXSNAN:  U(b)
Fn * * VXCVI: T(dNaN) P(b) VXSNAN:  U(b)
. VXCVI: T(dNaN) VXCVI: T(dNaN) T(dINF) P(b) VXSNAN:  U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN:  U(b)
SNaN VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a) VXSNAN:  U(a)
Explanation:
* See next table.
dINF Default infinity
dNaN Default quiet NaN
Fn Finite nonzero numbers (includes both subnormal and normal numbers)
P(x) The QNaN of operand x is propagated and placed in FRT[p]
TX) The value x is placed in FRT[p]
ux) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
VXCVI: Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced only
when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on
page 199.)
VXSNAN: Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Figure 87. Actions (part 1) Quantize

Actions for Quantize when operand b in FRB[p] is
0 Fn
Te < Se |V, > (10° - 1) x 10™® E(0) VXCVI: T(dNaN)
V, < (10° - 1) x 10'® E(0) L(b)
Te = Se E(0) W(b)
Te > Se E(0) QR(b)
Explanation:
dNaN Default quiet NaN
E(0) The value of zero with the exponent value Te is placed in FRT[p].
L(X) The operand x is converted to the form with the exponent value Te.
p The precision of the format.
QR(X) The operand x is rounded to the result of the form with the exponent value Te based on the specified
rounding mode. The result of that form is placed in FRT[p].
Se The exponent of the operand in FRB[p].
Te The target exponent; FRA[p] for dqua|q], or TE, a 5-bit signed binary integer for dquai[q].
TX) The value x is placed in FRT[p].
Vb The value of the operand in FRB[p].
W) The value and the form of operand x is placed in FRT[p].
VXCVI: Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced only

when the exception is disabled. (See Section 5.5.10.1  “Invalid Operation Exception” on

page 199.)

Figure 88. Actions (part2) Quantize
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DFP Reround Z23-form

drrnd FRT,FRAFRB,RMC (Rc=0)
drrnd. FRT,FRA,FRB,RMC (Re=1)

59 FRT FRA FRB  [RMC 35 Ro
0 6 1 16 2 |3 31

DFP Reround Quad Z23-form

drrndq FRTp,FRA,FRBp,RMC (Rc=0)
drrndq. FRTp,FRA,FRBp,RMC (Re=1)

63 FRTp | FRA | FRBp [RMC 35 Ro
0 6 il 16 2n |3 31

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

When the DFP operand in FRB[p] is a finite number,
and if the reference significance is zero, or if the
reference significance is nonzero and the number of
significant digits of the source operand is less than or
equal to the reference significance, then the value and
the form of the source operand is placed in FRT[p]. If
the reference significance is nonzero and the number
of significant digits of the source operand is greater
than the reference significance, then the source
operand is converted and rounded to the number of
significant digits specified in the reference significance
based on the rounding mode specified in the RMC
field. The result of the form with the specified number
of significant digits is placed in FRT[p]. The sign of the
result is the same as the sign of the operand in FRB[p].

For this instruction, the number of significant digits of
the value 0 is considered to be zero. The ideal
exponent is the greater value of the exponent of the
operand in FRB[p] and the referenced exponent. The
referenced exponent is the resultant exponent if the
operand in FRB[p] would have been converted and
rounded to the number of significant digits specified in
the reference significance based on the rounding
mode specified by RMC.

If the exponent of the rounded result of the form that
has the specified number of significant digits would be
greater than X, an invalid operation exception (VXCVI)
occurs. When the invalid-operation exception occurs,
and if the exception is disabled, a default QNaN is
returned. When an invalid-operation exception occurs,
no inexact exception is recognized.

In the absence of an invalid-operation exception, if the
result differs in value from the operand in FRB[p], an
inexact exception is recognized.

This operation causes neither an overflow nor an
underflow exception.

Figure 90 summarizes the actions for Reround. The
table does not include the setting of FPRF. FPRF is
always set to the class and sign of the result, except
for an enabled invalid-operation exception, in which
case the field remains unchanged.

drrnd[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:

FPRF FR FI
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

—— Programming Note

DFP Reround can be used to adjust a DFP value
(FRB[p]) to have no more than a specified number
(FRA[p]58:63) of significant digits. The result
(FRT[p]) is right-justified leaving the specified num-
ber of digits and rounded as specified by RMC. If
rounding increases the number of significant digits,
the result is adjusted again (the significand is
shifted right 1 digit and the exponent is incremented
by 1). Figure 89 has example results from DFP
Reround for 1, 2, and 10 significant digits.
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—— Programming Note

DFP Reround is primarily used to round a DFP value to a specific number of digits before conversion to string for-
mat for printing or display. Another use for DFP Reround is to obtain the effective exponent of the most significant
digit by specifying a reference significance of 1. The exponent can be extracted and used to compute the number
of significant digits or to left-justify a value.

For example, the following sequence computes the number of significant digits and returns it as an integer. FRB is
the DFP value for which we want the number of significant digits; f13 contains the reference significance value
0x0000000000000001; and r1 is the stack pointer, with free space for doublewords at offsets -8 and -16. These dou-
blewords are used to transfer the biased exponents from the FPRs to GPRs for integer computation. R3 contains

dxex  f0,FRB
stfd f0,-16(r1)

dxex f1,f1

stfd  f1,-8(rl)
1fd rll,-16(rl)
1fd r3,-8(rl)
subf r3,rll, r3
addi  r3,r3,1

drrnd £1,f13,FRB,1 # reround 1 digit toward 0

the result of E(reround(1,FRA) ) - E(FRA) + 1, where E(x) represents the biased exponent of x.

Given the value 412.34 the result is E(4 x 102) - E(41234 x 10-2) + 1 = (398+2) - (398-2) + 1 = 400 - 396
+ 1 = 5. Additional code is required to detect and handle special values like Subnormal, Infinity, and NAN.

(9999999999999999 x 10°)

(9999999999 x 105)

FRAgg.63 (Dinary) FRB FRT when RMC=1 FRT when RMC=2
1 0.41234 (41234 X 10°) 0.4 (4x107Y 0.4 (4x10%
1 4.1234 (41234 x 104 4 (4 x 109 4 (4% 109
1 41.234 (41234 x 10°3) 4 (4 x 10Y 4 (4% 10%)
1 412.34 (41234 x 10?9 4 (4 % 10%) 4 (4% 10%)
2 0.491234 (491234 x 107) 0.49 (49 x 102 0.49 (49 x 10?9
2 0.499876 (499876 x 107) 0.49 (49 x 102 0.50 (50 x 1079
2 0.999876 (999876 x 107) 0.99 (99 x 102 1.0 (10 x 10h)
10 0.491234 (491234 x 10°6) 0.491234 (491234 x 1075 0.491234 (491234 x 1076)
10 999.999 (999999 x 10°%) 999.999 (999999 x 10°%) 999.999 (999999 x 107%)
10 9999999999999999 9.999999999E+14 1.000000000E+15

(1000000000 x 10°)

Figure 89. DFP Reround examples
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drrnd
dxex
stfd
1fd
addi
1fd
stfd
diex
dqua

f0,f1

—— Programming Note

DFP Reround combined with DFP Quantize can be used to left justify a value (as needed by the frexp function).
FRB is the DFP value for which we want to left justify; f13 contains the reference significance value
0x0000000000000001; and r1 is the stack pointer, with free space for a doubleword at offset -8. This doubleword is
used to transfer the biased exponents from the FPR to a GPR, for integer computation. The adjusted biased
exponent (+ format precision - 1) is transferred back into an FPR so it can be inserted into the rerounded value.
The adjusted rerounded value becomes the quantize reference value. The quantize instruction returns the left
justified result in FRT.

f1,£f13,FRB,1 # reround 1 digit toward 0

£0,-8(rl)
rll,-8(rl)
rll,r11,15
rll,-8(rl)
£0,-8(rl)
f1,fo0,f1
FRT,f1,f0,1 # quantize to adjusted

# biased exp + precision - 1

# adjust exponent

exponent

Actions for Reround when operand b in FRBI[p] is

0* Fn oo QNaN SNaN

k#0,k<m

- RR(b) or T(dINF) P(b)
VXCVI: T(dNaN)

VXSNAN: U(b)

k#0,k=m

W(b) T(dINF) P(b) VXSNAN: U(b)

k #0and k >m,
ork=0

W(b) W(b) T(dINF) P(b) VXSNAN: U(b)

Explanation:

*

dINF
Fn
k
m

P(x)

RR(X)

T
ux)
VXCVI

VXSNAN:

W)

The number of significant digits of the value 0 is considered to be zero for this instruction.
Not applicable.
Default infinity.
Finite nonzero numbers (includes both subnormal and normal numbers).
Reference significance, which specifies the number of significant digits in the target operand.
Number of significant digits in the operand in FRB[p].
The QNaN of operand x is propagated and placed in FRT[p].
The value x is rounded to the form that has the specified number of significant digits.
If RR(X) < (10%-1) x 10" then RR(X) is returned; otherwise an invalid-operation exception
is recognized.
The value x is placed in FRT[p].
The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Floating-Point Invalid Operation (Invalid Conversion) exception occurs. The result is produced
only when the exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception”
on page 199.)

Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

The value and the form of x is placed in FRT[p].

Figure 90. Actions: Reround
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DFP Round To FP Integer With Inexact
Z23-form

drintx R,FRT,FRB,RMC (Re=0)
drint. R,FRT,FRB,RMC (Re=1)

59 FRT /Il |R| FRB |RMC| 99 Ra
0 6 1 15|16 21 |23 31

DFP Round To FP Integer With Inexact Quad
Z23-form

— Programming Note

The DFP Round To FP Integer With Inexact and
DFP Round To FP Integer With Inexact Quad
instructions can be used to implement the decimal
equivalent of the C99 rint function by specifying the
primary RMC encoding for round according to DRN
(R=0, RMC=11). The specification for rint requires the
inexact exception be raised if detected.

drintxq R,FRTp,FRBp,RMC (Rc=0)
drintxq. R,FRTp,FRBp,RMC (Re=1)

63 FRTp Il |R| FRBp [RMC 99 R
0 6 u 15[16 a3 31

The DFP operand in FRB[p] is rounded to a
floating-point integer and placed into FRT[p]. The sign
of the result is the same as the sign of the operand in
FRB[p]. The ideal exponent is the larger value of zero
and the exponent of the operand in FRB[p].

The rounding mode used is specified by RMC. When
the RMC-encoding-selection (R) bit is zero, RMC field
contains the primary encoding; when the bit is one, the
field contains the secondary encoding.

In addition to coercion of the converted value to fit the
target format, the special rounding used by Round To
FP Integer also coerces the target exponent to the
ideal exponent.

When the operand in FRB[p] is a finite number and the
exponent is less than zero, the operand is rounded to
the result with an exponent of zero. When the
exponent is greater than or equal to zero, the result is
set to the numerical value and the form of the operand
in FRB[p].

When the result differs in value from the operand in
FRB[p], an inexact exception is recognized. No
underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

Figure 91 summarizes the actions for Round To FP
Integer With Inexact. The table does not include the
setting of FPRF. FPRF is always set to the class and sign
of the result, except for an enabled invalid-operation, in
which case the field remains unchanged.

drintx[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN
CR1 (if Re=1)
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Operandb | Is n not pre- Inv.-Op. Inexagt Is nIncre-
in FRB is | cise (n #b) Exception | Exception mented .
Enabled Enabled (In| > |b]) | Actions*
-0 No! - - - T(-dINF), FI<0, FR<0

F No - - - W(n), Fl<0, FR<O

F Yes - No No W(n), Fl<1l, FR<0, XXe<1

F Yes - No Yes W(n), Fl<1l, FRe1, XXe1

F Yes - Yes No W(n), Fl<1, FR<0, XX<1, TX

F Yes - Yes Yes W(n), Fl<1, FRe1, XXe1, TX

+oo No? - - - T(+dINF), FI<0, FR<0
QNaN No? - - - P(b), FI<0, FR<0
SNaN Nol No - - U(b), FI<0, FR<0, VXSNAN«1
SNaN Nol Yes - - VXSNAN«1, TV
Explanation:

* Setting of XX and VXSNAN is part of the corresponding exception actions. Also, when an invalid-opera-
tion exception occurs, setting of FI and FR is part of the exception actions.(See the sections, “Inex-
act Exception” and “Invalid Operation Exception” for more details.)

- The actions do not depend on this condition.

1 This condition is true by virtue of the state of some condition to the left of this column.

dINF Default infinity.

F All finite numbers, including zeros.

FI Floating-Point Fraction Inexact status bit.

FR Floating-Point Fraction Rounded status bit.

n The value derived when the source operand, b, is rounded to an integer using the special rounding
for Round To FP Integer.

P(X) The QNaN of operand x is propagated and placed in FRT[p].
TX) The value x is placed in FRT[p].

v The system floating-point enabled exception error handler is invoked for the invalid operation excep-
tion if FEO and FE1 are set to any mode other than the ignore-exception mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if FEO
and FE1 are set to any mode other than the ignore-exception mode.

ux) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
[[€9)] The value x in the form of zero exponent or the source exponent is placed in FRT[p].
XX Floating-Point Inexact exception status bit.

Figure 91. Actions: Round to FP Integer With Inexact
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DFP Round To FP Integer Without Inexact
Z23-form

drintn R,FRT,FRB,RMC (Re=0)
drintn. R,FRT,FRB,RMC (Re=1)

59 FRT /Il |R| FRB |RMC| 227 Ra
0 6 1 15|16 21 |23 31

DFP Round To FP Integer Without Inexact
Quad Z23-form

drintnq R,FRTp,FRBp,RMC (Rc=0)
drintng. R,FRTp,FRBp,RMC (Re=1)

63 FRTp Il |R| FRBp [RMC 227 R
0 6 u 15[16 a3 31

This operation is the same as the Round To FP Integer
With Inexact operation, except that this operation does
not recognize an inexact exception.

Figure 92 summarizes the actions for Round To FP
Integer Without Inexact. The table does not include
the setting of FPRF. FPRF is always set to the class and
sign of the result, except for an enabled
invalid-operation, in which case the field remains
unchanged.

drintn[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (setto 0) FI (setto 0)
FX
VXSNAN
CR1 (if Re=1)

—— Programming Note

The DFP Round To FP Integer Without Inexact and
DFP Round To FP Integer Without Inexact Quad
instructions can be used to implement decimal
equivalents of several C99 rounding functions by
specifying the appropriate R and RMC field values.

Function R RMC
Cell 1 0b00
Floor 1 0b01
Nearbyint 0 Ob11
Round 0 0b10
Trunc 0 0b01

Note that nearbyint is similar to the rint function but
without raising the inexact exception. Similarly ceil,
floor, round, and trunc do not require the inexact
exception.

226 Power ISA™ |



Version 3.1

Operand b in | Inv.-Op. Exception .
P FRB is Elonabledp Actions*
-00 - T(-dINF), FI<0, FR<0
F - W(n), FI1<0, FR«O
+oo - T(+dINF), Fl<0, FR<0
QNaN - P(b), FI<0, FR«O
SNaN No U(b), FI<0, FR«0, VXSNAN«1
SNaN Yes VXSNAN«1, TV
Explanation:
* Setting of VXSNAN is part of the corresponding exception actions. Also, when an invalid-operation excep-

tion occurs, setting of FI and FR bits is part of the exception actions. (See the sections, “Invalid Oper-
ation Exception” for more details.)

- The actions do not depend on this condition.
dINF Default infinity.

F All finite numbers, including zeros.

Fl Floating-Point Fraction Inexact status bit.

FR Floating-Point Fraction Rounded status bit.

n The value derived when the source operand, b, is rounded to an integer using the special rounding for

Round To FP Integer.
P(xX) The QNaN of operand x is propagated and placed in FRT[p].
TX) The value x is placed in FRT[p].

v The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if FEO and FE1 are set to any mode other than the ignore-exception mode.

u(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].
W) The value x in the form of zero exponent or the source exponent is placed in FRT[p].

Figure 92. Actions: Round to FP Integer Without Inexact

Chapter 5. Decimal Floating-Point 227



Version 3.1

5.6.5 DFP Conversion Instructions

The DFP conversion instructions consist of data-format
conversion instructions and data-type conversion
instructions. They are all X-form instructions and
employ the record bit (Rc).

5.6.5.1 DFP Data-Format Conversion
Instructions

The data-format conversion instructions consist of
Convert To DFP Long, Convert To DFP Extended,
Round To DFP Short, and Round To DFP Long.

— Programming Note

DFP does not provide operations on short
operands, so they must be converted to long
format, and then converted back to be stored.
Preserving correct signaling NaN semantics
requires that signaling NaNs be propagated from
the source to the result without recognizing an
exception during widening from short to long or
narrowing from long to short. Because DFP does
not provide equivalents to the FP Load
Floating-Point Single and Store Floating-Point
Single functions, the widening is performed by
loading the DFP short value with a Load Floating

Figure 93 summarizes the actions for these as Integer Word Indexed followed by a DFP
instructions. Convert to DFP Long, and narrowing is performed
by a DFP Round to DFP Short followed by a Store
Floating-Point as Integer Word Indexed. If the
SNaN or infinity in DFP short format uses the
preferred DPD encoding, then converting this
operand to DFP long format and back to DFP short
will result in the original bit pattern.
. Actions when operand b in FRB[p] is
Instruction
F oo QNaN SNaN
Convert To DFP Long T(b)? P(b)>* P(b)>* P(b)>*
Convert To DFP Extended T(b)?! T(dINF) P(b)%4 VXSNAN:  U(b)%4
Round To DFP Short R(b)? P(b)>° P(b)>° P(b)3°
Round To DFP Long R(b)?! T(dINF) P(b)%° VXSNAN: U(b)2°
Explanation:
1 The ideal exponent is the exponent of the source operand.
2 Bits 5:N-1 of the N-bit combination field are set to zero.
3 Bit 5 of the N-bit combination field is set to one. Bits 6:N-1 of the combination field are set to zero.
4 The trailing significand field is padded on the left with zeros.
5 Leftmost digits in the trailing significand field are removed.
dINF Default infinity.
F All finite numbers, including zeros.
P(X) The special symbol in operand x is propagated into FRT[p].
R(X) The value x is rounded to the target-format precision; see Section 5.5.11
TX) The value x is placed in FRT[p].
ux) The SNaN of operand x is converted to the corresponding QNaN.
VXSNAN Floating-Point Invalid Operation (SNaN) exception occurs. The result is produced only when the

exception is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 199.)

Figure 93. Actions: Data-Format Conversion Instructions
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DFP Convert To DFP Long X-form

DFP Convert To DFP Extended X-form

dctdp FRT,FRB (Rc=0) dctgpq FRTp,FRB (Rc=0)
detdp. FRT,FRB (Re=1) dctagpg. FRTp,FRB (Re=1)

59 FRT 7 FRB 258 Rq 63 FRTp 1 FRB 258 Rdq
0 6 1 16 21 31 0 6 1 16 21 31

The DFP short operand in bits 32:63 of FRB is
converted to DFP long format and the converted result
is placed into FRT. The sign of the result is the same as
the sign of the source operand. The ideal exponent is
the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP long format and does not cause an
invalid-operation exception.

dctdp[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF  FR (undefined) FI (undefined)
CR1 (if Re=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a short SNaN to long
format will not cause an exception and the SNaN is
preserved. Subsequent operation on that SNaN in
long format will cause an exception.

The DFP long operand in the FRB is converted to DFP
extended format and placed into FRTp. The sign of the
result is the same as the sign of the operand in FRB.
The ideal exponent is the exponent of the operand in
FRB.

If the operand in FRB is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP extended format.

dctgpql.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (setto Q) FI (setto0)
FX
VXSNAN
CR1 (if Re=1)
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DFP Round To DFP Short X-form

DFP Round To DFP Long X-form

drsp FRT,FRB (Rc=0) drdpg FRTp,FRBp (Rc=0)
drsp. FRT,FRB (Re=1) drdpg. FRTp,FRBp (Re=1)
59 FRT 7 FRB 770 Rq 63 FRTp 1 FRBp 770 Rdq

0 6 u 16 21 31

0 6 u 16 21 31

The DFP long operand in FRB is converted and
rounded to DFP short format. The DFP short value is
extended on the left with zeros to form a 64-bit entity
and placed into FRT. The sign of the result is the same
as the sign of the source operand. The ideal exponent
is the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP short format and does not cause an
invalid-operation exception.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

drsp[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:

FPRF FR FI
FX OX UX XX
CR1 (if Re=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a long SNaN to short
format will not cause an exception. Converting a
long format SNaN to short format is an implied
move operation.

The DFP extended operand in FRBp is converted and
rounded to DFP long format. The result concatenated
with 64 0Os is placed in FRTp. The sign of the result is
the same as the sign of the source operand. The ideal
exponent is the exponent of the operand in FRBp.

If the operand in FRBp is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP long format.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

drdpq[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX 0X UX XX
VXSNAN
CR1 (if Re=1)

Programming Note

Note that DFP Round to DFP Long, while produc-
ing a result in DFP long format, actually targets a
register pair, writing 64 0s in FRTp+1.
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5.6.5.2 DFP Data-Type Conversion Instructions

The DFP data-type conversion instructions are used to
convert data type between DFP and fixed.

The data-type conversion instructions consist of Con-
vert From Fixed and Convert To Fixed.

DFP Convert From Fixed X-form

DFP Convert From Fixed Quad X-form

dcffix FRT,FRB (Re=0) dcffixq FRTp,FRB (Rc=0)
dcffix. FRT,FRB (Re=1) dcffixq. FRTp,FRB (Re=1)

59 FRT 7 FRB 802 R 63 FRTp 1 FRB 802 Rq
0 6 u 16 21 31 0 6 u 16 21 31

The 64-hit signed binary integer in FRB is converted
and rounded to a DFP Long value and placed into FRT.
The sign of the result is the same as the sign of the
source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.

dcffix[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Re=1)

The 64-bit signed binary integer in FRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.
dcffixq[.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Re=1)
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DFP Convert From Fixed Quadword Quad

X-form
dcffixqq FRTp,VRB

63 FRTp 0 VRB 994 /
0 6 1 16 21 31

The 128-bit signed binary integer in VRB is converted
and rounded to a DFP Extended value and placed into
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero.

If the source operand is a zero, then a plus zero with a
zero exponent is returned.

FPRF is set to the class and sign of the result.

dcffixqq is treated as a Floating-Point and a Vector
instruction in terms of resource availability.

Special Registers Altered:
FPRF FR FI FX XX

VSR Data Layout for dcffixqq

src VSR[VRB+32]

VSR[FRTp] .dword[0] 0x0000_0000_0000_0000

VSR[FRTp+1] .dword[0] 0x0000_0000_0000_0000
0 64 127

result
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DFP Convert To Fixed X-form

detfix FRT,FRB (Rc=0)
detfix. FRT,FRB (Re=1)
59 FRT m FRB 290 Rg
0 6 1 16 2 31
DFP Convert To Fixed Quad X-form
detfixq FRT,FRBp (Rc=0)
dctfixq. FRT,FRBp (Re=1)
63 FRT m FRBp 290 Rd
0 6 1 16 21 31

The DFP operand in FRB[p] is rounded to an integer
value and is placed into FRT in the 64-bit signed binary
integer format. The sign of the result is the same as
the sign of the source operand, except when the
source operand is a NaN or a zero.

Figure 94 summarizes the actions for Convert To
Fixed.

dctfix[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN  VXCVI

CR1 (if Re=1)

— Programming Note

It is recommended that software pre-round the
operand to a floating-point integral using drintx[q]
or drintn[q] if a rounding mode other than the cur-
rent rounding mode specified by DRN is needed.
Saving, modifying and restoring the FPSCR just to
temporarily change the rounding mode is less effi-
cient than just employing drintx[p] or drint[p] which
override the current rounding mode using an imme-
diate control field.

For example if the desired function rounding is
Round to Nearest, Ties away from 0 but the default
rounding (from DRN) is Round to Nearest, Ties to
Even then following is preferred.

drintn
dectfix

0,f1,£1,2
f1,f1

DFP Convert To Fixed Quadword Quad X-form

dctfixqq VRT,FRBp

63 VRT 1 FRBp 994 /

0 6 u 16 21 31

The DFP operand in FRBp is rounded to an integer
value and is placed into VRT in the 128-bit signed
binary integer format. The sign of the result is the
same as the sign of the source operand, except when
the source operand is a NaN or a zero.

Figure 96 summarizes the actions for Convert To
Fixed.

dctfixqq is treated as a Floating-Point and a Vector
instruction in terms of resource availability.

Special Registers Altered:

FPRF (undefined) FR FI FX VXSNAN VXCVI XX

VSR Data Layout for dctfixqq

VSR[FRBp] -dword[0]

unused

src
VSR[FRBp+1] .dword[0]

unused

result

VSR[VRT+32]

64

127
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*

Fl
FR
MN
MP

T()
v

X

VXCVI
VXSNAN

XX

Operand b . Isn r)0t Inv.-Op. | Inexact |Isn Incre- .
in FRB[p] is g is | precise | Except. | Except. | mented Actions *
(n#b) | Enabled | Enabled | (|n| > |b|)
o < b<MN| <MN - No - - T(MN), Fl<0, FR<0, VXCVI«+1
-o < b<MN| <MN - Yes - - VXCVI<1, TV
- < b<MN| =MN - - No - TOIN), FI « 1, FR<0, XX«1
-0 < b<MN| =MN - - Yes - TON), Fl « 1, FR<0, XX«1, TX
MN< b<O - No - - - T(n), FI<0, FR<O
MN< b<O - Yes - No No T(n), Fl«1, FR<0, XX«1
MN< b<O - Yes - No Yes T(n), Fl<l, FR<1, XXe1
MN< b<O - Yes - Yes No T(n), Fl<1l, FR<0, XX<1, TX
MN< b<0 - Yes - Yes Yes T(n), Fl1l, FRe1, XXe1, TX
+0 - No - - - T(0), FI<0, FR<O
O0<b< MP - No - - - T(n), FI<0, FR<O
O0<b< MP - Yes - No No T(n), Fl«l, FR<0, XX«1
O0<b< MP - Yes - No Yes T(n), Fl<l, FR<1, XXe1
0<b<MP - Yes - Yes No T(n), Fl<1l, FR<0, XX<1, TX
O0<b< MP - Yes - Yes Yes T(n), Fl«1l, FRe1, XXe1, TX
MP < Db < +oo MP - - No - T(MP), Fl<1, FR<0, XX«1
MP <b < +e | = MP - - Yes - T(MP), Fl«1, FR<0, XX«1, TX
MP <b <+ | > MP - No - - T(MP), FI<0, FR<0, VXCVI«<1
MP <b <+ | > MP - Yes - - VXCVI<1, TV
QNaN - - No - - TOMN), FI « 0, FR<0, VXCVI«<1
QNaN - - Yes - - VXCVI<1, TV
SNaN - - No - - TOMN), FI<0, FR<0, VXCVI«1, VXSNAN«<1
SNaN - - Yes - - VXCVI«1, VXSNAN«1, TV
Explanation:

Setting of XX, VXCVI, and VXSNAN is part of the corresponding exception actions. Also, when an
invalid-operation exception occurs, setting of FI and FR bits is part of the exception actions. (See the
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

The actions do not depend on this condition.

Floating-Point Fraction Inexact status bit.

Floating-Point Fraction Rounded status bit.

Maximum negative number representable by the 64-bit binary integer format

Maximum positive number representable by the 64-bit binary integer format.

The value g converted to a fixed-point result.

The value derived when the source value b is rounded to an integer using the specified rounding mode
The value x is placed in FRT[p].

The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if FEO and FE1 are set to any mode other than the ignore-exception mode.

The system floating-point enabled exception error handler is invoked for the inexact exception if FEO and
FE1 are set to any mode other than the ignore-exception mode.

Floating-Point Invalid Operation (Invalid Conversion) exception status bit.
Floating-Point Invalid Operation (SNaN) exception status bit.
Floating-Point Inexact exception status bit,

Figure 94. Actions: Convert To Fixed
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5.6.6 DFP Format Instructions

The DFP format instructions are used to compose or
decompose a DFP operand. A source operand of
SNaN does not cause an invalid-operation exception.
All format instructions employ the record bit (Rc).

The format instructions consist of Decode DPD To
BCD, Encode BCD To DPD, Extract Biased Exponent,
Insert Biased Exponent, Shift Significand Left Immedi-
ate, and Shift Significand Right Immediate.

DFP Decode DPD To BCD X-form

DFP Encode BCD To DPD X-form

ddedpd SP,FRT,FRB (Rc=0) denbcd S,FRT,FRB (Rc=0)
ddedpd. SP,FRT,FRB (Re=1) denbcd. S,FRT,FRB (Re=1)

59 FRT |SP| j;/ | FRB 322 Ro 59 FRT |S| FRB 834 R
0 6 n |13 |16 2 31 0 6 uf2 16 21 31

DFP Decode DPD To BCD Quad X-form

DFP Encode BCD To DPD Quad X-form

ddedpdq SP,FRTp,FRBp (Rc=0) denbcdg S,FRTp,FRBp (Rc=0)
ddedpdg. SP,FRTp,FRBp (Re=1) denbcdg. S,FRTp,FRBp (Re=1)

63 FRTp |SP| /// | FRBp 322 Rq 63 FRTp (S| /// FRBp 834 Rdq
0 6 u |13 |6 21 31 0 6 uf12 16 21 31

A portion of the significand of the DFP operand in
FRB[p] is converted to a signed or unsigned BCD
number depending on the SP field. For infinity and
NaN, the significand is considered to be the contents
in the trailing significand field padded on the left by a
zero digit.

