
© 2017 IBM Corporation 3/14/2017

IBM Data Replication

Replicating Changed Data to MapR-FSTM

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 2 3/14/2017

Table of Contents

Introduction: Two Approaches to Replicating to MapR-FS .. 3

Replicating Change Data to MapR-FS using Flat Files .. 3

Sample View of a CDC Flat File ... 3

How CDC Flat Files are hardened.. 4

Methods for Moving Flat Files to MapR-FS .. 4

Advantages of the Flat-File-to-MapR-FS Solution .. 5

Considerations for the Flat-File-to-MapR-FS Solution .. 5

References - Replicating Change Data to MapR-FS using Flat Files .. 5

Replicating Change Data to MapR-FS Staged Through Kafka ... 6

Replicating Change Data into Apache Kafka – Table Mapping .. 6

Replicating Change Data into Apache Kafka – Table Records ... 6

Advantages of the Kafka-to-MapR-FS Solution .. 7

Considerations for the Kafka-to-MapR-FS Solution .. 7

Writing Kafka Records to MapR-FS using the Confluent HDFS Connector sink ... 7

Sample Replication Methodology using the Confluent HDFS Connector sink (Kafka-to-MapR-FS solution) 8

Other Technology Possibilities for Writing Kafka Records to MapR-FS ... 9

References - Replicating Change Data to MapR-FS Staged Through Kafka ... 10

Notices ... 11

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 3 3/14/2017

Introduction: Two Approaches to Replicating to MapR-FS

This document discusses two possible approaches for replicating data from an IBM Data Replication

“CDC” Source to a MapR-FS.

IBM recommends as a best practice that a proof of concept be done to validate the choices made

based on the guidance given here.

 Approach 1: Replicating to MapR-FS using Flat Files as the staging mechanism

 Approach 2: Replicating to MapR-FS Staged Through KafkaTM

Replicating Change Data to MapR-FS using Flat Files

Overview

This section describes a strategy to replicate table change data, “CDC data”, from a CDC Source to a
MapR-FS through first replicating the change data into multiple flat files and then propagating these
flat files into the MapR-FS.

While the CDC target engine that generates flat files is called the DataStage Flat File Target, an IBM
DataStage installation is NOT required for the afore mentioned flat files to be generated.

Stage 1: Replicating Change Data into Flat Files

Logged changes from a source database's transaction log are scraped by a CDC Source agent and
sent via TCP/IP to the CDC Flat File for DataStage Target agent. The CDC Target writes this data to a
series of Flat Files, each corresponding to a table and having row data in a comma separated value
format. Note that DataStage is not required nor used. This is GUI artifact.

Stage 2: Moving Flat Files to MapR-FS

The MapR-FS has several methods of consuming a CSV file. MapR-FS implements hadoop, HDFS,
and Map Reduce API's. The specific method chosen is best determined by the MapR-FS admin who
understands the workload and common data ingestion patterns for the environment, while taking
into consideration the best practices governed by MapR-FS for copying files into the MapR-FS.

Sample View of a CDC Flat File

A sample record in a Flat File in multiple record format for a given table is structured as follows:

Metadata
DM_TIMESTAMP - The timestamp obtained from the log when the operation occurred
DM_TXID - Transaction identifier (dependent on the Source database)
DM_OPERATION_TYPE - I for an insert, D for a delete, "B" for the row containing the before
image of an update, and "A" for the row containing the after image of an update.
DM_USER - The user who performed the operation.

Record Example
An update of a row (1, "abc) on the source database to (1, "def") would appear as:

"2017-03-01 20:30:00","73", "B","<user id>","1","abc "
"2017-03-01 20:30:00","73", "A","<user id>","1","def "

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 4 3/14/2017

How CDC Flat Files are hardened

File Hardening

A consumer of the Flat File can determine that a file is ready for consumption when the naming
format of the file changes. This is known as “hardening” of the file. How often a file is hardened is
configurable in the CDC Target agent. There is an option to include the number of records in a flat
file as part of the file naming convention below but it is not shown in the example.