SPy =0 (unsigned conversion)

The rightmost 16 digits of the significand (32 digits
for ddedpdq) is converted to an unsigned BCD
number and the result is placed into FRT[p].

SPgy =1 (signed conversion)

The rightmost 15 digits of the significand (31 digits
for ddedpdq) is converted to a signed BCD num-
ber with the same sign as the DFP operand, and
the result is placed into FRT[p]. If the DFP operand
is negative, the sign is encoded as 0b1101. If the
DFP operand is positive, SP; indicates which pre-
ferred plus sign encoding is used. If SP; = 0, the
plus sign is encoded as 0b1100 (the option-1 pre-
ferred sign code), otherwise the plus sign is
encoded as 0bl111l (the option-2 preferred sign
code).

ddedpd[q][.] are treated as Floating-Point instructions
in terms of resource availability.

Special Registers Altered:
CR1 (if Re=1)

The signed or unsigned BCD operand, depending on
the S field, in FRB[p] is converted to a DFP number.
The ideal exponent is zero.

S =0 (unsigned BCD operand)

The unsigned BCD operand in FRB[p] is converted
to a positive DFP number of the same magnitude
and the result is placed into FRT[p].

S =1 (signed BCD operand)

The signed BCD operand in FRB[p] is converted to
the corresponding DFP number and the result is
placed into FRT[p].

If an invalid BCD digit or sign code is detected in the
source operand, an invalid-operation exception (VXCVI)
occurs.

FPRF is set to the class and sign of the result, except for
Invalid Operation Exception when VE=1.

denbcd[q][.] are treated as Floating-Point instructions
in terms of resource availability.

Special Registers Altered:
FPRF FR (setto 0) FI (setto0)
FX
VXCVI
CR1 (if Re=1)

Chapter 5. Decimal Floating-Point 235



Version 3.1

DFP Extract Biased Exponent X-form

DFP Insert Biased Exponent X-form

dxex FRT,FRB (Re=0) diex FRT,FRAFRB (Rc=0)
dxex. FRT,FRB (Re=1) diex. FRT,FRAFRB (Re=1)

59 FRT 1/ FRB 354 Ra 59 FRT FRA FRB 866 Rq
0 6 1 16 21 31 0 6 1 16 21 31

DFP Extract Biased Exponent Quad X-form

DFP Insert Biased Exponent Quad X-form

dxexq FRT,FRBp (Rc=0) diexq FRTp,FRA,FRBp

dxexq. FRT,FRBp (Re=1) diexq. FRTp,FRA,FRBp (Re=1)
63 FRT mn FRBp 354 Ro 63 FRTp | FRA | FRBp 866 R

0 6 il 16 2 31 0 6 il 16 21 31

The biased exponent of the operand in FRB[p] is
extracted and placed into FRT in the 64-bit signed
binary integer format. When the operand in FRB is an
infinity, QNaN, or SNaN, a special code is returned.

Operand Result

Finite Number biased exponent value
Infinity -1

ONaN 2

SNaN -3

dxex[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Re=1)

Programming Note

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

Let a be the value of the 64-bit signed binary integer in
FRA.

a Result
a > MBel QNaN
0 < a < MBE Finite number with biased exponent a
a=-1 Infinity
a=-2 QNaN
a=-3 SNaN
a < -3 OQNaN

Maximum biased exponent for the target format

When 0 < a < MBE, a is the biased target exponent
that is combined with the sign bit and the significand
value of the DFP operand in FRB[p] to form the DFP
result in FRT[p]. The ideal exponent is the specified
target exponent.

When a specifies a special code (a < 0 ora > MBE), an
infinity, QNaN, or SNaN is formed in FRT[p] with the
trailing significand field containing the value from the
trailing significand field of the source operand in
FRB[p], and with an N-bit combination field set as
follows.

B For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
B the rightmost N-5 bits are set to zero.
® For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to zero, and
B the rightmost N-5 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
B it 5 is set to one, and
B the rightmost N-5 bits are set to zero.

diex[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Re=1)

Programming Note
Fhe exponent bias value is 101 for DFP Short, 398 for DFP Long, and 6176 for DFP Extended.

236 Power ISA™ |



Version 3.1

Operand ain

Actions for Insert Biased Exponent when operand b in FRB[p] specifies

FRA[p] specifies F oo QNaN SNaN
F N, Rb Z, Rb Z, Rb Z, Rb
) I, Rb I, Rb I, Rb I, Rb
QNaN Q, Rb Q, Rb Q, Rb Q, Rb
SNaN S, Rb S, Rb S, Rb S, Rb
Explanation:
F All finite numbers, including zeros
| The combination field in FRT[p] is set to indicate a default Infinity.
N The combination field in FRT[p] is set to the specified biased exponent in FRA and the
leftmost significand digit in FRB[p].
Q The combination field in FRT[p] is set to indicate a default QNaN.
S The combination field in FRT[p] is set to indicate a default SNaN.
z The combination field in FRT[p] is set to indicate the specific biased exponent in FRA
and a leftmost coefficient digit of zero.
Rb The contents of the trailing significand field in FRB[p] are reencoded using preferred

DPD encodings and the reencoded result is placed in the same field in FRT[p]. The

sign bit of FRB[p] is copied into the sign bit in FRT[p].

Figure 95. Actions: Insert Biased Exponent
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DFP Shift Significand Left Imnmediate Z22-form

dscli FRT,FRA,SH (Re=0)
dscli. FRT,FRA,SH (Re=1)

59 FRT FRA SH 66 Ra
0 6 1 16 21 31

DFP Shift Significand Left Immediate Quad
Z22-form

dscliq FRTp,FRAp,SH (Re=0)
dsclig. FRTp,FRAp,SH (Re=1)

63 FRTp | FRAp SH 66 Ro
0 6 1 16 21 31

The significand of the DFP operand in FRA[p] is shifted
left SH digits. For a NaN or infinity, all significand digits
are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the
leftmost digit are lost. Zeros are supplied to the
vacated positions on the right. The result is placed into
FRT[p]. The sign of the result is the same as the sign
of the source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target
format’s N-bit combination field is set as follows.

B For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
W the rightmost N-5 bits are set to zero.
B For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to zero, and
W the rightmost N-6 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
W bit 5 is set to one, and
W the rightmost N-6 bits are set to zero.

dscli[q][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Re=1)

DFP Shift Significand Right Immediate
Z22-form

dscri FRT,FRA,SH (Rc=0)
dscri. FRT,FRA,SH (Re=1)

59 FRT FRA SH 98 Rg
0 6 1 16 21 31

DFP Shift Significand Right Immediate Quad
Z22-form

dscriq FRTp,FRAp,SH (Rc=0)
dscrig. FRTp,FRAp,SH (Re=1)

63 FRTp | FRAp SH 98 Rd
0 6 u 16 21 31

The significand of the DFP operand in FRA[p] is shifted
right SH digits. For a NaN or infinity, all significand
digits are in the trailing significand field. SH is a 6-hit
unsigned binary integer. Digits shifted out of the units
digit are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into FRT[p].
The sign of the result is the same as the sign of the
source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target
format’s N-bit combination field is set as follows.

B For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
B the rightmost N-5 bits are set to zero.
® For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to zero, and
B the rightmost N-6 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to one, and
B the rightmost N-6 bits are set to zero.

dscri[g][.] are treated as Floating-Point instructions in
terms of resource availability.

Special Registers Altered:
CR1 (if Re=1)
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5.6.7 DFP Instruction Summary

§ 2 FPRF

g = 3 0 FP =

e x SNaN | ¢ O | Exception % o

= Full Name L | Operands Vs G| W o|lLr|vzoUuX | |IE | x
dadd DFP Add X | FRT, FRA, FRB Y N|{RE|Y | Y |V OUX|Y|Y]|Y
daddq | DFP Add Quad X | FRTp, FRAp, FRBp Y N|RE|Y|Y|V OUX|Y|Y]|Y
dsub DFP Subtract X | FRT, FRA, FRB Y N|{RE|Y | Y |V OuUX|Y|Y|Y
dsubq DFP Subtract Quad X | FRTp, FRAp, FRBp Y N|IRE|Y | Y |V OuUX|Y|Y|Y
dmul DFP Multiply X | FRT, FRA, FRB Y N|{RE|Y | Y |V OuUX|Y|Y|Y
dmulg DFP Multiply Quad X | FRTp, FRAp, FRBp Y N|[RE|Y | Y |V OUX|Y|Y|Y
ddiv DFP Divide X | FRT, FRA, FRB Y NIRE|Y |Y|[VZOUX|Y|Y]|Y
ddivq DFP Divide Quad X | FRTp, FRAp, FRBp Y N|RE|Y|Y|[VZOUX|Y|Y]|Y
dcmpo DFP Compare Ordered X | BF, FRA, FRB Y - - N|Y |V - - | N
dcmpoq | DFP Compare Ordered Quad X | BF, FRAp, FRBp Y - - N|Y |V - - | N
dcmpu DFP Compare Unordered X | BF, FRA, FRB Y - - N|Y |V - - | N
dcmpuqg | DFP Compare Unordered Quad | X | BF, FRAp, FRBp Y - - N|Y |V - - | N
dtstdc DFP Test Data Class Z22| BF, FRA, DCM N -] - N |y - - |'N
dtstdcq | DFP Test Data Class Quad Z22| BF, FRAp, DCM N - - N |yl - -|N
dtstdg DFP Test Data Group Z22| BF, FRA,DGM N -] - N |yl - -|N
dtstdgq | DFP Test Data Group Quad Z22| BF, FRAp, DGM N -] - N | y? - -|N
dtstex DFP Test Exponent X | BF, FRA, FRB N - - N |[Y - - | N
dtstexq | DFP Test Exponent Quad X | BF, FRAp, FRBp N - - N|Y - - | N
dtstsf DFP Test Significance X | BF, FRA(FIX), FRB N - - N|Y - - | N
dtstsfq DFP Test Significance Quad X | BF, FRA(FIX), FRBp N - - N |[Y - - | N
dquai DFP Quantize Immediate Z23| TE, FRT, FRB, RMC Y N|{RE|Y | Y |V XIY|Y|Y
dquaiq DFP Quantize Immediate Quad [Z23| TE, FRTp, FRBp, RMC Y N|{RE|Y | Y|V XIY|[Y|Y
dqua DFP Quantize Z23| FRT,FRA,FRB,RMC Y N|{RE|Y | Y |V XYY |Y
dquagq | DFP Quantize Quad 723| FRTp,FRApP,FRBp,RMC |Y N|RE | Y | Y |V X|Y|Y]|Y
drrnd DFP Reround 723| FRT,FRA(FIX),FRB,RMC Y N|{RE|Y | Y |V XYY |Y
drrndg DFP Reround Quad 223 ;T/ITCp FRA(FIX), FRBp, Y N|IRE|Y |Y |V XYY Y
drintx aisaif””d To FPInteger With 1,4/ R FRT, FRB,RMC Y N|RE|Y|Y |V x|y|v]|Y
drintxq :?]';zaifg:;go FPInteger With |5/ 2 FRTp,FRBp,RMC Y N|RE|Y | Y]V x| v|vl|Y
drintn Eliﬁnzzzzg To FP Integer With- 1,55/ R FRT, FRB,RMC Y N|RE|Y|Y |V velv | Y
drintng E;'T;Z?(:Z?;‘JLP Integer With- |,» 5| R FRTp, FRBp,RMC Y N|RE|Y |V |v vily | Y
dctdp DFP Convert To DFP Long X | FRT, FRB (DFP Short) N Y|RE|Y|Y? ulyYy|Y
dctgpg | DFP Convert To DFP Extended | X | FRTp, FRB Y N|RE|Y|Y |V YAl Y | Y
drsp DFP Round To DFP Short X | FRT (DFP Short), FRB N Y|RE|Y|Y? OuUX|Y|Y]|Y
drdpg DFP Round To DFP Long X | FRTp, FRBp Y N|{RE|Y | Y|V OUX|Y|Y|Y
Figure 96. Decimal Floating-Point Instructions Summary
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o
-g =2 FPRF
= = 3 Q FP T
e x SNaN | ¢ O | Exception | & o
= Full Name IL | Operands Vs G| W o|lr|vzoUuX | |IE | x
dcffixq DFP Convert From Fixed Quad X | FRTp, FRB (FIX) - N|RE|Y |Y UulY]lY
dctfix DFP Convert To Fixed X | FRT (FIX), FRB Y N - ul|uU|Vv XIY|-1]Y
dctfixq DFP Convert To Fixed Quad X | FRT (FIX), FRBp Y N - uluUu|Vv XY | -|Y
) DFP Convert From Fixed Quad-
dcffixqq word Quad X | FRTp,VRB (FIX) - N - YI|Y Uul|lyY]|Y
detfixqq BEZ dConvert To Fixed Quadword |\ /o1 (Fix) FRBp Y N| - v x|y |-|v
ddedpd | DFP Decode DPD To BCD X | SP, FRT(BCD), FRB N -] - N [ N -l -1y
ddedpdq | DFP Decode DPD To BCD Quad | X | SP, FRTp(BCD), FRBp N - - N [ N -l - lY
denbcd | DFP Encode BCD To DPD X | S, FRT, FRB (BCD) - N|(RE|Y | Y|V v Y|Y
denbcdq | DFP Encode BCD To DPD Quad | X |S, FRTp, FRBp (BCD) - N|RE|Y |Y |V YAl Y |Y
dxex DFP Extract Biased Exponent X | FRT (FIX), FRB N N - N [ N -l - |Y
dxexq DFP Extract Biased Exponent X | ERT (FIX), FRBp N N ) NN Sy
Quad
diex DFP Insert Biased Exponent X | FRT, FRA(FIX), FRB N Y| RE| N | N -lY|Y
diexq | DFP Insert Biased Exponent X |FRTp, FRA(FIX), FRBp | N Y| RE | N | N Sy |y
Quad
dscli githeSh'ﬂ Significand LeftImMe- |75 FRT,FRA,SH N Y|RE|N|N -y
. DFP Shift Significand Left Imme-
dsclig diate Quad 722| FRTp,FRAp,SH N Y| RE| N | N - - 1Y
dscri giztzsmﬂ Significand RightImme- || Lot ERA SH N Y|RE|N|N N
dscriq | DFF Shift Significand Right Imme- || o w0 2 ap SH N Y| RE|N|N .
diate Quad

Figure 96. Decimal Floating-Point Instructions Summary (Continued)

Explanation:

#

1

DCM
DGM

Fl
FR

Rc

RE

RMC

Fl and FR are set to zeros for these instructions.

Not applicable.

A unique definition of the FPSCRgpc( field is provided for the instruction.

These are the only instructions that may generate an SNaN and also set the FPSCgprg field. Since the BFP FPRF field

does not include a code for SNaN, these instructions cause the need for redefining the FPRF field for DFP.

A 6-bit immediate operand specifying the data-class mask.

A 6-bit immediate operand specifying the data-group mask.

An SNaN can be generated as the target operand.

An ideal exponent is defined for the instruction.

Setting of the FPSCRE, flag.
Setting of the FPSCRgR flag.
No.

An overflow exception may be recognized.

The record bit, Rc, is provided to record FPSCR3,.35 in CR field 1.

The trailing significand field is reencoded using preferred DPD encodings.The preferred DPD encoding are also used for

propagated NaNs, or converted NaNs and infinities.

A 2-bit immediate operand specifying the rounding-mode control.

An one-bit immediate operand specifying if the operation is signed or unsigned.
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Explanation:
A two-bit immediate operand: one bit specifies if the operation is signed or unsigned and, for signed operations, another

SP bit specifies which preferred plus sign code is generated.
U An underflow exception may be recognized.
\% An invalid-operation exception may be recognized.

Vs An input operand of SNaN causes an invalid-operation exception.
An inexact exception may be recognized.

Yes.

Undefined

A zero-divide exception may be recognized.

N C < X
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Chapter 6. Vector Facility

6.1 Vector Facility Overview

This chapter describes the registers and instructions
that make up the Vector Facility.

6.2 Chapter Conventions

6.2.1 Description of Instruction
Operation

The following notation, in addition to that described in
Section 1.3.2, is used in this chapter.

x.bit[y]

Return the contents of bit y of x.

X.bit[y:z]
Return the contents of bits y:z of x.

x.nibble[y]
Return the contents of the 4-bit nibble element y
of x.

x-nibble[y:z]
Return the contents of the 4-bit nibble elements
y:z of x.

x.byte[y]

Return the contents of 8-bit byte element y of x.

X.byte[y:z]

Return the contents of 8-bit byte elements y:z of x.

X.hword[y]
Return the contents of 16-bit halfword element y
of x.

x-hword[y:z]
Return the contents of 16-bit halfword elements
y:z of x.

x.word[y]
Return the contents of 32-bit word element y of x.

x.word[y:z]
Return the contents of 32-bit word element y:z of
X.

x.dword[y]
Return the contents of 64-bit doubleword element
y of x.

X.dword[y:z]
Return the contents of 64-bit doubleword
elements y:z of x.

x-qword[yl
Return the contents of 128-bit quadword element
y of X.

X?y:z
if the value of x is true, then the value of v,
otherwise the value z.

Addition.

Subtraction.

Multiplication.

One’s complement.
=, <, <=, >, >=

Equal, less than, less than or equal, greater than,
and greater than or equal comparison relations.
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X <<y

Result of shifting x left by y bits, filling vacated bits with zeros.

b « LENGTH(X)
result « X
doi=0toy-1
result « result_bit[1:b-1] || 0b0

X >y

Result of shifting x right by y bits, filling vacated bits with copies of bit 0 of x.

b « LENGTH(x)
result « x
doi=0toy-1
result « result.bit[0] | result.bit[0:b-2]

X <<y

Result of rotating x left by y bits.

b « LENGTH(X)
result « x.bit[y:b-1] || x-bit[0:y-1]

X >>>y

Result of rotating x right by y bits.

b « LENGTH(X)
result « x.bit[b-y+1:b-1] || x.bit[0:b-y]

bcd_ADD(X,Y,Zz)

Let x and y be 31-digit signed decimal values.
Performs a signed decimal addition of x and y.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.

If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.
If the unbounded result is less than zero, It_flag is set to 1. Otherwise, 1t_flag is set to 0.

If the magnitude of the unbounded result is greater than 10%1
0.

-1, ox_flag is set to 1. Otherwise, ox_flag is set to

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 001100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is setto 1 and It_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.
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bcd_CONVERT _FROM_S1128(x,Y)

Let x be a signed integer quadword.
Let y indicate the preferred sign code.

Return the signed integer value x in packed decimal format.

if x < 0 then do
X «~xX+1
sign « 0x000D
end
else
sign « (y=0) ? 0x000C : OxO000F

result « 0
shent « 4

do while (x > 0)
digit « x % 10
result « result | (digit<<shcnt)
X < x+10
shent  « shent + 4
end

return result | sign

bed_INCREMENT (result)

Increments the magnitude of the packed decimal value x by 1.

bcd_SUBTRACT(X,Y,Z)

Let x and y be 31-digit signed decimal values.

Performs a signed decimal subtract of y from x.

If the unbounded result is equal to zero, eq_flag is set to 1. Otherwise, eq_flag is set to 0.

If the unbounded result is greater than zero, gt_flag is set to 1. Otherwise, gt_flag is set to 0.

If the unbounded result is less than zero, It_flag is set to 1. Otherwise, 1t_flag is set to 0.

If the magnitude of the unbounded result is greater than 10%1-1, ox_flag is set to 1. Otherwise, ox_flag is set to
0.

If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1100 if z=0.
If the unbounded result is greater than or equal to zero, the sign code of the result is set to 0b1111 if z=1.
If the unbounded result is less than zero, the sign code of the result is set to 0b1101.

The low-order 31 digits of the unbounded result magnitude concatented with the sign code are returned.

If either operand is an invalid encoding of a signed decimal value, the result returned is undefined and inv_flag
is setto 1 and It_flag, gt_flag and eq_flag are set to 0. Otherwise, inv_flag is set to 0.
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bfp32_ADD(X,Y)

x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.

Otherwise, if x is an SNaN, the result is x converted to a QNaN.

Otherwise, if y is a QNaN, the resultis y.

Otherwise, if y is an SNaN, the result is y converted to a QNaN.

Otherwise, if x and y are Infinities having opposite signs, the result is the single-precision standard QNaN.
Otherwise, if X is an Infinity, the result is x.

Otherwise, if y is an Infinity, the resultis y.

Otherwise, the result is the sum, x added to y, rounded to the nearest single-precision value.

Return the result represented in single-precision format.

bfp32_CONVERT_FROM_S132(x.Y)

Let x be a 32-bit signed integer value.

sign « X.bit[0]
exp « 32 + 127
frac.bit[0] « X.bit[0]
frac.bit[1:32] « x.bit[0:31]

if frac=0 return 0x0000_0000 // Zero operand
if sign=1 then frac = ~frac + 1

do while (frac.bit[0]=0)
frac « frac << 1
exp «exp-1

end

Ish « frac.bit[23]

ghit « frac.bit[24]

xbit « frac.bit[25:32]1=0

inc « (Isb & ghit) | (gbit & xbit)

frac_bit[0:23] « frac.bit[0:23] + inc
if carry_out=1 then exp « exp + 1

result.bit[0] « sign
result.bit[1:8] < exp -y
result.bit[9:31] « frac.bit[1:23]

return result

246

Power ISA™ |



Version 3.1

bfp32_CONVERT_FROM_U132(x,y)
x is a 32-bit unsigned integer value.

exp « 31 + 127
frac « x.bit[0:31]

if frac=0 return 0x0000_0000 // Zero

do while fracy=0
frac « frac << 1
exp « exp -1
end

Isb « frac.bit[23]

ghit « frac.bit[24]

xbit « frac.bit[25:31]!=0

inc « (Isb & gbit) | (gbit & xhit)

frac_bit[0:23] « frac.bit[0:23] + inc
if carry_out=1 then exp « exp + 1

result.bit[0] « 0b0
result.bit[1:8] « exp -y
result.bit[9:31] « frac.bit[1:23]

return result

bfp32_LOG_BASE2 ESTIMATE(X)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the base 2 logarithm of x, represented in single-precision format.

bfp32_MAXIMUM(X,Y)
x is a floating-point value represented in single-precision format.
y is a floating-point value represented in single-precision format.

Return the largest value of x and y, represented in single-precision format.
The maximum of +0.0 and -0.0 is +0.0.
The maximum of any value and a NaN is a QNaN.

bfp32_MINIMUM(X,Y)
x is a floating-point value represented in single-precision format.
y is a floating-point value represented in single-precision format.

Return the smallest value of x and y, represented in single-precision format.

The minimum of +0.0 and -0.0is -0.0.
The minimum of any value and a NaN is a QNaN.
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bfp32_MULTIPLY_ADD(X,Z,Y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.
z is a binary floating-point value represented in single-precision format.

If x is a QNaN, return x.

Otherwise, if x is an SNaN, the result is x converted to a QNaN.

Otherwise, if y is a QNaN, the resultis y.

Otherwise, if y is an SNaN, the result is y converted to a QNaN.

Otherwise, if z is a QNaN, the result is z.

Otherwise, if z is an SNaN, the result is z converted to a QNaN.

Otherwise, if x is an Infinity and z is a Zero, the result is the single-precision standard QNaN.

Otherwise, if x is a Zero and z is an Infinity, the result is the single-precision standard QNaN.

Otherwise, if the product, x multiplied by z, and y are Infinities having opposite signs, the result is the
single-precision standard QNaN.

Otherwise, the result is the sum of the product, x multiplied by z, added to y, rounded to the nearest
single-precision value.

Return the result represented in single-precision format.

bfp32_NEGATIVE_MULTIPLY_SUBTRACT(X,z,Y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.
z is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.

Otherwise, if x is an SNaN, the result is x converted to a QNaN.

Otherwise, if y is a QNaN, the resultis y.

Otherwise, if y is an SNaN, the result is y converted to a QNaN.

Otherwise, if z is a QNaN, the result is z.

Otherwise, if z is an SNaN, the result is z converted to a QNaN.

Otherwise, if x is an Infinity and z is a Zero, the result is the single-precision standard QNaN.

Otherwise, if X is a Zero and z is an Infinity, the result is the single-precision standard QNaN.

Otherwise, if the product, x multiplied by z, and y are Infinities having the same signs, the result is the
single-precision standard QNaN.

Otherwise, the result is the difference of the product, x multiplied by z, subtracted by y, then rounded to the
nearest single-precision value, and then negated.

Return the result represented in single-precision format.

bfp32_POWER2_ESTIMATE(X)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of 2 raised to the power of x, represented in single-precision format.

bfp32_RECIPROCAL_ESTIMATE(X)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the reciprocal of x, represented in single-precision format.

bfp32_RECIPROCAL_SQRT_ESTIMATE(X)
x is a floating-point value represented in single-precision format.

Returns a floating-point estimate of the reciprocal of the square root of x, represented in single-precision format.
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bfp32_ROUND_TO_INTEGER_CEIL(X)
x is a floating-point value represented in single-precision format.

Returns the smallest floating-point integer that is greater than or equal to x, represented in single-precision
format.

bfp32_ROUND_TO_INTEGER_FLOOR(X)
x is a floating-point value represented in single-precision format.

Returns the largest floating-point integer that is less than or equal to x, represented in single-precision format.

bfp32_ROUND_TO_INTEGER_NEAR(X)
x is a floating-point value represented in single-precision format.

Returns the floating-point integer that is nearest to x (in case of a tie, the even single-precision floating-point
integer is used), represented in single-precision format.

bfp32_ROUND_TO_INTEGER_TRUNC(X)
x is a floating-point value represented in single-precision format.

Returns the largest floating-point integer that is less than or equal to x if x>0, or the smallest floating-point
integer that is greater than or equal to x if x>0, or represented in single-precision format.

bfp32_ROUND_TO_NEAR(X)
x is a floating-point value represented in the working floating-point format.

Returns the single-precision floating-point value that is nearest to x (in case of a tie, the single-precision
floating-point value with the least-significant bit equal to 0 is used), represented in single-precision format.

bfp32_SUBTRACT(X,Y)
x is a binary floating-point value represented in single-precision format.
y is a binary floating-point value represented in single-precision format.

If x is a QNaN, the result is x.

Otherwise, if x is an SNaN, the result is x converted to a QNaN.

Otherwise, if y is a QNaN, the resultis y.

Otherwise, if y is an SNaN, the result is y converted to a QNaN.

Otherwise, if x and y are infinities having the same signs, the result is the single-precision standard QNaN.
Otherwise, if x is an infinity, the result is x.

Otherwise, if y is an infinity, the resultis y.

Otherwise, the result is the difference, x subtracted by y, rounded to the nearest single-precision value.

Return the result respresented in single-precision format.

bool_COMPARE_GE_BFP32(X,Y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is greater than or equal to y. Otherwise, returns the value 0.
bool_COMPARE_GT_BFP32(x,Y)
x is a floating-point value represented in the single-precision format.

y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is greater than y. Otherwise, returns the value 0.
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bool_COMPARE_EQ BFP32(x,Yy)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is equal to y. Otherwise, returns the value O.

bool_COMPARE_LE_BFP32(x,Y)
x is a floating-point value represented in the single-precision format.
y is a floating-point value represented in the single-precision format.

Returns the value 1 if x is less than or equal to y. Otherwise, returns the value O.

CHOP8(X)
Returns rightmost 8 bits of x padded on the left with zeros if necessary.

CHOP16(x)
Returns rightmost 16 bits of x padded on the left with zeros if necessary.

CHOP32(x)
Returns rightmost 32 bits of x padded on the left with zeros if necessary.

CHOP64(X)
Returns rightmost 64 bits of x padded on the left with zeros if necessary.

CHOP128(x)
Returns rightmost 128 bits of x padded on the left with zeros if necessary.

Clamp(x,y,2)
x is interpreted as a signed integer. If the value of x is less than y, then the value y is returned, else if the value
of x is greater than z, the value z is returned, else the value x is returned.

if x <y then
result « vy
else if x > z then
result « z
else
result « x

EXTS(X)
Result of extending x on the left with copies of bit 0 of x to form a signed integer value having unbounded
range.

EXTS8(X)
Result of extending x on the left with copies of hit 0 of x to form an 8-bit signed integer value.

EXTS16(x)
Result of extending x on the left with copies of bit 0 of x to form a 16-bit signed integer value.

EXTS32(x)
Result of extending x on the left with copies of bit 0 of x to form a 32-bit signed integer value.

EXTS64(x)
Result of extending x on the left with copies of bit 0 of x to form a 64-bit signed integer value.

EXTS128(x)
Result of extending x on the left with copies of bit 0 of x to form a 128-bit signed integer value.

EXTZ(X)
Result of extending x on the left with Os to form a positive signed integer value having unbounded range.
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EXTZ8(x)

Result of extending x on the left with Os to form an 8-bit unsigned integer value.