File Name Hardening Example

For a table, "Tab1", made on Julian date 2018077 at time hh24mmss (GMT) T054618212

Currently Opened indicated by @ sign:
 TAB1.@2018077 .T054618212

Completed Flat File Ready for Consumption indicated by "D":
 TAB1.D2018077 .T054618212

Methods for Moving Flat Files to MapR-FS

The MapR-FS has several methods of consuming a flat file. MapR-FS implements hadoop, HDFS,
and Map Reduce API's. Copying files into the MapR-FS and its best practices are governed by
MapR-FS and should be considered. The specific method chosen is best determined by the MapR-
FS admin who understands the workload and common data ingestion patterns for the environment.

Methodologies the MapRTM admin may find useful to consider include
 Scripting hdfs dfs –put commands
 Copying to a MapR-FS NFS mount

Sample Flat File Replication Methodology Using hdfs dfs –put

Steps

 Flat files are generated on a server running the CDC Flat File target.

 A scripted process performs an ls of the flat file directory looking for files which have
hardened as indicated by the "D" in the name format.

 The file is copied to a staging location on the hadoop server

 The hdfs put command is run,
 e.g. hdfs dfs -put <location of csv file> <location of hdfs>

Sample Flat File Replication Methodology Using MapR-FS NFS Mount

Steps

 Mount the MapR-FS NFS on a linux client.

 Add an NFS mount to /etc/fstab,
 e.g. my-node01:/mapr /mapr nfs rw 0 0

 Configure the NFS Client settings such as the number of outstanding RPC requests
on the NFS server to be 128

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 5 3/14/2017

 Script performing an ls of the flat file directory looking for hardened files as
indicated by the "D" in the name format

 Script copying the hardened files from the Flat File Location directory to the NFS
mount, either as the files harden or when desired based on the MapR-FS workload.

Advantages of the Flat-File-to-MapR-FS Solution

 CSV file format is very exploitable and well known patterns for processing data in this
format exist. MapR highlights this with Apache Drill

 Files placed into the MapR-FS can be limited to those hardened files which represent data at
a commit boundary.

 The rate of ingest can be altered by selecting batching parameters in the CDC DataStage For
Flat File subscription properties.

 Scheduled timing of the file copy can be arranged to minimize performance impact on the
MapR-FS.

 Implementation is relatively simple, as copying files to MapR-Fs is well understood.

Considerations for the Flat-File-to-MapR-FS Solution

 Batching criteria is checked at commit boundaries and so file sizes can vary.
 Some hardened files may be smaller than threshold sizes, as a harden operation hardens all

open files to help with data consistency.
 Flat File is not suitable when character columns contain binary data. A base 64 encoding

scheme may need to be employed in the user exit for example.
 Tables are individually replicated making ordering of operations cross table not inherent to

the format.
 Disk staging space needs to be administered, and I/O speed is in the critical path of

throughput performance.

References - Replicating Change Data to MapR-FS using Flat Files

IBM Infosphere CDC for DataStage Flat File

https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdcfordatastage.
doc/concepts/systemrequirements.html

https://www.ibm.com/developerworks/community/files/app?lang=en#/collection/131b8421-396b-
488b-865a-68c35805105f

Supporting MapR

http://doc.mapr.com/display/MapR/MapR+Overview

http://doc.mapr.com/display/MapR/Accessing+Data+with+NFS

http://doc.mapr.com/display/MapR/hadoop+fs

https://www.mapr.com/developercentral/code/drilling-csv-files-simple-example#.WLcxDnpj6GQ

https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdcfordatastage.doc/concepts/systemrequirements.html
https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdcfordatastage.doc/concepts/systemrequirements.html
https://www.ibm.com/developerworks/community/files/app?lang=en
https://www.ibm.com/developerworks/community/files/app?lang=en
http://doc.mapr.com/display/MapR/MapR+Overview
http://doc.mapr.com/display/MapR/Accessing+Data+with+NFS
http://doc.mapr.com/display/MapR/hadoop+fs
https://www.mapr.com/developercentral/code/drilling-csv-files-simple-example

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 6 3/14/2017

Replicating Change Data to MapR-FS Staged Through Kafka

Overview

This section describes a strategy to replicate table change data, “CDC” data, from an IBM CDC

Source to a MapR-FS where the change data is first staged into an Apache Kafka Cluster, and MapR

supported methodology is used to consume the Apache Kafka data into the MapR-FS.