EXTZ16(X)

Result of extending x on the left with Os to form a 16-bit unsigned integer value.

EXTZ32(X)

Result of extending x on the left with Os to form a 32-bit unsigned integer value.

EXTZ64(X)

Result of extending x on the left with Os to form a 64-bit unsigned integer value.

EXTZ128(x)

Result of extending x on the left with Os to form a 128-bit unsigned integer value.

InvMixColumns(Xx)
doc=0to3

result.word[c].byte[0] = OxOEex.word[c].byte[0] ~ OxOBex.word[c].byte[1] ~ OxODex.word[c].byte[2] ~ 0x09ex.word[c].byte[3]
result.word[c].byte[1] = 0x09ex.word[c].byte[0] ~ OxOEex.word[c].byte[1] ~ OxOBex.word[c].byte[2] ~ 0xODex.word[c].byte[3]
result.word[c].byte[2] = OxODex.word[c].byte[0] ~ 0x09ex.word[c].byte[1] ~ OxOEex.word[c].byte[2] ~ 0x0Bex.word[c].byte[3]
result.word[c].byte[3] = O0xOBex.word[c].byte[0] ~ OxODex.word[c].byte[1] ~ Ox09ex.word[c].byte[2] ~ OxOEex.word[c].byte[3]

end
return(result);

where “*" is a GF(28) multiply, a binary polynomial multiplication reduced by modulo 0x11B.

The GF(28) multiply of 0x09<x can be expressed in minimized terms as the following.

product.bit[0] = x.bit[0] * x.bit[3]

product.bit[1] = x.bit[1] » x.bit[4] * x.bit[0]
product.bit[2] = x.bit[2] » x.bit[5] * x.bit[0] » x.bit[1]
product.bit[3] = x.bit[3] » x.bit[6] ~ x.bit[1] * x.bit[2]
product.bit[4] = x.bit[4] » x.bit[7] ~ x.bit[0] * x.bit[2]
product.bit[5] = x.bit[5] * x.bit[0] * x.bit[1]
product.bit[6] = x.bit[6] » x.bit[1] * x.bit[2]
product.bit[7] = x.bit[7] * x.bit[2]

The GF(28) multiply of 0x0Bex can be expressed in minimized terms as the following.

product.bit[0] = x.bit[0] » x.bit[1] * x.bit[3]

product.bit[1] = x.bit[1] » x.bit[2] ~ x.bit[4] * x.bit[0]

product.bit[2] = x.bit[2] » x.bit[3] * x.bit[5] » x.bit[0] * x.bit[1]
product.bit[3] = x.bit[3] » x.bit[4] ~ x.bit[6] * x.bit[0] ~ x.bit[1] ~ x.bit[2]
product.bit[4] = x.bit[4] » x.bit[5] * x.bit[7] " x.bit[2]

product.bit[5] = x.bit[5] * x.bit[6] * x.bit[0] » x.bit[1]

product.bit[6] = x.bit[6] ~ x.bit[7] » x.bit[0] * x.bit[1] ~ x.bit[2]
product.bit[7] = x.bit[7] » x.bit[0] * x.bit[2]

The GF(28) multiply of 0x0Dex can be expressed in minimized terms as the following.

product.bit[0] = x.bit[0] ~ x.bit[2] * x.bit[3]

product.bit[1] = x.bit[1] ~ x.bit[3] * x.bit[4] ~ x.bit[0]

product.bit[2] = x.bit[2] » x.bit[4] * x.bit[5] » x.bit[1]

product.bit[3] = x.bit[3] » x.bit[5] * x.bit[6] » x.bit[0] * x.bit[2]
product.bit[4] = x.bit[4] ~ x.bit[6] » x.bit[7] ~ x.bit[0] ~ x.bit[1] ~ x.bit[2]
product.bit[5] = x.bit[5] * x.bit[7] * x.bit[1]

product.bit[6] = x.bit[6] * x.bit[0] * x.bit[2]

product.bit[7] = x.bit[7] » x.bit[1] * x.bit[2]
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The GF(28) multiply of 0XOEex can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1] » x.bit[2] * x.bit[3]
product.bit[1] = x.bit[2] ~ x.bit[3] ~ x.bit[4] ~ x.bit[0]
product.bit[2] = x.bit[3] ~ x.bit[4] ~ x.bit[5] A x.bit[1]
product.bit[3] = x.bit[4] * x.bit[5] * x.bit[6] » x.bit[2]
product.bit[4] = x.bit[5] ~ x.bit[6] » x.bit[7] ~ x.bit[1] ~ x.bit[2]
product.bit[5] = x.bit[6] * x.bit[7] * x.bit[1]
product.bit[6] = x.bit[7] * x.hit[2]
product.bit[7] = x.bit[0] » x.bit[1] * x.bit[2]

InvShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]
result.word[1].byte[0] = x.word[1].byte[0]
result.word[2].byte[0] = x.word[2].byte[0]
result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[3].byte[1]
result.word[1].byte[1] = x.word[0].byte[1]
result.word[2].byte[1] = x.word[1].byte[1]
result.word[3].byte[1] = x.word[2].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]
result.word[1].byte[2] = x.word[3].byte[2]
result.word[2].byte[2] = x.word[0].byte[2]
result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[1].byte[3]
result.word[1].byte[3] = x.word[2].byte[3]
result.word[2].byte[3] = x.word[3].byte[3]
result.word[3].byte[3] = x.word[0].byte[3]

return(result)

InvSubBytes(x)

InvSBOX.byte[256] = { 0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E, 0x81,0xF3,0xD7,0xFB,
0x7C,0xE3,0x39,0x82,0x9B,0x2F ,0xFF, 0x87,0x34,0x8E, 0x43,0x44 ,0xC4 , 0xDE , 0XE9, OXCB,
0x54,0x78B,0x94,0x32,0xA6,0xC2,0x23,0x3D, OXEE,, 0x4C, 0x95,0x0B, 0x42,, 0xFA, 0xC3, OX4E,
0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,,0x49,0x6D, 0x88B,0xD1, 0x25,
0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C, 0xCC, 05D, 0x65,0xB6 , 092,
0x6C,0x70,0x48,0x50,0xFD, 0XED, 0xB9, OXDA, OX5E, 0x15,0x46 ,0x57,,0xA7,0x8D, 0x9D, 0x84,
0x90,0xD8,0xAB, 0x00,0x8C,0xBC,0xD3,0x0A, 0xF7, 0xE4, 0x58,,0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0,0x2C, 0x1E,0x8F ,0xCA, 0x3F,0xOF ,0x02,0xC1, 0XAF, 0xBD, 0x03,0x01,0x13,0x8A, 0x68B,
0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC, OXEA,0x97,0xF2,, 0XCF , 0xCE,, OXF0, 0xB4, 0XE6 , 0X73,
0x96, 0xAC,0x74,0x22,0xE7,0%AD, 0x35,0x85,0xE2, 0xF9,0x37,0xE8, 0x1C, 0x 75, 0XDF, OX6E,
0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F ,0xB7,0x62 ,0xOE , 0XAA, 0x18 , 0XBE , 0x1B,
OxFC,0x56,0x3E,0x48,0xC6,0xD2,0x79,0%x20,0x9A, 0xDB, 0xCO, OXFE, 0x78,,0xCD, 0X5A, OxF4,
0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0%27,0x80,0xEC, OX5F,
0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A, 00D, 0x2D, 0XE5,, 0x7A, 0x9F,, 0x93,0xC9, 0x9C, OXEF,
0xA0,0xEQ,0x3B,0x4D, 0XAE, 0x2A, 0xF5, 0xB0, 0xC8 , 0XEB, 0xBB, 0x3C, 083, 0x53,0x99, 0x61,
0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1, 0x69,0x14,0x63,0x55,0x21,0x0C,0x7D }

doi=0to15

result.byte[i] = InvSBOX.byte[x.byte[i]]
end
return(result)

LENGTH(})
Length of x, in bits. If x is the word “element”, LENGTH(X) is the length, in bits, of the element implied by the
instruction mnemonic.

252 Power ISA™ |



Version 3.1

MASK128(x,Y)
Let x and y be integer values from 0 to 127.

Generate a 128-bit mask that consists of 1-bits from a start bit, x, through and including a stop bit, y, and 0-bits
elsewhere.

if x <=y then
mask = all Os
mask.bit[x:y] = all 1s
else
mask = all 1s
mask.bit[y+1:x-1] = all 0s
return mask

MixColumns(x)

doc=0to3
result.word[c].byte[0] = 0x02ex.word[c].byte[0] ~ Ox03ex.word[c].byte[1] * x.word[c].byte[2] * x.word[c].byte[3]
result.word[c].byte[1] = x.word[c].byte[0] ~ 0x02ex.word[c].byte[1] ~ Ox03ex.word[c].byte[2] * x.word[c].byte[3]
result.word[c].byte[2] = x.word[c].byte[0] x.word[c].byte[1] ~ 0x02ex.word[c].byte[2] ~ 0x03ex.word[c].byte[3]
result.word[c].byte[3] = 0x03ex.word[c].byte[0] * x.word[c].byte[1] * x.word[c].byte[2] ~ 0x02ex.word[c].byte[3]

end

return(result)

The GF(28) multiply of 0x02x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[1]
product.bit[1] = x.bit[2]
product.bit[2] = x.bit[3]
product.bit[3] = x.bit[4] * x.bit[0]
product.bit[4] = x.bit[5] ~ x.bit[0]
product.bit[5] = x.bit[6]
product.bit[6] = x.bit[7] * x.bit[0]
product.bit[7] = x.bit[0]

The GF(28) multiply of 0x03x can be expressed in minimized terms as the following.
product.bit[0] = x.bit[0] * x.bit[1]
product.bit[1] = x.bit[1] * x.bit[2]
product.bit[2] = x.bit[2] * x.bit[3]
product.bit[3] = x.bit[3] » x.bit[4] * x.bit[0]
product.bit[4] = x.bit[4] ~ x.bit[5] * x.bit[0]
product.bit[5] = x.bit[5] * x.bit[6]
product.bit[6] = x.bit[6] * x.bit[7] * x.bit[0]
product.bit[7] = x.bit[7] ~ x.bit[0]

gword_bit_splat(x)
X is a 1-bit value.

Return the concatenation of 128 copies of x.
ROTL128(x,Y)
Let x be a 128-bit integer value.

Let y be an integer value.

Return x rotated left by y bits.
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ShiftRows(x)
result.word[0].byte[0] = x.word[0].byte[0]
result.word[1].byte[0] = x.word[1].byte[0]
result.word[2].byte[0] = x.word[2].byte[0]
result.word[3].byte[0] = x.word[3].byte[0]

result.word[0].byte[1] = x.word[1].byte[1]
result.word[1].byte[1] = x.word[2].byte[1]
result.word[2].byte[1] = x.word[3].byte[1]
result.word[3].byte[1] = x.word[0].byte[1]

result.word[0].byte[2] = x.word[2].byte[2]
result.word[1].byte[2] = x.word[3].byte[2]
result.word[2].byte[2] = x.word[0].byte[2]
result.word[3].byte[2] = x.word[1].byte[2]

result.word[0].byte[3] = x.word[3].byte[3]
result.word[1].byte[3] = x.word[0].byte[3]
result.word[2].byte[3] = x.word[1].byte[3]
result.word[3].byte[3] = x.word[2].byte[3]

return(result)

si8 _CLAMP(X)
Let x be a signed integer value.

Return the value x in 8-bit signed integer format.
— If the value of the element is greater than 27-1 the result saturates to 2’-1 and sat_flag is set to 1.
— If the value of the element is less than -27 the result saturates to -2’ and sat_flag is set to 1.

sil6_CLAMP(X)
Let x be a signed integer value.

Return the value x in 16-bit signed integer format.
— If the value of the element is greater than 21°-1 the result saturates to 21°-1 and SAT is set to 1.
— If the value of the element is less than -21° the result saturates to -21° and SAT is set to 1.

si32_CLAMP(X)
Let x be a signed integer value.

Return the value x in 32-bit signed integer format.
— If the value of the element is greater than 2%1-1 the result saturates to 231-1 and SAT is set to 1.
— If the value of the element is less than -2°! the result saturates to -23! and SAT is set to 1.
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| Si32_CONVERT_FROM BFP32(x,y)
Let x be a single-precision floating-point value.
Let y be an unsigned integer value.

sign « x.bit[0]
exp « x.bit[1:8]
frac.bit[0:22] « x.bit[9:31]
frac.bit[23:30] « 0b0000_0000

if exp=255 & frac!=0 then return 0x0000_0000 // NaN operand
if exp=255 & frac=0 then do // infinity operand
VSCR.SAT « 1
return (sign=1) ? 0x8000_0000 : OX7FFF_FFFF
end
if (exp+Y-127) > 30 then do // large operand
VSCR.SAT « 1
return (sign=1) ? 0x8000_0000 : OX7FFF_FFFF
end
if (expty-127) < 0 then return 0x0000_0000 // -1.0 < value < 1.0 (value rounds to 0)

significand.bit[0:31] « 0x0000_0000
significand.bit[32] « O0x1
significand.bit[33:63] « frac
do 1 = 1 to 31-(exp+Y-127)
significand « significand >> 1
end
return (sign=0) ? CHOP32(significand) : CHOP32(~significand + 1)

| sil28_CONVERT_FROM_BCD(X)
Let x be a packed decimal value.

Return the value x in 128-bit signed integer format.

result « 0
scale « 1
sign  « X.bit[124:127]
| X < 0b0000 || x-nibble[0:30]

do while x > 0
digit « x & Ox000F
result « result + (digit x scale)
| X < 0b0000 || x-nibble[0:30]
scale « scale x 10
end

if sign=0x000B | sign=0x000D then
result « ~result + 1

return result
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SubBytes(x)

SBOX.byte[0:255] = { 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B, OXFE, 0xD7, 0xAB, 076,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD, 0xD4,0xA2 ,0XAF, 0x9C, 0xA4, 0x72,0xCO0,
0xB7,0xFD,0x93,0x26,0x36,0x3F, 0xF7,0xCC,0x34, 0xA5, 0xE5, 0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,, OXEB, 0x27,0xB2, 0X75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6 ,0xB3, 0x29, 0XE3, 0x2F , 0x84,
0x53,0xD1,0x00,0xED, 0x20,0xFC,0xB1,0x58,0x6A, 0XCB, OXBE ,0x39, 0x4A, 0x4C, 0x58 , OXCF,
0xDO0,0xEF, 0xAA, OxFB,0x43,0x4D, 0x33,0x85,0x45,0xF9, 002, 0x7F, 0x50,0x3C, 0X9F , 0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D, 0x38, 0xF5,0xBC, 0xB6 , 0xDA, 0x21,0x10, OXFF, 0xF3,0xD2,
0xCD,0x0C,0x13,0xEC, 0x5F ,0x97,0x44,0x17,0xC4,0xA7,0x7E,,0x3D, 0x64,0x5D, 0x19, 0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,,0x46 , 0XEE , 0xB8 , 0x14, OXDE , 0X5E,, 0x0B,, OXDB,
0XEO,0x32,0x3A,0x0A, 0x49,0x06,,0x24,0x5C, 0xC2,0xD3,0xAC, 0x62,0x91,0x95, 0xE4, 0X79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5, 0x4E, 0xA9, 0x6C, 0x56 , 0xF4, 0XEA, 0x65, 0x7A, OXAE, 0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD, 0x74,0x1F, 0x4B,0xBD, 0x8B, 0X8A,
0x70,0x3E,0xB5,0x66,0x48,0x03, 0xF6, 0x0E, 0x61, 0x35,0x57,,0xB9, 0x86,0xC1,0x1D, Ox9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9, 0x8E,,0x94,0x9B, 0x1E,0x87,0xE9, OXCE, 0X55,0x28 , OXDF,
0x8C,0xA1,0x89,0x0D, 0xBF , 0XE6, 0x42,0x68, 0x41,0x99, 0x2D, 0xOF ,0xBO, 0x54,0xBB, 0x16 }

doi=0to15

result.byte[i] = SBOX.byte[x.byte[i]]
end
return(result)

ui8_CLAMP(X)
Let x be a signed integer value.

Return the value x in 8-bit unsigned integer format.
— If the value of the element is greater than 28-1 the result saturates to 28-1 and SAT is set to 1.
— If the value of the element is less than 0 the result saturates to O and SAT is set to 1.

uil6_CLAMP(X)
Let x be a signed integer value.

Return the value x in 16-bit unsigned integer format.
— If the value of the element is greater than 21%-1 the result saturates to 216-1 and SAT is set to 1.
— If the value of the element is less than 0 the result saturates to 0 and SAT is setto 1.

ui32_CLAMP(X)
Let x be a signed integer value.

Return the value x in 32-bit unsigned integer format.
— If the value of the element is greater than 2%2-1 the result saturates to 232-1 and SAT is set to 1.
— If the value of the element is less than 0 the result saturates to O and SAT is set to 1.
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| ui32_CONVERT_FROM BFP32(x,y)
Let x be a single-precision floating-point value.
Let y be an unsigned integer value.

sign « x.bit[0]

exp « X.bit[1:8]

frac_bit[0:22] « x.bit[9:31]

frac.bit[23:30] « 0b0000_0000

if exp=255 & frac!=0 then return 0x0000_0000 // NaN operand

if exp=255 & frac=0 then do // infinity operand
VSCR.SAT « 1
return (sign=1) ? 0x0000_0000 : OXFFFF_FFFF

end

if (exp+Y-127)>31 then do // large operand
VSCR.SAT « 1
return (sign=1) ? 0x0000_0000 : OxFFFF_FFFF

end

if (exp+Y-127) < O then return 0x0000_0000 // -1.0 < value < 1.0

//  value rounds to 0

if sign=1 then do // negative operand
VSCR.SAT « 1
return 0x0000_0000

end

significand.bit[0:31] « 0x0000_0000

significand.bit[32] « 0Obl

significand.bit[33:63] « frac

do 1 = 1 to 31-(exp+Y-127)
significand = significand >> 1

end

return CHOP32(significand)
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6.3 Vector Facility Registers

.qword

.dword[0]

.dword[1]

-word[0] -word[1]

.word[2] .word[3]

-hword[0] -hword[1] -hword[2] -hword[3]

-hword[4] -hword[5] -hword[6] ~hword[7]

.byte[0] | .byte[1] | -byte[2] | .byte[3] | .byte[4] | .byte[5] | -byte[6] | .byte[7] | .byte[8] | -byte[9] |.byte[10]{.byte[11]|.byte[12]|.byte[13]|.byte[14]|.byte[15]

.nihble|.nibble.nibble‘.nibble.nibble|.nibble.nibble‘.nibble.nibble|.nihhle|.nibhle‘.nihhle .nihhle|.nibble.nibble‘.nibblel.nibble‘.nibble.nihhle|.nibble.nibble‘.nibble.nibble|.nibble.nibble‘.nibble.nibble|.nibhlq.nihble‘.nihhle .nihhle|.nibble

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Figure 97. Vector-Scalar Register elements

6.3.1 Vector-Scalar Registers

The Vector instructions described in Chapter 6 are
defined to operate on the higher-numbered 32
Vector-Scalar Registers (VSRs 32-63), formerly known
as Vector Registers (VRs 0-31). See Figure 98. All
computations and other data manipulation are
performed on data residing in VSRs 32-63, and results
are placed into one of VSRs 32-63.

VSR[32] (formerly VR[O])
VSR[33] (formerly VR[1])

VSR[62] (formerly VR[30])

VSR[63] (formerly VR[31])
0 127

Figure 98. Vector-Scalar Registers

Depending on the instruction, the contents of a VSR
are interpreted as a sequence of equal-length
elements (bytes, halfwords, or words) or as a
guadword. Each of the elements is aligned within the
VSR, as shown in Figure 97. Many instructions
perform a given operation in parallel on all elements in
a VSR. Depending on the instruction, a byte, halfword,
or word element can be interpreted as a
signed-integer, an unsigned-integer, or a logical value;
a word element can also be interpreted as a
single-precision floating-point value. In the instruction
descriptions, phrases like “signed-integer word
element” are used as shorthand for “word element,
interpreted as a signed-integer”.

Load and Store instructions are provided that transfer
a byte, halfword, word, or quadword between storage
and a VSR.

68 72 76 80 84 8 92 96 100 104 108 112 116 120 124

6.3.2 Vector Status and Control
Register

The Vector Status and Control Register (VSCR) is a
special 32-bit register (not an SPR) that is read and
written in a manner similar to the FPSCR in the Power
ISA scalar floating-point unit. Special instructions
(mfvscr and mtvscr) are provided to move the VSCR
from and to a VSR. When moved to or from a VSR, the
32-bit VSCR is right justified in the 128-bit VSR. When
moved to a VSR, bits 0:95 of the VSR are cleared (set
to 0).

VSCR \
96 127

Figure 99. Vector Status and Control Register

The bit definitions for the VSCR are as follows.

Bit(s) Description
96:110 Reserved
111 Vector Non-Java Mode (NJ)

This bit controls how denormalized values
are handled by Vector Floating-Point
instructions.

0 Denormalized values are handled as
specified by Java and the IEEE stan-
dard; see Section 6.6.1.

1 If an element in a source VSR contains
a denormalized value, the value O is
used instead. If an instruction causes
an Underflow Exception, the corre-
sponding element in the target VSR is
set to 0. In both cases the 0 has the
same sign as the denormalized or
underflowing value.

112:126 Reserved
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127 Vector Saturation (SAT)

Every vector instruction having “Saturate” in
its name implicitly sets this bit to 1 if any
result of that instruction “saturates”; see
Section 6.8. mtvscr can alter this bit explic-
itly. This bit is sticky; that is, once set to 1 it
remains set to 1 until it is set to 0 by an
mtvscr instruction.

After the mfvscr instruction executes, the result in the
target VSR will be architecturally precise. That is, it will
reflect all updates to the SAT bit that could have been
made by vector instructions logically preceding it in the
program flow, and further, it will not reflect any SAT
updates that may be made to it by vector instructions
logically following it in the program flow. To implement
this, processors may choose to make the mfvscr
instruction execution serializing within the vector unit,
meaning that it will stall vector instruction execution
until all preceding vector instructions are complete and
have updated the architectural machine state. This is
permitted in order to simplify implementation of the
sticky status bit (SAT) which would otherwise be difficult
to implement in an out-of-order execution machine.
The implication of this is that reading the VSCR can be
much slower than typical Vector instructions, and
therefore care must be taken in reading it, as advised
in Section 6.5.1, to avoid performance problems.

The mtvscr is context synchronizing. This implies that
all Vector instructions logically preceding an mtvscr in
the program flow will execute in the architectural
context (NJ mode) that existed prior to completion of
the mtvscr, and that all instructions logically following
the mtvscr will execute in the new context (NJ mode)
established by the mtvscr.

6.3.3 VR Save Register

The VR Save Register (VRSAVE) is a 32-bit register in
the fixed-point processor provided for application and
operating system use; see Section 3.2.3.

— Programming Note

VRSAVE can be used to indicate which VSRs are
currently being used by a program. If this is done,
the operating system could save only those VSRs
when an “interrupt” occurs (see Book IIl), and
could restore only those VSRs when resuming the
interrupted program.

If this approach is taken it must be applied
rigorously; if a program fails to indicate that a given
VSR is in use, software errors may occur that will
be difficult to detect and correct because they are
timing-dependent.

Some operating systems save and restore VRSAVE
only for programs that also use other VSRs.
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6.4 Vector Storage Access Oper-
ations

The Vector Storage Access instructions provide the
means by which data can be copied from storage to a
VSR or from a VSR to storage. Instructions are
provided that access byte, halfword, word, and
quadword storage operands. These instructions differ
from the fixed-point and floating-point Storage Access
instructions in that vector storage operands are
assumed to be aligned, and vector storage accesses
are performed as if the appropriate number of
low-order bits of the specified effective address (EA)
were zero. For example, the low-order bit of EA is
ignored for halfword Vector Storage Access
instructions, and the low-order four bits of EA are
ignored for quadword Vector Storage Access
instructions. The effect is to load or store the storage
operand of the specified length that contains the byte
addressed by EA.

If a storage operand is unaligned, additional
instructions must be used to ensure that the operand is
correctly placed in a VSR or in storage. Instructions
are provided that shift and merge the contents of two
VSRs, such that an unaligned quadword storage
operand can be copied between storage and the VSRs
in a relatively efficient manner.

As shown in Figure 97, the elements in VSRs are
numbered; the high-order (or most significant) byte
element is numbered 0 and the low-order (or least
significant) byte element is numbered 15. The
numbering affects the values that must be placed into
the permute control vector for the Vector Permute
instruction in order for that instruction to achieve the
desired effects, as illustrated by the examples in the
following subsections.

A vector quadword Load instruction for which the
effective address (EA) is quadword-aligned places the
byte in storage addressed by EA into byte element O of
the target VSR, the byte in storage addressed by EA+1
into byte element 1 of the target VSR, etc. Similarly, a
vector quadword Store instruction for which the EA is
quadword-aligned places the contents of byte element
0 of the source VSR into the byte in storage addressed
by EA, the contents of byte element 1 of the source
VSR into the byte in storage addressed by EA+1, etc.

Figure 100 shows an aligned quadword in storage.
Figure 101 shows the result of loading that quadword
into a VSR or, equivalently, shows the contents that
must be in a VSR if storing that VSR is to produce the
storage contents shown in Figure 100.

When an aligned byte, halfword, or word storage
operand is loaded into a VSR, the element (byte,
halfword, or word respectively) that receives the data
is the element that would have received the data had
the entire aligned quadword containing the storage
operand addressed by EA been loaded. Similarly, when
a byte, halfword, or word element in a VSR is stored
into an aligned storage operand (byte, halfword, or
word respectively), the element selected to be stored
is the element that would have been stored into the
storage operand addressed by EA had the entire VSR
been stored to the aligned quadword containing the
storage operand addressed by EA. (Byte storage
operands are always aligned.)

For aligned byte, halfword, and word storage
operands, if the corresponding element number is
known when the program is written, the appropriate
Vector Splat and Vector Permute instructions can be
used to copy or replicate the data contained in the
storage operand after loading the operand into a VSR.
An example of this is given in the Programming Note
for Vector Splat; see page 292. Another example is to
replicate the element across an entire VSR before
storing it into an arbitrary aligned storage operand of
the same length; the replication ensures that the
correct data are stored regardless of the offset of the
storage operand in its aligned quadword in storage.

00 00 01 02 03 04 05 | 06

07

08 09 | OA | OB | OC | OD | OE | OF

10

0 1 2 3 4 5 6
Figure 100.Aligned quadword storage operand

‘OO‘Ol‘02|03|04|05|O6|O7|08|09|OA|OB|OC‘OD‘OE‘OF‘

0 1 2 3 4 5 6

7

8 9 A B Cc D E F

Figure 101.VSR contents for aligned quadword Load or Store
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00

Vhi

00 01 02 03 04
10 05 06 07 08 09 0A 0B 0C oD OE OF
0 1 2 3 4 5 6 7 8 9 A B C D E F
Figure 102.Unaligned quadword storage operand
00 01 02 03 04
Vlo | 05 06 07 08 09 | OA | OB | OC | OD | OE | OF

Vt,VS‘OO‘01‘02|03|04|05|O6|O7|08|O9|OA|OB|OC‘OD‘OE‘OF‘

0
Figure 103.VSR contents
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6.4.1 Accessing Unaligned Storage Operands

Figure 102 shows an unaligned quadword storage
operand that spans two aligned quadwords. In the
remainder of this section, the aligned quadword that
contains the most significant bytes of the unaligned
quadword is called the most significant quadword
(MSQ) and the aligned quadword that contains the
least significant bytes of the unaligned quadword is
called the least significant quadword (LSQ). Because

the Vector Storage Access instructions ignore the
low-order bits of the effective address, the unaligned
gquadword cannot be transferred between storage and
a VSR using a single instruction. The remainder of this
section gives examples of accessing unaligned
quadword storage operands. Similar sequences can
be used to access unaligned halfword and word
storage operands.

Programming Note

The sequence of instructions given below is one
approach that can be used to load the unaligned
quadword shown in Figure 102 into a VSR. In
Figure 103 Vhi and Vlo are the VSRs that will receive
the most significant quadword and least significant
guadword respectively. VSR[VRT+32] is the target VSR.

After the two quadwords have been loaded into Vhi
and Vlo, using Load Vector Indexed instructions, the
alignment is performed by shifting the 32-byte quantity
Vhi || Vlo left by an amount determined by the address
of the first byte of the desired data. The shifting is done
using a Vector Permute instruction for which the
permute control vector is generated by a Load Vector
for Shift Left instruction. The Load Vector for Shift Left
instruction uses the same address specification as the
Load Vector Indexed instruction that loads the Vhi
register; this is the address of the desired unaligned
quadword.

The following sequence of instructions copies the
unaligned quadword storage operand into register Vt.

# Assumptions:
# Rb 1= 0 and contents of Rb = OxB

Ivx  Vhi,0,Rb # load MSQ

Ivsl  Vp,0,Rb # set permute control vector
addi  Rb,Rb,16 # address of LSQ

Ivx  Vlo,0,Rb # load LSQ

vpern Vt,Vhi,Vlo,Vp # align the data

The procedure for storing an unaligned quadword is
essentially the reverse of the procedure for loading
one. However, a read-modify-write sequence is
required that inserts the source quadword into two
aligned quadwords in storage. The quadword to be
stored is assumed to be in Vs; see Figure 103 The

1

contents of Vs are shifted right and split into two parts,
each of which is merged (using a Vector Select
instruction) with the current contents of the two aligned
quadwords (MSQ and LSQ) that will contain the most
significant bytes and least significant bytes,
respectively, of the unaligned quadword. The resulting
two quadwords are stored using Store Vector Indexed
instructions. A Load Vector for Shift Right instruction is
used to generate the permute control vector that is
used for the shifting. A single register is used for the
“shifted” contents; this is possible because the
“shifting” is done by means of a right rotation. The
rotation is accomplished by specifying Vs for both
components of the Vector Permute instruction. In
addition, the same permute control vector is used on a
sequence of 1s and Os to generate the mask used by
the Vector Select instructions that do the merging.

The following sequence of instructions copies the
contents of Vs into an unaligned quadword in storage.

# Assumptions:
# Rb 1= 0 and contents of Rb = OxB

Ivx Vhi,0,Rb # load current MSQ

lvsr Vp,0,Rb # set permute control vector
addi Rb,Rb,16 # address of LSQ

Ivx Vlo,0,Rb # load current LSQ

vspltisb Vls,-1
vspltisb V0s,0
vperm Vmask,V0s,V1s,Vp # generate the select mask
vperm Vs, Vs,Vs,Vp # right rotate the data

# generate the select mask bits

vsel Vlo,Vs,Vlo,Vmask # insert LSQ component
vsel Vhi,Vhi,Vs,Vmask # insert MSQ component
stvx Vlo,0,Rb # store LSQ

addi Rb,Rb,-16 # address of MSQ

stvx Vhi,0,Rb # store MSQ
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6.5 Vector Integer Operations

Many of the instructions that produce fixed-point
integer results have the potential to compute a result
value that cannot be represented in the target format.
When this occurs, this unrepresentable intermediate
value is converted to a representable result value
using one of the following methods.

1. The high-order bits of the intermediate result that
do not fit in the target format are discarded. This
method is used by instructions having names that
include the word "Modulo".

2. The intermediate result is converted to the nearest
value that is representable in the target format
(i.e., to the minimum or maximum representable
value, as appropriate). This method is used by
instructions having names that include the word
"Saturate". An intermediate result that is forced to
the minimum or maximum representable value as
just described is said to "saturate".

An instruction for which an intermediate result
saturates causes SAT to be set to 1; see Section
6.3.2.

3. If the intermediate result includes non-zero
fraction bits it is rounded up to the nearest
fixed-point integer value. This method is used by
the six Vector Average Integer instructions and by
the Vector Multiply-High-Round-Add Signed
Halfword Saturate instruction. The latter
instruction then uses method 2, if necessary.

— Programming Note

Because SAT is sticky, it can be used to detect
whether any instruction in a sequence of
“Saturate”-type instructions produced an inexact
result due to saturation. For example, the contents
of the VSCR can be copied to a VSR (mfvscr),
bits other than SAT can be cleared in the VSR
(vand with a constant), the result can be
compared to zero setting CR6 (vcmpequb.), and a
branch can be taken according to whether SAT was
set to 1 (Branch Conditional that tests CR field 6).

Testing SAT after each “Saturate”-type instruction
would degrade performance  considerably.
Alternative techniques include the following:

— Retain sufficient information at "checkpoints"
that the sequence of computations performed
between one checkpoint and the next can be
redone (more slowly) in a manner that detects
exactly when saturation occurs. Test SAT only
at checkpoints, or when redoing a sequence
of computations that saturated.

— Perform intermediate computations using an
element length sufficient to prevent saturation,
and then use a Vector Pack Integer Saturate
instruction to pack the final result to the
desired length. (Vector Pack Integer Saturate
causes results to saturate if necessary, and
sets SAT to 1 if any result saturates.)
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6.5.1 Integer Saturation

Saturation occurs whenever the result of a saturating
instruction does not fit in the result field. Unsigned
saturation clamps results to zero (0) on underflow and
to the maximum positive integer value (2"-1, e.g. 255
for byte fields) on overflow. Signed saturation clamps
results to the smallest representable negative number
(-2"1, e.g. -128 for byte fields) on underflow, and to
the largest representable positive number (2”‘1—1, e.g.
+127 for byte fields) on overflow.

In most cases, the simple maximum/minimum
saturation performed by the vector instructions is
adequate. However, sometimes, e.g. in the creation of
very high quality images, more complex saturation
functions must be applied. To support this, the Vector
facility provides a mechanism for detecting that
saturation has occurred. The VSCR has a bit, SAT,
which is set to a one (1) anytime any field in a
saturating instruction saturates. SAT can only be
cleared by explicitly writing zero to it. Thus SAT
accumulates a summary result of any integer overflow
or underflow that occurs on a saturating instruction.

Borderline cases that generate results equal to
saturation values, for example unsigned 0+0=0 and
unsigned byte 1+254=255, are not considered saturation
conditions and do not cause SAT to be set.

SAT can be set by the following types of instructions:

— Move To VSCR

— Vector Add Integer with Saturation

— Vector Subtract Integer with Saturation

— Vector Multiply-Add Integer with Saturation
— Vector Multiply-Sum with Saturation

— Vector Sum-Across with Saturation

— Vector Pack with Saturation

— Vector Convert to Fixed-point with Saturation

Note that only instructions that explicitly call for
“saturation” can set SAT. “Modulo” integer instructions
and floating-point arithmetic instructions never set SAT.

— Programming Note

The SAT state can be tested and used to alter
program flow by moving the VSCR to a VSR (with
mfvscr), then masking out bits 0:126 (to clear
undefined and reserved bits) and performing a
vector compare equal-to unsigned byte wi/record
(vempequb.) with zero to get a testable value into
the condition register for consumption by a
subsequent branch.

Since mfvscr will be slow compared to other
Vector instructions, reading and testing SAT after
each instruction would be prohibitively expensive.
Therefore, software is advised to employ
strategies that minimize checking SAT. For
example: checking  SAT  periodically and
backtracking to the last checkpoint to identify
exactly which field in which instruction saturated;
or, working in an element size sufficient to prevent
any overflow or underflow during intermediate
calculations, then packing down to the desired
element size as the final operation (the vector pack
instruction saturates the results and updates SAT
when a loss of significance is detected).
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6.6 Vector Floating-Point Opera-
tions

6.6.1 Floating-Point Overview

Unless NJ=1 (see Section 6.3.2), the floating-point
model provided by the Vector Facility conforms to The
Java Language Specification (hereafter referred to as
“Java”), which is a subset of the default environment
specified by the IEEE standard (i.e., by ANSI/IEEE
Standard 754-1985, “IEEE Standard for Binary
Floating-Point  Arithmetic”). For aspects of
floating-point behavior that are not defined by Java but
are defined by the IEEE standard, vector floating-point
conforms to the IEEE standard. For aspects of
floating-point behavior that are defined neither by Java
nor by the IEEE standard but are defined by the “C9X
Floating-Point Proposal” (hereafter referred to as
“C9X"), vector floating-point conforms to C9X.

The single-precision floating-point data format, value
representations, and computational models defined in
Chapter 4. “Floating-Point Facility” on page 131 apply
to vector floating-point except as follows.

— In general, no status bits are set to reflect the
results of floating-point operations. The only
exception is that SAT may be set by the Vector
Convert To Fixed-Point Word instructions.

— With the exception of the two Vector Convert To
Fixed-Point Word instructions and three of the four
Vector Round to Floating-Point  Integer
instructions, all vector floating-point instructions
that round use the rounding mode Round to
Nearest.

— Floating-point exceptions (see Section 6.6.2)
cannot cause the system error handler to be
invoked.

—— Programming Note

If a function is required that is specified by the
IEEE standard, is not supported by the Vector
Facility, and cannot be emulated satisfactorily
using the functions that are supported by the
Vector Facility, the functions provided by the
Floating-Point Facility should be used; see
Chapter 4.

6.6.2 Floating-Point Exceptions

The following floating-point exceptions may occur
during execution of vector floating-point instructions.

— NaN Operand Exception

— Invalid Operation Exception
— Zero Divide Exception

— Log of Zero Exception

— Overflow Exception

— Underflow Exception

If an exception occurs, a result is placed into the
corresponding target element as described in the
following subsections. This result is the default result
specified by Java, the IEEE standard, or C9X, as
applicable.

Recall that denormalized source values are treated as
if they were zero when NJ=1. This has the following
consequences regarding exceptions.

— Exceptions that can be caused by a zero source
value can be caused by a denormalized source
value when NJ=1.

— Exceptions that can be caused by a nonzero
source value cannot be caused by a denormalized
source value when NJ=1.

6.6.2.1 NaN Operand Exception

A NaN Operand Exception occurs when a source
value for any of the following instructions is a NaN.

— A vector instruction that would normally produce
floating-point results

— Either of the two Vector Convert To Fixed-Point
Word instructions

— Any of the four Vector Floating-Point Compare
instructions

The following actions are taken:

If the vector instruction would normally produce
floating-point results, the corresponding result is a
source NaN selected as follows. In all cases, if the
selected source NaN is a Signaling NaN it is converted
to the corresponding Quiet NaN (by setting the
high-order bit of the fraction field to 1) before being
placed into the target element.

Chapter 6. Vector Facility 265



Version 3.1

if the element in VSR[VRA+32] is a NaN
then the result is that NaN
else if the element in VSR[VRB+32] is a NaN
then the result is that NaN
else if the element in VSR[VRC+32] is a NaN
then the result is that NaN
else if Invalid Operation exception
(Section 6.6.2.2)
then the result is the QNaN 0x7FC0_0000

If the instruction is either of the two Vector Convert To
Fixed-Point Word instructions, the corresponding result
is 0x0000_0000. SAT is not affected.

If the instruction is Vector Compare Bounds
Floating-Point, the corresponding result is 0xC000_0000.

If the instruction is one of the other Vector
Floating-Point Compare instructions, the
corresponding result is 0x0000_0000.

6.6.2.2 Invalid Operation Exception

An Invalid Operation Exception occurs when a source
value or set of source values is invalid for the specified
operation. The invalid operations are:

— Magnitude subtraction of infinities

— Multiplication of infinity by zero

— Reciprocal square root estimate of a negative,
nonzero number or -infinity.

— Log base 2 estimate of a negative, nonzero
number or -infinity.

The corresponding result is the QNaN 0x7FC0_0000.

6.6.2.3 Zero Divide Exception

A Zero Divide Exception occurs when a Vector
Reciprocal Estimate Floating-Point or  Vector
Reciprocal Square Root Estimate Floating-Point
instruction is executed with a source value of zero.

The corresponding result is an infinity, where the sign
is the sign of the source value.

6.6.2.4 Log of Zero Exception

A Log of Zero Exception occurs when a Vector Log
Base 2 Estimate Floating-Point instruction is executed
with a source value of zero.

The corresponding result is -Infinity.

6.6.2.5 Overflow Exception

An Overflow Exception occurs under either of the
following conditions.

— For a vector instruction that would normally
produce floating-point results, the magnitude of
what would have been the result if the exponent
range were unbounded exceeds that of the largest
finite floating-point number for the target
floating-point format.

— For either of the two Vector Convert To
Fixed-Point Word instructions, either a source
value is an infinity or the product of a source value
and 2™ is a number too large in magnitude to be
represented in the target fixed-point format.

The following actions are taken:

1. If the vector instruction would normally produce
floating-point results, the corresponding result is
an infinity, where the sign is the sign of the inter-
mediate result.

2. If the instruction is Vector Convert To Unsigned
Fixed-Point Word Saturate, the corresponding
result is OxXFFFF_FFFF if the source value is a posi-
tive number or +infinity, and is 0x0000_0000 if the
source value is a negative number or -infinity. SAT
is setto 1.

3. If the instruction is Vector Convert To Signed
Fixed-Point Word Saturate, the corresponding
result is Ox7FFF_FFFF if the source value is a posi-
tive number or +infinity., and is 0x8000_0000 if the
source value is a negative number or -infinity. SAT
is setto 1.

6.6.2.6 Underflow Exception

An Underflow Exception can occur only for vector
instructions that would normally produce floating-point
results. It is detected before rounding. It occurs when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
is less in magnitude than the smallest normalized
floating-point number for the target floating-point
format.

The following actions are taken:

1. If NJ=0, the corresponding result is the value pro-
duced by denormalizing and rounding the interme-
diate result.

2. If NJ=1, the corresponding result is a zero, where
the sign is the sign of the intermediate result.
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6.7 Vector Storage Access
Instructions

The Vector Storage Access instructions compute the
effective address (EA) of the storage to be accessed as
describped in Section 1.10.3, “Effective Address
Calculation” on page 29. The low-order bits of the EA
that would correspond to an unaligned storage
operand are ignored.

The Load Vector Element Indexed and Store Vector
Element Indexed instructions transfer a byte, halfword,
or word element between storage and a VSR. The
Load Vector Indexed and Store Vector Indexed
instructions transfer an aligned quadword between
storage and a VSR.

6.7.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is
unavailable.

Chapter 6. Vector Facility

267



Version 3.1

6.7.2 Vector Load Instructions

The aligned byte, halfword, word, or quadword in storage addressed by EA is loaded into VSR[VRT+32].

Programming Note

The Load Vector Element instructions load the specified element into the same location in the target register as
the location into which it would be loaded using the Load Vector instruction.

Load Vector Element Byte Indexed X-form

lvebx VRT,RARB

31 VRT RA RB 7 /
0 6 1u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
eb « EA.bit[60:63]

VSR[VRT+32] « undefined
if Big-Endian byte ordering then
VSR[VRT+32] .byte[eb] « MEM(EA,1)
else
VSR[VRT+32] .byte[15-eb] « MEM(EA,1)

Let EA be the sum of the contents of GPR[RA], or O if
RA=0, and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte eb of VSR[VRT+32]. The
remaining bytes of VSR[VRT+32] are set to undefined
values.

If Little-Endian byte ordering is used for the storage
access, the contents of the byte in storage at address
EA are placed into byte 15-eb of VSR[VRT+32]. The
remaining bytes of VSR[VRT+32] are set to undefined
values.

Special Registers Altered:
None

Register Data Layout for lvebx

srcl GPR[RA]
src2 GPR[RB]
result VSR[VRT+32]
0 63 127
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Load Vector Element Halfword Indexed X-form

lvehx VRT,RARB

31 VRT RA RB 39 /
0 6 un 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA « EA & OXFFFF_FFFF_FFFF_FFFE
eb « EA.Dit[60:63]

VSR[VRT+32] « undefined
if Big-Endian byte ordering then

VSR[VRT+32] .byte[eb:eb+1] « MEM(EA,2)
else

VSR[VRT+32] .byte[14-eb:15-eb] « MEM(EA,2)

Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFE
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte eb of VSR[VRT+32],

— the contents of the byte in storage at address EA+1
are placed into byte eb+1 of VSR[VRT+32], and

— the remaining bytes of VSR[VRT+32] are set to
undefined values.

If Little-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte 15-eb of VSR[VRT+32],

— the contents of the byte in storage at address EA+1
are placed into byte 14-eb of VSR[VRT+32], and

— the remaining bytes of VSR[VRT+32] are set to
undefined values.

Special Registers Altered:
None

Register Data Layout for lvehx

srcl GPR[RA]
src2 GPR[RB]
result VSR[VRT+32]
0 63 127
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Load Vector Element Word Indexed X-form

lvewx VRT,RARB

31 VRT RA RB 71 /
0 6 un 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA « EA & OXFFFF_FFFF_FFFF_FFFC
eb « EA.Dit[60:63]

VSR[VRT+32] « undefined
if Big-Endian byte ordering then

VSR[VRT+32] .byte[eb:eb+3] « MEM(EA,4)
else

VSR[VRT+32] .byte[12-eb:15-eb] « MEM(EA,4)

If if Little-Endian byte ordering is used for the storage
access,

— the contents of the byte in storage at address EA
are placed into byte 15-eb of VSR[VRT+32],

— the contents of the byte in storage at address EA+1
are placed into byte 14-eb of VSR[VRT+32],

— the contents of the byte in storage at address EA+2
are placed into byte 13-eb of VSR[VRT+32],

— the contents of the byte in storage at address EA+3
are placed into byte 12-eb of VSR[VRT+32], and

— the remaining bytes of VSR[VRT+32] are set to
undefined values.

Special Registers Altered:

Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFC None
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB].
Let eb be bits 60:63 of EA.
If Big-Endian byte ordering is used for the storage
access,
— the contents of the byte in storage at address EA
are placed into byte eb of VSR[VRT+32],
— the contents of the byte in storage at address EA+1
are placed into byte eb+1 of VSR[VRT+32],
— the contents of the byte in storage at address EA+2
are placed into byte eb+2 of VSR[VRT+32],
— the contents of the byte in storage at address EA+3
are placed into byte eb+3 of VSR[VRT+32], and
— the remaining bytes of VSR[VRT+32] are set to
undefined values.
Register Data Layout for lvewx
srcl GPR[RA]
src2 GPR[RB]
result VSR[VRT+32]
0 63 127
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Load Vector Indexed X-form Load Vector Indexed Last X-form
Ivx VRT,RARB IvxI VRT,RA,RB
31 VRT RA RB 103 / 31 VRT RA RB 359 /
0 6 1 16 21 31 0 6 il 16 21 31
if MSR.VEC=0 then Vector_Unavailable() if MSR.VEC=0 then Vector_Unavailable()
EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB] EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA « EA & OXFFFF_FFFF_FFFF_FFFO EA « EA & OXFFFF_FFFF_FFFF_FFFO
VSR[VRT+32] « MEM(EA, 16) | VSR[VRT+32] « MEM(EA, 16)
Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFO mark_as_not_likely_to_be_needed_again_anytime_soon(EA)
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB]. Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFO
with the sum of the contents of GPR[RA], or O if RA=0,
The contents of the quadword in storage at address EA and the contents of GPR[RB].

are placed into VSR[VRT+32].
The contents of the quadword in storage at address EA
Special Registers Altered: | are placed into VSR[VRT+32].

None
Ivxl provides a hint that the quadword in storage

addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:

None
Register Data Layout for Ixvx & IxvxI
srcl GPR[RA]
src2 GPR[RB]
result VSR[VRT+32]
0 63 127

—— Programming Note

On some implementations, the hint provided by the lvxI instruction and the corresponding hint provided by the
stvxl instruction are applied to the entire cache block containing the specified quadword. On such
implementations, the effect of the hint may be to cause that cache block to be considered a likely candidate for
replacement when space is needed in the cache for a new block. Thus, on such implementations, the hint
should be used with caution if the cache block containing the quadword also contains data that may be needed
by the program in the near future. Also, the hint may be used before the last reference in a sequence of
references to the quadword if the subsequent references are likely to occur sufficiently soon that the cache
block containing the quadword is not likely to be displaced from the cache before the last reference.
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6.7.3 Vector Store Instructions

Some portion or all of the contents of VSR[VRS+32] are stored into the aligned byte, halfword, word, or quadword in

storage addressed by EA.

Programming Note

The Store Vector Element instructions store the specified element into the same storage location as the location

into which it would be stored using the Store Vector instruction.

Store Vector Element Byte Indexed X-form

stvebx VRS,RA,RB

31 VRS RA RB 135 /
0 6 1u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
eb « EA.bit[60:63]

if Big-Endian byte ordering then
MEM(EA,1) « VSR[VRS+32].byte[eb]
else
MEM(EA,1) « VSR[VRS+32].byte[15-eb]

Let EA be the sum of the contents of GPR[RA], or O if
RA=0, and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access, the contents of byte eb of VSR[VRS+32] are
placed in the byte in storage at address EA.

If Little-Endian byte ordering is used for the storage
access, the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA.

Special Registers Altered:
None

Programming Note

Unless bits 60:63 of the address are known to
match the byte offset of the subject byte element in
VSR[VRS+32], software should use Vector Splat to
splat the subject byte element before performing
the store.

Register Data Layout for stvebx

srcl GPR[RA]
src2 GPR[RB]
src3 VSR[VRS+32]
0 63 127
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Store Vector Element Halfword Indexed X-form

stvehx

VRS,RA,RB

31

6

VRS

un

RA

16

RB 167 /
21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA « EA & OXFFFF_FFFF_FFFF_FFFE

eb « EA.bit[60:63]

if Big-Endian byte ordering then
| MEM(EA,2) « VSR[VRS+32].byte[eb:eb+1]

else

MEM(EA,2) « VSR[VRS+32] [14-gb: 15-eb]

Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFE
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage

access,
| — the contents of byte eb of VSR[VRS+32] are placed
in the byte in storage at address EA, and
| — the contents of byte eb+l of VSR[VRS+32] are

placed in the byte in storage at address EA+1.

If Little-Endian byte ordering is used for the storage

access,

| — the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA, and

| — the contents of byte 14-eb of VSR[VRS+32] are

placed in the byte in storage at address EA+1.

Special Registers Altered:

None

Programming Note

Unless bits 60:62 of the address are known to
match the halfword offset of the subject halfword
element in VSR[VRS+32] software should use Vector
Splat to splat the subject halfword element before

performing the store.

srcl

src2

src3

Register Data Layout for stvehx

GPR[RA]

GPR[RB]

VSR[VRS+32]

63

127
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Store Vector Element Word Indexed X-form

Stvewx VRS,RA,RB

31 VRS RA RB 199 /
0 6 un 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA « EA & OXFFFF_FFFF_FFFF_FFFC
eb « EA.Dit[60:63]

if Big-Endian byte ordering then

MEM(EA,4) « VSR[VRS+32].byte[eb:eb+3]
else

MEM(EA,4) « VSR[VRS+32].byte[12-eb:15-eb]

Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFC
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB].

Let eb be bits 60:63 of EA.

If Big-Endian byte ordering is used for the storage
access,

— the contents of byte eb of VSR[VRS+32] are placed
in the byte in storage at address EA,

— the contents of byte eb+l of VSR[VRS+32] are
placed in the byte in storage at address EA+1,

— the contents of byte eb+2 of VSR[VRS+32] are
placed in the byte in storage at address EA+2, and

— the contents of byte eb+3 of VSR[VRS+32] are
placed in the byte in storage at address EA+3.

If Little-Endian byte ordering is used for the storage
access,

— the contents of byte 15-eb of VSR[VRS+32] are
placed in the byte in storage at address EA,

— the contents of byte 14-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+1,

— the contents of byte 13-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+2, and

— the contents of byte 12-eb of VSR[VRS+32] are
placed in the byte in storage at address EA+3.

Special Registers Altered:
None

Programming Note

Unless bits 60:61 of the address are known to
match the word offset of the subject word element
in VSR[VRS+32], software should use Vector Splat to
splat the subject word element before performing
the store.

Register Data Layout for stvewx

srcl GPR[RA]
src2 GPR[RB]
src3 VSR[VRS+32]
0 63 127
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Store Vector Indexed X-form Store Vector Indexed Last X-form
Stvx VRS,RARB stvxl VRS,RA,RB
31 VRS RA RB 231 | 31 VRS RA RB 487 [
0 6 1 16 21 31 0 6 1 16 21 kil
if MSR.VEC=0 then Vector_Unavailable() if MSR.VEC=0 then Vector_Unavailable()
EA < ((RA=0) ? 0 : GPR[RA]) + GPR[RB] EA « ((RA=0) ? 0 : GPR[RA]) + GPR[RB]
EA ¢ EA & OXFFFF_FFFF_FFFF_FFFO EA « EA & OXFFFF_FFFF_FFFF_FFFO
MEM(EA, 16) < VSR[VRS+32] I MEM(EA, 16) « VSR[VRS+32]
Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFO mark_as_not_likely_to_be_needed_again_anytime_soon(EA)
with the sum of the contents of GPR[RA], or O if RA=0,
and the contents of GPR[RB]. Let EA be the result of ANDing OxFFFF_FFFF_FFFF_FFFO

with the sum of the contents of GPR[RA], or O if RA=0,
The contents of VSR[VRS+32] are placed into the and the contents of GPR[RB].

quadword in storage at address EA.
The contents of VSR[VRS+32] are placed into the

Special Registers Altered: quadword in storage at address EA.

None
stvxl provides a hint that the quadword in storage

addressed by EA will probably not be needed again by
the program in the near future.

Special Registers Altered:
None

Programming Note
See the Programming Note for the lvx| instruction

on page 271.
Register Data Layout for stvx & stvxl
srcl GPR[RA]
src2 GPR[RB]
src3 VSR[VRS+32]
0 63 127
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6.7.4 Vector Alignment Support Instructions

—— Programming Note

The Ivsl and Ivsr instructions can be used to cre-
ate the permute control vector to be used by a sub-
sequent vperm instruction (see page 296). Let X
and Y be the contents of VSR[VRA+32] and
VSR[VRB+32] specified by the vperm. The control
vector created by Ivsl causes the vperm to select
the high-order 16 bytes of the result of shifting the
32-byte value X || Y left by sh bytes. The control vec-
tor created by lvsr causes the vperm to select the
low-order 16 bytes of the result of shifting X || Y right
by sh bytes.

—— Programming Note

Examples of uses of lvsl, lvsr, and vperm to load
and store unaligned data are given in Section 6.4.1.

These instructions can also be used to rotate or
shift the contents of a VSR left (lvsl) or right (Ivsr)
by sh bytes. For rotating, the VSR to be rotated
should be specified as both VSR[VRA+32] and
VSR[VRB+32] for vperm. For shifting left,
VSR[VRB+32] for vperm should be a register con-
taining all zeros and VSR[VRA+32] should contain
the value to be shifted, and vice versa for shifting
right.
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Load Vector for Shift Left Indexed X-form

vsl

VRT,RARB

Load Vector for Shift Right Indexed X-form

lvsr

VRT,RARB

31
0 6

VRT RA RB 6 /

un 16 21 31

31
0 6

VRT RA RB 38 [

u 16 21 31,

if MSR.VEC=0 then Vector_Unavailable()

sh « (((RA=0) ? O : GPR[RA]) + GPR[RBI).bit[60:63]

switch(sh)

case(0x0):
case(0x1):
case(0x2):
case(0x3):
case(0x4):
case(0x5):
case(0x6):
case(0x7):
case(0x8):
case(0x9):
case(0xA):
case(0xB):
case(0xC):
case(0xD):
case(0xE):
case(0xF):

VSR[VRT+32]«-0x000102030405060708090A0BOCODOEOF
VSR[VRT+32]«-0x0102030405060708090A0BOCODOEOF10
VSR[VRT+32]«-0x02030405060708090A0BOCODOEOF1011
VSR[VRT+32]«-0x030405060708090A0BOCODOEOF101112
VSR[VRT+32]«-0x0405060708090A0BOCODOEOF10111213
VSR[VRT+32]«-0x05060708090A0BOCODOEOF1011121314
VSR[VRT+32]«-0x060708090A0B0CODOEOF101112131415
VSR[VRT+32]«-0x0708090A0BOCODOEOF10111213141516
VSR[VRT+32]«-0x08090A0BOCODOEOF1011121314151617
VSR[VRT+32]«-0x090A0BOCODOEOF101112131415161718
VSR[VRT+32]«-0x0A0BOCODOEOF10111213141516171819
VSR[VRT+32]«-0x0BOCODOEOF101112131415161718191A
VSR[VRT+32]«-0x0CODOEOF101112131415161718191A1B
VSR[VRT+32]«-0x0DOEOF101112131415161718191A1B1C
VSR[VRT+32]«-0x0EOF101112131415161718191A1B1C1D
VSR[VRT+32]«-0x0F101112131415161718191A1B1C1D1E

Let sh be bits 60:63 of the sum of the contents of
GPR[RA], or O if RA=0, and the contents of GPR[RB].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || .. || Ox1D ||

Ox1E || Ox1F.

Bytes sh to sh+15 of X are placed into VSR[VRT+32].

Special Registers Altered:

None

if MSR.VEC=0 then Vector_Unavailable()

sh « (((RA=0) ? 0 : GPR[RA]) + GPR[RB]).bit[60:63]

switch(sh)

case(0x0):
case(0x1):
case(0x2):
case(0x3):
case(0x4):
case(0x5):
case(0x6):
case(0x7):
case(0x8):
case(0x9):
case(0xA):
case(0xB):
case(0xC):
case(0xD):
case(0xE):
case(0xF):

VSR[VRT+32]«-0x101112131415161718191A1B1C1D1ELF
VSR[VRT+32]«-0x0F101112131415161718191A1B1C1D1E
VSR[VRT+32]«-0x0EOF101112131415161718191A1B1C1D
VSR[VRT+32]«-0x0DOEOF101112131415161718191A1B1C
VSR[VRT+32]«-0x0CODOEOF101112131415161718191A1B
VSR[VRT+32]«-0x0BOCODOEOF101112131415161718191A
VSR[VRT+32]«—0x0AOBOCODOEOF10111213141516171819
VSR[VRT+32]«-0x090A0BOCODOEOF101112131415161718
VSR[VRT+32]«—0x08090A0BOCODOEOF1011121314151617
VSR[VRT+32]«—0x0708090A0BOCODOEOF10111213141516
VSR[VRT+32]«-0x060708090A0BOCODOEOF101112131415
VSR[VRT+32]«-0x05060708090A0BOCODOEOF1011121314
VSR[VRT+32]«-0x0405060708090A0BOCODOEOF10111213
VSR[VRT+32]«-0x030405060708090A0BOCODOEOF101112
VSR[VRT+32]«-0x02030405060708090A0BOCODOEOF1011
VSR[VRT+32]«-0x0102030405060708090A0BOCODOEOF10

Let sh be bits 60:63 of the sum of the contents of
GPR[RA], or 0 if RA=0, and the contents of GPR[RB].