Stage 1: Replicating Change Data into ApacheTM Kafka

Logged changes from a source database's transaction log are scraped by a CDC Source agent and

sent via TCP/IP to the CDC for Kafka Target. The CDC target writes the change record data to topics

in an Apache Kafka Cluster.

Stage 2: Writing Kafka Records to MapR-FS

MapR provides documentation that confirm that consuming from Apache Kafka and writing the

data to MapR-FS is possible via a Kafka HDFS connector.

"The HDFS connector allows you to export data from MapR Streams or Apache Kafka topics to

MapR-FS or HDFS files in a variety of formats. " ~ MapR

Replicating Change Data into Apache Kafka – Table Mapping

Source Table to Kafka Cluster Mapping

 A Kafka topic is created for each replicated table in the CDC subscription.

 A Kafka record is comprised of metadata and a Key,Value pair.

 Unique rows in the source table are represented by the "Key" of the Kafka record.

 The "Value" contains the current values for all columns in the row in Avro format.

 Records sent to the topic represent the changes to the rows of a table over time.

Replicating Change Data into Apache Kafka – Table Records

Source Table Operation To Kafka Record Representation

The CDC Kafka targets only writes to Kafka targets through appending records

 Inserts: the Kafka record contains a key and a value

 Delete: Kafka represents a delete as a record with a key and a null for the value.

 Updates:

• If the column(s) being updated are not key columns, the update is represented in

the same way as an insert as described above.

• If any column being updated is a key, two records are created: a delete record for

the old key, and an insert record for the new key.

Sample View of Kafka Key-Value Pair

Avro Format displayed with the Avro console consumer:

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 7 3/14/2017

Key:

{"COL_KEY":"a"}

Value:

{"COL_KEY":"a","COL_CHAR":{"string":"c"},"COL_VARCHAR":{"string":"v"},"COL_GRAPHIC":{

"string":"b"},"COL_VARGRAPHIC":{"string":"H"},"COL_BINARY":{"bytes":"B"},"COL_VARBINA

RY":null,"COL_SMALLINT":{"int":12},"COL_INTEGER":{"int":25},"COL_BIGINT":{"long":2154},

"COL_DECIMAL":{"int":2},"COL_DECFLOAT":{"string":"9.999965"},"COL_REAL":{"float":325.3

6792},"COL_DOUBLE":{"double":3.1414999999999997},"COL_DATE":{"string":"2016-11-

07"},"COL_TIME":{"string":"12:11:02"},"COL_TIMESTAMP":{"string":"2016-11-

08T12:11:02.718261000000"}}

Advantages of the Kafka-to-MapR-FS Solution

 Data is written in Avro format, which is compact, efficient to process, and which is a typed

format.

 The Kafka Connector framework allows for customization of the format.

 The Confluent HDFS sink is open source.

 Data in a Kafka cluster offers new application options utilizing Kafka for real time event

processing and streaming.

 Kafka is very fast with low latency.

 Kafka offers fault tolerance.

 Kafka offers scalability to increase parallelism as number of topics increases.

 By default connector behavior, an Avro schema is provided for each table enhancing the

ability to leverage the data.

Considerations for the Kafka-to-MapR-FS Solution

 A Kafka Cluster is required to stage Data, which introduces added complexity compared to

the use of a file system to store flat files.

 Kafka has at-least-once semantics.

 Tables are individually replicated making ordering of operations cross table not inherent to

the format.

Writing Kafka Records to MapR-FS using the Confluent HDFS

Connector sink

MapR leverages the ConfluentTM Certified HDFS Sink Kafka Connector in their HDFS connector

solution. Details regarding the level of support and methodologies for implementing the specified

data export are the providence of MapR.

"http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-connector.html".

http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-connector.html

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 8 3/14/2017

A Kafka connector sink framework is included in Kafka and is designed to take streaming data from

Kafka and apply it to other systems. The HDFS sink makes use of the HDFS API, implemented by

MapR-FS, to push data into a HDFS file.