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || .. || Ox1D ||

Ox1E || Ox1F.

Bytes 16-sh to 31-sh of X are placed into VSR[VRT+32].

Special Registers Altered:

None

Register Data Layout for Ivsl & Ivsr

srcl

GPR[RA]

src2

GPR[RB]

mwnywmMmmMmmHmmhmmMmmMmmhmmMmmbmmwwmmmmmmmMmmmwwwmﬂ
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6.8 Vector Permute and Formatting Instructions

6.8.1 Vector Pack Instructions

Vector Pack Pixel VX-form |
vpkpx VRT,VRA,VRB
4 VRT VRA VRB 782 I
0 6 il 16 21 31
if MSR.VEC=0 then Vector_Unavailable()
vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]
doi=0to7
VSR[VRT+32] .hword[i].bit[0] « vsrc.word[i].bit[7]
VSR[VRT+32] .hword[i].bit[1:5] « vsrc.word[i].bit[8:12]
VSR[VRT+32] .hword[i].bit[6:10] « vsrc.word[i].bit[16:20]
VSR[VRT+32].hword[i].bit[11:15] « vsrc.word[i].bit[24:28]
end
|

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The contents of word element i of vsrc are
packed to produce a 16-bit value as described
below.

— bit 7 of the first byte (bit 7 of the word)

— bits 0:4 of the second byte (bits 8:12 of the
word)

— bits 0:4 of the third byte (bits 16:20 of the
word)

— bits 0:4 of the fourth byte (bits 24:28 of the
word)

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vpkpx

srcl

src2

VSR[VRA+32] .word[0]

VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

VSR[VRB+32] .word[0]

VSR[VRB+32] .word[1]

VSR[VRB+32] -word[2] VSR[VRB+32] .word[3]

result |VSR[VRT+32].hword[0] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32]tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0

16

Programming Note

Each source word can be considered to be a 32-bit "pixel", consisting of four 8-bit "channels". Each target
halfword can be considered to be a 16-bit pixel, consisting of one 1-bit channel and three 5-bit channels. A
channel can be used to specify the intensity of a particular color, such as red, green, or blue, or to provide other

32

48

64 80 96 112 127

information needed by the application.

278

Power ISA™ |



Version 3.1

Vector Pack Signed Halfword Signed Saturate
VX-form

vpkshss VRT,VRA,VRB

Vector Pack Signed Halfword Unsigned
Saturate VX-form

vpkshus VRT,VRA,VRB

4 VRT VRA VRB 398
0 6 1 16 21 31

4 VRT VRA VRB 270

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0to15
VSR[VRT+32] .byte[i] « si8_CLAMP(EXTS(vsrc.hword[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The signed integer value in halfword element i of
vsrc is placed into byte element i of VSR[VRT+32]
in signed integer format.

— If the value of the element is greater than 27-1
the result saturates to 27-1 and SAT is set to 1.

— If the value of the element is less than -27 the
result saturates to -2 and SAT is set to 1.

Special Registers Altered:
SAT

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.gword[1] « VSR[VRB+32]

doi=0to15
VSR[VRT+32] .byte[i] « ui8_CLAMP(EXTS(vsrc.hword[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The signed integer value in halfword element i of
vsrc is placed into byte element i of VSR[VRT+32]
in unsigned integer format.

— If the value of the element is greater than 28-1
the result saturates to 28-1 and SAT is set to 1.

— If the value of the element is less than 0 the
result saturates to 0 and SAT is set to 1.

Special Registers Altered:
SAT

Register Data Layout for vpkshss & vpkshus

srcl

VSR[VRA¢32] . hword[O] | VSR[VRA¢32].hword[L] | VSR[VRA+32].hword[2] | VSR[VRA#32] .tword[3] | VSR[VRA32] .tword[4] | VSR[VRA+32]. word[5] | VSR[VRA+32] . hword[6] | VSR[VRA¢32]. hword[7]

src2

VSR[VRB+32]..hword[O] | VSR[VRB+32]..hword[L] | VSR[VRB+32].hword[2] | VSR[VRB+32] . hword[3] | VSR[VRB+32] .hword[4] | VSR[VRB+32]. word[5] | VSR[VRB+32] . hword[6] | VSR[VRB+32]. hword[7]

result ‘ yte[] ‘ yte[1] ‘ byte[Z] ‘ yte[3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ yte[7T] ‘ yte[s] ‘ yte[s] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
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Vector Pack Signed Word Signed Saturate
VX-form

vpkswss VRT,VRA,VRB

Vector Pack Signed Word Unsigned Saturate
VX-form

vpkswus VRT,VRA,VRB

4 VRT VRA VRB 462
0 6 1 16 21 31

4 VRT VRA VRB 334

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0t7
VSR[VRT+32] .hword[i] « sil6_CLAMP(EXTS(vsrc.word[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The signed integer value in word element 1 of vsrc
is placed into halfword element 1 of VSR[VRT+32] in
signed integer format.

— If the value of the element is greater than
215_1 the result saturates to 21°-1 and SAT is
setto 1.

— If the value of the element is less than -21°
the result saturates to -21° and SAT is set to 1.

Special Registers Altered:
SAT

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.gword[1] « VSR[VRB+32]

doi=0t7
VSR[VRT+32] .hword[i] « uil6_CLAMP(EXTS(vsrc.word[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value 1 from 0 to 7, do the following.
The signed integer value in word element i of vsrc
is placed into halfword element i of VSR[VRT+32] in
unsigned integer format.

— If the value of the element is greater than
216_1 the result saturates to 26-1 and SAT is
setto 1.

— If the value of the element is less than 0 the
result saturates to 0 and SAT is set to 1.

Special Registers Altered:
SAT

Register Data Layout for vpkswss & vpkswus

srcl VSR[VRA+32] .word[0]

VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0]

VSR[VRB+32] .word[1]

VSR[VRB+32] -word[2] VSR[VRB+32] .word[3]

result | VRIRT32].hord[0] | VSRLVRT+32].ord[L] | VSRLVRT+32].ord[Z] | VSRTVRT+32].hord[3] | VSRTVRT+32].ord[¢] | VSRDRT+32].ord[s] | VSRLRT+32]hvord[s] | VSR[VRT+32].hvord[7]
0

16 32 48
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Vector Pack Signed Doubleword Signed
Saturate VX-form

vpksdss VRT,VRA,VRB

Vector Pack Signed Doubleword Unsigned
Saturate VX-form

vpksdus VRT,VRA,VRB

4 VRT VRA VRB 1486
0 6 1 16 21 31

4 VRT VRA VRB 1358

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].word[0] « si32_CLAMP(EXTS(VSR[VRA+32].dword[0]))
VSRIVRT+32].word[1] « si32_CLAWP(EXTS(VSR[VRA+32] .dword[1]))
VSRIVRT+32].word[2] « si32_CLAMP(EXTS(VSR[VRB+32].dword[0]))
VSRVRT+32].word[3] « si32_CLAMP(EXTS(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The signed integer value in doubleword element i
of vsrc is placed into word element i of
VSR[VRT+32] in signed integer format.

— If the value is greater than 2%1-1 the result

saturates to 231-1 and SAT is set to 1.

— If the value is less than -23! the result
saturates to -231 and SAT is set to 1.

Special Registers Altered:
SAT

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].word[0] « ui32_CLANP(EXTS(VSR[VRA+32].dword[0]))
VSRIVRT+32].word[1] « ui32_CLANP(EXTS(VSR[VRA+32].dword[1]))
VSR[VRT+32].word[2] « ui32_CLANP(EXTS(VSR[VRB+32].dword[0]))
VSR[VRT+32].word[3] « ui32_CLANP(EXTS(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from O to 3, do the following.
The signed integer value in doubleword element i
of vsrc is placed into word element i of
VSR[VRT+32] in unsigned integer format.

— If the value is greater than 232-1 the result

saturates to 232-1 and SAT is set to 1.

— If the value is less than 0 the result saturates
to 0 and SAT is set to 1.

Special Registers Altered:
SAT

Register Data Layout for vpksdss & vpksdus

srcl VSR[VRA+32] .dword[0] VSR[VRA+32] .dword[1]
src2 VSR[VRB+32] .dword[0] VSR[VRB+32] .dword[1]
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]

0 32

64 96 127
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Vector Pack Unsigned Halfword Unsigned
Modulo VX-form

vpkuhum VRT,VRA,VRB

Vector Pack Unsigned Halfword Unsigned
Saturate VX-form

vpkuhus VRT,VRA,VRB

4 VRT VRA VRB 14
0 6 1 16 21 31

4 VRT VRA VRB 142
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0to15
VSR[VRT+32] .byte[i] « vsrc.hword[i].bit[8:15]
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The contents of bits 8:15 of halfword element i of
vsrc are placed into byte element 1 of
VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0to15
VSR[VRT+32] .byte[i] « ui8 CLAMP(EXTZ(vsrc.hword[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
The unsigned integer value in halfword element i
of vsrc are placed into byte element i of
VSR[VRT+32] in unsigned integer format.

— If the value of the element is greater than 28-1
the result saturates to 28-1 and SAT is set to 1.

Special Registers Altered:
SAT

Register Data Layout for vpkuhum & vpkuhus

srcl | VRIRA32].hiord[0] | VER[VRA¢32].hiord[L] | VGR[VRA¥32].hvord[2] | VGRTVRA¥32].hvord[3] | VSRTVRA¥32].hvord[4] | VSRTVRA¥32].hord[5] | VSRTVRA¥3Z].ord([6] | VSRLVRA#32].ord(T]

src2 | VSR[VRB+32].hword[0] | VSR[VRB+32] .hword[L] | VSR[VRB+32] .word[2] | VSR[VRB+32] .hword[3] | VSR[VRB+32] . hword[4] | VSR[VRB+32] .hword[5] | VSR[VRB+32].hword[6] | VSR[VRB+32].hword[7]

result ‘ yte[] ‘ byte[1] ‘ byte[Z] ‘ yte3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ yte[T] ‘ yte[s] ‘ yte[d] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 1

12 120 127
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Vector Pack Unsigned Word Unsigned Modulo
VX-form

vpkuwum VRT,VRA,VRB

Vector Pack Unsigned Word Unsigned
Saturate VX-form

vpkuwus VRT,VRA,VRB

4 VRT VRA VRB 78
0 6 1 16 21 31

4 VRT VRA VRB 206
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0t?7
VSR[VRT+32] .hword[i] « vsrc.word[i].bit[16:31]
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 7, do the following.
The contents of bits 16:31 of word element i of
vsrc are placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.gword[1] « VSR[VRB+32]

doi=0t7
VSR[VRT+32] .hword[i] « uil6_CLAMP(EXTZ(vsrc.word[i]))
end

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value 1 from 0 to 7, do the following.
The unsigned integer value in word element i of
vsrc is placed into halfword element i of
VSR[VRT+32] in unsigned integer format.

— If the value of the element is greater than
216_1 the result saturates to 216-1 and SAT is
setto 1.

Special Registers Altered:
SAT

Register Data Layout for vpkuwum & vpkuwus

srcl VSR[VRA+32] .word[0]

VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0]

VSR[VRB+32] .word[1]

VSR[VRB+32] .word[2] VSR[VRB+32] .word[3]

result |VSR[VRT+32].hword[0] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32].tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0
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Vector Pack Unsigned Doubleword Unsigned
Modulo VX-form

vpkudum VRT,VRA,VRB

Vector Pack Unsigned Doubleword Unsigned
Saturate VX-form

vpkudus VRT,VRA,VRB

4 VRT VRA VRB 1102
0 6 1 16 21 31

4 VRT VRA VRB 1230

0 6 u 16 21 31

if MSR.VEC then Vector_Unavailable()

VSR[VRT+32] .word[0] « VSR[VRA+32].dword[0].bit[32:63]
VSR[VRT+32] .word[1] « VSR[VRA+32].dword[1].bit[32:63]
VSR[VRT+32] .word[2] « VSR[VRB+32].dword[0].bit[32:63]
VSR[VRT+32] .word[3] « VSR[VRB+32].dword[1].bit[32:63]

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value i from 0 to 3, do the following.
The contents of bits 32:63 of doubleword element
i of vsrc are placed into word element i1 of
VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC then Vector_Unavailable()

VSRVRT+32].word[0] « ui32_CLANP(EXTZ(VSR[VRA+32].dword[0]))
VSRIVRT+32].word[1] « ui32_CLANP(EXTZ(VSR[VRA+32].dword[1]))
VSRIVRT+32].word[2] « ui32_CLANP(EXTZ(VSR[VRB+32].dword[0]))
VSR[VRT+32].word[3] « ui32_CLANP(EXTZ(VSR[VRB+32].dword[1]))

Let vsrc be the concatenation of the contents of
VSR[VRA+32] followed by the contents of VSR[VRB+32].

For each integer value 1 from 0 to 3, do the following.
The unsigned integer value in doubleword
element i of vsrc are placed into halfword element
i of VSR[VRT+32] in unsigned integer format.

— If the value of the element is greater than
2%2_1 the result saturates to 2%2-1 and SAT is
set to 1.

Special Registers Altered:
SAT

Register Data Layout for vpkudum & vpkudus

srcl VSR[VRA+32] .dword[0] VSR[VRA+32] .dword[1]
src2 VSR[VRB+32] .dword[0] VSR[VRB+32] .dword[1]
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 96 127
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| 6.8.2 Vector Unpack Instructions

Vector Unpack High Signed Byte VX-form

vupkhsh VRT,VRB

Vector Unpack Low Signed Byte VX-form

vupkisb VRT,VRB

4 VRT 1 VRB 526
0 6 un 16 21 31

4 VRT 7 VRB 654

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
VSR[VRT+32].hword[i] « EXTS16(VSR[VRB+32].byte[i])
end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i of
VSR[VRB+32] is sign-extended and placed into
halfword element i1 in VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
VSR[VRT+32] .hword[i] « EXTS16(VSR[VRB+32].byte[i+8])
end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element i+8 of
VSR[VRB+32] is sign-extended and placed into
halfword element 1 of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vupkhsh

src2 ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ yte[d] ‘ byte[7] ‘

unused ‘

result‘ VSR[VRT+32].word[0] ‘ VSR[VRT+32].word[1] ‘ VSR[VRT+32].word[2] ‘ VSR[VRT+32] .word[3] ‘
0

8 16 24 32 40 48

64 96 127

Register Data Layout for vupkish

src ‘ unused

‘ yted] ‘ yte[9] ‘ .hyte[lo]‘ .hyte[ll]‘ .byte[lZ]‘ .byte[13]‘ .byte[lzl]‘ .byte[ls]‘

result ‘ VSR[VRT+32] -word[0]

VSR[VRT+32].word[1] ‘ VSR[VRT+32].word[2] ‘ VSR[VRT+32] .word[3] ‘

0 32

64 72 80 88 96 104 112 120 127
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Vector Unpack High Signed Halfword VX-form

vupkhsh VRT,VRB

Vector Unpack Low Signed Halfword VX-form

vupklish VRT,VRB

4 VRT 1 VRB 590
0 6 un 16 21 31

4 VRT 7 VRB 718
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

VSRIVRT+32].word[0] « EXTS32(VSR[VRB+32].hword[0])
VSRIVRT+32].word[1] « EXTS32(VSR[VRB+32].hword[1])
VSRIVRT+32].word[2] « EXTS32(VSR[VRB+32].hword[2])
VSRIVRT+32].word[3] « EXTS32(VSR[VRB+32].hword[3])

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element i of
VSR[VRB+32] is sign-extended and placed into word
element i in VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

VSRIVRT+32].word[0] « EXTS32(VSR[VRB+32].hword[4])
VSRIVRT+32].word[1] « EXTS32(VSR[VRB+32].hword[5])
VSR[VRT+32].word[2] « EXTS32(VSR[VRB+32].hword[6])
VSR[VRT+32].word[3] « EXTS32(VSR[VRB+32].hword[7])

For each integer value 1 from 0 to 3, do the following.
The signed integer value in halfword element i+4
of VSR[VRB+32] is sign-extended to produce a
signed-integer word and placed into word element
i of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vupkhsh

src2 ‘VSR[VRB+32].hword[0] VSR[VRB+32].hword[1]‘VSR[VRB+32].hword[2] VSR[\/RB+32].hword[3]‘

unused ‘

result‘ VSR[VRT+32].word[0] ‘ VSR[VRT+32].word[1] ‘ VSR[VRT+32].word[2] ‘ VSR[VRT+32].word[3] ‘
0

16 32 48

64 96 127

Register Data Layout for vupkish

src ‘ unused

‘ VR[R&:32].hord[£] | VsR[VRB#32] oordB] ‘ VRQRB32].ord[s] | VSR [VRB#32].word[7] ‘

result ‘ VSR[VRT+32].word[0]
0

VSR[VRT+32].word[1] ‘ VSR[VRT+32].word[2] ‘ VSR[VRT+32] .word[3] ‘

32

64 80 96 112 127
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Vector Unpack High Signed Word VX-form

vupkhsw VRT,VRB

Vector Unpack Low Signed Word VX-form

vupklsw VRT,VRB

4 VRT 7 VRB 1614
0 6 il 16 21 31

4 VRT 7 VRB 1742
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

VSRIVRT+32].dword[0] « EXTS64(VSR[VRB+32].word[0])
VSRIVRT+32].dword[1] « EXTS64(VSR[VRB+32].word[1])

For each integer value i from 0 to 1, do the following.
The signed integer value in word element i of
VSR[VRB+32] is sign-extended and placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].dword[0] « EXTS64(VSR[VRB+32].word[2])
VSR[VRT+32].dword[1] « EXTS64(VSR[VRB+32].word[3])

For each integer value 1 from 0 to 1, do the following.
The signed integer value in word element i+2 of
VSR[VRB+32] is sign-extended and placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:

None None
Register Data Layout for vupkhsw
src2 ‘ VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] ‘ unused ‘
result ‘ VSR[VRT+32].. dword[0] ‘ VSR[VRT+32] . dword[L] ‘
0 32 64 48 127

Register Data Layout for vupklsw

src ‘ unused

‘ VSR[VRB+32] .word[2] VSR[VRB+32] .word[3] ‘

result ‘ VSR[VRT+32].. dword[0]

‘ VSR[VRT+32] . dword[L] ‘

0 32

64 48 127
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Vector Unpack High Pixel VX-form

vupkhpx VRT,VRB

vupklpx

Vector Unpack Low Pixel VX-form

VRT,VRB

4 VRT 1 VRB 846
0 6 un 16 21 31

4 VRT 7 VRB 974
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
src < VSR[VRB+32].hword[i]

VSR[VRT+32] .word[i].byte[0] « EXTS8(src.bit[0])

VSR[VRT+32].word[i].byte[1] « EXTZ8(src.bit[1:5])

VSR[VRT+32] .word[i].byte[2] « EXTZ8(src.bit[6:10])

VSR[VRT+32].word[i].byte[3] « EXTZ8(src.bit[11:15])
end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i of VSR[VRB+32]
are unpacked as follows.

— sign-extend bit 0 of the halfword to 8 bits

— zero-extend bits 1:5 of the halfword to 8 bits

— zero-extend bits 6:10 of the halfword to 8 bits

— zero-extend bits 11:15 of the halfword to 8
bits

The result is placed in word element i of
VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
src < VSR[VRB+32].hword[i+4]

VSR[VRT+32] .word[i].byte[0] « EXTS8(src.bit[0])

VSR[VRT+32] .word[i].byte[1] « EXTZ8(src.bit[1:5])

VSR[VRT+32] .word[i].byte[2] « EXTZ8(src.bit[6:10])

VSR[VRT+32] .word[i].byte[3] « EXTZ8(src.bit[11:15])
end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i+4 of
VSR[VRB+32] are unpacked as follows.

— sign-extend bit 0 of the halfword to 8 bits

— zero-extend bits 1:5 of the halfword to 8 bits

— zero-extend bits 6:10 of the halfword to 8 bits

— zero-extend bits 11:15 of the halfword to 8
bits

The result is placed in word element i of
VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vupkhpx

src2 ‘VSR[VRB+32].hw0rd[0] VSR[VRB+32].hw0rd[1]‘VSR[VRB+32].hw0rd[2] VSR[VRB+32].hw0rd[3]‘

unused ‘

result‘ VSR[VRT+32] .word[0] ‘ VSR[VRT+32] .word[1] ‘ VSR[VRT+32] .word[2] ‘ VSR[VRT+32] .word[3] ‘
0

16 32 48

64 96 127

Register Data Layout for vupklpx

src ‘ unused

‘ VGRVRB#32].ord[¢] | VSR[VRB+32. o ] ‘ VGRVRB#32].ord[6] | VSR[VRB+32] o] ‘

VSR[VRT+32] .word[1] ‘ VSR[VRT+32] .word[2] ‘ VSR[VRT+32] .word[3] ‘

result ‘ VSR[VRT+32] .word[0]
0 32

64 80 96 112 127

—— Programming Note

The source and target elements can be considered to be 16-bit and 32-bit “pixels” respectively, having the
formats described in the Programming Note for the Vector Pack Pixel instruction on page 278.

—— Programming Note

Notice that the unpacking done by the Vector Unpack Pixel instructions does not reverse the packing done by
the Vector Pack Pixel instruction. Specifically, if a 16-bit pixel is unpacked to a 32-bit pixel which is then packed
to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal to the original 16-bit pixel (because, for
each channel except the first, Vector Unpack Pixel inserts high-order bits while Vector Pack Pixel discards
low-order bits).
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6.8.3 Vector Merge Instructions

Vector Merge High Byte VX-form

vmrghb VRT,VRA,VRB

Vector Merge Low Byte VX-form
vmrglb VRT,VRA,VRB

4 VRT VRA VRB 12
0 6 1 16 21 31

4 VRT VRA VRB 268
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
VSR[VRT+32].hword[i].byte[0] « VSR[VRA+32].byte[i]
VSR[VRT+32].hword[i].byte[1] « VSR[VRB+32].byte[i]
end

For each integer value i from 0 to 7, do the following.
The contents of byte element i of VSR[VRA+32] are
placed into byte element 2xi of VSR[VRT+32].

The contents of byte element i of VSR[VRB+32] are
placed into byte element 2xi+1 of VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
VSR[VRT+32] .hword[i].byte[0] « VSR[VRA+32].byte[i+8]
VSR[VRT+32] .hword[i].byte[1] « VSR[VRB+32].byte[i+8]
end

For each integer value 1 from 0 to 7, do the following.
The contents of byte element i+8 of VSR[VRA+32]
are placed into byte element 2xi of VSR[VRT+32].

The contents of byte element i+8 of VSR[VRB+32]
are placed into byte element 2xi+1 of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vmrghb

unused

srcl | .byte[0] | .byte[1] | -byte[2] | -byte[3] | -byte[4] | -byte[5] | -byte[6] | -byte[7]
src2 | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7]

unused

result ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ yte[d] ‘ byte[7] ‘ yte[d] ‘ byte[9] ‘.byte[l()]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[14]‘ .byte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Register Data Layout for vmrglb
srcl unused .byte[8] | .byte[9] |.byte[10]|.byte[11]|.byte[12]|.byte[13]|.byte[14]|.byte[15]
src2 unused .byte[8] | .byte[9] |.byte[10]|.byte[11]|.byte[12]|.byte[13]|.byte[14]|.byte[15]

result ‘ byte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ ytele] ‘ yte[7] ‘ yteld] ‘ yte[9] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 11

2 120 127
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Vector Merge High Halfword VX-form

vmrghh VRT,VRA,VRB

Vector Merge Low Halfword VX-form

vmrglh VRT,VRA,VRB

4 VRT VRA VRB 76
0 6 un 16 21 31

4 VRT VRA VRB 332
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0t3
VSR[VRT+32] .word[i].hword[0] « VSR[VRA+32].hword[i]
VSR[VRT+32] .word[i].hword[1] « VSR[VRB+32].hword[i]
end

For each integer value i from 0 to 3, do the following.
The contents of halfword element i of VSR[VRA+32]
are placed into halfword element 2xi of
VSR[VRT+32].

The contents of halfword element i of VSR[VRB+32]
are placed into halfword element 2xi+l of
VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0t3
VSR[VRT+32].word[i].hword[0] « VSR[VRA+32].hword[i+4]
VSR[VRT+32] .word[i]-hword[1] « VSR[VRB+32].hword[i+4]
end

For each integer value 1 from 0 to 3, do the following.
The contents of halfword element i+4 of
VSR[VRA+32] are placed into halfword element 2xi
of VSR[VRT+32].

The contents of halfword element 1i+4 of
VSR[VRB+32] are placed into halfword element
2xi+1 of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vmrghh

srcl

VSR[VRA¢32] . hword[O] | VSR[VRA¢32].tword[1] | VSR[VRA+32].word[2] | VSR[VRA¢32] . word[3]

unused

src2

VSR[VRB+32]..hword[O] | VSR[VRB+32]..Mword[1] | VSR[VRB+32].word[2] | VSR[VRB+32] . word[3]

unused

result |VSR[VRT+32].hword[0] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32]tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0

16 32 48

64 80 96 112 127

Register Data Layout for vmrglh

srcl unused

VSR[VRA32]. hword[4]

VSR[VRA*32].hword[5]

VSR[VRA+32] . hword[6]

VSR[VRA#32].word[7]

src2 unused

VSR[VRB432].hord(4]

VR[VRB+32].hiord[5]

VR[VRB#32].hvord[6]

VR[VRB:32].hord[7]

result | VRIRT32].hord[0] | VSRLVRT+32].ord[L] | VSRLVRT+32].hord[Z] | VSRTVRT<32].hord[3] | VSRTVRT+32].ord[£] | VSRDRT+32].ord[5] | VSRLRT+32]hvord[s] | VSR[VRT+32].hvord[7]
0

16 32 48

64

80

96

112 127
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Vector Merge High Word VX-form

vmrghw

VRT,VRA,VRB

Vector Merge Low Word VX-form

vmrglw VRT,VRA,VRB

4

6

VRT

un

VRA

16

VRB 140
21 31

0 6 u

4 VRT VRA

16

VRB 396

21

31

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].word[0] « VSR[VRA+32].word[0]
VSR[VRT+32].word[1] « VSR[VRB+32].word[0]
VSRIVRT+32].word[2] « VSR[VRA+32].word[1]
VSR[VRT+32].word[3] « VSR[VRB+32].word[1]

The contents of word element 0 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element O of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 1 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 1 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

Special Registers Altered:

None

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32] .word[0] « VSR[VRA+32].word[2]
VSR[VRT+32] .word[1] « VSR[VRB+32].word[2]
VSR[VRT+32] .word[2] « VSR[VRA+32].word[3]
VSR[VRT+32] .word[3] « VSR[VRB+32].word[3]

The contents of word element 2 of VSR[VRA+32]
placed into word element 0 of VSR[VRT+32].

The contents of word element 2 of VSR[VRB+32]
placed into word element 1 of VSR[VRT+32].

The contents of word element 3 of VSR[VRA+32]
placed into word element 2 of VSR[VRT+32].

The contents of word element 3 of VSR[VRB+32]
placed into word element 3 of VSR[VRT+32].

Special Registers Altered:

None

are

are

are

are

Register Data Layout for vmrghw

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1] unused
src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] unused
result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
Register Data Layout for vmrglw
srcl unused VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]
src2 unused VSR[VRB+32] .word[2] VSR[VRB+32] .word[3]
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
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Vector Merge Even Word VX-form

vmrgew

VRT,VRA,VRB

Vector Merge Odd Word VX-form

vmrgow

VRT,VRA,VRB

4
0 6

VRT VRA
u

16

VRB

21

1932

31

4
0 6

VRT VRA
u

VRB 1676

16

21

31

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].word[0] « VSR[VRA+32].word[0]
VSR[VRT+32].word[1] « VSR[VRB+32].word[0]
VSRIVRT+32].word[2] « VSR[VRA+32].word[2]
VSRVRT+32].word[3] « VSR[VRB+32].word[2]

The contents of word element 0 of VSR[VRA+32] are
placed into word element 0 of VSR[VRT+32].

The contents of word element O of VSR[VRB+32] are
placed into word element 1 of VSR[VRT+32].

The contents of word element 2 of VSR[VRA+32] are
placed into word element 2 of VSR[VRT+32].

The contents of word element 2 of VSR[VRB+32] are
placed into word element 3 of VSR[VRT+32].

vmrgew is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered:

None

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].word[0] « VSR[VRA+32].uord[1]
VSR[VRT+32].word[1] « VSR[VRB+32].uord[1]
VSRIVRT+32].word[2] « VSR[VRA+32].uord[3]
VSR[VRT+32].word[3] « VSR[VRB+32].uord[3]

The contents of word element 1 of VSR[VRA+32]
placed into word element 0 of VSR[VRT+32].

The contents of word element 1 of VSR[VRB+32]
placed into word element 1 of VSR[VRT+32].

The contents of word element 3 of VSR[VRA+32]
placed into word element 2 of VSR[VRT+32].

The contents of word element 3 of VSR[VRB+32]
placed into word element 3 of VSR[VRT+32].

are

are

are

are

vmrgow is treated as a Vector instruction in terms of
resource availability.

Special Registers Altered:

None

Register Data Layout for vmrgew

srcl VSR[VRA+32] .word[0] unused VSR[VRA+32] .word[2] unused
src2 VSR[VRB+32] .word[0] unused VSR[VRB+32] .word[2] unused
result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
Register Data Layout for vmrgow
srcl unused VSR[VRA+32] .word[1] unused VSR[VRA+32] .word[3]
src2 unused VSR[VRB+32] .word[1] unused VSR[VRB+32] .word[3]
result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
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6.8.4 Vector Splat Instructions

Programming Note

The Vector Splat instructions can be used in
preparation for performing arithmetic for which one
source vector is to consist of elements that all
have the same value (e.g., multiplying all elements
of a VSR by a constant).

Vector Splat Byte VX-form

Vector Splat Halfword VX-form

vsplth VRT,VRB,UM vsplth VRT,VRB,UIM
4 VRT |/| UM | VRB 524 4 VRT |/l |UIM| VRB 588
0 6 112 16 21 3 0 6 n 13 i 21 3

if MSR.VEC=0 then Vector_Unavailable()

b « UIM || 0b00O
doi=0tol5

VSR[VRT+32].byte[i] « VSR[VRB+32].bit[b:b+7]
end

For each integer value i from 0 to 15, do the following.
The contents of byte element UIM in VSR[VRB+32]
are placed into byte element 1 of VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

b « UIM || 0b0000
doi=0to7

VSR[VRT+32] .hword[i] « VSR[VRB+32].bit[b:b+15]
end

For each integer value 1 from 0 to 7, do the following.
The contents of halfword element UIM in
VSR[VRB+32] are placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vspltb

src ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ ytele] ‘ yte[7] ‘ byteld] ‘ yte[9] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘

result ‘ yte[] ‘ yte[1] ‘ byte[Z] ‘ yte3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ yte[T] ‘ yte[s] ‘ yte[s] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 1

12 120 127

Register Data Layout for vsplth

src ‘ VRRBH32].vord[0] ‘ VRIRBH32] hvord[ 1] ‘ VRRBH32] Inord[Z] ‘ VR[RBH32].uord[3] ‘ VR[RBH32].ord[4] ‘ VRVRBH32].ord 5] ‘ VRVRBA32]hor ] ‘ VRIRB:32].nord7] ‘

result ‘ VRIRT32].vord[0] ‘ VRIRT:32] huord[ 1] ‘ VRIRT32] nord[Z] ‘ VRLRT32].uord[3] ‘ VRDRT32].uord[4] ‘ VRIRT32].ord 5] ‘ VRRTZ] hor] ‘ VRRT:32].nord7]
0 16 32 48 64 80 96 112

127
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Vector Splat Word VX-form

vspltw VRT,VRB,UIM
4 VRT /Il {UM] VRB 652
0 6 n |4 |16 vl 31

if MSR.VEC=0 then Vector_Unavailable()

b « UIM || 0b00000
doi=0to3

VSR[VRT+32] .word[i] « VSR[VRB+32].bit[b:b+31]
end

For each integer value i from 0 to 3, do the following.
The contents of word element UIM in VSR[VRB+32]
are placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vspltw

src‘ VSR[VRB+32] .word[0] ‘ VSR[VRB+32] .word[1] ‘ VSR[VRB+32] .word[2] ‘ VSR[VRB+32] .word[3] ‘

result‘ VSR[VRT+32] .word[0] ‘ VSR[VRT+32] .word[1] ‘ VSR[VRT+32] .word[2] ‘ VSR[VRT+32] .word[3] ‘
0 32 64 48 127
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Vector Splat Immediate Signed Byte VX-form
vspltisb VRT,SIM

Vector Splat Immediate Signed Word VX-form

vspltisw VRT,SIM

4 VRT SIM i 780
0 6 un 16 21 31

4 VRT SIM 1 908
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol5
VSR[VRT+32] .byte[i] « EXTS8(SIM, 8)
end

For each integer value i from 0 to 15, do the following.
The value of the SIM field, sign-extended to 8 bits,
is placed into byte element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Splat Immediate Signed Halfword
VX-form

vspltish VRT,SIM

4 VRT SIM 7 844
0 6 1u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
doi=0t?7

VSR[VRT+32] .hword[i] « EXTS16(SIM, 16)
end

For each integer value i from 0 to 7, do the following.

The value of the SIM field, sign-extended to 16
bits, is placed into halfword element i of

VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
VSR[VRT+32] .word[i] « EXTS32(SIM, 32)
end

For each integer value 1 from 0 to 3, do the following.
The value of the SIM field, sign-extended to 32
bits, is placed into word element 1 of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vspltisb

ﬁeﬂﬂ‘hﬁeuqymnqﬁﬂ

mwnywmMmmMmmhmmhmmMmmhmmMmmhmmbmmhmmhmmbmmy
0 8 16 24 32 40 48 56 64 72 80 88 96 1

b .
04 112 120 127

Register Data Layout for vspltish

result ‘ VSR[VRT+32].hw0rd[0]‘ VRDRT2].Mord[1] VSR[VRT+32].hword[2]‘ VSR[VRT+32].hword[3]‘ VSR[VRT+32].hw0rd[4]‘ VSR[VRT+32].hw0rd[5]‘ VSR[VRT+32].hw0rd[6]‘ VSR[VRT+32].hword[7]‘
0 4 6 8 9 1

16 32 8

4 0 6 12 127

Register Data Layout for vspltisw

‘ VSR[VRT+32].word[1] ‘ VSR[VRT+32].word[2] ‘ VSR[VRT+32] .word[3] ‘

result ‘ VSR[VRT+32].word[0]
0 32

64 48 127
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6.8.5 Vector Permute Instruction

The Vector Permute instruction allows any byte in two source VSRS to be copied to any byte in the target VSR. The
bytes in a third source VSR specify from which byte in the first two source VSRS the corresponding target byte is to
be copied. The contents of the third source VSR are sometimes referred to as the “permute control vector”.

Vector Permute VA-form

vperm VRT,VRA,VRB,VRC

Vector Permute Right-indexed VA-form
vpermr VRT,VRAVRB,VRC

4 VRT VRA VRB VRC 43
0 6 1u 16 21 26 31

4 VRT VRA VRB VRC 59
0 6 1 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

doi=0to15
index « VSR[VRC+32].byte[i].bit[3:7]
VSR[VRT+32].byte[i] « src.byte[index]
end

Let the source vector be the concatenation of the
contents of VSR[VRA+32] followed by the contents of
VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
Let index be the value specified by bits 3:7 of byte
element i of VSR[VRC+32].

The contents of byte element index of src are
placed into byte element i of VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

vsrc.gword[0] « VSR[VRA+32]
vsrc.gword[1] « VSR[VRB+32]

doi=0to15
index « VSR[VRC+32].byte[i].bit[3:7]
VSR[VRT+32].byte[i] « src.byte[31-index]
end

Let the source vector be the concatenation of the
contents of VSR[VRA+32] followed by the contents of
VSR[VRB+32].

For each integer value i from 0 to 15, do the following.
Let index be the value specified by bits 3:7 of byte
| element 1 of VSR[VRC+32].

The contents of byte element 31-index of src are
| placed into byte element i of VSR[VRT+32].

Special Registers Altered:

None None
Programming Note
See the Programming Notes with the Load Vector
for Shift Left and Load Vector for Shift Right
instructions on page 276 for examples of uses of
vperm.
Register Data Layout for vperm & vpermr
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127
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6.8.6 Vector Select Instruction

Vector Select VA-form

vsel

VRT,VRA,VRB,VRC

6

VRT

un

VRA

16

VRB

21

VRC

26

42

31

if MSR.VEC=0 then Vector_Unavailable()

srcl « VSR[VRA+32]
src2 « VSR[VRB+32]
mask « VSR[VRC+32]

VSR[VRT+32] « (srcl & ~mask) | (src2 & mask)

Let srcl be the contents of VSR[VRA+32].
Let src2 be the contents of VSR[VRB+32].
Let mask be the contents of VSR[VRC+32].

The value, (srcl & ~mask) | (src2 & mask), is placed
into VSR[VRT+32].

Special Registers Altered:

None

Register Data Layout for vsel

srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]

127
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6.8.7 Vector Shift Instructions

The Vector Shift instructions rotate or shift the contents
of a VSR or a pair of VSRs left or right by a specified
number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr).
Depending on the instruction, this “shift count” is
specified either by the contents of a VSR or by an
immediate field in the instruction. In the former case, 7
bits of the shift count register give the shift count in bits
(0 < count < 127). Of these 7 bits, the high-order 4 bits
give the number of complete bytes by which to shift
and are used by vslo and vsro; the low-order 3 bits
give the number of remaining bits by which to shift and
are used by vsl and vsr.

—— Programming Note

A pair of these instructions, specifying the same
shift count register, can be used to shift the
contents of a VSR left or right by the number of
bits (0-127) specified in the shift count register.
The following example shifts the contents of
register Vx left by the number of bits specified in
register Vy and places the result into register Vz.

vslo Vz,Vx,Vy
vsplth Vy,Vy,15
vsl Vz,Vz,Vy

Vector Shift Left Double by Bit Imnmediate
VN-form

vsldbi VRT,VRA,VRB,SH

Vector Shift Left Double by Octet Immediate
VA-form

vsldoi VRT,VRA,VRB,SHB

4 VRT VRA VRB | 0| SH 22

0 6 u 16 21 (23 26 31

4 VRT VRA VRB |/| SHB 44

0 6 u 16 21|22 26 31

if MSR.VEC=0 then Vector_Unavailable()

vsrc.quord[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32] & vsrc.bit[SH:SH+127]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

The contents of bits SH:SH+127 of vsrc are placed into
VSR[VRT+32].
SH can be any integer value between 0 and 7.

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

vsrc.gword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32] « src.byte[SHB:SHB+15]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

Bytes SHB:SHB+15 of vsrc are placed into VSR[VRT+32].

Special Registers Altered:
None
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Vector Shift Right Double by Bit Imnmediate

VN-form
vsrdbi VRT,VRA,VRB,SH

4 VRT VRA | VRB |1]|SH 22
0 6 1 16 21 (23 26 kil

if MSR.VEC=0 then Vector_Unavailable()

vsrc.quord[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSRIVRT+32]  « vsrc.bit[128-SH:255-SH]

Let vsrc be the contents of VSR[VRA+32] concatenated
with the contents of VSR[VRB+32].

The contents of bits 128-SH:255-SH of vsrc are placed
into VSR[VRT+32].
SH can be any integer value between 0 and 7.

Special Registers Altered:
None

Register Data Layout for vsldbi, & vsrdbi & vsldoi

srcl VSR[VRA+32]

src2 VSR[VRB+32]

result VSR[VRT+32]
0 127
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Vector Shift Left VX-form
vsl VRT,VRA,VRB

Vector Shift Right VX-form
vsr VRT,VRA,VRB

4 VRT VRA VRB 452
0 6 un 16 21 31

4 VRT VRA VRB 708
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
shb « VSR[VRB+32].bit[125:127]

te1
doi=0tol4
t « t & (VSR[VRB+32].byte[i].bit[5:7] = sh)
end
if t=1 then
VSR[VRT+32] « VSR[VRA+32] << sh
else
VSR[VRT+32] « UNDEFINED

The contents of VSR[VRA+32] are shifted left by the
number of bits specified in bits 125:127 of VSR[VRB+32].

— Bits shifted out of bit 0 are lost.
— Zeros are supplied to the vacated bits on the right.

The result is place into VSR[VRT+32], except if, for any
byte element in VSR[VRB+32], the low-order 3 bits are
not equal to the shift amount, then VSR[VRT+32] is
undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()
| sh « VSR[VRB+32].bit[125:127]

t«1
doi=0tol4
t « t & (VSR[VRB+32].byte[i].bit[5:7]=sh)
end
if t=1 then
| VSR[VRT+32] « CHOP128(EXTZ(VSR[VRA+32]) >> sh)
else
VSR[VRT+32] « UNDEFINED

The contents of VSR[VRA+32] are shifted right by the
number of bits specified in bits 125:127 of VSR[VRB+32].

— Bits shifted out of bit 127 are lost.
— Zeros are supplied to the vacated bits on the left.

byte element in VSR[VRB+32], the low-order 3 bhits are
not equal to the shift amount, then VSR[VRT+32] is
undefined.

‘ The result is place into VSR[VRT+32], except if, for any

Special Registers Altered:

None None
Register Data Layout for vsl & vsr
srcl VSR[VRA+32]
src2 VSR[VRB+32]
result VSR[VRT+32]
0 127
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Vector Shift Left by Octet VX-form

vslo VRT,VRA,VRB

Vector Shift Right by Octet VX-form

VSro VRT,VRA,VRB

4 VRT VRA VRB 1036
0 6 un 16 21 31

4 VRT VRA VRB 1100
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
shb « VSR[VRB+32].bit[121:124] << 3
VSR[VRT+32] « VSR[VRA+32] << shb

The contents of VSR[VRA+32] are shifted left by the
number of bytes specified in bits 121:124 of
VSR[VRB+32].

— Bytes shifted out of byte 0 are lost.
— Zeros are supplied to the vacated bytes on the
right.
The result is placed into VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()
shb « VSR[VRB+32].bit[121:124] << 3
VSR[VRT+32] « VSR[VRA+32] >> shb

The contents of VSR[VRA+32] are shifted right by the
number of bytes specified in bits 121:124 of
| VSRLVRB+32].

— Bytes shifted out of byte 15 are lost.
— Zeros are supplied to the vacated bytes on the
left.
| The resultis placed into VSR[VRT+32].

Special Registers Altered:

None None
Register Data Layout for vslo & vsro
srcl VSR[VRA+32]
src2 VSR[VRB+32]
result VSR[VRT+32]
0 127

— Programming Note

A double-register shift by a dynamically specified number of bits (0-127) can be performed in six instructions.
The following example shifts Vw || Vx left by the number of bits specified in Vy and places the high-order 128 bits

of the result into Vz.

vslo VL, Vw, vy # shift high-order reg left
vsplth Vy,Vy,15

vsl VtL,vtl,Vy

vsububm Vt3,vo, vy # adjust shift count ((V0)=0)
VSro Vt2,Vx, Vi3 # shift low-order reg right
vsplth Vt3,vt3,15

vsr Vt2,ve2,Vt3

vor Vz,VtL,vt2 # merge to get final result
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Vector Shift Left Variable VX-form
vslv VRT,VRA,VRB

Vector Shift Right Variable VX-form
VStV VRT,VRA,VRB

4 VRT VRA VRB 1860
0 6 u 16 21 31

4 VRT VRA VRB 1796
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable_Interrupt()

vsrc.byte[0:15] « VSR[VRA+32]
vsrc.byte[16] « 0x00

doi=0to15

sh « VSR[VRB+32].byte[i].bit[5:7]

VSR[VRT+32] .byte[i] « src.byte[i:i+1].bit[sh:sh+7]
end

Let bytes 0:15 of vsrc be the contents of VSR[VRA+32].
Let byte 16 of vsrc be the value 0x00.

For each integer value i from 0 to 15, do the following.
Let sh be the value in bits 5:7 of byte element i of
VSR[VRB+32].

The contents of bits sh:sh+7 of the halfword in
byte elements i:i+l of vsrc are placed into byte
element i of VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable_Interrupt()

vsrc.byte[0] « 0x00
vsrc.byte[1:16] « VSR[VRA+32]

doi=0tol5

sh « VSR[VRB+32].byte[i].bit[5:7]

VSR[VRT+32] .byte[i] « src.byte[i:i+1].bit[8-sh:15-sh]
end

Let bytes 1:16 of vsrc be the contents of VSR[VRA+32].
Let byte 0 of vsrc be the value 0x00.

For each integer value i from O to 15, do the following.
Let sh be the value in bits 5:7 of byte element i of
| VSR[VRB+32].

The contents of bits 8-sh:15-sh of the halfword in
byte elements i:i+l of vsrc are placed into byte
element 1 of VSR[VRT+32].

Special Registers Altered:

None None
Register Data Layout for vslv & vsrv
srcl VSR[VRA+32]

src2 | byte[o] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ yte[7] ‘ yte[d] ‘ yte[9] ‘.byte[lO]‘ .byte[ll]‘ .byte[lZ]‘ .byte[13]‘ .hyte[14]‘ yte[15]

result ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ byte[7] ‘ yte[d] ‘ yte[9] ‘.byte[lO]‘ .byte[ll]‘ .byte[lZ]‘ .byte[13]‘ .hyte[14]‘ .byte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 1

12 120 127
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[ Programming Note
Assume VSRC contains a vector of packed 7-bit values, A located in bits 0:6, B located in bits 7:13, C located in
bits 14:20, etc..

# VvSRC = { ObAAAAAAAB, 0bBBBBBBCC, 0bCCCCCDDD, ObDDDDEEEE,

# ODEEEFFFFF, OBFFGGGGGG, ObGHHHHHHH, OblITINIIII,
# 0bJJJJJIKK, OBKKKKKLLL, OBLLLLMMIM, ObMMMNNNNN,
# OBNNOOOOCO, ObOPPPPPPP, 0bQQQQQQQR, ObRRRRRRSS };

Assume the following registers are pre-loaded as follows,

# VSHONTL = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x07,

# 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, Ox07 };
# VSHCNT2 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxO1,
# 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x07, Ox07 };
# VSHONT3 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
# 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02 };
# WASK = { Ox7F, Ox7F, OX7F, Ox7F, Ox7F, Ox7F, Ox7F, OX7F,
# O0x7F, OX7F, Ox7F, OX7F, Ox7F, OX7F, OX7F, OX7F };

The leftmost seven packed 7-bit values can be unpacked into byte elements 0 to 6 using vsrv with vSHCNT1.

vsrv VTWP1, VSRC, VSHCT1 # VvINPL = { ObOAAAAAAA, ObABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

# OBDEEEEEEE, ObEFFFFFFF, ObFGGGGGGG, ObHHHHHHHI,
# OBITIIT1J, ObJJJJIKKK, OBKKKKLLLL, OLLLMNNN,
# OBHNNNNNNN, OBNOOOOOOO, ObPPPPPPPQ, ObQQQQQORR };

The next seven packed 7-bit values can then be unpacked into byte elements 7 to 13 using vsrv with vVSHCNT2.

vsrv VIMP2, VTMPL, VSHCT2  # vIMP2 = { ObOAAAAAAA, ObABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

# ObDEEEEEEE, ObEFFFFFFF, ObFGGGGGGG, OhGHHHHHHH,
# ObHITTTTIT, 0b13JJJJ3J, ObJKKKKKKK, ObKLLLLLLL,
# ObLMMMMMVM,, - ObMNNNNNNN, 0b000000OP, ObPPPPPPQQ };

The next two packed 7-bit values can then be unpacked into byte elements 14 to 15 using vsrv with vSHCNT3.

vsrv VIWP3, VTMP2, VSHCT3  # vIMP3 = { ObOAAAAAAA, ObABBBBBBB, 0bBCCCCCCC, 0bCDDDDDDD,

# ObDEEEEEEE, ObEFFFFFFF, ObFGGGGGGG, OhGHHHHHHH,
# ObHITITTIT, 0b1JJJJJIJ, ObJKKKKKKK, ObKLLLLLLL,
# OBLMMMMMIM,, - ObMNNNNNNN,  0bNOO0000O, ObOPPPPPPP };

The most-significant bit in each byte element is masked off to produce a vector of sixteen unsigned byte
elements.

vand VTWP4, VTHP3, VMASK # vIMP4 = { ObOAAAAAAA, 0b0BBBBBBB, 0bOCCCCCCC, 0bODDDDDDD,

# ObOEEEEEEE, ObOFFFFFFF, ObOGGGGGGG, OhOHHHHHHH,
# ObOITTTTIT, 0b0JJJJIII, ObOKKKKKKK, OBOLLLLLLL,
# ObOMMMMMVIM,, - ObONNNNNNN, 0b00000000, ObOPPPPPPP };

The vector of sixteen unsigned byte elements can be further unpacked to two vectors of eight unsigned halfword
elements using a vupkhsb and a vupklsb.

vupkhsb  vIMP5, vTHP4 # VTIPS = { 0b00000000_OAAAAAAA, 0b00000000_OBBBBBBB, ... };
vupklsb  vIMP6, vTHP4 # VIMP6 = { 0b00000000_OI1TITIE, 0b00000000_0JJ33JdJ, ... };

The resultant two vectors of eight unsigned halfword elements can then be further unpacked to four vectors of
four unsigned word elements using two vupkhsh and two vupklsh instructions.

vupkhsh VRESULTO, vTNPS # VRESULTO = { 0b00000000_00000000_00000000_OARAAAAA, ... };
vupklsh VRESULTL, vTNPS # VRESULTL = { 0b00000000_00000000_00000000_OEEEEEEE, ... };
vupkhsh VRESULT2, vTNPG # VRESULT2 = { 0b00000000_00000000_00000000 01T, ... };
vupklsh VRESULT3, vTNP6 # VRESULT3 = { 0b00000000_00000000_00000000_OMMIMMMM, ... };
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6.8.8 Vector Extract Element Instructions

6.8.8.1 Vector Extract Element to VSR using Immediate-specified Index Instructions

Vector Extract Unsigned Byte to VSR using
immediate-specified index VX-form

Vector Extract Unsigned Halfword to VSR
using immediate-specified index VX-form

vextractub VRT,VRB,UIM vextractuh VRT,VRB,UIM
4 VRT |/| UM | VRB 525 4 VRT |/| UM | VRB 589
0 6 11|12 16 21 kil 0 6 1112 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
src « VSR[VRB+32].byte[UIM]

VSR[VRT+32].dword[0] « EXTZ64(src)
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

The contents of byte element UIM of VSR[VRB+32] are
placed into bits 56:63 of VSR[VRT+32]. The contents of
the remaining byte elements of VSR[VRT+32] are set to
0.

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()
src « VSR[VRB+32].byte[UIM:UIM+1]

VSR[VRT+32].dword[0] « EXTZ64(src)
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+1 of
VSR[VRB+32] are placed into halfword element 3 of
VSR[VRT+32]. The contents of the remaining halfword
elements of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 14, the results are
undefined.

Special Registers Altered:

None
Register Data Layout for vextractub
src ‘ VSR[VRB+32] ‘
result ‘ VSR[VRT+32]..dword[0] 0x0000_0000_0000_0000
0 63 127
Register Data Layout for vextractuh
src ‘ VSR[VRB+32] ‘
result ‘ VSR[VRT+32]..dword[0] 0x0000_0000_0000_0000
0 63 127
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Vector Extract Unsigned Word to VSR using
immediate-specified index VX-form

Vector Extract Doubleword to VSR using
immediate-specified index VX-form

vextractuw VRT,VRB,UIM vextractd VRT,VRB,UIM
4 VRT |/| UM VRB 653 4 VRT |/| UIM VRB 717
0 6 112 16 21 31 0 6 112 16 21 3

if MSR.VEC=0 then Vector_Unavailable()
src « VSR[VRB+32].byte[UIM:UIN+3]

VSR[VRT+32].dword[0] « EXTZ64(src)
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+3 of
VSR[VRB+32] are placed into word element 1 of
VSR[VRT+32]. The contents of the remaining word
elements of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 12, the results are
undefined.

if MSR.VEC=0 then Vector_Unavailable()
src « VSR[VRB+32].byte[UIM:UIM+7]

VSR[VRT+32] .dword[0] « src
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

The contents of byte elements UIM:UIM+7 of
VSR[VRB+32] are placed into VSR[VRT+32]. The contents
of doubleword element 1 of VSR[VRT+32] are set to 0.

If the value of UIM is greater than 8, the results are
undefined.

Special Registers Altered:

Special Registers Altered: None
None
Register Data Layout for vextractuw
src ‘ VSR[VRB+32] ‘
result ‘ VSR[VRT+32].. dword[0] 0x0000_0000_0000_0000
0 63 127
Register Data Layout for vextractd
src ‘ VSR[VRB+32] ‘
result ‘ VSR[VRT+32]..dword[0] 0x0000_0000_0000_0000
0 63 127
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6.8.8.2 Vector Extract Element to GPR using GPR-specified Index Instructions

Vector Extract Unsigned Byte to GPR using
GPR-specified Left-Index VX-form

vextublx

RT,RA,VRB

Vector Extract Unsigned Byte to GPR using
GPR-specified Right-Index VX-form

vextubrx RT,RA,VRB

4

6

RT

u

RA

16

VRB 1549 4 RT RA VRB 1805
21 3] 0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
GPR[RT] « EXTZ64(VSR[VRB+32].byte[index]) | GPRIRT] « EXTZ64(VSR[VRB+32].byte[15-index])

Let index be the contents of bits 60:63 of GPR[RA].

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte element index of VSR[VRB+32] are | The contents of byte element 15-index of VSR[VRB+32]

placed into bits 56:63 of GPR[RT].
The contents of bits 0:55 of GPR[RT] are set to 0.

Special Registers Altered:

are placed into bits 56:63 of GPR[RT].
The contents of bits 0:55 of GPR[RT] are set to 0.

Special Registers Altered:

None None
Register Data Layout for vextublx & vextubrx
srcl GPR[RA] ‘
src2 VSR[VRB+32]
result GPR[RT] ‘
0 63 127
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Vector Extract Unsigned Halfword to GPR
using GPR-specified Left-Index VX-form

vextuhlx RT,RA,VRB

Vector Extract Unsigned Halfword to GPR
using GPR-specified Right-Index VX-form

vextuhrx RT,RA,VRB

4 RT RA VRB
0 6 n 16 21

1613

31

4 RT RA VRB
0 6 u 16 21

1869

31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
GPR[RT] « EXTZ64(VSR[VRB+32].byte[index:index+1])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements
VSR[VRB+32] are placed into bits 48:63 of GPR[RT].

The contents of bits 0:47 of GPR[RT] are set to 0.

index:index+l of

If the value of index is greater than 14, the results are

undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
GPR[RT] « EXTZ64(VSR[VRB+32].byte[14-index:15-index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements 14-index:15-index of

VSR[VRB+32] are placed into bits 48:63 of GPR[RT].

The contents of bits 0:47 of GPR[RT] are set to 0.

If the value of index is greater than 14, the results are

undefined.

Special Registers Altered:

None None
Register Data Layout for vextuhlx & vextuhrx
srcl GPR[RA] ‘
src2 VSR[VRB+32]
result GPR[RT] ‘
0 63 127
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Vector Extract Unsigned Word to GPR using
GPR-specified Left-Index VX-form

vextuwlx RT,RA,VRB

Vector Extract Unsigned Word to GPR using
GPR-specified Right-Index VX-form

vextuwrx RT,RA,VRB

4 RT RA VRB 1677

0 6 u 16 21 31

4 RT RA VRB 1933
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
GPR[RT] « EXTZ64(VSR[VRB+32].byte[index: index+3])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements index:index+3 of
VSR[VRB+32] are placed into bits 32:63 of GPR[RT].

The contents of bits 0:31 of GPR[RT] are set to 0.

If the value of index is greater than 12, the results are
undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
| GPR[RT] « EXTZ64(VSR[VRB+32].byte[12-index:15-index])

Let index be the contents of bits 60:63 of GPR[RA].

The contents of byte elements index:index+3 of
| VSR[VRB+32] are placed into bits 32:63 of GPR[RT].

The contents of bits 0:31 of GPR[RT] are set to 0.

If the value of index is greater than 12, the results are
undefined.