Configuring HDFS-Sink for MapR-FS

The HDFS Sink takes multiple configuration parameters. Key ones that can be specified include:

• the Kafka topic to read from

e.g. "topics": "kafka1.subscription3.sourcedb.<schema>.<tablename>"

• the hdfs url - the HDFS connection URL in format hdfs:://hostname:port specifying the HDFS

to export data to

e.g. "hdfs.url": "hdfs://mapr:7222/tmp"

• the flush size, which determines how many records to write to HDFS before invoking file

commits

 e.g. "flush.size": "5"

• the top-level HDFS directory to store the write ahead logs, “logs.dir”

• the top-level HDFS directory to store the ingested data from Kafka, ”topics.dir”

Sample Replication Methodology using the Confluent HDFS

Connector sink (Kafka-to-MapR-FS solution)

1) On the Kafka Server, ensure Kafka is running and topics to be consumed exist.

2) The HDFS sink is present in the Confluent Kafka package. It is recommended that the latest

Confluent Kafka package be used.

Download and untar the Confluent Kafka package into a separate directory, if not present

already, to retrieve it. Copy the following files from the MapR box into the Confluent

installation folder. The numbers in the file and folder names could be different depending

on the MapR version.

/opt/mapr/hadoop/hadoop-2.7.0/share/hadoop/hdfs/hadoop-hdfs-2.7.0-mapr-1607.jar

/opt/mapr/hadoop/hadoop-2.7.0/share/hadoop/common/hadoop-common-2.7.0-mapr-

1607.jar

/opt/mapr/hadoop/hadoop-2.7.0/share/hadoop/common/lib/hadoop-auth-2.7.0-mapr-

1607.jar

/opt/mapr/hadoop/hadoop-2.7.0/share/hadoop/tools/lib/htrace-core-3.1.0-incubating.jar

/opt/mapr/lib/maprfs-5.2.0-mapr.jar

/opt/mapr/conf/mapr.login.conf

3) Set the Classpath to point to the MapR implementation of the hadoop/hdfs API rather than

the standard hadoop implementation.

 Run the following:

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 9 3/14/2017

export CLASSPATH=hadoop-hdfs-2.7.0-mapr-1607.jar:hadoop-common-2.7.0-mapr-

1607.jar:hadoop-auth-2.7.0-mapr-1607.jar:htrace-core-3.1.0-incubating.jar:maprfs-

5.2.0-mapr.jar

This command enforces the MapR implementation of hadoop lib is used rather than pure

hadoop lib.

4) In the Confluent platform installation folder, modify etc/kafka-connect-hdfs/quickstart-

hdfs.properties. The content of the file should look like this:

 name=hdfs-sink

connector.class=io.confluent.connect.hdfs.HdfsSinkConnector

tasks.max=1

topics=<provide topic name>

hdfs.url=hdfs://<MapR host name>:<port>/tmp

flush.size=<number of records in the file>

The MapR-FS port number and host name can be found in the file /opt/mapr/conf/mapr-

clusters.conf.

Look for a line similar to “demo.mapr.com secure=false maprdemo:7222”.

"tmp" is added to the hdfs.url because this folder is usually accessible by any user to avoid

permissions issues.

5) Modify the bin/kafka-run-class by adding the following path at the end of the script:

 -Djava.security.auth.login.config=<full path to mapr.login.conf file>

e.g. exec $JAVA $KAFKA_HEAP_OPTS $KAFKA_JVM_PERFORMANCE_OPTS

 $KAFKA_GC_LOG_OPTS $KAFKA_JMX_OPTS $KAFKA_LOG4J_OPTS

- Djava.security.auth.login.config=/home/<user>/confluent-3.x.x/mapr.login.conf

 -cp $CLASSPATH $KAFKA_OPTS "$@“

6) Start the HDFS sink connector.

 ./bin/connect-standalone etc/schema-registry/connect-avro-standalone.properties

etc/kafka-connect-hdfs/quickstart-hdfs.properties

Other Technology Possibilities for Writing Kafka Records to

MapR-FS

1. Example of consuming Avro data encoded with Confluent sterilizers from Kafka with Spark

Streaming: https://github.com/seanpquig/confluent-platform-spark-streaming.