Special Registers Altered:

None None
Register Data Layout for vextuwlx & vextuwrx
srcl GPR[RA] ‘
src2 VSR[VRB+32]
result GPR[RT] ‘
0 63 127
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| 6.8.8.3 Vector Extract Double Element to VSR Using GPR-specified Index Instructions

Vector Extract Double Unsigned Byte to VSR
using GPR-specified Left-Index VA-form

vextdubvix VRT,VRA,VRB,RC

Vector Extract Double Unsigned Byte to VSR
using GPR-specified Right-Index VA-form

vextdubvrx VRT,VRA,VRB,RC

4 VRT VRA VRB RC 24
0 6 u 16 21 26 kit

4 VRT VRA VRB RC 25
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32] .dword[0] « EXTZ64(vsrc.byte[index])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte element index of vsrc are
zero-extended and placed into doubleword O of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32].dword[0] « EXTZ64(vsrc.byte[31-index])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte element 31-index of vsrc are
zero-extended and placed into doubleword O of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

Special Registers Altered:

None None
Register Data Layout for vextdubvIx & vextdubvrx
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 GPR[RC] ‘
result VSR[VRT+32] .dword[0] ‘ 0x0000_0000_0000_0000
0 64 127
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Vector Extract Double Unsigned Halfword to
VSR using GPR-specified Left-Index VA-form

vextduhvix VRT,VRA,VRB,RC

Vector Extract Double Unsigned Halfword to
VSR using GPR-specified Right-Index VA-form

vextduhvrx VRT,VRA,VRB,RC

4 VRT VRA VRB RC 26
0 6 u 16 21 26 3]

4 VRT VRA VRB RC 27
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32] .dword[0] « EXTZ64(vsrc.byte[index:index+1])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+l of vsrc
are zero-extended and placed into doubleword O of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 30, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
vsrc.qword[0] « VSR[VRA+32]
vsrc.qword[1] « VSR[VRB+32]

VSR[VRT+32] .dword[0] « EXTZ64(vsrc.byte[30-index:31-index])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let vsrc be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 30-index:31-index of
vsrc are zero-extended and placed into doubleword 0
of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 30, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vextduhvix & vextduhvrx
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 GPR[RC] ‘
result VSR[VRT+32] .dword[0] ‘ 0x0000_0000_0000_0000
0 64 127
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Vector Extract Double Unsigned Word to VSR
using GPR-specified Left-Index VA-form

vextduwvix VRT,VRA,VRB,RC

Vector Extract Double Unsigned Word to VSR
using GPR-specified Right-Index VA-form

vextduwvrx VRT,VRA,VRB,RC

4 VRT VRA VRB RC 28
0 6 u 16 21 26 kit

4 VRT VRA VRB RC 29
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
src.qword[0] « VSR[VRA+32]
src.qword[1] « VSR[VRB+32]

VSR[VRT+32] .dword[0] « EXTZ64(src.byte[index: index+3])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+3 of src
are zero-extended and placed into doubleword O of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 28, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
src.qword[0] « VSR[VRA+32]
src.qword[1] « VSR[VRB+32]

VSR[VRT+32] .dword[0] « EXTZ64(src.byte[28-index:31-index])
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 28-index:31-index of
src are zero-extended and placed into doubleword 0 of
VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 28, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vextduwvIx & vextduwvrx
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 GPR[RC] ‘
result VSR[VRT+32] .dword[0] ‘ 0x0000_0000_0000_0000
0 64 127
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Vector Extract Double Doubleword to VSR
using GPR-specified Left-Index VA-form

vextddvix VRT,VRA,VRB,RC

Vector Extract Double Doubleword to VSR
using GPR-specified Right-Index VA-form

vextddvrx VRT,VRA,VRB,RC

30
3]

VRA RC

u

VRB
16

4 VRT
0 6

21 26

VRA RC 31

u

VRB
16

4 VRT
0 6

21 26 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
src.qword[0] « VSR[VRA+32]
src.qword[1] « VSR[VRB+32]

VSR[VRT+32].dword[0] « src.byte[index: index+7]
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements index:index+7 of src
are placed into doubleword 0 of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 24, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RC].bit[59:63]
src.qword[0] « VSR[VRA+32]
src.qword[1] « VSR[VRB+32]

VSR[VRT+32].dword[0] « src.byte[24-index:31-index]
VSR[VRT+32] .dword[1] « 0x0000_0000_0000_0000

Let index be the contents of bits 59:63 of GPR[RC].

Let src be the concatenation of the contents of
VSR[VRA+32] and VSR[VRB+32].

The contents of byte elements 24-index:31-index of
src are placed into doubleword O of VSR[VRT+32].

The contents of doubleword 1 of VSR[VRT+32] are set to
0.

If index is greater than 24, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vextddvix & vextddvrx
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 GPR[RC] ‘
result VSR[VRT+32] .dword[0] ‘ 0x0000_0000_0000_0000
0 64 127
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6.8.9 Vector Insert Element Instructions

6.8.9.1 Vector Insert Element from VSR Using Immediate-specified Index Instructions

Vector Insert Byte from VSR using
immediate-specified index VX-form

Vector Insert Halfword from VSR using
immediate-specified index VX-form

vinsertb VRT,VRB,UIM vinserth VRT,VRB,UIM
4 VRT |/| UM | VRB 781 4 VRT |/| UM | VRB 845
0 6 11|12 16 21 kil 0 6 1112 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
VSR[VRT+32] .byte[UIM] « VSR[VRB+32].byte[7]

The contents of byte element 7 of VSR[VRB+32] are
placed into byte element UIM of VSR[VRT+32]. The
contents of the remaining byte elements of
VSR[VRT+32] are not modified.

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()
VSR[VRT+32] .byte[UIM:UIN+1] « VSR[VRB+32].hword[3]

The contents of halfword element 3 of VSR[VRB+32] are
placed into byte elements UIM:UIM+1 of VSR[VRT+32].
The contents of the remaining byte elements of
VSR[VRT+32] are not modified.

If the value of UIM is greater than 14, the results are
undefined.

Special Registers Altered:

None

Register Data Layout for vinsertb
src ‘ unused ‘.byte[?]‘ unused ‘
result ‘ VSR[VRT+32] ‘
0 64 127

Register Data Layout for vinsertb
src ‘ unused VSR[VRB+32]..hword[ 1] unused ‘
result ‘ VSR[VRT+32] ‘
48 64 127
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Vector Insert Word from VSR using
immediate-specified index VX-form

Vector Insert Doubleword from VSR using
immediate-specified index VX-form

vinsertw VRT,VRB,UIM vinsertd VRT,VRB,UIM
4 VRT |/| UM VRB 909 4 VRT |/| UIM VRB 973
0 6 11)12 16 21 kil 0 6 11|12 16 21 31

if MSR.VEC=0 then Vector_Unavailable()
VSR[VRT+32] .byte[UIM:UIM+3] « VSR[VRB+32].word[1]

The contents of word element 1 of VSR[VRB+32] are
placed into byte elements UIM:UIM+3 of VSR[VRT+32].
The contents of the remaining byte elements of
VSR[VRT+32] are not modified.

If the value of UIM is greater than 12, the results are
undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()
VSR[VRT+32] .byte[UIM:UIM+7] « VSR[VRB+32].dword[0]

The contents of doubleword element 0 of VSR[VRB+32]
are placed into byte elements UIM:UIM+7 of
VSR[VRT+32]. The contents of the remaining byte
elements of VSR[VRT+32] are not modified.

If the value of UIM is greater than 8, the results are
undefined.

Special Registers Altered:

None None
Register Data Layout for vinsertw
src ‘ unused VSR[VRB+32] .word[1] unused ‘
result ‘ VSR[VRT+32] ‘
0 32 64 127
Register Data Layout for vinsertd
src ‘ VSR[VRB+32] .dword[0] unused ‘
result ‘ VSR[VRT+32] ‘
0 64 127
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| 6.8.9.2 Vector Insert Element from GPR Using GPR-specified Index Instructions

Vector Insert Byte from GPR using
GPR-specified Left-Index VX-form

vinsblx VRT,RARB

Vector Insert Byte from GPR using
GPR-specified Right-Index VX-form

vinsbrx VRT,RARB

4 VRT RA RB 527
0 6 u 16 21 kit

4 VRT RA RB 783
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32] .byte[index] « GPR[RB].bit[56:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of GPR[RB] are placed into
byte element index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32].byte[15-index] « GPR[RB].bit[56:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of GPR[RB] are placed into
byte element 15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:

None None
Register Data Layout for vinshlx & vinshrx
srcl GPR[RA]
src2 unused .byte[7]
result VSR[VRT+32]
0 56 64 127

Chapter 6. Vector Facility 315



Version 3.1

Vector Insert Halfword from GPR using
GPR-specified Left-Index VX-form

vinshlx VRT,RARB

Vector Insert Halfword from GPR using
GPR-specified Right-Index VX-form

vinshrx VRT,RARB

4 VRT RA RB 591

0 6 u 16 21 31

4 VRT RA RB 847
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32] .byte[index: index+1] « GPR[RB].bit[48:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of GPR[RB] are placed into
byte elements index: index+1 of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32] .byte[14-index:15-index] « GPR[RB].bit[48:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of GPR[RB] are placed into
byte elements 14-index:15-index of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinshlx & vinshrx
srcl GPR[RA]
src2 unused GPR[RB] - hword[3]
result VSR[VRT+32]
0 48 64 127
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Vector Insert Word from GPR using
GPR-specified Left-Index VX-form

vinswix VRT,RARB

Vector Insert Word from GPR using
GPR-specified Right-Index VX-form

VinsSwrx VRT,RARB

4 VRT RA RB 655

0 6 u 16 21 31

4 VRT RA RB 911
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32] .byte[index:index+3] « GPR[RB].bit[32:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of GPR[RB] are placed into
byte elements index: index+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]

VSR[VRT+32] .byte[12-index:15-index] « GPR[RB].bit[32:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of GPR[RB] are placed into
byte elements 12-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinswlx & vinswrx
srcl GPR[RA]
src2 unused GPR[RB] -word[1]
result VSR[VRT+32]
0 32 64 127
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Vector Insert Doubleword from GPR using
GPR-specified Left-Index VX-form

vinsdIx VRT,RARB

Vector Insert Doubleword from GPR using
GPR-specified Right-Index VX-form

vinsdrx VRT,RARB

4 VRT RA RB 719

0 6 u 16 21 31

4 VRT RA RB 975
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32] .byte[index:index+7] « GPR[RB]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of GPR[RB] are placed into byte elements
index: index+7 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 8, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32] .byte[8-index:15-index] « GPR[RB]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of GPR[RB] are placed into byte elements
8-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 8, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinsdlx & vinsdrx
srcl GPR[RA]
src2 GPR[RB]
result VSR[VRT+32]
0 64 127
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| 6.8.9.3 Vector Insert Element from GPR Using Immediate-specified Index Instructions

Vector Insert Word from GPR using
immediate-specified index VX-form

Vector Insert Doubleword from GPR using
immediate-specified index VX-form

vinsw VRT,RB,UIM vinsd VRT,RB,UIM
4 VRT |/| UM RB 207 4 VRT |/| UIM RB 463
0 6 112 16 21 kil 0 6 11|12 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

VSRVRT+32].byte[UIN:UII+3] « GPR[RB].bit[32:63]

The contents of bits 32:63 of GPR[RB] are placed into
byte elements UIM:UIM+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If UIM is greater than 12, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

VSR[VRT+32].byte[UIN:UIM+7] « GPRIRB]

The contents of GPR[RB] are placed into byte elements
UIM:UIM+7 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If UIM is greater than 8, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinsw
src ‘ unused GPR[RB] .word[1]
result ‘ VSR[VRT+32]
0 32 64 127
Register Data Layout for vinsd
src ‘ GPR[RB]
result ‘ VSR[VRT+32]
0 64 127
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6.8.9.4 Vector Insert Element from VSR Using GPR-specified Index Instructions

Vector Insert Byte from VSR using
GPR-specified Left-Index VX-form

vinsbvix VRT,RA,VRB

Vector Insert Byte from VSR using
GPR-specified Right-Index VX-form

vinsbvrx VRT,RA,VRB

4 VRT RA VRB 15
0 6 u 16 21 3]

4 VRT RA VRB 271
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32].byte[index] « VSR[VRB+32].bit[56:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of VSR[VRB+32] are placed
into byte element index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()
index « GPR[RA].bit[60:63]
VSR[VRT+32] .byte[15-index] « VSR[VRB+32].bit[56:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 56:63 of VSR[VRB+32] are placed
into byte element 15-index of VSR[VRT+32].

All  other
modified.

byte elements of VSR[VRT+32] are not

Special Registers Altered:

None None
Register Data Layout for vinsbvix & vinsbvrx
srcl GPR[RA]
src2 unused Jyte[7] unused ‘
result VSR[VRT+32] ‘
0 56 64 127
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Vector Insert Halfword from VSR using
GPR-specified Left-Index VX-form

vinshvix VRT,RA,VRB

Vector Insert Halfword from VSR using
GPR-specified Right-Index VX-form

vinshvrx VRT,RA,VRB

4 VRT RA VRB 79
0 6 u 16 21 kit

4 VRT RA VRB 335
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32] .byte[index: index+1] « VSR[VRB+32].bit[48:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of VSR[VRB+32] are placed
into byte elements index: index+1 of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
src.byte[0:15] « 0

VSR[VRT+32] .byte[14-index:15-index] « VSR[VRB+32].bit[48:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 48:63 of VSR[VRB+32] are placed
into byte elements 14-index:15-index of VSR[VRT+32].

If index is greater than 14, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinshvix & vinshvrx
srcl GPR[RA]
src2 unused VSR[VRB+32]..hword[ 1] unused ‘
result VSR[VRT+32] ‘
0 48 64 127
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Vector Insert Word from VSR using
GPR-specified Left-Index VX-form

vinswvix VRT,RA,VRB

Vector Insert Word from VSR using
GPR-specified Right-Index VX-form

VINSWvIx VRT,RA,VRB

4 VRT RA VRB 143

0 6 u 16 21 31

4 VRT RA VRB 399
0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32].byte[index: index+3] « VSR[VRB+32].bit[32:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of VSR[VRB+32] are placed
into byte elements index: index+3 of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

index « GPR[RA].bit[60:63]
VSR[VRT+32] .byte[12-index:15-index] « VSR[VRB+32].bit[32:63]
Let index be the contents of bits 60:63 of GPR[RA].

The contents of bits 32:63 of VSR[VRB+32] are placed
into byte elements 12-index:15-index of VSR[VRT+32].

All other byte elements of VSR[VRT+32] are not
modified.

If index is greater than 12, the result is undefined.

Special Registers Altered:

None None
Register Data Layout for vinswvIx & vinswvrx
srcl GPR[RA]
src2 unused VSR[VRB+32] .word[1] unused ‘
result VSR[VRT+32] ‘
0 32 64 127
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6.9 Vector Integer Instructions

6.9.1 Vector Integer Arithmetic Instructions

6.9.1.1 Vector Integer Add Instructions

Vector Add & Write Carry-out Unsigned Word
VX-form

vaddcuw VRT,VRA,VRB

4 VRT VRA VRB 384
0 6 un 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].word[1])
src2 « EXTZ(VSR[VRB+32].word[i])

VSR[VRT+32] .word[i] « CHOP32((srcl + src2) >> 32)
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VSR[VRA+32] is added to the unsigned integer
value in word element i in VSR[VRB+32]. The carry
out of the 32-bit sum is zero-extended to 32 bits
and placed into word element i of VSR[VRT+32].

Special Registers Altered:
None

Vector Add Signed Byte Saturate VX-form

vaddshs VRT,VRA,VRB

4 VRT VRA VRB 768

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to15
srcl « EXTS(VSR[VRA+32].byte[i])
src2 « EXTS(VSR[VRB+32].byte[1])

VSR[VRT+32] .byte[i] « si8_CLAMP(srcl + src2)
end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element 1 of
VSR[VRA+32] is added to the signed integer value
in byte element i of VSR[VRB+32].

— If the sum is greater than 27-1 the result
saturates to 2’-1 and SAT is set to 1.

— If the sum is less than -27 the result saturates
to -27 and SAT is set to 1.

The result is placed into byte element i1 of
VSR[VRT+32].

Special Registers Altered:
SAT

Register Data Layout for vaddcuw

srcl VSR[VRA+32] .word[0]
src2 VSR[VRB+32] .word[0]

VSR[VRA+32] .word[1]
VSR[VRB+32] .word[1]

VSR[VRA+32] .word[2]
VSR[VRB+32] .word[2]

VSR[VRA+32] .word[3]
VSR[VRB+32] .word[3]

VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]
0 32 64 48 127

result

Register Data Layout for vaddsbs

srcl | byte[0] | byte[t] | .byte[2] | .byte[3] | .byte[] | .byte[5] | .byte[s] | .byte[7] | .byte[8] | .byte[] |.byte[10]|.byte[1t]|.byte[12]|.byte[13]| .byte[14]| .byte[15]
src2 | byte0] | byte[t] | .byte[2] | .byte[3] | .byte[] | .byte[5] | .byte[s] | .byte[7] | .byte[8] | .byte[] |.byte[10]|.byte[1t]|.byte[12]|.byte[13]|.byte[14]| .byte[15]

result ‘ byte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ ytele] ‘ yte[7] ‘ yteld] ‘ yte[9] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
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Vector Add Signed Halfword Saturate VX-form Vector Add Signed Word Saturate VX-form

vaddshs VRT,VRA,VRB vaddsws VRT,VRA,VRB

4 VRT 832 896

0 6

VRA
un

VRB
16

4
31 0 6

VRT VRA

u

VRB

21 16 21 31

if MSR.VEC=0 then Vector_Unavailable() if MSR.VEC=0 then Vector_Unavailable()
doi=0to3

srcl « EXTS(VSR[VRA].word[i])

src2 « EXTS(VSR[VRB].word[i])

doi=0to7
srcl « EXTS(VSR[VRA+32].hword[i])
src2 « EXTS(VSR[VRB+32].hword[1])

VSR[VRT+32] .hword[i] « sil6_CLAMP(srcl + src2)
end

VSR[VRT+32] .word[i] « si32_CLAMP(srcl + src2)
end

For each integer value i from 0 to 7, do the following.
The signed integer value in halfword element i of
VSR[VRA+32] is added to the signed integer value
in halfword element i of VSR[VRB+32].

For each integer value 1 from 0 to 3, do the following.
The signed integer value in word element i of
VSR[VRA+32] is added to the signed integer value
in word element 1 of VSR[VRB+32].

— If the sum is greater than 21°-1 the result — If the sum is greater than 231-1 the result

saturates to 21°-1 and SAT is set to 1. | saturates to 231-1 and SAT is set to 1.
— If the sum is less than -21° the result — If the sum is less than -23! the result
saturates to -21° and SAT is set to 1. | saturates to -23% and SAT is set to 1.

The result is placed into halfword element i of The result is placed into word element i of

VSR[VRT+32]. | VSR[VRT+32].
Special Registers Altered: Special Registers Altered:
SAT SAT
Register Data Layout for vaddshs
srcl | VSR[VRA#32].hword[O] | VSR[VRA¢32].mword[1] | VSR[VRA+32].hword[2] | VSR[VRAt32].word[3] | VSRVRA#32].hword[4] | VSR[VRA¢32]. word[5] | VSR[VRA¥32]. mword[6] | VSR[VRA+32]. hword[7]
Src2 | VSR[VRB+32].hword[O] | VSR[VRB+32].hword[L] | VSR[VRB+32].hword[2] | VSR[VRB+32].hword[3] | VSR[VRB+32].hword[4] | VSR[VRB+32]. word[5] | VSR[VRB+32]. miord[6] | VSR[VRB+32]. hword[7]

result |VSR[VRT+32].hword[0] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32]tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0 16 32 48 64 80 96 112 127

Register Data Layout for vaddsws

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1] VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] VSR[VRB+32] -word[2] VSR[VRB+32] .word[3]

result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
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Vector Add Unsigned Byte Modulo VX-form

Vector Add Unsigned Halfword Modulo

VX-form
vaddubm VRT,VRA,VRB
vadduhm VRT,VRA,VRB
4 VRT VRA VRB 0
0 6 1 16 21 31 4 VRT VRA VRB 64
_ . 0 6 1 16 21 31
if MSR.VEC=0 then Vector_Unavailable()
if MSR.VEC=0 then Vector_Unavailable()
doi=0tol15
srcl « EXTZ(VSR[VRA+32].byte[i]) doi=0to7
src2 « EXTZ(VSR[VRB+32].byte[i]) srcl « EXTZ(VSR[VRA+32].hword[i])
src2 « EXTZ(VSR[VRB+32].hword[i])
VSR[VRT+32] .byte[i] « CHOP8(srcl + src2)
end VSR[VRT+32] .hword[i] « CHOP16(srcl + src2)
end
For each integer value i from 0 to 15, do the following.
The integer value in byte element i of VSR[VRA+32] For each integer value i from 0 to 7, do the following.
is added to the integer value in byte element i of The integer value in halfword element i of

VSR[VRB+32].

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

VSR[VRA+32] is added to the integer value in
halfword element i of VSR[VRB+32].

The low-order 16 bits of the result are placed into
halfword element i of VSR[VRT+32].

Special Registers Altered:

None
Programming Note '
vaddubm can be used for unsigned or Programming Note
signed-integers. vadduhm can be wused for unsigned or
sighed-integers.
Register Data Layout for vaddubm
srcl | .byte[0] | .byte[L] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10]|.byte[11]| .byte[12]| .byte[L3]] .byte[14]| .byte[15]
src2 | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10]|.byte[11]| .byte[12]{ .byte[L3]].byte[14]| .byte[15]

result ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ yte[d] ‘ byte[7] ‘ yte[d] ‘ byte[9] ‘.byte[lO]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[14]‘ .byte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 11

2 120 127

Register Data Layout for vadduhm

srcl

src2

result |VSR[VRT+32].hword[] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32].tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0 32

VR[VRA¥32].ord(0]

VR[VRA¥32].hord[1]

VR[RA32].hvord[2]

VRIVRA#32].hvord 3]

VSRIVRE32].hrd 4]

VR[RA#32].hord(5]

VRIVRA#32].hord[s]

VR[VRA¥32].hiord[7]

VSR[VRB32].hword[0]

VSR[VRB+32].hword[1]

VSR[VRB+32].hword[2]

VSR[VRB+32]..hword[3]

VSR[VRB+32]. hword[4]

VSR[VRB32] . word[5]

VSR[VRBH32]. hord[6]

VSR[VRB+32].hword[7]

16

48

64

80

96

112 127
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Vector Add Unsigned Word Modulo VX-form Vector Add Unsigned Doubleword Modulo
VX-form
vadduwm VRT,VRA,VRB
vaddudm VRT,VRA,VRB
4 VRT | VRA | VRB 128
0 6 1 16 21 31 4 VRT VRA VRB 192
0 6 i 16 21 3l

if MSR.VEC=0 then Vector_Unavailable()
if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].word[i]) doi=0tol
src2 « EXTZ(VSR[VRB+32].word[i]) srcl « EXTZ(VSR[VRA+32].dword[i])

src2 « EXTZ(VSR[VRB+32].dword[i])
VSR[VRT+32].word[i] « CHOP32(srcl + src2)

end VSR[VRT+32] .dword[i] « CHOP64(srcl + src2)
end
For each integer value i from 0 to 3, do the following.
The integer value in word element i of For each integer value i from 0 to 1, do the following.
VSR[VRA+32] is added to the integer value in word The integer value in doubleword element i of
element i of VSR[VRB+32]. VSR[VRB+32] is added to the integer value in

doubleword element i of VSR[VRA+32].
The low-order 32 bits of the result are placed into

word element i of VSR[VRT+32]. The low-order 64 bits of the result are placed into
| doubleword el ement i of VSR[VRT+32].
Special Registers Altered:
None Special Registers Altered:
None

Programming Note

vadduwm can be used for unsigned or Programming Note
signed-integers. vaddudm can be used for signed or unsigned inte-

gers.

Register Data Layout for vadduwm

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1] VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]
src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] VSR[VRB+32] .word[2] VSR[VRB+32] .word[3]

result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127

Register Data Layout for vaddudm

srcl VSR[VRA+32] .dword[0] VSR[VRA+32] .dword[1]

src2 VSR[VRB+32] .dword[0] VSR[VRB+32] .dword[1]

result VSR[VRT+32] .dword[0] VSR[VRT+32] .dword[1]
0 64 127
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Vector Add Unsigned Byte Saturate VX-form

Vector Add Unsigned Halfword Saturate

VX-form
vaddubs VRT,VRA,VRB
vadduhs VRT,VRA,VRB
4 VRT VRA VRB 512
0 6 n 16 21 31 4 VRT VRA VRB 576
0 6 il 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to15
srcl « EXTZ(VSR[VRA+32].byte[i])
src2 « EXTZ(VSR[VRB+32].byte[i])

VSR[VRT+32] .byte[i] « ui8 CLAMP(srcl + src2)
end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element i of
VSR[VRA+32] is added to the unsigned integer
value in byte element i of VSR[VRB+32].

— If the sum is greater than 28-1 the result
saturates to 28-1 and SAT is set to 1.

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7

srcl « EXTZ(VSR[VRA+32].hword[i])
src2 « EXTZ(VSR[VRB+32].hword[i])

VSR[VRT+32] .hword[i] « uil6_CLAMP(srcl + src2)

end

For each integer value 1 from 0 to 7, do the following.

The unsigned integer value in halfword element i
of VSR[VRA+32] is added to the unsigned integer
value in halfword element i of VSR[VRB+32].

— If the sum is greater than 2%6-1 the result

| saturates to 216-1 and SAT is set to 1.
The result is placed into byte element i of
VSR[VRT+32]. The result is placed into halfword element i of
| VSR[VRT+32].
Special Registers Altered:
SAT Special Registers Altered:
SAT
Register Data Layout for vaddubs
srcl | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10]|.byte[11]| .byte[12]| .byte[13]| .byte[14]| .byte[15]
src2 | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10].byte[11]| .byte[12]| .byte[13]| .byte[14]| .byte[15]

result ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ yte[d] ‘ byte[7] ‘ yte[d] ‘ byte[9] ‘.byte[lO]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[14]‘ .byte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 11

2 120 127

Register Data Layout for vadduhs

srcl | VSR[VRA+32].hword]0] | VSR[VRA32] .hword[1] | VSR[VRA32] .hword[2] | VSR[VRA32] .hword[3]

VSRIVRA#32].hrd4]

VR[RA#32].hord(5]

VRIVRA#32].hord[s]

VR[VRA¥32].hiord[7]

src2 | VSR[VRB+32].hword[0] | VSR[VRB+32] .hword[L] | VSR[VRB+32] .hword[2] | VSR[VRB+32] .hword[3]

VSR[VRB+32]. hword[4]

VSR[VRB32] . word[5]

VSR[VRBH32]. hord[6]

VSR[VRB+32].hword[7]

result |VSR[VRT+32].hword[0] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VAT+32].hword[3] | VSR[VRT+32].tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
0 96

16 32 48

64

80

112 127
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Vector Add Unsigned Word Saturate VX-form
vadduws VRT,VRA,VRB

4 VRT VRA VRB 640
0 6 un 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].word[i])
src2 « EXTZ(VSR[VRB+32].word[i])

VSR[VRT+32] .word[i] « ui32_CLAMP(srcl + src2)
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i of
VSR[VRA+32] is added to the unsigned integer
value in word element i of VSR[VRB+32].

— If the sum is greater than 2%2-1 the result
saturates to 2%2-1 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Register Data Layout for vadduws

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2]

VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1]

VSR[VRB+32] .word[2]

VSR[VRB+32] .word[3]

result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1]

VSR[VRT+32] .word[2]

VSR[VRT+32] .word[3]

0 32

64

48

127
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Vector Add Unsigned Quadword Modulo
VX-form

vaddugm VRT,VRA,VRB

Vector Add Extended Unsigned Quadword
Modulo VA-form

vaddeugm VRT,VRA,VRB,VRC

4 VRT VRA VRB 256

0 6 u 16 21 31

4 VRT VRA VRB VRC 60
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(VSR[VRB+32])

VSR[VRT+32] « CHOP128(srcl + src2)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl and src2 are
placed into VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(VSR[VRB+32])
cin « EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] « CHOP128(srcl + src2 + cin)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl, src2, and cin
| are placed into VSR[VRT+32].

None
Special Registers Altered:
None
Register Data Layout for vaddugm
srcl VSR[VRA+32]
src2 VSR[VRB+32]
result VSR[VRT+32]
0 127
Register Data Layout for vaddeugm
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127
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Vector Add & write Carry-out Unsigned
Quadword VX-form

vaddcuq VRT,VRA,VRB

Vector Add Extended & write Carry-out
Unsigned Quadword VA-form

vaddecuq VRT,VRA,VRB,VRC

4 VRT VRA VRB 320

0 6 u 16 21 31

4 VRT VRA VRB VRC 61
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])

src2 « EXTZ(VSR[VRB+32])

sum « EXTZ(srcl) + EXTZ(src2)

VSR[VRT+32] « EXTZ128((srcl + src2) >> 128)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl and src2 is placed
into VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(VSR[VRB+32])
cin « EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] « EXTZ128((srcl + src2 + cin) >> 128)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl, src2, and cin are
| placed into VSR[VRT+32].

None Special Registers Altered:
None
Register Data Layout for vaddcuq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127
Register Data Layout for vaddecuq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127

—— Programming Note

The Vector Add Unsigned Quadword instructions support efficient wide-integer addition. The following code
sequence can be used to implement a 512-bit signed or unsigned add operation.

vaddugm vS3,vA3,vB3 # bits 384:511 of sum

vaddcuq vC3,VA3,VB3 # carry out of bit 384 of sum
vaddeugm vS2,vA2,vB2,vC3  # bits 256:383 of sum
vaddecuq vC2,vA2,vB2,vC3  # carry out of bit 256 of sum
vaddeugm vS1,vAl,vB1,vC2  # bits 128:255 of sum
vaddecuq vC1,vAl,vB1,vC2  # carry out of bit 128 of sum
vaddeugm vS0,vAO,vBO,vC1  # bits 0:127 of sum
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6.9.1.2 Vector Integer Subtract Instructions

Vector Subtract & Write Carry-Out Unsigned
Word VX-form

vsubcuw VRT,VRA,VRB

4 VRT VRA VRB 1408
0 6 1u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].word[i])
src2 « EXTZ(-VSR[VRB+32].word[i])

VSR[VRT+32] .word[i] « EXTZ32((srcl+src2+1) >> 32)
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i in VSR[VRA+32].
The complement of the borrow out of bit 0 of the
32-bit difference is zero-extended to 32 bits and |
placed into word element i of VSR[VRT+32].