Reference to MapR’s documented support for Apache Spark:

https://www.mapr.com/products/apache-spark

2. Example of consuming generic Kafka data from Kafka using Apache Flume:

http://howtoprogram.xyz/2016/08/06/apache-flume-kafka-source-and-hdfs-sink/

https://flume.apache.org/releases/content/1.6.0/FlumeUserGuide.html#kafka-source

https://github.com/seanpquig/confluent-platform-spark-streaming
https://www.mapr.com/products/apache-spark
http://howtoprogram.xyz/2016/08/06/apache-flume-kafka-source-and-hdfs-sink/
https://flume.apache.org/releases/content/1.6.0/FlumeUserGuide.html#kafka-source

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 10 3/14/2017

Reference to MapR’s documented support for Flume:

http://doc.mapr.com/display/MapR/Flume

References - Replicating Change Data to MapR-FS Staged Through Kafka

IBM CDC for Kafka Target

https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdckafka.doc

/concepts/systemrequirements.html

The Apache Avro Data Format

https://avro.apache.org/

Kafka Connect Framework info and quickstart

https://www.confluent.io/product/connectors/

http://docs.confluent.io/3.0.0/connect/connect-hdfs/docs/hdfs_connector.html#quickstart

http://docs.confluent.io/3.1.2/connect/quickstart.html

Open Source

https://github.com/confluentinc/kafka-connect-hdfs

MapR connect hdfs connector support

http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-connector.html

http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-example-fromKafka.html

http://maprdocs.mapr.com/home/Kafka/Connect-standalone-mode.html

http://doc.mapr.com/display/MapR/Flume
https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdckafka.doc/concepts/systemrequirements.html
https://www.ibm.com/support/knowledgecenter/SSTRGZ_11.4.0/com.ibm.cdcdoc.cdckafka.doc/concepts/systemrequirements.html
https://avro.apache.org/
https://www.confluent.io/product/connectors/
http://docs.confluent.io/3.0.0/connect/connect-hdfs/docs/hdfs_connector.html
http://docs.confluent.io/3.1.2/connect/quickstart.html
https://github.com/confluentinc/kafka-connect-hdfs
http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-connector.html
http://maprdocs.mapr.com/home/Kafka/Connect-hdfs-example-fromKafka.html
http://maprdocs.mapr.com/home/Kafka/Connect-standalone-mode.html

Replicating Changed Data to MapR-FS

© 2017 IBM Corporation Page 11 3/14/2017

Notices

© Copyright IBM Corporation 2017

All Rights Reserved.

IBM Canada

8200 Warden Avenue

Markham, ON

L6G 1C7

Canada

Neither this documentation nor any part of it may be copied or reproduced in any form or by any

means or translated into another language, without the prior consent of the above mentioned

copyright owner.

IBM makes no warranties or representations with respect to the content hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. IBM

assumes no responsibility for any errors that may appear in this document. The information
contained in this document is subject to change without any notice. IBM reserves the right to make

any such changes without obligation to notify any person of such revision or changes. IBM makes
no commitment to keep the information contained herein up to date.

Performance is based on measurements and projections using standard IBM benchmarks in a

controlled environment. The actual throughput or performance that any user will experience will

vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and
the workload processed. Therefore, no assurance can be given that an individual user will achieve

results similar to those stated here.

All performance data contained in this publication was obtained in the specific operating
environment and under the conditions described above and is presented as an illustration only.

Performance obtained in other operating environments may vary, and customers should conduct

their own testing

The information in this document concerning non-IBM products was obtained from the supplier(s)

of those products. IBM has not tested such products and cannot confirm the accuracy of the
performance, compatibility, or any other claims related to non-IBM products. Questions about the

capabilities of non-IBM products should be addressed to the supplier(s) of those products.

IBM, and the IBM logo are trademarks or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both. Other company, product, or service

names may be trademarks or service marks of others. References in this publication to IBM

products or services do not imply that IBM intends to make them available in all countries in which
IBM operates.