Special Registers Altered: |
None

Vector Subtract Signed Byte Saturate VX-form

vsubsbs VRT,VRA,VRB

4 VRT VRA VRB 1792

0 6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to15
srcl « EXTS(VSR[VRA+32].byte[i])
src2 « EXTS(VSR[VRB+32].byte[1])

VSR[VRT+32].byte[i] « si8 CLAMP(srcl + -src2 + 1)
end

For each integer value i from 0 to 15, do the following.
The signed integer value in byte element i in
VSR[VRB+32] is subtracted from the signed integer
value in byte element i in VSR[VRA+32].

— If the intermediate result is greater than 127
the result saturates to 127 and SAT is set to 1.

— If the intermediate result is less than -128 the
result saturates to -128 and SAT is set to 1.

The result is placed into byte element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Register Data Layout for vsubcuw

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1] VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] VSR[VRB+32] .word[2] VSR[VRB+32] .word[3]

result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127

Register Data Layout for vsubsbs

byte[0] | .byte[1] | .byte[2] | .byte[3]
byte[0] | .byte[1] | .byte[2] | .byte[3]

srcl

byte[9] | byte[10]| byte[12]| byte[12]| byte[13]| byte[14]| .byte[15]
byte[9] | byte[10]| byte[12]| byte[12]| .byte[13]| byte[14]| .byte[15]

byte[4]
byte[4]

yte[3]
byte[3]

byte[6]
byte[6]

yte[7]
byte[7]

byte[s]
byte[s]

src2

result ‘ yte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ yte[?] ‘ yte[e] ‘ yte[7] ‘ yte[d] ‘ yte[9] ‘.byte[l()]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[14]‘ .byte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
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Vector Subtract Signed Halfword Saturate
VX-form

vsubshs VRT,VRA,VRB

Vector Subtract Signed Word Saturate
VX-form

vsubsws VRT,VRA,VRB

4 VRT VRA VRB 1856
0 6 1 16 21 31

4 VRT VRA VRB 1920
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
srcl « EXTS(VSR[VRA+32].hword[1])
src2 « EXTS(VSR[VRB+32].hword[i])

VSR[VRT+32] .hword[i] « sil6_CLAMP(srcl + -src2 + 1)
end

For each integer value i from 0 to 7, do the following.
The signed integer value in halfword element i in
VSR[VRB+32] is subtracted from the signed integer
value in halfword element i in VSR[VRA+32].

— If the intermediate result is greater than 21°-1
the result saturates to 21°-1 and SAT is set to
1.

— If the intermediate result is less than -21° the
result saturates to -21° and SAT is set to 1

The result is placed into halfword element i of
VSR[VRT+32].

Special Registers Altered:
SAT

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTS(VSR[VRA+32].word[1])
src2 « EXTS(VSR[VRB+32].word[i])

VSR[VRT+32] .word[i] « si32_CLAMP(srcl + -src2 + 1)
end

For each integer value 1 from 0 to 3, do the following.
The signed integer value in word element i in
VSR[VRB+32] is subtracted from the signed integer
value in word element i in VSR[VRA+32].

— If the intermediate result is greater than 2%1-1
the result saturates to 231-1 and SAT is set to
1.

— If the intermediate result is less than -231 the
result saturates to -23! and SAT is set to 1

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Register Data Layout for vsubshs

srcl | VSR[VRA32].hword[0] | VSR[VRA¢32] .hword[L] | VSR[VRA¢32] .hword[2]

VSR[VRA#32]. hword[3]

VSR[VRA*32] . hword[4] | VSR[VRA+32] . word[5] | VSR[VRA32] . hword[6] | VSR[VRA¢32]. hword[7]

src2 | VSR[VRB+32].hword[0] | VSR[VRB+32] .hword[1] | VSR[VRB+32].hword[2]

VR[VRB#32].hord 3]

VRIVRB#32]. hord[4] | VGR[VRB+32]. hiord[5] | VSR[VRB32].ord[6] | VSRTVRB#32].hord(T]

result | VRIRT32].hord[0] | VSRLRT+32].ord[L] | VSRLVRT+32].hord[Z] | VSRTVRT<32].hord[3] | VSRTVRT#32].ord[4] | VSRDRT+32].ord[5] | VSRLRT+32]hvord[s] | VSR[VRT+32].hvord[7]
0

16 32 48

64 80 96 112 127

Register Data Layout for vsubsws

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1] VSR[VRA+32] .word[2] VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1] VSR[VRB+32] .word[2] VSR[VRB+32] .word[3]

result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 32 64 48 127
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Vector Subtract Unsigned Byte Modulo
VX-form

vsububm VRT,VRA,VRB

Vector Subtract Unsigned Halfword Modulo
VX-form

vsubuhm VRT,VRA,VRB

4 VRT VRA VRB 1024
0 6 1 16 21 31

4 VRT VRA VRB 1088
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to15
srcl « EXTZ(VSR[VRA+32].byte[i])
src2 « EXTZ(VSR[VRB+32].byte[1])
VSR[VRT+32].byte[i] « CHOP8(srcl + -src2 + 1)
end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element 1 in
VSR[VRB+32] is subtracted from the unsigned
integer value in byte element i in VSR[VRA+32].

The low-order 8 bits of the result are placed into
byte element i of VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7

srcl « EXTZ(VSR[VRA+32].hword[i])

src2 « EXTZ(VSR[VRB+32].hword[i])

VSR[VRT+32] .hword[i] « CHOP16(srcl + -src2 + 1)
end

For each integer value 1 from 0 to 7, do the following.
The unsigned integer value in halfword element i
in VSR[VRB+32] is subtracted from the unsigned
integer value in halfword element i in VSR[VRA+32].

The low-order 16 bits of the result are placed into
halfword element 1 of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vsububm

srcl | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6]

byte[7] | byte[8] | .byte[9] |.byte[10]|.byte[11]|.byte[12]|.byte[13]|.byte[14]|.byte[15]

src2 | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6]

byte[7] | byte[8] | .byte[9] |.byte[10]|.byte[11]|.byte[12]|.byte[13]|.byte[14]|.byte[15]

result ‘ yte[] ‘ yte[1] ‘ byte[Z] ‘ yte[3] ‘ yte[4] ‘ yte[s] ‘ yte[e] ‘ yte[7T] ‘ yte[s] ‘ yte[s] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 11

2 120 127

Register Data Layout for vsubuhm

srcl | VSR[VRA32].hword[0] | VSR[VRA+32] . hword[L] | VSR[VRA¢32] .hword[2] | VSR[VRA+32] .hword[3] | VSR[VRA+32] . hword[4] | VSR[VRA+32] . hword[5] | VSR[VRA+32].hword[6] | VSR[VRA+32].hword[7]

src2 | VSR[VRB+32].hword[0] | VSR[VRB+32] . hword[L] | VSR[VRB+32] .word[2] | VSR[VRB+32].hword[3] | VSR[VRB+32] . hword[4] | VSR[VRB+32] . hword[5] | VSR[VRB+32].hword[6] | VSR[VRB+32].hword[7]

result | VRIRT32].hord[0] | VSRLVRT+32].ord[L] | VSRLVRT+32].hord[Z] | VSRTVRT<32].ord[3] | VSRTVRT+32].ord[¢] | VSRDRT+32].ord[5] | VSRLRT+32]hvord[s] | VSR[VRT+32].hvord[7]
0

16 32 48

64 80 96 112 127
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Vector Subtract Unsigned Word Modulo Vector Subtract Unsigned Doubleword
VX-form Modulo VX-form
vsubuwm VRT,VRA,VRB vsubudm VRT,VRA,VRB
4 VRT VRA VRB 1152 4 VRT VRA VRB 1216
0 6 1 16 21 31 0 6 n 16 21 31
if MSR.VEC=0 then Vector_Unavailable() | if MSR.VEC=0 then Vector_Unavailable()
doi=0t3 doi=0to1
srcl « EXTZ(VSR[VRA+32].word[i]) srcl « EXTZ(VSR[VRA+32].dword[i])
src2 « EXTZ(VSR[VRB+32].word[1]) src2 « EXTZ(VSR[VRB+32].dword[i])
VSR[VRT+32].word[i] « CHOP32(srcl + -src2 + 1) VSR[VRT+32] .dword[i] « CHOP64(srcl + -src2 + 1)

end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in word element i in
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i1 in VSR[VRA+32]. |

The low-order 16 bits of the result are placed into

word element 1 of VSR[VRT+32].

Special Registers Altered:
None

end

For each integer value 1 from 0 to 1, do the following.
The integer value in doubleword element i in
VSR[VRB+32] is subtracted from the integer value in
doubleword element i in VSR[VRA+32].

The low-order 64 bits of the result are placed into
doubleword element i of VSR[VRT+32].

Special Registers Altered:

None

Programming Note

vsubudm can be used for signed or unsigned inte-

gers.

Register Data Layout for vsubuwm

srcl VSR[VRA+32] .word[0]

VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2]

VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0]

VSR[VRB+32] .word[1]

VSR[VRB+32] -word[2]

VSR[VRB+32] .word[3]

result VSR[VRT+32] .word[0]

VSR[VRT+32] .word[1]

VSR[VRT+32] .word[2]

VSR[VRT+32] .word[3]

0 32

64

48 127

Register Data Layout for vsubudm

srcl VSR[VRA+32] .dword[0] VSR[VRA+32] .dword[1]

src2 VSR[VRB+32] .dword[0] VSR[VRB+32] .dword[1]

result VSR[VRT+32] .dword[0] VSR[VRT+32] .dword[1]
0 64 127
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Vector Subtract Unsigned Byte Saturate
VX-form

vsububs VRT,VRA,VRB

Vector Subtract Unsigned Halfword Saturate
VX-form

vsubuhs VRT,VRA,VRB

4 VRT VRA VRB 1536

0 6 u 16 21 31

VRB 1600

16

4 VRT
0 6 n

VRA

21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to15
srcl « EXTZ(VSR[VRA+32].byte[i])
src2 « EXTZ(VSR[VRB+32].byte[i])
VSR[VRT+32].byte[i] « ui8_CLAMP(srcl + -src2 + 1)
end

For each integer value i from 0 to 15, do the following.
The unsigned integer value in byte element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in byte element 1 of VSR[VRA+32].

— If the intermediate result is less than 0 the
result saturates to 0 and SAT is set to 1.

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
srcl « EXTZ(VSR[VRA+32].hword[i])
src2 « EXTZ(VSR[VRB+32].hword[i])
VSR[VRT+32] .hword[i] « uil6_CLAMP(srcl + -src2 + 1)
VSCR.SAT « VSCR.SAT | sat_flag
end

For each integer value 1 from 0 to 7, do the following.
The unsigned integer value in halfword element i
of VSR[VRB+32] is subtracted from the unsigned
integer value in halfword element i of
VSR[VRA+32].

— If the intermediate result is less than 0 the

The result is placed into byte element i of result saturates to 0 and SAT is set to 1.
VSR[VRT+32].
The result is placed into halfword element i of
Special Registers Altered: VSR[VRT+32].
SAT
Special Registers Altered:
SAT
Register Data Layout for vsububs
srcl | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10]|.byte[11]| .byte[12]| .byte[13]|.byte[14] .byte[15]
src2 | .byte[0] | .byte[1] | .byte[2] | .byte[3] | .byte[4] | .byte[5] | .byte[6] | .byte[7] | .byte[8] | .byte[9] |.byte[10].byte[1L]| .byte[12]| .byte[13]|.byte[14] .byte[15]

result ‘ byte[0] ‘ ytell] ‘ byte[2] ‘ byte[3] ‘ yte[4] ‘ ytes] ‘ ytele] ‘ yte[7] ‘ yteld] ‘ byte[9] ‘.byte[l[)]‘ .byte[ll]‘ .byte[lZ]‘ .byte[lS]‘ .hyte[l4]‘ .hyte[lS]‘
0 8 16 24 32 40 48 56 64 72 80 88 96 104 1

12 120 127

Register Data Layout for vsubuhs

srcl | _hword[0] | -hword[1] | -hword[2] | -hword[3] | -hword[4] -hword[5] | -hword[6] | -hword[7]

src2 | _-hword[0] | -hword[1] | -hword[2] | -hword[3] | -hword[4] -hword[5] | -hword[6] | -hword[7]

result | .hword[0] | .hword[1] | .hword[2] | .hword[3] | -.hword[4] .hword[5] | .hword[6] | -.hword[7]
0 16 32 48 64 80 96 112 127
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Vector Subtract Unsigned Word Saturate
VX-form

vsubuws VRT,VRA,VRB

4 VRT VRA VRB 1664
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].word[i])
src2 « EXTZ(VSR[VRB+32].word[1])
VSR[VRT+32].word[i] « ui32_CLAMP(srcl + -src2 + 1)
end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in word element i of
VSR[VRB+32] is subtracted from the unsigned
integer value in word element i of VSR[VRA+32].

— If the intermediate result is less than 0 the
result saturates to 0 and SAT is set to 1.

The result is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
SAT

Register Data Layout for vmulesw

srcl VSR[VRA+32] .word[0] VSR[VRA+32] .word[1]

VSR[VRA+32] .word[2]

VSR[VRA+32] .word[3]

src2 VSR[VRB+32] .word[0] VSR[VRB+32] .word[1]

VSR[VRB+32] -word[2]

VSR[VRB+32] .word[3]

result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1]

VSR[VRT+32] .word[2]

VSR[VRT+32] .word[3]

0 32

64

48

127
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Vector Subtract Unsigned Quadword Modulo
VX-form

vsubugm VRT,VRA,VRB

Vector Subtract Extended Unsigned
Quadword Modulo VA-form

vsubeugm VRT,VRA,VRB,VRC

4 VRT VRA VRB 1280

0 6 u 16 21 31

4 VRT VRA VRB VRC 62
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(-VSR[VRB+32])

VSR[VRT+32] « CHOP128(srcl + src2 + 1)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

srcl and src2 can be signed or unsigned integers.
The rightmost 128 bits of the sum of srcl, the one’s
complement of src2, and the value 1 are placed into

VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(-VSR[VRB+32])
cin « EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] « CHOP128(srcl + src2 + cin)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

srcl and src2 can be signed or unsigned integers.

The rightmost 128 bits of the sum of srcl, the one’s
complement of src2, and cin are placed into
| VSRLVRT+32].

None
Special Registers Altered:
None
Register Data Layout for vsubugq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
result VSR[VRT+32]
0 127
Register Data Layout for vsubeuq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127
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Vector Subtract & write Carry-out Unsigned
Quadword VX-form

vsubcugq VRT,VRA,VRB

Vector Subtract Extended & write Carry-out
Unsigned Quadword VA-form

vsubecuq VRT,VRA,VRB,VRC

4 VRT VRA VRB 1344
0 6 u 16 21 3]

4 VRT VRA VRB VRC 63
0 6 u 16 21 26 31

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(-VSR[VRB+32])

VSR[VRT+32] « CHOP128((srcl + src2 + 1) >> 128)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].

srcl and src2 can be signed or unsigned integers.
The carry out of the sum of srcl, the one’s
complement of src2, and the value 1 is placed into

VSR[VRT+32].

Special Registers Altered:

if MSR.VEC=0 then Vector_Unavailable()

srcl « EXTZ(VSR[VRA+32])
src2 « EXTZ(-VSR[VRB+32])
cin « EXTZ(VSR[VRC+32].bit[127])

VSR[VRT+32] « CHOP128((srcl + src2 + cin) >> 128)

Let srcl be the integer value in VSR[VRA+32].
Let src2 be the integer value in VSR[VRB+32].
Let cin be the integer value in bit 127 of VSR[VRC+32].

srcl and src2 can be signed or unsigned integers.

The carry out of the sum of srcl, the one’s
complement of src2, and cin are placed into
| VSRLVRT+32].

None
Special Registers Altered:
None
Register Data Layout for vsubcuq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
result VSR[VRT+32]
0 127
Register Data Layout for vsubecuq
srcl VSR[VRA+32]
src2 VSR[VRB+32]
src3 VSR[VRC+32]
result VSR[VRT+32]
0 127

—— Programming Note

The Vector Subtract Unsigned Quadword instructions support efficient wide-integer subtraction. The following
code sequence can be used to implement a 512-bit sighed or unsigned subtract operation.

vsubugm vS3,VA3,vB3 # bits 384:511 of difference

vsubcug vC3,VvA3,vB3 # carry out of bit 384 of difference
vsubeugm vS2,vA2,vB2,vC3 # bits 256:383 of difference
vsubecuq vC2,vA2,vB2,vC3 # carry out of bit 256 of difference
vsubeugm vS1,vAl,vB1,vC2 # bits 128:255 of difference
vsubecuq vCl,vAl,vB1,vC2 # carry out of bit 128 of difference
vsubeugm vS0, VA0, VB0, VvCl # bits 0:127 of difference
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6.9.1.3 Vector Integer Multiply Instructions

Vector Multiply Even Signed Byte VX-form

Vector Multiply Odd Signed Byte VX-form

vmulesh

VRT,VRA,VRB

vmulosh

VRT,VRA,VRB

4

VRT

VRA

VRB

776

4

VRT

VRA

VRB

264

31

6 un 16 21

6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
srcl « EXTS(VSR[VRA+32].byte[2xi])
src2 « EXTS(VSR[VRB+32].byte[2xi])

VSR[VRT+32].hword[i] « CHOP16(srcl x src2)
end

For each integer value i from 0 to 7, do the following.
The signed integer value in byte element ix2 of
VSR[VRA+32] is multiplied by the signed integer
value in byte element ix2 of VSR[VRB+32].

The 16-bit product is placed into halfword element

if MSR.VEC=0 then Vector_Unavailable()

doi=0t7
srcl « EXTS(VSR[VRA+32].byte[2xi+1])
src2 « EXTS(VSR[VRB+32].byte[2xi+1])

VSR[VRT+32] .hword[i] « CHOP16(srcl x src2)
end

For each integer value 1 from 0 to 7, do the following.
The signed integer value in byte element ix2+1 of
VSR[VRA+32] is multiplied by the signed integer
value in byte element ix2+1 of VSR[VRB+32].

The 16-bit product is placed into halfword element

i of VSR[VRT+32]. | i of VSR[VRT+32].
Special Registers Altered: Special Registers Altered:
None None
Register Data Layout for vmulesb
srcl | .byte[0] | unused | .byte[2]| unused | .byte[4] | unused |.byte[6] | unused |.byte[8] | unused |.byte[10]| unused |.byte[12]| unused |.byte[14]| unused
src2 | .byte[0] | unused | .byte[2] | unused | .byte[4] | unused |.byte[6] | unused |.byte[8] | unused |.byte[10]| unused |.byte[12]| unused |.byte[14]| unused
result | .hword[0] | .hword[1] | -hword[2] | -hword[3] | -hword[4] -hword[5] | -hword[6] | -hword[7]
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
Register Data Layout for vmulosb
srcl | unused | .byte[1] | unused | .byte[3] | unused | .byte[5]| unused | .byte[7]| unused | .byte[9] | unused |.byte[1l]| unused |.byte[13]| unused |.byte[15]
src2 | unused | .byte[1] | unused | .byte[3] | unused | .byte[5]| unused | .byte[7]| unused | .byte[9] | unused |.byte[1l]| unused |.byte[13]| unused |.byte[15]
result | .hword[0] | .hword[1] | .hword[2] | .hword[3] | -.hword[4] .hword[5] | .hword[6] | -.hword[7]
0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127
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Vector Multiply Even Unsigned Byte VX-form

vmuleub

VRT,VRA,VRB

vmuloub

VRT,VRA,VRB

Vector Multiply Odd Unsigned Byte VX-form

4

VRT

VRA

VRB

4

VRT

VRA

VRB

520

6 un 16 21 31

6 u 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to7
srcl « EXTZ(VSR[VRA+32].byte[2xi])
src2 « EXTZ(VSR[VRB+32].byte[2xi])

VSR[VRT+32].hword[i] « CHOP16(srcl x src2)
end

For each integer value i from 0 to 7, do the following.
The unsigned integer value in byte element ix2 of
VSR[VRA+32] is multiplied by the unsigned integer
value in byte element ix2 of VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0t7
srcl « EXTZ(VSR[VRA+32].byte[2xi+1])
src2 « EXTZ(VSR[VRB+32].byte[2xi+1])

VSR[VRT+32] .hword[i] « CHOP16(srcl x src2)
end

For each integer value 1 from 0 to 7, do the following.
The unsigned integer value in byte element ix2+1
of VSR[VRA+32] is multiplied by the unsigned
integer value in byte element ix2+1 of
VSR[VRB+32].

The 16-bit product is placed into halfword element
i of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vmuleub

srcl

src2

byte[(]

unused

byte[2]

unused

byte[4]

unused

byte[s]

unused

byte[g]

unused

byte[10]

unused

byte[12]

unused

byte[14]

unused

byte[]

unused

byte[2]

unused

byte[4]

unused

byte[s]

unused

byte[g]

unused

byte[10]

unused

byte[12]

unused

byte[14]

unused

result |VSR[VRT+32].hword[] | VSR[VRT+32].hword[1] | VSR[VRT+32].hword[2] | VSR[VRT+32].hword[3] | VSR[VRT+32]tword[4] | VSR[VRT+32].tword[5] | VSR[VRT+32] . hword[6] | VSR[VRT+32] .hword[7]
8

0

16

24

32

40

48

56

64

72

80

88

96

104

112

120 127

Register Data Layout for vmuloub

srcl

src2

unused

byte[1]

unused

byte[3]

unused

byte[s]

unused

-byte[7]

unused

byte[g]

unused

byte[11]

unused

byte[13]

unused

byte[15]

unused

byte[1]

unused

byte[3]

unused

byte[5]

unused

byte[T]

unused

byte[]

unused

byte[11]

unused

byte[13]

unused

byte[15]

result | VRIRT32].hord[0] | VSRLVRT+32].ord[L] | VSRLVRT+32].ord[Z] | VSRTVRT<32].ord[3] | VSRTVRT+32].ord[4] | VSRDRT+32].ord([5] | VSRLRT+32]hvord[s] | VSR[VRT+32].hvord[7]

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120 127
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Vector Multiply Even Signed Halfword

Vector Multiply Odd Signed Halfword VX-form

VX-form
vmulosh VRT,VRA,VRB
vmulesh VRT,VRA,VRB
4 VRT VRA VRB 328
4 VRT VRA VRB 840 0 6 1 16 21 kil
0 6 1 16 21 31

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTS(VSR[VRA+32].hword[2xi])
src2 « EXTS(VSR[VRB+32].hword[2xi])

VSR[VRT+32] .word[i] « CHOP32(srcl x src2)
end

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTS(VSR[VRA+32].hword[2xi+1])
src2 « EXTS(VSR[VRB+32].hword[2xi+1])

VSR[VRT+32] .word[i] « CHOP32(srcl x src2)
end

For each integer value 1 from 0 to 3, do the following.

For each integer value i from 0 to 3, do the following.
The signed integer value in halfword element ix2
of VSR[VRA+32] is multiplied by the signed integer
value in halfword element ix2 of VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32]. |

Special Registers Altered:
None

The signed integer value in halfword element
ix2+1 of VSR[VRA+32] is multiplied by the signed
integer value in halfword element ix2+1 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:

None

Register Data Layout for vmulesh

srcl | VSR[VRA+32].hiord[0] unused | VSR[VRA+32].hword[2] unused | VSR[VRA32].word[4] unused | VSR[VRA+32]. hword[6] unused
src2 | VSR[VRB+32].hiord[0] unused | VSR[VRB+32].hword[2] unused | VSR[VRB+32].word[4] unused | VSR[VRB+32].hword[6] unused
result VSR[VRT+32] -word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 16 32 48 64 80 9 112 127
Register Data Layout for vmulosh
srcl unused | VSR[VRA+32].hword[1] unused | VSR[VRA32].hword[3] unused | VSR[VRA32].hword[5] unused | VSR[VRA32].hword[7]
src2 unused | VSR[VRB+32].hword[1] unused | VSR[VRB+32].hword[3] unused | VSR[VRB+32].word[5] unused | VSR[VRB+32].word[7]
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]
0 16 32 48 64 80 9 112 127
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Vector Multiply Even Unsigned Halfword
VX-form

vmuleuh VRT,VRA,VRB

Vector Multiply Odd Unsigned Halfword
VX-form

vmulouh VRT,VRA,VRB

4 VRT VRA VRB 584
0 6 1 16 21 31

4 VRT VRA VRB 72
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].hword[2xi])
src2 « EXTZ(VSR[VRB+32].hword[2xi])

VSR[VRT+32] .word[i] « CHOP32(srcl x src2)
end

For each integer value i from 0 to 3, do the following.
The unsigned integer value in halfword element
ix2 of VSR[VRA+32] is multiplied by the unsigned
integer value in halfword element ix2 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32]. |

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0to3
srcl « EXTZ(VSR[VRA+32].hword[2xi+1])
src2 « EXTZ(VSR[VRB+32].hword[2xi+1])

VSR[VRT+32] .word[i] « CHOP32(srcl x src2)
end

For each integer value 1 from 0 to 3, do the following.
The unsigned integer value in halfword element
ix2+1 of VSR[VRA+32] is multiplied by the unsigned
integer value in halfword element ix2+1 of
VSR[VRB+32].

The 32-bit product is placed into word element i of
VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vmuleuh

srcl | VSR[VRA+32].hiord[0] unused | VSR[VRA32].hword[2] unused | VSR[VRA32].hword[4] unused | VSR[VRA32].hword[6] unused
src2 | VSR[VRB+32].hiord[0] unused | VSR[VRB+32].hword[2] unused | VSR[VRB+32].hword[4] unused | VR[VRB+32].hword[6] unused
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] .word[2] VSR[VRT+32] .word[3]
0 16 32 48 64 80 96 112 127
Register Data Layout for vmulouh
srcl unused | VSR[VRA+32].hword[1] unused | VSR[VRA32].hword[3] unused | VSR[VRA+32]. word[5] unused | VSR[VRA32].word[7]
src2 unused | VSR[VRB+32].hword[1] unused | VSR[VRB+32].hword[3] unused | VSR[VRB+32].word[5] unused | VSR[VRB+32].word[7]
result VSR[VRT+32] .word[0] VSR[VRT+32] .word[1] VSR[VRT+32] -word[2] VSR[VRT+32] .word[3]
0 16 32 48 64 80 96 112 127
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Vector Multiply Even Signed Word VX-form

vmulesw VRT,VRA,VRB

Vector Multiply Odd Signed Word VX-form

vmulosw VRT,VRA,VRB

4 VRT VRA VRB 904
0 6 1 16 21 31

4 VRT VRA VRB 392
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to1l
srcl « EXTS(VSR[VRA+32].word[2xi])
src2 « EXTS(VSR[VRB+32].word[2xi])

VSR[VRT+32] .dword[i] « CHOP64(srcl x src2)
end

For each integer value i from 0 to 1, do the following.
The signed integer in word element 2xi of
VSR[VRA+32] is multiplied by the signed integer in
word element 2x1i of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

if MSR.VEC=0 then Vector_Unavailable()

doi=0tol
srcl « EXTS(VSR[VRA+32].word[2xi+1])
src2 « EXTS(VSR[VRB+32].word[2xi+1])

VSR[VRT+32] .dword[i] « CHOP64(srcl x src2)
end

For each integer value 1 from 0 to 1, do the following.
The signed integer in word element 2xi+1 of
VSR[VRA+32] is multiplied by the signed integer in
word element 2xi+1 of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+32].

Special Registers Altered:
None

Register Data Layout for vmulesw

srcl VSR[VRA+32] .word[0] unused

VSR[VRA+32] .word[2] unused

src2 VSR[VRB+32] .word[0] unused

VSR[VRB+32] .word[2] unused

result VSR[VRT+32] .dword[0] VSR[VRT+32] .dword[1]
0 32 64 48 127
Register Data Layout for vmulosw
srcl unused VSR[VRA+32] .word[1] unused VSR[VRA+32] .word[3]
src2 unused VSR[VRB+32] .word[1] unused VSR[VRB+32] .word[3]
result VSR[VRT+32] .dword[0] VSR[VRT+32] .dword[1]

0 32

64 48 127
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Vector Multiply Even Unsigned Word VX-form

vmuleuw VRT,VRA,VRB

Vector Multiply Odd Unsigned Word VX-form

vmulouw VRT,VRA,VRB

4 VRT VRA VRB 648
0 6 1 16 21 31

4 VRT VRA VRB 136
0 6 u 16 21 kit

if MSR.VEC=0 then Vector_Unavailable()

doi=0to1l
srcl « EXTZ(VSR[VRA+32].word[2xi])
src2 « EXTZ(VSR[VRB+32].word[2xi])

VSR[VRT+32] .dword[i] « CHOP64(srcl x src2)
end

For each integer value i from 0 to 1, do the following.
The unsigned integer in word element 2xi of
VSR[VRA+32] is multiplied by the unsigned integer
in word element 2xi of VSR[VRB+32].

The 64-bit product is placed into doubleword
element i of VSR[VRT+3